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Advances in Efficient Design of Experiments 1

1 Introduction and Overview of the Element
Most books about experimental economics start with the observation that
experiments can contribute to the understanding of economics, despite some
early claims to the contrary. They then proceed with a historical account of
the rising popularity and prestige of the discipline; these accounts inevitably
conclude that experimental economics is well past its infancy. By now, experi-
mental economics is well established as one of the methods of analysis and
therefore we do not think its existence needs to be justified. The goal should
rather be to make it as useful a tool as possible.
The key to this is to work on the efficiency of design and inference, so that

sample sizes achievable within a reasonable budget can provide rich and precise
information. In the current practice of experimental economics, both the design
and data analysis plans tend to be rather simple; the researcher may decide on a
sample size using a rule of thumb, assign half of the subjects to the control group
and the other half to the experimental group, run the sessions, and then conduct
some non-parametric tests to see if the dependent variable takes significantly
different values in the two groups. Simplicity is a virtue and this approach often
works reasonably well.
In other cases, though, more sophisticated methods can yield considerable

gains in efficiency. Fields with a longer tradition of conducting experiments
have developed a number of techniques that could be applied fruitfully in
experimental economics as it matures, but to date this has happened only rarely.
One example would be optimal designs seeking to maximise information
ex ante (e.g. D-optimal designs). They are employed, for example, in dis-
crete choice experiments conducted by environmental economists (Mariel et al.
2021), but they are not commonly known among mainstream experimental
economists.
Then there are various innovations within the profession. Adaptive (aka

dynamic) designs (such as the non-Bayesian Perny et al. 2016) and several
Bayesian approaches: DOSE (Chapman et al. 2018) ADO (Adaptive Design
Optimisation) Cavagnaro et al. (2013) and the approach of Toubia et al. (2013),
in which previous responses help to determinewhat stimuli are likely to bemost
informative about subjects’ preferences, have recently been developed but are
not widely adopted yet.
The coverage of these topics in leading texts on experimental economics

(e.g. Jacquemet and l’Haridon 2018) and experimetrics (Moffatt 2015) remains
patchy.Moreover, promising links between them have been largely overlooked.
In this Element, we explore the pros and cons of the simplistic business-as-

usual approach to designing economic experiments. We discuss the pervasive
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2 Behavioural and Experimental Economics

problem of small, underpowered experiments. We point out the factors that
make it easier to run large-scale experiments involving simultaneous manipu-
lation of several variables. These include professionalisation of laboratories
and the rise of online experimentation. The latter also makes researchers try to
shorten their experiments because, compared with the lab, it is harder to keep
online subjects focused for an extended period of time. It is therefore imperative
to improve the efficiency of experiments. We highlight developments facilitat-
ing in absentia dynamic adjustments of stimuli. We also discuss changes in
experimental practice, such as pre-registration of experiments and peer review
of designs (so that a paper may be tentatively accepted for a journal before the
data is collected), that encourage very detailed planning of the design and data
analysis at the onset of the project.
We identify the benefits of the novel approaches in terms of efficient

elicitation of preferences of subjects. Wherever possible, we try to quantify
them based on the measures developed in the literature on Bayesian optimal
experimental design, using simulations, or reporting existing empirical results.
We explore the additional insight that these innovative methods yield into the

process by which preferences arise and crystallise. There is abundant evidence
that the behaviour of experimental subjects is inherently noisy and context-
specific. As a result, stability of findings across methods and trials is often
disappointing.
We also discuss the costs and limitations of deviations from the experimen-

tal economist’s ‘business as usual’. These include subjects’ potential confusion
about more complex experiments and possible incentive compatibility and
deception issues in dynamic designs.
We strived to base the Element on a consistent statistical approach. During

the process of writing, the second author switched from an agnostic position
in the classical versus Bayesian question to a strongly pro-Bayesian position.
The Bayesian approach is clearly intellectually more satisfying; as Lindley
points out, all statistics has some ad hoc element and the advantage of the
Bayesian approach is that this is all encoded in the prior distribution. Once
the prior has been established, the whole analysis follows clear mathematical
logic. The main problem with the Bayesian approach is (and always has been)
the computational complexity, due to the fact that the integrals do not have
closed form; Gibbs samplers and Metropolis–Hastings Markov Chain Monte
Carlo techniques are required. While the classical approach presents a compu-
tational framework that is usually much quicker, it became clear that Bayesian
computations are nowmanageable, even with limited computational resources.
Furthermore, it is very rare in experimental economics that one approaches
a problem with a genuine complete lack of any prior information; there is
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Advances in Efficient Design of Experiments 3

usually information from previous experiments on related issues and, when
genuine prior information is incorporated, one can reach conclusions, even
with a small quantity of new information. This is most evident in the case
of dynamic/adaptive designs, in which Bayesian updating is the mathematical
notion of choice.
The Element is structured as follows. In Section 2 we discuss some fun-

damental issues of experimental design and causal inference. In Section 3
we discuss the principles of optimal design. Section 4 deals with choice
experiments, while Section 5 describes advances in adaptive designs.
The target group is researchers interested in running economic experiments.

We assume the reader is familiar with basic concepts of the method.

2 Causality and Random Assignment
In this section, we briefly discuss the key characteristics of causality and show
how cause and effect can be established using various approaches to sam-
pling and random assignment, covering such issues as between-subject versus
within-subject designs.

2.1 What Do You Mean by ‘Cause’?
Experiments are often, and for good reasons, portrayed as a gold standard
to establish causality. But what does it mean exactly that X causes Y? How
can we find out that it does? Perhaps Y causes X. Perhaps it goes both ways.
Perhaps another variable affects both. Perhaps it is mere coincidence. The onto-
logical and epistemological issues of causality have long been discussed; see,
for example, Brady (2011) or Thye (2014) for a user-friendly introduction for
social scientists, Mahoney and Acosta (2021) andWoodward (2016) for a more
in-depth review of ‘causality as regularity’ and ‘causality as manipulation’
types of theories, respectively. Classic books include Spirtes (2001) and Pearl
(2009). Here, we report a small part of this discussion which seems to be most
relevant for the design of experiments in social sciences.
The pioneer of the investigation of causality, David Hume, famously chose

the game of billiards to illustrate it: ‘Here is a billiard ball lying on the table,
and another ball moving toward it with rapidity. They strike; and the ball which
was formerly at rest now acquires a motion. This is as perfect an instance of
the relation of cause and effect as any which we know, either by sensation
or reflection.’ Indeed, the collision, with no contributing or intermediate fac-
tors involved, will always cause the second ball to start rolling. Moreover, the
physical mechanism is well understood; we also can easily establish that the
second ball remains motionless if nothing strikes it. Social sciences tend to
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4 Behavioural and Experimental Economics

provide us with less-than-perfect instances of cause and effect. Social phenom-
ena tend to be complex and probabilistic and hardly ever have a single cause. In
fact, ‘everything is related to everything else’. Moreover, the laws proposed to
explain social phenomena are often contested and their validity may vary over
time and across cultures. Still, the basic principles of defining and identifying
causality carry over from the simpler, physical phenomena.

Correlation If A causes B, observing B is more likely if A has been
observed, compared to the situation in which A was not observed. Naturally, a
similar statement can be made for non-binary variables: if there is a causal link,
we expect a correlation – for example, high values of A being systematically
accompanied by high values of B. Clearly, this is not a sufficient condition.
One of the authors is an avid, if inept, hockey player. The only time he was
painfully hit by a puck (actually, twice on the same night!) was just hours after
he received one of his Covid-19 vaccine doses. This remarkable correlation did
not turn him into a vaccine conspiracy believer. For more examples, try to goo-
gle for images using ‘correlation is not causation’ or a similar query to see time
series that are very unlikely to be causally linked (say, the number of Ariana
Grande’s Instagram followers and the number of cases of African swine fever
virus) and yet, over a purposefully selected period of time, turn out to be very
highly correlated. While we may easily identify such a nonsensical correlation
as spurious (and we may remember from econometrics classes that they arise
easily between two random walks with a drift), our minds are compelled to see
patterns of causal links if they are slightly more plausible.
Worse, correlation is not even necessary, in that other factors will often con-

ceal or even reverse the correlation that we would expect, given well-founded
claims of a causal link. An example of particular empirical importance is that of
the link between price and quantity demanded. As every student of economics
knows, demand is (almost always) downward-sloping; consumers will want to
buy fewer units of a good if it is more expensive. Dubbed the law of demand,
it is one of the very few laws of the dismal science that actually hold. But
how do we know that it holds? Looking at the correlation between prices and
quantities sold is very misleading, even if the demand can always be met (as
in markets for digital goods that can be instantly produced and delivered at no
cost). The producer, being free to set the price at any level, is expected to react
to (anticipated) changes in demand. Thus, the correlation can easily turn out to
be positive: the price is relatively high when a large number of consumers are
interested in the product.
This confusion between correlation and causation is firmly established in

the language. The relation of ‘being independent’ in a statistical sense is
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Advances in Efficient Design of Experiments 5

symmetric: when variable X is independent of variable Y, then variable Y is
independent of variable X. This is clearly not true in the way these terms are
normally used.Most people would agree that the weather on any given day does
not depend on the way they dress. The only likely exceptions would be the fans
of Murphy’s law and Other Reasons Why Things Go Wrong who would tend
to believe that not taking a raincoat makes the rain more likely. As a side note,
many of them could perhaps be less inclined to believe that taking a raincoat
makes the rain less likely, although the two statements are logically equivalent.
More importantly, for most people it is obvious that the way they dress depends
on the (current and forecasted) weather. Again, from a statistical viewpoint, if
there is dependence, it goes both ways. Statistical (in)dependence is thus not
an intuitive notion; our minds like to think in terms of causal links.

Theoretical Plausibility As in the case of Ariana Grande and swine fevers,
correlations in pre-existing data may be purely incidental. With a bit of ‘luck’
it may even be true of a statistically significant experimental treatment effect,
especially when many different tests are run; see Abdi et al. (2007) for the dis-
cussion of ways to correct for that. Some theories of causality thus emphasise
that a cause must be explainable by a ‘law-like statement’. This in itself is
difficult to define, but the guiding principle is that a purported causal link is
much more convincing if it is predicted by a fairly general theory. If it flies
in the face of a theory (and intuition), such as the observation that strangers
cooperate more than partners in the public goods game (Andreoni 1988) we
need to be wary and conduct careful replications.

Counterfactuals and Manipulability The problem in empirical verifica-
tion of the law of demand mentioned before was that ‘high price’ regimes tend
to systematically differ from ‘low price’ regimes in other dimensions affecting
quantity sold, so comparing said quantity between the two states does not tell
us much about the slope of the demand function. The challenge is to imagine
‘the most similar world’ and determine what the outcome would have been.
The main problem is, of course, that this is typically not directly observable.
Any empirical strategy for identifying the causal link between the price and

the quantity demanded using existing data thus requires a component of vari-
ation in the prices that can be correlated only with the variation in the price via
the law of demand. This is often done with the help of instrumental variables.
However, the surest, most direct way is to vary the price randomly, thus by
conducting an experiment. In fact, manipulability theories of causality stress
just that: X causes Y if exogenous manipulation of X, keeping everything else
constant, would tend to affect Y. As Holland (1986) quipped in his highly
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6 Behavioural and Experimental Economics

influential paper, there is ‘no causation without manipulation’. One advantage
of this approach is that it breaks the symmetry between the variables, which
was characteristic of mere measurement of correlation. Cooling the thermom-
eter will not make you less ill, but treating the illness will lower your body
temperature.
While experimentalists may be naturally inclined to endorse the manipula-

bility paradigm, philosophers have raised numerous lines of criticism against it,
including anthropocentrism and conflation of ontological and epistemological
status of causality. From the viewpoint of a practitioner of social sciences, one
major difficulty is that many interesting effects involve purported causes that
are not manipulable. Women tend to earn less than men, also when controlling
for their education, experience, and other measures of social capital. It would
seem natural to say that the mere fact of them being women causes their lower
wages, although the mechanism involved is likely complex. But exogenous
manipulation of biological sex, keeping everything else constant, is unthink-
able. In the manipulability paradigm, the sex of an individual can thus hardly
be the ‘cause’ of anything. Admittedly, measuring such a causal link is highly
problematic even for other approaches. Suppose that the differences in wages
disappear if we additionally control for height. Can we say there is no effect
of biological sex on wages in this labour market? ‘Just try to be a bit taller’ is
not a piece of advice likely to cheer up women unhappy about wage inequal-
ities. Perhaps the relevant ‘most similar world’ here for an average-height man
involves being an average-height woman, not a rather tall woman. A discus-
sion of the similarly tricky possibility of considering the category of ‘race’ as
a causal variable can be found in Holland (2003).

Timing Another key aspect of causal link concerns timing. We expect the
effect to follow (rather than precede) the cause. Sometimes, the effect is sig-
nificantly delayed, whichmakes it more difficult to find out that there is indeed a
link. For example, it took decades to realise that cigarettes are harmful, because
the effect accumulates after years of smoking (although the vested interest
of tobacco companies was another important factor delaying the conclusion).
At the other extreme, when the reaction is immediate, telling the cause from
the effect is sometimes not obvious. For example, many people believe that
it is possible to detect that someone is watching us. Titchener (1925), who
was probably the first to address this superstition scientifically, suggested the
belief could be related to the natural tendency to pay attention to movement.
When person A (male) turns around, it is fairly likely that person B (female),
initially behind person A, will throw a glance at him. This reaction tends to
be non-conscious and immediate (‘system 1’), so it might seem to B that it
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Advances in Efficient Design of Experiments 7

was A who turned in reaction to her gaze (although in truth, it was herself
glancing at A in reaction to his movement). Likewise, A, seeing that B is look-
ing at him (and not knowing this was not the case just a second ago), may
infer that he himself has turned because he could sense B’s gaze. Clearly, in
the case a researcher assigns a non-zero prior probability to the supposition
that gaze may be detected, controlled experiments with randomised glances
must be conducted and indeed have been conducted and some even confirmed
such an ability, although, perhaps predictably, the methods are contested (see
Marks and Colwell 2000).
Another difficulty concerns expectations. The outcome may come before the

cause when the expectation of the cause precedes it. Much like a rooster’s crow-
ing does not cause the sunrise, a war need not be triggered by a market plunge;
rather, a war may affect the markets before the first shot is fired because there
are good reasons to expect it to be fired.
Not surprisingly, timing is also of crucial importance in the design of experi-

ments. Ideally, we want the outcome measure to be elicited immediately
following the experimental manipulation. We know that no systematic differ-
ence between the experimental group and the control group should occur prior
to the manipulation (and if it does, it likely implies there is a problem in the
random treatment assignment procedure or that our preparations to implement
the treatment are poorly hidden). Exogenous randomisation also rules out the
role of expectations. Even if subjects expect some manipulation, they usually
do not know its nature and, maybe most importantly, they do not know to which
group they will be assigned.

2.2 Counterfactuals and Randomisation Bias
Suppose we have p treatments (one of which may be the ‘control’, i.e. no treat-
ment); the treatments are labelled 1, . . . ,p, we give treatment j to experimental
unit i, and denote the outcome by Yi( j). In our experiment, we obtain the result
of applying treatment j to unit i, but we would like to infer what the outcome
would have been if any of the other treatments had been given; in other words,
when we observe Yi( j), we would like to infer the values of Yi(k) for all k , j.
This is termed counterfactual, since for run i we gave treatment j and we did
not give any of the other treatments.
We can represent the situation by a causal diagram (Figure 1); the outcome

Y is influenced by the treatment T and other causes C, which may influence
which treatment is given as well as having a direct influence on the outcome.
The treatment variable T takes values in {1, . . . ,p}. We would like to infer
that Yi( j) (the so-called potential outcome for subject i under treatment
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8 Behavioural and Experimental Economics

Figure 1 Common cause, treatment, outcome.

Figure 2 Intervention breaks the link between common cause and treatment.

j – the outcome that would have occurred had subject i been administered
treatment j) is independent of T (the treatment actually given), which implies
that E[Yi( j)|T = k] does not depend on k (and hence that, for each j and k,
E[Yi( j)|T = k] = E[Yi( j)]). This is (of course) true if treatments are assigned
at random and a proper controlled experiment is carried out (i.e. the sample is
representative of the population at large and treatments are randomly assigned).
This would break the causal link between the common causes C and treat-
ment T and result in the causal diagram of Figure 2 (since T is enforced by the
experimenter, we denote this by a square node).
Randomisation of treatment means that the choice of treatment is applied

irrespective of the values of any hidden covariates that may have a causal effect
on both treatment and outcome.
In many situations, though, there are serious obstacles to the construction

of a controlled experiment. For example, a sample drawn from college stu-
dents who agree to participate in an experiment may differ in important ways
from those who choose not to participate, so the whole sample may be biased.
In experimental economics, an important reason for differences is related to
the structure of pay-offs. Harrison et al. (2009) hypothesise that the anticipated
variance of pay-offs may affect the profile of risk attitudes of the sample of
people who sign up to take part. They confirm that announcing a guaranteed
show-up fee leads to a relatively risk-averse sample. Therefore, the problem is
not whether treatments are assigned in a suitable random manner to a pool of
candidates constituting a representative random sample; the whole sample of
possible candidates may be biased with respect to the prevailing characteristics
of the population.
Random assignment may discourage some participants. Levitt and List

(2009) point out that in clinical drug trials, it seems much harder to persuade
patients to participate in a randomised controlled experiment than to persuade
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Advances in Efficient Design of Experiments 9

them to take a new drug in a non-randomised study. The sample will therefore
tend to be skewed for randomised controlled trials.
Framing might matter as well. As pointed out by List (2021), in field experi-

ments, the use of the word ‘experiment’ itself can cause difficulties, while
terminology such as ‘trials’ and ‘pilot studies’ may be more acceptable. This
applies not only to participants, but also to non-academic partners who are often
necessary to run a field experiment. Some of them are prone to respond along
the lines of ‘we’ve been in this business for thirty years, we know what to do,
and you’re telling us to choose something at random?!’

2.3 Randomisation Procedures
At this point, we introduce another important ingredient, which is how to assign
treatments to subjects who have agreed to participate. Many procedures have
been proposed for the random assignment of participants to treatment groups.
We outline common randomisation techniques, including simple randomisa-
tion, block randomisation, stratified randomisation, and covariate adaptive
randomisation.We describe themethods, giving advantages and disadvantages.

2.3.1 Simple Randomisation

For this, we simply decide how many subjects are to be allocated to each treat-
ment group; if ni subjects are to be given treatment i, assign i to ni labels, put
all the labels into a hat, and assign them randomly to the subjects. This tech-
nique is easy to implement. The disadvantage is that there may be obvious
characteristics (e.g. some of the subjects are male while others are female) that
lead to heterogeneity; for relatively small experiments, we may find that there
are substantially different proportions of men and women receiving different
treatments.

2.3.2 Blocking and Stratified Randomisation

A block, as explained by Box, Hunter, and Hunter (2005), is a portion of the
experimental material (e.g. two shoes on one boy, two seeds in the same pod)
that is expected to be more homogeneous than the aggregate (the shoes of
all boys, all seeds available, not necessarily from the same pod). By confin-
ing comparisons to those within blocks, greater precision is usually obtained,
because the differences due to belonging to different blocks are eliminated.
Blocking seems to have been introduced by Student (1911). It has similar-
ities to so-called stratified randomisation. For analysis of data, they are treated
similarly; the difference is that the experimenter assigns subjects to blocks,
while the strata refer to covariates, or characteristics possessed by the subjects
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10 Behavioural and Experimental Economics

which are observable, but over which the experimenter has no control. For
example, the experimenter has control over assignment of subjects to sessions,
so that sessions are a natural block; we make sure that the set of subjects in
each session can be divided equally among all treatments. The experimenter
has no control over whether a subject is male or female; ‘male’ and ‘female’
can be considered as strata. In fact, the most typical example in experimental
economics of stratification would be by sex; we make sure that we have the
same proportion of men treated and untreated as we have for women. Also,
we block by session, making sure that within each session we have the same
number of people in each treatment. For both block designs and stratified ran-
domisation, we would like to ensure that all combinations of levels of the
‘nuisance’ variables are represented and we would like to make compari-
sons between the different levels of the treatment variable for each of these
combinations.
With stratified randomisation, the researcher identifies specific covariates,

where it is understood that there is a potential influence on the dependent vari-
able. Separate blocks are generated for each combination of covariates; subjects
are assigned to the appropriate block of covariates. After the subjects have been
identified and assigned into blocks, simple randomisation is performed within
each block to assign subjects to one of the treatment groups.
Stratified randomisation controls for the possible influence of covariates that

could invalidate the research; stratification refers to subjects’ characteristics,
such as age and sex. For example, consider clinical research where different
rehabilitation techniques after surgery are being tested. The age of the subject
affects rehabilitation and is therefore a possible confounding variable. With
stratified randomisation, we can account for the effect of age.
A block design may make the life of the experimenter more difficult, since

we first have to elicit the variables which we want to block. Stratified random-
isation is difficult when there are many variables that have to be controlled for.
Also, all of the subjects have to be identified before being assigned to groups,
which is impossible when subjects are enrolled one at a time, on a continuous
basis, which is often the case for medical research.

2.3.3 Covariate Adaptive Randomisation

Covariate adaptive randomisation attempts to deal with the problem of not
having full details of all subjects by taking into account the values of the
covariates of the previous assignments when assigning a new participant
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to a treatment group, trying to minimise sample size imbalance among the
important covariates with each new assignment.

2.3.4 Cluster Randomised Controlled Experiment

A cluster randomised experiment is an experiment in which individuals are
divided in groups and the group as a whole is randomised, not the individual;
all individuals within a given cluster are assigned to the same treatment.
A cluster randomised experiment is often carried out when individual

randomisation is not feasible. It can also be considerably more cost- and
time-effective when there is extensive existing information about subjects
and their treatments and outcomes along with an existing research infrastruc-
ture. Compared with individually randomised experiments, cluster randomised
experiments are more complicated to design, need more subjects to obtain
equivalent statistical power, and require a more complicated analysis (e.g.
adjustment for the intra-cluster correlation coefficient of the cluster random-
isation). Furthermore, a cluster randomised experiment is usually not blinded,
so that external validity may be challenged.
Cluster randomisation may be advisable when spillovers are likely, or when

ethical considerations do not permit randomisation at the individual level. This
is often the case, for example, with field experiments in the field of education,
where randomisation is often at the school or class level.

2.4 Gosset versus Fisher, or Is Artificial Randomisation
Really Necessary?

In some settings, comparability of the treatments may be achieved without
explicit randomisation. This goes back to balanced designs proposed by Gos-
set to study the effect of manure on crop yields. The challenge was that the
plots into which the field could be divided were not homogeneous. Gosset’s
contribution is discussed by Ziliak (2014), who challenged some of the find-
ings of Levitt and List (2009). While we prefer to sidestep any controversy, we
would like to draw attention to some important conclusions of Ziliak. He com-
pares Gosset’s balanced designs to random designs; for Gosset’s experiments
studying the effects on crop growth of adding manure, the balanced design
demonstrated greater power and efficiency than the randomised design.
In that situation, the field was subdivided into plots. On some plots, manure

was added, while other plots were left without manure. The plots were not
homogeneous, since the field had ridges of fertility. Letting A denote control
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and B – treatment (which indicated that manure was added), Gosset arranged
the control / treatments pairwise, so that the design appeared as:

A B B A A B B A
A B B A A B B A
A B B A A B B A

where the ABBA ... layout is in the direction of increasing fertility. The idea
was to then take the results pairwise and consider the difference in crop yields
between a control plot A and the adjacent treatment plot B.
When there is a positive correlation between adjacent plots, this model pre-

sents greater power for estimating the difference in average crop yield between
treatment and control. The increased efficiency obtained by using the bal-
anced design can be seen from the following back-of-envelope calculation.
Suppose that each observation is the outcome of a normal random variable.
Let XA,i − XB,i denote the difference in treatments for the pair labelled i and
there are n pairs. Then Var(XA,i − XB,i) = 2σ2(1 − ρ) where σ2 is the vari-
ance; XA,i ∼ N(µA,σ2) and XB,i ∼ N(µB,σ2) and ρ = Corr(X,Y) where X and Y
denote results for adjacent plots. Then, if we have n adjacent pairs, which we
may assume independent,∑n

i=1((XA,i − XB,i) − (µA − µB))
√
n
√
2σ

√
1 − ρ

∼ N(0,1).

Let s2 = 1
n−1

∑n
i=1((XA,i − XB,i) − (XA,. − XB,.))2, then

√
n(((XA,. − XB,.)) − (µA − µB))

s
∼ tn−1

at least approximately. Since E[s2] = 2σ2(1 − ρ), we can see that, taking the
observations pairwise and observing the differences, the balanced design is
more efficient and powerful than a randomised design when ρ is substantially
larger than 0.
Clearly, if the experimental units are known not to be homogeneous and

the deviation from homogeneity is understood (in Gosset’s example, he knew
where the ridges of fertility were), then the balanced design enables the
confounding effect of fertility ridges to be removed more efficiently than artifi-
cial randomisation; we see serious disadvantages to the naive application of
artificial randomisation.
The natural analogy in economics is the flow of subjects logging in one by

one to an online experiment. Subjects who log in at approximately the same
time may have similar characteristics (they come from the same time zone,
they have the same employment status, maybe they belong to the same tutorial
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group, just after class has finished). It may therefore be advisable to assign them
to treatments A and B according to the ABBAABBA pattern of Gosset, rather
than randomly. This is of special importance when there is some clustering (and
the whole group has to be assigned to one treatment).
When the experiment is performed in person, or with online human assist-

ance (so that there is some interaction between the subject and the experi-
menter), the disadvantage of such predetermined treatment assignment is that it
does not allow the experiment to be double-blind. The experimenter may thus
inadvertently affect subjects’ behaviour. A solution that introduces uncertainty
about the next subject’s treatment assignment but (almost) guarantees (near)
balance is that of biased coin randomisation Smith (2014). Hitherto applied in
medical trials, it involves treatment assignment which is random, but not inde-
pendent of previous assignments; the treatment in which the current number of
observations is lower has a greater chance to be assigned to the next subject.

2.5 Within-Subject and Between-Subject
The issue of whether to use within-subject or between-subject (or hybrid)
designs pervades the design of experiments for economics in a fundamental
way. The question is whether to use the same subject for repeated runs of the
experiment in different treatments (within subject) or to use different subjects
for different treatments (between subjects). While within-subject experiments
can be more economical, there are disadvantages to using the same subject for
several experimental runs; the subject typically has a memory of the previous
ones and so repeated runs with the same subject cannot be as independent draws
from the same (subject-specific) distribution (The errors will clearly not neces-
sarily be independent and identically distributed (IID) if the subject remembers
the previous responses. For example, if the subject is asked exactly the same
question twice, there may be a random element in the first response; the sub-
ject is likely to give exactly the same response the second time through, without
thinking again.)

Pricing a Ham Sandwich Charness, Gneezy, and Kuhn (2012) use the
following illustrative example in their discussion of relative merits of within-
subject and between-subject experiments. A researcher may ask participants
how much they would be willing to pay (WTP) for a sandwich:

(a) if they were to buy a sandwich from their neighbourhood bakery, and
(b) if they were to buy it at the airport.

Assuming that the sandwich is identical in both situations and so is actual and
anticipated hunger, there is little reason for the WTPs to be any different. Yet
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people seem to end up willingly overpaying badly at airports, but not in baker-
ies. Is it just because these are different people or because the food is correctly
anticipated to be even worse and pricier during the flight? Or does this dis-
crepancy reveal something about our flawed judgement, whereby e8.95 for a
sandwich only seems reasonable in one situation but not in the other?
We can try to disentangle these competing explanations in a controlled

study. When doing so, we must decide whether the same person answers both
questions (within-subject design) or each person only answers one question
(between-subject design), one half of the sample being randomly assigned to
the question of howmuch they would pay at the bakery and the other half to the
question of what they would pay at the airport. We first discuss some advan-
tages of the within-subject design compared to the between-subject approach
and then the other way around.

Advantages of the Within-Subject Design Within-subject design has
quite a few important advantages over between-subject design. Firstly, the val-
idity of the analysis does not depend on random assignment; both treatments
are assigned to the same individual. Obviously, comparing WTPs elicited at
an airport to those elicited at a bakery would be worthless, since air travellers
are not a random sample of bakery shoppers (or vice versa). A less obvious
case is when there is non-trivial and treatment-specific dropout. In contrast to
a between-subject design in a within-subject experiment, we can easily restrict
our analysis to those who actually made choices in both treatments, thereby
distinguishing pure treatment effects from selection effects.
Secondly, for the same reason, within-subject designs can offer a significant

increase in statistical power, because there is no noise associated with individ-
ual differences. Naturally, as long as the assignment of the treatment is random,
causal estimates can be obtained in the between-subject design by comparing
the differences in response of the subjects between the various experimental
conditions, but the between-subject noise may be substantial. This means that
the sample has to be large enough to account for this; if only the sample average
is required and σ2 denotes the between-subject variance, then the sample aver-
age variance is σ2

n and n has to be sufficiently large to make this sufficiently
small.
For example, suppose we are considering the difference between two treat-

ments and we are in a situation where we can use the same subject for two
experimental runs, one for each treatment, and suppose the outcome when
treatment j for j ∈ {1,2} applied to individual i is modelled as:

Yi, j = µ + αj + ϵi, j,
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where

(
ϵi,1

ϵi,2

)
∼ N

((
0
0

)
,σ2

(
1 ρ

ρ 1

))
and (ϵi1, ϵi2)′ are uncorrelated for

different subjects. This could arise, for example, if we are considering two
different medications for reducing blood pressure, where a subject may have
underlying health conditions which affect all treatments in such a way that
the within-subject errors are correlated. For such a model, with n subjects
i = 1, . . . ,n

α̂2 − α̂1 = Y.2 − Y.1 ∼ N
(
α2 − α1,

2σ2(1 − ρ)
n

)
.

To get a variance of 2σ2(1−ρ)
n from a between-subject experiment, where each

subject is used exactly once, we would require NB =
2

1−ρNW subjects.
We can see that the reduction in number for an experiment with the same

precision (to carry out statistical tests with the same power) is not simply from
the fact that the subjects in a between-subject are only used once, but also due
to the correlation of the random effects within subjects.
Thirdly, within-subject designs tend to be more efficient in terms of data col-

lection. Typically, the two treatments share a substantial part of the instructions
and stimuli. Thus, a decision in Treatment B may be elicited more quickly and
easily from a subject who has already made a decision in Treatment A (the
subject only has to understand how the two are different) than from a fresh
subject, as would have been the case in the between-subject design. This is
not an issue in the sandwich example, but it certainly is with more extensive
instructions.
Fourthly, within-subject experiments may be more appealing theoretically.

For example, if we have a theory predicting the effect of price, we may want to
observe actual price change and therefore expose the same agent (rather than
two different agents) to two different prices. Likewise, when investigating pref-
erence reversals (Tversky and Thaler (1990)), we want to observe different
choices of the same individuals. The underlying theory often takes the form
of some individual utility function. Within-subject designs allow this to be
estimated, while between-subject designs generally do not.
Fifthly, within-subject designs yield individual-specific estimates of the

treatment effect. This is important if we expect heterogeneity, especially if we
want to link these effects with some other behavioural characteristics. Further,
within-subject design is the only option if we want to select subjects based on
a given trait. Suppose, for example, that we want to know if markets popu-
lated with individuals prone to preference reversals are more erratic. The most
effective way to find out will be to measure preference reversals in a within-
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subject design, merge the subjects into groups based on their responses, and
then compare the behaviour of high-reversal groups to that of low-reversal
groups.

2.5.1 Disadvantages of Within-Subject Designs

Naturally, within-subject designs have pitfalls as well as advantages. The nega-
tive aspects are generally associated with the fact that the individual, when
facing the second treatment, may not be exactly identical to the individual
who was exposed to the first treatment, precisely because the first treatment
has changed the subject’s mindset. Unlike in Men in Black, experimenters do
not have a ‘neuralyzer’ that would allow them to un-ask a question in order to
reset the individual to the initial state. Thus, a spillover effect might take place,
the exposure to the first treatment and the response provided therein confound-
ing the effect of the second treatment. This could happen in a number of ways.
Firstly, it could be that one treatment represents a frame of reference for the
second treatment. In particular, the subjects may realise that the two treatments
are analogous in some way and so, from the normative viewpoint, their answers
should be identical. This is clearly a risk in the bakery-versus-airport-sandwich
experiment.While subjects could have been naturally inclined to provide a high
WTP in the airport scenario and a lowWTP in the bakery scenario, when asked
both questions one by one, they may recognise that such a pattern of choices is
poorly justified. They may thus want to raise the bakery WTP when it follows
elicitation of the airport WTP or to lower the airport WTP when it follows the
elicitation of the bakery WTP.
For a related example, suppose we investigate the effect of time pressure on

decision-making under risk by asking the subject to make the same choice, first
under a lax time limit, then, immediately, under a strict time limit. The subject
is likely to remember what they thought or calculated and how they chose in the
first case, rendering ineffective the time limit manipulation in the second trial.
Secondly, by contrast, the subjects may be affected by the so-called experi-

menter demand effect: they may suspect that the experimenter expects them to
behave in a certain way and may be willing to, consciously or otherwise, fol-
low these expectations. In the sandwich example, some subjects might suspect
that the experimenter is trying to prove that the WTPs is higher in the airport
scenario. This effect may be particularly strong when the questions are hypo-
thetical, so that it does not cost anything to deliver what the subject believes
the experimenter wants. While demand effects may also show up in between-
subject design, they tend to be stronger in within-subject designs, because the
subject gets to know more than one treatment, which makes it much easier to
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guess what the hypothesis is and act ‘appropriately’. A typical situation is that
demand effects artificially inflate differences between treatments. Indeed, the
subject may think that the experimenter would not have cared to compare two
treatments if the experimenter had not hoped for a treatment effect.
The motivation to behave consistently and the motivation to be a ‘good sub-

ject’ tend to contradict each other; the first dampens the treatment effect while
the second exacerbates it. One could hope they may cancel each other out, but
there is no good scientific reason to justify the hope that their pull in oppos-
ite directions is equal. Obviously, there is no guarantee for that nor is it easy to
estimate these two effects. Moreover, even if they were to roughly balance each
other out on aggregate, they may affect different individuals in very different
ways, hence the individual treatment effect would be overestimated for some
subjects and underestimated for other subjects.
Finally, there may be situations is which providing a frame of reference

would also inflate the treatment effect, thus adding to the demand effect rather
than contracting it. One well-known example is scope insensitivity. If differ-
ent groups of respondents are asked how much they were willing to pay to save
2,000, or 20,000, or 200,000migrating birds, the responsesmay be very similar,
reflectingmostly their budget and a general attitude towards environmental pro-
tection, rather than the scope of the problem at hand, which is difficult to grasp
without a frame of reference. However, in a within-subject design, the subjects
would understand that saving 20,000 is ten times as beneficial as saving just
2,000, and so also substantially more valuable. In cases like that, debates about
whether an effect is ‘real’ (given that it shows to a much greater extent in a
between-subject design than the within-subject design) will probably never be
brought to an end.
To the extent that spillovers are unwanted, the chief strategy to reduce them

would be to make it harder for the subjects to link the two treatments. Some of
the strategies involve introducing unrelated filler questions and small perturba-
tions in the underlying values. For example, in the case of a choice between two
lotteries with positive outcomes, adding one euro to all of them is very unlikely
to reverse the preference, but it is likely to make it harder for the subjects to
recall they have already made a choice in this situation. If we want the subject
to independently make such a choice twice (in two different treatments), such
a slight perturbation may be a good idea.
Some insight into the strength of spillovers may be gained by comparing

responses across different orderings of treatments. If the behaviour is the same
in a given treatment, no matter whether it is preceded by another treatment or
not, the spillovers are probably limited. If there are differences in one treat-
ment only, we may infer it is likely to be influenced by the other, but not the
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other way around. In the time pressure example, eliciting preference under
a strict time limit, then under a lax time limit, is likely to help avoid con-
founds. This is the essence of the double response methods (Agranov et al.
2015; Krawczyk and Sylwestrzak 2018).
To the extent, though, that the time effect per se can affect behaviour (e.g.

because subjects become more tired and bored), being forced to stick to one
order of treatments may not be ideal. Moreover, if there are more than two
scenarios and there is no single obvious ‘order’ variable to test for correlations,
identifying the pattern of confounding may be tricky. Finally, there could be a
different effect than that on the central tendency. In particular, the behaviour
in subsequent trials may be less noisy because subjects learn to avoid mis-
takes over time. Then again, when the experiment gets too long, tiredness and
boredom may trigger more erratic behaviour (which strongly suggests that a
between-subject design should be considered instead).
Finally, yet another case in which within-subject design may be problematic

is when the experiment pertains to a decision that in ‘real life’ an individual
is likely to face only once. A between-subject experiment may have greater
external validity then.

2.5.2 Can We Have Both?

This short overview seems to suggest there are more good reasons to use
within-subject designs, but the optimal design choice depends very much on
the problem at hand and the available resources. Running a within-subject
experiment with a sample size that would have been sufficiently large for a
between-subject experiment may be the safest choice, as it allows both within-
subject comparisons and uncontaminated between-subject comparisons (i.e.
those pertaining only to the first treatment a given subject faced).

3 Optimal Designs
Experimenters often benefit from formal criteria of optimality helping them
choose from a plethora of available options. For example, with discrete choice
experiments (DCEs), to be discussed in detail in the next section, there are usu-
ally far too many possible questions for the experimenter to expect a subject to
be able to answer all of them; a set of questions which is, in some sense, optimal
is chosen. This section discusses the standard criteria, those which have become
known as alphabet optimality and Lindley’s approach of Shannon information
gain (SIG) (Lindley 1956). For alphabet optimality, since Bayesian analysis
lends itself to data analysis for choice experiments (e.g. the random param-
eters model (RPM)), we discuss both classical alphabet optimality criteria and
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their Bayesian counterparts. Importantly, we show that the criteria require a
full description of the model; if optimality is based on the assumption that a
reduced model is true, then the optimal design will not allow for model check-
ing and will not be reliable if the reduced model turns out to be inappropriate.
We show this by considering optimal designs for simple linear regression. We
then show how different optimality criteria lead to different designs for a one-
way model where different treatments may incur different costs. Finally, we
consider a very important criterion for optimal design, based on SIG, which
was introduced to Bayesian experimental design by D. V. Lindley, where he
shows that, under the SIG criterion, for an experiment in several sequential
parts, the expected information from the whole experiment is the sum of the
expected information gains from each part. This is the basic workhorse of
Section 5, where we consider adaptive designs; the next question in the
sequence is chosen, based on the answers already given, to maximise expected
information.

3.1 Introduction
We aim to find a design X from the space of possible designs X , which min-
imises some functional F , namely the optimal design is argminX∈XF(X ). The
choice of F depends on the sense in which the design is optimal; which criter-
ion do we choose for optimality? It also depends on the computational power
available to solve the minimisation problem.
In straightforward settings (e.g. the classical standard factorial designs – one

waymodel, Latin square, 2k factorial, and fractional factorial designs), there are
well-motivated standard designs available where the motivation is intuitive and
the designs facilitate parameter estimation and hence prediction; they represent
good ‘all-around’ designs, although they may not be optimal with respect to
any particular criterion that an experimenter has in mind. When the situation
becomes more involved, these designs may not be feasible.
In Section 4, we discuss DCEs, where it is not possible to consider all treat-

ment combinations. For example, suppose we are interested in estimating how
choice is affected by six factors (or attributes), each coming at three differ-
ent levels. There are 36 = 729 possible treatment combinations. Suppose we
observe binary choices between these; there are 1

2 ×729×728 = 265,356 differ-
ent pairs. Few respondents will be willing to sit long enough to answer 265,356
questions. Moreoever, many of these comparisons will be ‘no-brainers’ (or,
more formally, cases of weak dominance). If we know that Option A is better
than Option B on some attributes and not any different (taking the same levels)
on remaining attributes, then asking a respondent to choose from them ismostly
interesting as a way to check if they are still awake after so many choices.
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Only a very small fraction of possible choice sets is thus presented and the
question, of course, is which they should be. A natural idea is to randomise
levels independently. This approach guarantees (with sufficient data) that we
can identify the impact of each attribute, but it is not necessarily an optimal
approach. In particular, it does not exclude comparisons involving dominance,
from which we do not learn much. How do we measure how much we expect
to learn?
When designing an experiment, we have to make several decisions before

we collect data. These decisions are: which covariates are to be included in the
model (and hence the number of unknown parameters) and the values of those
covariates over which the experimenter has control. The key elements of the
statistical model are as follows:

• A response variable Y (or vector Y ).
• A design of covariates X that the experimenter chooses.
• A parameter θ (or parameter vector θ) of interest. We split θ into two
parts, θ = ( β,σ)where β denotes themodel parameters (how the covariates
influence the outcome) and σ the ‘noise’ (or dispersion) parameters. In a
standard Gaussian model, σ =σ, a single parameter, which is the stand-
ard deviation of the error. We choose the length of β when we decide
on the model, but the parameters themselves are unknown and the aim
of the design problem is to choose an experiment which gives as much
information as possible about them.

Note: the matrix X may contain columns where the values are not chosen by
the experimenter. For example, consider the Gaussian linear model Y = Xβ+ϵ
where Y is an n-vector of observations, ϵ ∼ N(0,σ2In). Suppose there is an
intercept parameter β0, so that

Yi = β0 +
p∑
j=1

xijβj + ϵi.

There are p covariates; the value of covariate j for run i is xij. The design matrix
may be written as X = (1n |X̃) where 1n denotes an n-vector with each element
1 and X̃ is the n × p design matrix with entries X̃ij = xij. The mean value space
M = {Xβ : β ∈ Rp+1} is a p+1 dimensional subspace of Rn and the parameter
vector β (which includes the intercept β0) is a p + 1 vector.
The experiment is designed to provide: (a) an estimator θ̂ = f ( y,X ) of θ,

which is a function of the response and covariates and (b) the distribution of the
estimator, which we denote by π(θ |y,X ). In the classical setting, θ̂ may be (for
example) an ordinary least squares (OLS) estimator or maximum likelihood
estimator, while in the Bayesian setting, π(θ |y,X ) is the posterior distribution
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and we use θ̂ to denote a random vector with this distribution. With prior π(θ)
and data likelihood p( y|X,θ) (the probability density for outcome y, when an
experiment with design X is carried out and θ is the true parameter vector), the
posterior distribution (by Bayes rule) is:

π(θ |y,X ) = π(θ)p( y|θ,X )∫
π(θ)p( y|θ,X )dθ

.

For experimental design, the decision comes in two parts; before data is col-
lected, a design (say X) is chosen from a set of possible designs, say X . An
experiment is then run according to the design and data y is collected, where
y ∈ Y;Y denotes the sample space. Based on the data, a conclusion d is reached,
from a spaceD of possible conclusions (e.g. from p possible treatments, a deci-
sion as to whether one of them is significantly better than the others and, if so,
which is best).
In the classical setting, optimality is framed in terms of loss functions and

risk. Let be the data and l(θ, f ( y,X );X ) the loss incurred by making a decision
f ( y;X ) when the true parameter vector is θ, using design X; the design X and
estimator f (Y ;X ) chosen to minimise the risk; the true parameter value θ is, a
priori, unknown, where the risk for f is defined as:

R(θ, f;X ) = Eθ[l(θ, f (Y ;X );X )]. (3.1)

When parameters β are in view, a standard choice for f (Y ;X ) would be
the maximum likelihood estimator β̂ML and, for the loss, l(θ, f (Y ;X );X ) =
|β − β̂ML |2 (squared error loss). Then:

R(θ, f;X ) = E( β,σ2)[| β̂ML − β |2].

Formulating it as a Bayesian decision problem, we construct a utility function
u(θ,X,y), representing the utility when data y is obtained, θ is the parameter
vector, and X is the design chosen. For a design X, the expected utility is given
by:

U(X ) =
∫
Y

∫
Θ

u(θ,X,y)p( y|θ,X )π(θ)dθdy, (3.2)

and the optimal design is X ∗ = argmaxXU(X ) (the design that maximises
U(X )). Here p( y|θ,X ) is the density for y given θ and X and π(θ) is the prior
density for θ.
We discuss various optimality criteria, so-called ‘alphabet’-optimality (both

classical and Bayesian) and also the SIG criterion introduced by Lindley (1956)
for optimal design. The SIG criterion is of particular importance in the discus-
sion of adaptive designs (Section 5), since it is based on consistency between
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splitting an experiment into several components and treating the experiment as
a whole.
In general, we aim to estimate quantities which are functions of model

parameters β. For example, when studying WTP and labelling β0 the coeffi-
cient of price and β1, . . . , βp the non-price attributes, we are interested in the
quantity γi := − βi

β0
, which measures the respondent’s WTP per unit cost for

non-price attribute i.
Having decided on X, we gather data y = ( y1, . . . ,yn)′. The Bayesian optimal

design is the design which maximises the expected utility (3.2). Parameter esti-
mation is an important objective. It is also a key step on the way to computing
a predictive distribution, which predicts, with as much certainty as possible,
where future observations lie.
In optimal design theory, the optimality (or design) criteria are often direct

functions of the information matrix, chosen to optimise accuracy either for par-
ameter estimates or prediction. Except for the simplest cases (e.g. Gaussian),
the information matrix depends on the unknown parameters to be estimated.
The Bayesian approach deals with this by placing a prior distribution over the
parameters. In general, Bayesian optimal designs outperform locally optimal
designs based on a single prior choice of parameter. It is intuitively clear why
this should be the case, but the enhanced performance comes at substantial
additional computational cost for calculating the design.
The algorithms for finding (at least approximately) an optimal design

according to the criteria discussed in what follows and their implementation
may be found in the acebayes package for R; see Overstall and Woods (2017)
for a comprehensive treatment of the derivation of the algorithms and their
use.

3.2 Alphabet Optimality
Some of the most popular critera are the so-called alphabet-optimality criteria.
They can broadly be divided into two categories, those based on parameter
estimation and those based on the predictive distribution.
Alphabet-optimality critera arose with the Gaussian linear model Y = Xβ+ϵ

in view, where ϵ ∼ N(0,σ2In), with respect to the performance of the OLS esti-
mator β̂OLS = (X′X )−1X′Y ∼ N( β,σ2(X′X )−1). For this situation, the estimator
β̂OLS is unbiased and BLUE (best linear unbiased estimator) in the sense that,
among unbiased estimators, this is the estimator that minimises Var(∑ cj β̂j) for
any linear combination

∑
j cjβj of the parameters. One important feature here

is that Cov( β̂OLS) = σ2(X′X )−1 does not depend on β (the true value of the
parameter) and the ‘optimal’ design will not depend on σ2. Discrete choice
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experiments (where each response is a choice of a particular option from two
or more) do not fall into this framework.

Criteria Based on Parameter Estimation

• D-optimality The most popular optimality criterion to design choice
experiments is the D-optimality criterion. The D-optimality criterion seeks
to maximise the determinant of the information matrix (equivalently, it
minimises the determinant of the inverse).
For the Gaussian linear model Y = Xβ + ϵ , ϵ ∼ N(0,σ2In), we have

p( y|β,σ2,X ) = 1
(2π)n/2σn

exp
{
− 1
2σ2

(Y − Xβ)′(Y − Xβ)
}
,

so that:

I( β) = −∇β∇β log p( y|β,σ2,X ) = 1
σ2

(X′X ).

A D-optimal design therefore maximises det(I( β)); equivalently, it min-
imises det((X′X )−1). Since Cov(β̂OLS) = σ2(X′X )−1, this is equivalent to
finding the design which minimises det(Cov(β̂OLS)).
Let us turn to the Bayesian setting, with prior π( β,σ2)= π1( β |σ2)π2

(σ2), where π1 ∼ N( β0,σ2Ω−1
0 ) (using β0 to denote the prior mean).

Usually π2 ∼ Scale-Invχ2(ν, τ2) (the scale inverse chi squared is the stand-
ard conjugate prior for an unknown variance), although the choice of π2
does not affect the design and can therefore be safely omitted from the
discussion. We let

J( β) := −∇β∇β log π( β,σ2) = 1
σ2

(Ω0 + (X′X )),

where ∇β∇β denotes taking the matrix of second derivatives. This is the
Bayesian counterpart of the Fisher information matrix for the parameter
vector β (the prior has been incorporated). We consider a utility func-
tion u(θ,X ) := det(J( β)) and take a design that minimises U(X ) (defined
by (3.2)). The Bayesian D-optimal design defined in this way maximises
det(Ω0 + (X′X )) (or, equivalently, minimises det((Ω0 + (X′X ))−1).
More generally, in the framework of maximising expected utility (3.2),

we take the utility function for design X as the determinant of the Fisher
information for the parameters of interest:

u(θ,X ) = −det
(
Eθ

[
∇β∇β log π(θ |X,Y )

] )
. (3.3)

where the expectation Eθ is with respect to p( y|θ,X ) (the utility therefore
does not depend on y).
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For example, consider the logistic regression model.

Logistic Models Logistic models fall under the umbrella of generalised
linear models and we refer to Agresti (2012) for a good treatment of this
subject. The logisticmodel, in its simplest case, is a model for binary data,
where Y ∼ Be(π) (Bernoulli trial) and the success probability π depends on
covariates x = (x1, . . . ,xp) ∈ Rp. Themodel is said to be logistic if the logit
function of the success probability for covariate values x = (x1, . . . ,xp)
may be written as

log π(x)
1 − π(x) =

p∑
j=1

xjβj (3.4)

for a parameter vector β = (β1, . . . , βp)′. This is the model referred
to where the utility (3.5) is suggested for a Bayesian D-optimal design.
Other standard models for binary data are generated by taking π(x) =
Φ(∑j xjβj) where Φ is the cumulative distribution function (CDF) of a
random variable. Two important examples generated in this way are:
– The probit model, where Φ(z) =

∫ z
−∞

1√
2π

exp
{
− y2

2

}
dy (the standard

normal CDF) and
– TheGumbel or extreme valuemodel, whereΦ(z) = exp {− exp {z}}, so
that

log
(
− log π

(∑
j
xjβj

))
=

∑
j
xjβj.

The optimal design depends strongly on the model specification; a design
that is optimal for model (3.4) will not necessarily be optimal for a probit
or extreme value model.

For the logistic regressionmodel, we have Y1, . . . ,Yn independent Bernoulli
trias, where Yi ∼ Be(π(xi)), xi = (xi1, . . . ,xip)′ denotes the covariate values
for Yi. We therefore have:

p( y|β,X ) = exp


n∑
i=1

p∑
j=1

yixijβj +
n∑
i=1

log(1 − πi(xi.))
 .

A standard choice of prior is to take independence of the parameters under
the prior and βj ∼ N( βj,0, s2j ) for j = 1, . . . ,p. and (3.3) becomes:

u( β,X ) = det
(
X′W( β)X + Diag

(
1
s21
, . . . ,

1
s2p

))
, (3.5)
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where W( β) = Diag(π1(1 − π1), . . . , πn(1 − πn)). The first part is from the
Fisher information and the second part is from the prior. The important point
to note is that for logistic regression, unlike the Gaussian case, the Fisher
information depends on β. With prior π( β), the utility to be maximised is
U(X ) from (3.2).

For optimal estimates of a vector γ(θ) of length p, the Bayesian D-
criterion value, known as the DB- criterion value, is:

DB =

∫
Θ

(
det

(
I−1(X,γ(θ))

))1/p
π(θ)dθ, (3.6)

where the exponent 1/p is inserted to ensure that the value is independent
of the dimension p of the vector γ. Minimising this value results in the
DB-optimal design.

Ds optimality is a variant of D-optimality, where we base the utility on
a relevant subset of the parameters and minimise the determinant of the
covariance matrix of this subset.

• A-optimality
An A-optimal design (classical setting) is a design which minimises the
trace of the inverse of the information matrix. (For the Gaussian lin-
ear model, an A-optimal design is one which minimises Trace((X′X )−1),
which is equivalent to the design which minimises Tr(Cov( β̂)), where
β̂ = (X′X )−1X′Y is BLUE).

For Bayesian A-optimality (general setting), let βMEP =
∫
βπ(θ |y,X )dθ

denote themean posterior estimate of β); then a Bayesian A-optimal design
is a design which minimises U(X ) of (3.2) with the negative squared error
loss utility function:

uNSEL( β,X ) = −( β − βMEP)′( β − βMEP). (3.7)

Note that, for the Gaussian linear model with prior π( β,σ2)= π1( β |σ2)π2
(σ2), π1( β |σ2) ∼ N( β0,σ2Ω−1

0 ) ( β0 denotes prior mean) and π2(σ2) is
the prior over the variance parameter σ2, we have

βMEP =

∫
βπ1( β |σ2)dβ;

βMEP does not depend on σ. the design is A-optimal if and only if it min-
imises Trace((Ω0 + (X′X ))−1) (irrespective of the prior π2 over σ2); this is
equivalent to minimising the utility:

UGauss(X ) = −
∫
Y

∫
Θ

( β− βMEP)′( β− βMEP)p( y|θ,X )π1( β |σ2)dβdy. (3.8)

Bayesian A-optimality clearly carries over easily to other settings (e.g.
weighted least squares regression, generalised linear models); the negative
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squared error loss utility function uNSEL is well defined and the expected
utility U(X ) can be approximated using either deterministic numerical
integration techniques or Monte Carlo methods.

• Pseudo-Bayesian-A optimality Following (3.2), a Bayesian A-optimal
design for estimating a vector γ(θ) whose components are functions of the
model parameters θ, maximises:

U(X ) = −
∫
Y

∫
Θ

(γ − E[γ |y,X])′(γ − E[γ |y,X])p( y|θ,X )π(θ)dθdy,

where the expectation is with respect to the posterior. In most situations that
are different from the Gaussian setting where γ = β, this problem presents
serious computational difficulties and hence the utility uNSEL is replaced by
a utility that does not depend on y:

uNSEL,A(γ,y,X ) := −tr
(
I−1(X,γ)

)
.

A design that is optimal with this utility function is a pseudo-Bayesian-A
optimal design. The AB-optimal design minimises:

AB =
∫
Θ

trace(I−1(X,γ)π(θ)dθ . (3.9)

• C-optimality In many situations, it is not the parameters in and of them-
selves that are of interest, but rather functions of the parameters (these
functions may be linear or non-linear). As we pointed out, in WTP experi-
ments, with a vector of parameters β, β0 is often the coefficient of price,
while β1, . . . , βp represents non-price attributes. We may be interested in
γ = (γ1, . . . , γp)′, where γi = − βi

β0
, which measures the respondent’s WTP

per unit cost for non-price attribute i.
A C-optimal design is a design that is optimal for functions of the param-

eters, namely a design that is optimal for γ rather than for β. This could be
D- or A-optimality for γ, depending on preference.

• E-optimality In the classical setting, for the Gaussian model, E-optimality
is defined as choosing the design which minimises the largest eigenvalue
of (X′X )−1, which corresponds to minimising the maximum eigenvalue of
Cov( β̂). Equivalently, we take the design which minimises

max
e:

∑
i e2i =1

Var

(∑
i
ei β̂i

)
= e′Cov( β̂)e = σ2e′(X′X )−1e. (3.10)

The maximising e in (3.10) is the eigenvector of Cov( β̂) corresponding to
the largest eigenvalue.

More generally, to find an E-optimal design for a vector γ (where each
component of the vector is a function of the parameters), find the design X
which maximises the utility function:
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u(θ,X ) = max
e:∥e∥=1

(
−e′

(
Eθ

[
∇γ∇γ log π(θ |X,y)

] )
e
)
, (3.11)

where ∥e∥2 = ∑
i e2i . This e is an eigenvector corresponding to the lar-

gest eigenvalue. In the classical setting, a reference parameter value θ is
used (i.e. a particular parameter value chosen by the user). For Bayesian
E-optimality, a prior π over θ is incorporated in the usual way.

• S-optimality This criterion considers the mutual column orthogonality of
X and the determinant of the information matrix.

Criteria Based on Predictive Distribution

• G-optimality The choice of X is G-optimal if it minimises the maximum
value of the variance of the predictive distribution of Y(x) where x is one of
the rows of X.

For example, for linear models Y = Xβ+ ϵ where ϵ ∼ N(0,σ2In), β a p-
vector, X an n×pmatrix of rank p, n > p, theMLE of β is β̂ = (X′X )−1X′Y ,
and the predicted values are Ŷ = X(X′X )−1X′Y ; the predictive distribution
is the distribution of Ŷ , which is

N(Xβ,σ2X(X′X )−1X′).

The matrix H := X(X′X )−1X′ is the projection matrix known as the hat
matrix, so called because it puts the hat onto Y . Hence Ŷ = HY ∼
N(Xβ,σ2H) (note:H is idempotent:H2 = H andH′ = H) and theG-optimal
design is the design that minimises the largest value of the diagonal of H.
In the Bayesian setting for this model, where we assume a prior
π( β,σ2) = π1( β |σ2)π2(σ2)where π1( β |σ2) ∼ N( β0,σ2Ω−1

0 ), the poster-
ior covariance of β is σ2(Ω0+ (X′X ))−1 and the G-optimality criterion is to
locate the design which minimises supc∈suppt(X ),∑ c2i =1

c(Ω−1
0 + (X′X ))−1c′

where c ∈ suppt(X ) denotes that c is a linear combination of the rows of X.
• I-optimality Here we minimise prediction variance over the space of
designs available.

• V-optimality Here we minimise prediction variance over a set of specific
points.

We discuss G- and V-optimality at greater length in Section 4, with specific
reference to designs of DCEs.

3.2.1 Example: Simple Linear Regression and Alphabet Optimality

In this Element, the emphasis is on optimal designs for choice experiments,
which typically present the subject with two or three choices (alternative 1,
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alternative 2, often there is also the possibility to reject both the alternatives)
which fall within the framework of generalised linear models. The Fisher infor-
mation takes the form X′W( β)X, whereW( β) is a diagonal matrix of weights.
To illustrate the strengths and weaknesses of these optimality criteria, the com-
putations are simplified enormously if W( β) = I (i.e. the identity matrix) and
where X is simply an n × 2 matrix (n observations with two parameters). The
general principles can therefore all be observed by considering the simple linear
regression model fitting only two parameters (intercept and slope), where the
optimality criteria are based on the 2× 2 matrix X′X. This shows forth the gen-
eral principle that, while optimal designs give optimality provided the model
is correct, they give absolutely no possibility for model checking. For illus-
tration, we therefore limit consideration to the simple linear regression model
Y = Xβ + ϵ , where

X =
©«
1 x1
...
...

1 xn

ª®®®¬ , β =

(
β0

β1

)
ϵ ∼ N(0,σ2In),

and show properties of the optimal design for the various criteria. This is the
model for a single covariate; a response Y(x) when the covariate takes value x
is modelled as Y(x) = β0 + β1x + ϵ where the ϵ’s are independent for different
runs and ϵ ∼ N(0,σ2).
The basic message is that if the model is known, then designs that are optimal

according to alphabet-optimality criteria will produce the sharpest estimators
for the relevant parameters (according to the selected criteria), but the designs
may be rather poor if the model itself is uncertain and may not lend themselves
to diagnostics for checking the model.

For simple linear regression, X′X = n

(
1 x
x x2

)
where x = 1

n
∑n

j=1 xj and x2 =

1
n
∑n

j=1 x
2
j . Using Var(x) = x2 − x2, we have: (X′X )−1 = 1

nVar(x)

(
x2 −x
−x 1

)
so

that, for the classical setting,(
β̂0

β̂1

)
∼ N

((
β0

β1

)
,
σ2

nVar(x)

(
x2 + Var(x) −x

−x 1

))
.

For the estimates of β0, β1 and their covariance, this gives:

Var(β̂0) = σ2
(

x2
nVar(x) +

1
n

)
, Var(β̂1) =

σ2

nVar(x) , Cov(β̂0, β̂1) = − σ2x
nVar(x) .
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We can see that Var(x) is important here; if all the values x1, . . . ,xn are approxi-
mately equal to x (so that Var(x) is small), then the variances of the parameter
estimators will be large.
For the Bayesian setting, we take a prior distribution π( β) ∼ N( β0,σ2Ω−1

0 )
for a fixed 2 × 2 invertible matrix Ω0 (with a prior over σ2) which updates to:

π( β |y,X ) ∼ N
(
(X′X +Ω0)−1)(Ω0β0 + X′y),σ2(X′X +Ω0)−1

)
.

Let Ω0 =

(
ω00 ω01

ω01 ω11

)
so that

X′X +Ω0 =

(
n + ω00 nx + ω01
nx + ω01 nx2 + ω11

)
.

Let a = nx+ω01
n+ω00

and b = nx2+ω11
n+ω00

and v = b − a2. Then

(X′X +Ω0)−1 =
1

(n + ω00)v

(
a2 + v −a
−a 1

)
. (3.12)

Note In this set-up, the prior can be considered as information from an inde-
pendent ‘virtual’ sample of size ω00, where the average of the covariate values
is ω01

ω00
(corresponding to x for the virtual sample) and the variance of the covari-

ate values is ω11
ω00

−
(
ω01
ω00

)2
(corresponding to Var(x) for the virtual sample). The

quantity a is therefore the overall average of all covariate values (virtual and
actual sample), while v is the overall variance of all covariate values (virtual
and actual sample).
Let us consider the various optimality criteria for this example, both for the

classical setting and for the Bayesian setting described earlier in this Element.

• D-optimality For the classical setting,

det(Cov( β̂)) = σ4

n2Var(x)
,

while, in the Bayesian setting (taking β̂ as a random vector whose dis-
tribution is the posterior over β) and using the notation defined in Equa-
tion (3.12),

det(Cov( β̂)) = σ4

(n + ω00)2v
.

Here, D-optimality gives us something quite intuitive; we should find a
designwhichmaximisesVar(x) in the classical setting and v in the Bayesian.
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AnObvious Problem WhileD-optimality gives a design that is optimal
provided the model is correct, it delivers a design that is useless for model
checking. Indeed, suppose we have a covariate x which takes possible val-
ues in {1, . . . ,9} and we have an even number of observations n = 2m.
The optimal design here is clear: take m observations with covariate value
x = 1 and m observations with covariate value 9. This is the design that
maximises Var(x) (and hence minimises the objective).

With such a design, where only two values of the covariate are con-
sidered (at the extreme ends, in order to maximise Var(x)), it is impossible
to check whether the linear model Y(x) = β0 + β1x + ϵ in fact holds; the
D-optimal design only gives us information for values x = 1 and x = 9 and
we are left without any information at all to apply the standard diagnos-
tics for checking whether the straight line plus IID noise is actually a good
model. If the true model were Y = β0 + β1x + β2x2 + ϵ , we would have no
way of checking this with the data from a D-optimal design for the model
Y = β0 + β1x + ϵ .

If there is any doubt about whether a reduced model is suitable, the D-
optimal design for the full model should be computed. In the experimental
design setting, this means (for example) that if we want to test whether
there are important interaction effects, they have to be included in themodel
when computing the D-optimal design.

• A-optimality The A-optimality criterion ignores possible covariance
between the parameter estimates; in this case, an A-optimal design min-
imises the trace of the covariance. In the classical setting, this means
minimising:

Var(x) + x2 + 1
Var(x) = 1 +

x2 + 1
Var(x) .

Again, if the covariate values are chosen in an interval [z1, z2], then the opti-
mal design chooses a proportion α with covariate value z1 and a proportion
1 − α with covariate value z2, so that x = αz1 + (1 − α)z2. The solution is
obtained by finding the α that minimises:

1 + (αz1 + (1 − α)z2)2
α(1 − α)(z1 − z2)2

.

For model checking, an A-optimal design has the same problems as a
D-optimal design; the design that minimises the objective does not permit
diagnostics which check whether the model is correct.

• C-optimalityWe consider C-optimality in a straightforward linear setting,
for linear functions of the parameters. We want to minimise Var(c0 β̂0 +
c1 β̂1) for a given (c0,c1). For example, suppose we are interested in precise
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estimates of the average value of future observations with covariate value
z. Here E[Y(z)] = β0 + β1z, so that (c0,c1) = (1, z). If the aim is to obtain
sharp estimates on E[c0 β̂0 + c1 β̂1], then we choose x1, . . . ,xn to minimise:

Var(c0 β̂0 + c1 β̂1) =
σ2

nVar(x)
(
c20x

2 + c20Var(x) + c21 − 2c0c1x
)

=
σ2

n

(
c20 +

(c0x − c1)2
Var(x)

)
.

Any design satisfying c0x = c1 (e.g. choose x1 = . . . = xn = c1
c0 ) minimises

the objective. This is not a big surprise; if we want to estimate E[Y(z)] =
β0 + β1z, so that c0 = 1 and c1 = z (and we are not interested in any other
covariate value), then the natural experiment would be n repetitions, where
x1 = . . . = xn = z.

Bayesian C-optimality, for a fixed c = (c0,c1) requires the design
(x1, . . . ,xn) which minimises:

(c0a − c1)2
v

,

where a = nx+ω01
n+ω00

and v are defined for Equation (3.12). Choosing any

design such that x =
c1
c0
(n+ω00)−ω01

n will satisfy C-optimality for a particular
linear combination c = (c0,c1).

• E-optimality Returning to Equations (3.10) and (3.12) (considering the
Bayesian setting), an E-optimal design is a design which minimises:

1
(n + ω00)v

max
(e0 ,e1):e20+e

2
1=1

(e0,e1)
(
a2 + v −a
−a 1

) (
e0
e1

)
.

The maximising (e0,e1) is the eigenvector corresponding to the largest
eigenvalue which (of course) depends on a and v. While D-optimality
considers the determinant, which is the product of eigenvalues, and
A-optimality considers the trace, which is the sum of eigenvalues, E-
optimality reduces the problem by selecting a single eigenvalue, which is
the largest eigenvalue.

The computation is omitted; the expression to be minimised then
depends only on a and v, decreasing in v, which turns out (unsurprisingly) to
have the same properties asD andA optimisation; if the values are restricted
to an interval xi ∈ [l−, l+], the E-optimal design will choose extreme values
to maximise Var(x) (Classical) or v (Bayesian, from (3.12)); a proportion
α will satisfy xi = l−; and a proportion 1 − α will satisfy xi = l+. As with
other criteria, the E-optimal design therefore restricts itself to two values
and does not give any possibility for model checking.
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• S-optimality Column orthogonality means that we would like to choose
our covariates x1, . . . ,xn such that x = 0 (i.e. (1n,x) = 0). For such designs,
the whole business simplifies and:

(X′X )−1 = 1
n

(
1 0
0 1

x2

)
.

Column orthogonality gives: β̂0 ⊥ β̂1 (i.e. the estimators are independent).
Also, with such column orthogonality, β̂0 = Y (simply the sample aver-
age) and the only design consideration is, within the constraint x = 0, to
maximise x2 to get the optimal estimator of β1.
Designs which have column orthogonality (orthogonal contrast designs

such as 2k experiments) are often easier to deal with.

We now illustrate the criteria which are based on the predictive distribution
with this simple two-parameter example, noting that all the basic principles for
a more general setting are already present in the two-parameter example.

• G-optimalityConsider a new observationwhere the covariate is z; consider
σ2 fixed and known. Y is the n-vector of observations and X is the design
matrix. Hence, we use π( β |X,Y ) to denote the distribution of the estima-
tor of β. This is the distribution of β̂, the maximum likelihood estimator,
in the classical case and the posterior distribution in the Bayesian setting.
The predictive distribution of y(z) (new observation y with covariate value
z, using Y to denote the n-vector of observations on which the parameter
estimates are based) is:

p( y|z) =
∫
π( β |Y,X )p( y|β, z)dβ∫ ∫
π( β |Y,X )p( y|β, z)dβdy

.

In the classical setting, π( β |y,X ) ∼ N(β̂,σ2(X′X )−1). For covariate value
z, a new observation y has distribution p( y|β, z) ∼ N(β0 + β1z,σ2). The
density of the predictive distribution is therefore:

p( y|X,Y, z) ∼ N
(
β̂0 + β̂1z,σ2

(
1 +

1
n
+
(x − z)2
nVar(x)

))
.

In the Bayesian setting, the predictive distribution is:

p( y|X,Y, z) ∼ N
(
β0,MEP + β1,MEPz,σ2

(
1 +

1
n + k

+
(A − z)2
(n + k)B

))
,

where

(
β0,MEP

β1,MEP

)
is the mean of the posterior π( β |X,Y, z). The G-optimality

criterion is therefore the same as C-optimality, where c = (1, z), and is
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therefore useless for producing a design that allows diagnostics to check
whether the model is reasonable.

• I- and V-optimality These are the same as G-optimality, except that we
have a reduced set of designs over which to make the optimisation.

3.2.2 Optimality with Constraints: One-Way Design

So far, we have considered the standard alphabet-optimality criteria. In prac-
tice, though, there are often budget constraints. Some treatments may be more
expensive than others and we may be working with a limited budget.
Constrained optimisation is a substantially harder problem than the same

optimisation problem without constraints. We restrict the discussion to the one-
way means model:

Yij = µi + ϵij j = 1, . . . ,ni i = 1, . . . ,p,

where there are p different treatments, ni the number of subjects receiving treat-
ment i, the ϵij’s are taken to be IID. N(0,σ2), the treatment mean for treatment
i is µi. We would like to find the optimal design when there is a limited budget
B and a single experiment applying treatment i costs ci. Hence, if ni subjects
receive treatment i, we have the constraint

∑p
i=1 cini ≤ B. We consider the clas-

sical A-optimal and D-optimal designs for µ := (µ1, . . . , µp)′ subject to the
constraint. Here we have µ̂i = Yi. ∼ N(µi, σ

2

ni ). Since they are independent, we
have Cov(µ) = σ2diag( 1n1 , . . . ,

1
np ) (the covariance matrix is a diagonal matrix)

so that its determinant (the criterion for D-optimality) is σ2p
∏p

i=1
1
ni and its

trace (the criterion for A-optimality) is σ2
∑p

i=1
1
ni .

The two optimisation problems are slightly different. For D-optimality, the
optimisation problem is:

minimise
∏p

i=1
1
ni

subject to
∑p

i=1 cini ≤ B,

while for A-optimality, the problem is:

minimise
∑p

i=1
1
ni

subject to
∑p

i=1 cini ≤ B.

A natural approach for these problems would be the so-called Lagrange multi-
plier approach. For the D-optimality problem, minimising

∏p
i=1

1
ni is equivalent

to minimising log
∏p

i=1
1
ni = −∑p

j=1 log ni, so we consider the problem of
minimising

−
p∑
i=1

log ni + λ
p∑
i=1

cini,
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solving it as an unconstrained problem and then choosing λ so that the
constraint is satisfied. In this case,

− 1
ni
+ λci = 0 ⇒ ni =

1
λci
.

Then B =
∑p

i=1 cini =
p
λ ⇒ λ = p

B giving a constrained D-optimal design of:

ni =
B
pci

i = 1, . . . ,p.

Of course, the ni’s computed in this way are probably not integers; appropriate
rounding should be done.
Computation for the constrained A-optimal design is similar; minimise

p∑
i=1

1
ni
+ λ

p∑
i=1

cini

so that − 1
n2i
+ λci = 0 ⇒ ni = 1√

λci
. Then λ is chosen such that B =

∑
cini =

1√
λ

∑p
i=1

√ci giving λ = 1
B2

(∑p
i=1

√ci
)2

and the constrained A-optimal design
is:

ni =
B(∑p

j=1
√cj

) √ci i = 1, . . . ,p

(making minor alterations, rounding up or down to ensure that each ni is an
integer).
In the particular set-up of the homoscedastic one-way model, the problem is

relatively simple to formulate and to solve; the method of Lagrange multipliers
for this problem is straightforward. In general, though, constrained optimisa-
tion is not an easy problem and it is difficult to find packages which deal with
alphabet-optimality subject to constraints. This is an important topic and should
be a direction for fruitful future study.

3.3 Optimisation Based on Shannon Entropy
Another very important utility function for Bayesian optimality is the so-called
SIG utility, defined by:

uSIG( β,y,X ) = log π( β |X,y) − log π( β), (3.13)

where π( β) denotes the prior distribution over the parameters β and π( β |X,y)
is the posterior, based on observations y and design X. This is used in (3.2)
to provide an expected utility U(X ). The quantity uSIG is simply the mutual
information between β and y, which we denote I( β,y). If β and y are inde-
pendent, then uSIG = 0. It can be established (by Jensen’s inequality) that the
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mutual information is non-negative. Furthermore, mutual information satisfies
I( β, β) ≥ I( β,y) for any random vector y (a random variable contains as much
information about itself as any other random variable can provide).

3.3.1 The Contribution of D. V. Lindley

The utility uSIG was suggested as a criterion for experimental design by
D. V. Lindley in his seminal article (Lindley 1956), where he took the work
of Shannon (1948) as his starting point for establishing a definition of the infor-
mation provided by an experiment and, from this, a utility functionwith a useful
and natural additive property.
If an experiment E is carried out in two parts, say E1 for the first part, and

then a further experiment E2, then, Lindley postulated, the information from
the whole experiment, denoted I(E), should satisfy an additive property:

I(E) = I(E1) +
∫

I(E ( y)
2 |E1,y)pE1 ( y)dy,

where y denotes the outcome of E1 and E ( y)
2 denotes the second experiment

carried out when the outcome of E1 is y. pE1 denotes the distribution for out-
comes of E1 and I(E ( y)

2 |E1,y) denotes the additional information obtained when
experiment E ( y)

2 is carried out after outcome y was obtained from E1. Building
on Shannon’s earlier work, Lindley showed that uSIG was the only utility that
satisfied this.
The approach, based on SIG is precisely that adopted by Chapman et al.

(2018) in DOSE (dynamically optimised sequential experimentation), an
important and developing technique that we discuss in detail in Section 5.
The information which the researcher has before carrying out an experiment

is expressed as a prior probability distribution, which we denote by πΘ over
a parameter space, which we denote by Θ; the true parameter value θ ∈ Θ is
unknown and the aim of the experiment is to improve our knowledge about θ.
Let Y denote the space of possible outcomes of an experiment, with generic

element y ∈ Y . We assume that if the ‘state of the world’ (i.e. the value of the
parameter, or parameter vector θ) is known, then the outcome of the experiment
will be a random variable Y with probability distribution pY |Θ(.|θ) : Y → R+
(where, for each θ ∈ Θ, pY |Θ(.|θ) is a probability mass function if Y is finite or
countably infinite, or a density if Y is a continuous random variable). The unit
pY |Θ(.|θ) is basic; if we know θ, then we know the probability distribution of
Y, the outcome of the experiment.
The quantity πΘ is the prior distribution, which represents our information

about θ before the experiment takes place. If our experiment gives outcome
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y, we update the prior to a posterior distribution over the parameter space; the
marginal distribution for the outcome of the experiment is:

pY( y) =
∫
πΘ(θ)pY |Θ( y|θ)dθ,

and, by Bayes’ rule, the posterior distribution over Θ, given outcome y is:

πΘ |Y(θ |y) =
πΘ(θ)pY |Θ( y|θ)

pY( y)
.

In experimental economics, our aim is usually to ‘gain knowledge about the
world’ (to quote Lindley), by which he means that the distribution over the
parameter space represents knowledge about the world, or problem under
investigation; our experiment should be such that, when we update prior to
posterior, this gives the best improvement of our knowledge of θ, subject to
the restrictions on the experiments that we can carry out.

3.3.2 Shannon Entropy and Information

We now follow Lindley to show how the negative of Shannon entropy gives a
convincing approach to the amount of information we have about a parameter
if we know the probability distribution and why, when assessing the amount of
information gained, the Kullback–Leibler divergence is a useful quantity.

Definition 3.1 (Shannon entropy) For a distribution with density πΘ over a
parameter space Θ ⊆ Rn, the negative of the Shannon entropy is defined as:

H(πΘ) := −
∫
Θ

πΘ(θ) log πΘ(θ)dθ .

We follow Lindley by taking the negative of this quantity, which we call the
information in the distribution:

I(πΘ) = −H(πΘ) =
∫
Θ

πΘ(θ) log πΘ(θ)dθ .

The negative sign in Shannon’s definition is due to the fact that he is consid-
ering the opposite of information; Shannon’s entropy is a measure of disorder.
Shannon (1948) gives reasons why this is a good measure and we follow
Lindley’s description of Shannon’s motivational arguments.
To simplify the discussion, suppose Θ is finite (so that πΘ is a probability

mass function and

I(πΘ) =
∑
θ∈Θ
πΘ(θ) log πΘ(θ).

Now consider the additional information required before the value of θ is
known and suppose that this information is provided in two stages:
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Stage 1 LetΘ1 ⊂ Θ be a non-empty, strict subset ofΘwhere
∑

θ∈Θ1 πΘ(θ) ,
0 or 1. Suppose the first stage of the experiment tells us whether θ ∈ Θ1 or
θ ∈ Θ\Θ1. The prior distribution over (Θ1,Θ\Θ1) is (Π,1 − Π), where Π =∑

θ∈Θ1 πΘ(θ). Let us denote the information from the first stage as I1.

Stage 2 After this, we perform a second experiment, which tells us the pre-
cise value of θ. Let us denote the information provided by the second stage as:
I2,1 if θ ∈ Θ1, or I2,2 if θ ∈ Θ\Θ1. The distributions over Θ1 and Θ\Θ1 are
πΘ(θ)
Π

and πΘ(θ)
1−Π respectively.

We require an information measure such that the information provided in the
first stage and that the average amount in the second stage add up to the total
information – that is:

I = I1 + ΠI2 + (1 − Π)I3.

Shannon proves that (apart from arbitrary multiplicative constant) I =∑
θ∈Θ πΘ(θ) log πΘ(θ) is the only function satisfying this property (together

with a mild continuity property).
We can see that I, thus defined, has this property:

I1 = Π logΠ + (1 − Π) log(1 − Π)
I2 =

∑
θ∈Θ1

πΘ(θ)
Π

log πΘ(θ)
Π
= 1
Π

(∑
θ∈Θ1 πΘ(θ) log πΘ(θ)

)
− logΠ

I3 =
∑

θ∈Θ\Θ1
πΘ(θ)
1−Π log πΘ(θ)

1−Π =
1

1−Π
(∑

θ∈Θ\Θ1 πΘ(θ) log πΘ(θ)
)
− log(1 − Π),

and the identity I = I1 + ΠI2 + (1 − Π)I3 follows directly.
After the experiment has been performed, a result y observed and the

distribution over Θ updated to πΘ |Y(.|y), the information is:

I(πΘ |Y(.|y)) =
∫
Θ

πΘ |Y(θ |y) log πΘ |Y(θ |y)dθ,

and the information gain is:

K( y) = I(πΘ |Y(.|y)) − I(πΘ).

We assume that, given a true parameter value θ, the outcome y of an experiment
is governed by a probability distribution pY |Θ(.|θ). The information difference
depends on the observation y. If we are choosing between different experi-
ments, then clearly we do not know the outcome before we carry out the
experiment. We therefore average the information difference over all outcomes
for an experiment to get a suitable measure. After some computation,∫

K( y)pY( y)dy = DKL(πΘ |YpY∥πΘpY).

(Here pYπΘ |Y = πΘpY |Θ is the joint distribution over parameter space / state
space.)
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This is the Kullback–Leibler divergence between the joint distribution
πΘpY |Θ over Θ×Y and the product distribution πΘpY over Θ×Y (if the param-
eter and observationwere independent, the Kullback–Leibler divergencewould
be zero; the experiment would provide no information).
The Kullback–Leibler divergence has several important properties which

indicate that it is useful for measuring the gain of information from an experi-
ment. Firstly, if f and g are two probability distributions over a state space
X , then DKL( f∥g) ≥ 0, where the inequality is strict if f and g differ on a
set of positive f probability. This follows from Jensen’s inequality. Another
property is the additive property, which was Shannon’s basic reason for intro-
ducing the entropy functional. Let E denote an experiment which takes place
in two parts, E = (E1,E2), where E2 is performed after E1. Let KE denote the
average information provided by the whole experiment,KE1 the average infor-
mation provided by the first part, andKE2 |E1 the average additional information
provided by the second, then:

KE = KE1 +KE2 |E1,

which follows by an easy computation.

3.4 Aspects of Optimal Design for Discrete Choice Experiments
In choice experiments, there are usually a very large number of possible
choices. The optimality critera may be applied to obtain optimal designs, where
each question admits three answers (choose option A, choose option B, refuse
both A and B). The theory requires that responses to questions are independ-
ent. Section 2 deals with issues about between- and within- subject sampling
and these should nuance the criteria for choosing an optimal design for choice
experiments. We draw attention to the following.

• There is an R package acebayes, which is discussed inOverstall and Woods
(2017), who wrote the package. This creates optimal designs where all
parameters of interest are included. The design does what it says on the
tin and is optimal according to the criterion selected.

• Different optimality criteria can give different designs. For example, we
presented the one-way model (Section 3.2.2), where the total cost (and not
the number of subjects) was fixed and different treatments had different
costs.

• Bayesian designs are to be recommended, since they incorporate expert
prior probability assessment information over parameters; classical designs
for generalised linear models tend to optimise for a fixed parameter value
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chosen in advance in all but the simplest (i.e. Gaussian) cases. The Bayes-
ian update from prior to posterior gives a consistent approach to parameter
uncertainty provided that the probability model for data generation is
correct; any ad hoc element is clearly seen in the choice of prior.

• D- and A-optimal designs (and their Bayesian counterparts) are based on
the Fisher informationmatrix (or correspondingBayesian quantity). A good
probability model for data generation is therefore essential. If data gen-
eration is properly described by the model, the design will be optimal
according to the optimality criterion. If the model is incorrectly specified,
then there can be serious problems, as we saw in the discussion of opti-
mality criteria for simple linear regression. All the designs placed all the
observations at extreme points; the optimal designs left no room at all for
model checking; they were optimal only if the model was correct.

• For within-subject questioning, a subject will have a memory of previous
questions, hence the responses to successive questions may not satisfy the
‘independence’ assumption upon which optimality criteria are based; if the
same subject is presented with the same question twice (which may happen
when alphabet-optimal design criteria are employed), it is difficult to see
how to ‘reset’ the subject between the two questions. The subject has a
memory of the previous answer and therefore may well give exactly the
same answer without additional thought. In other words, the errorwill carry
over to subsequent questions.

The acebayes package has a useful feature: a function limits whereby
the user can ensure that a row of the design matrix is not repeated (in the
case of DCEs, a particular question is presented exactly once).

• Questions such as whether it is better to increase the number of subjects or
increase the number of questions per subject depend on two things.We need
good probability models for data generation; we also need some under-
standing of the psychology of the subjects – how many questions can a
subject reasonably handle? Similarly, questions such as whether it is better
to have one choice between four options or to elicit the preferred option
through several binary-option questions largely depends on how accurate
the answers are expected to be when the subject is faced with a larger
number of choices. The whole raison d’être behind much of the theory of
DCEs is that subjects are unlikely to be able to process effectively the con-
tents of a large set of possible choices; asking questions where only three
options are available (alternative A, alternative B, neither) may lead tomore
informative answers.

• ‘No-brainer’ questions (where a bundle where each attribute is worse than
the alternative being offered and is at a higher price than the alternative)
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should be excluded (unless, of course, they are included simply as a diag-
nostic to check whether the subject is giving credible answers). A standard
algorithm for producing an optimal design may not discern such a question,
but this should be clear to the user, who can program the algorithm to avoid
such questions. The function limits in acebayes can be used to do this.

• Optimal design theory is intended for the situation where there are far too
many possibilities to run a standard orthogonal design. The overwhelming
reason for generating optimal designs for DCEs is that the total number
of possible questions is very large and the set-up does not lend itself to
standard orthogonal designs.

As we have seen, the entire theory of optimal design is based on the assump-
tion of independent observations. This may be inappropriate for within-
subject experiments (where errors are not necessarily independent). Substantial
advances for DCEs could be made by considering correlation between errors
for within-subject experiments and incorporating this into computation of the
Fisher information. Another possibility is to define a distance between rows
of the design matrix X and to find optimal designs under constraints, the con-
straints being that the rows of X are separated from each other by a suitable
distance, so that responses can be seen as independent observations.

4 Discrete Choice Experiments
The section begins with an introduction explaining what choice experiments
are along with typical examples. Next, we give an application illustrating use
of DCEs in health economics. Following that, we discuss DCEs in core experi-
mental economics, the pros and cons of DCEs, social desirability issues, and the
problem of hypothetical bias. This is followed by a discussion of the key numer-
ical choices that need to be made: number of choice sets, number of options in
a choice set, number of attributes, number of levels. The random utility model
(RUM) (and RPM) are the workhorses of discrete choice data analysis. The
latent class model is also useful and we give examples with a focus on design-
ing and modelling; in the example for choosing health insurance, the latent
class model is used and, when the classes have been learned, classes are then
described in terms of socio-economic covariates.
This section is strongly linked to the section on optimal design, since the

examples typically use D-optimality (or its Bayesian counterpart) to determine
the experimental design. While the ‘general theory’ can accommodate a situ-
ation with K possible responses for each question (for K finite), the questions
usually present two or three options (option A, option B, refuse both). The most
common model is the RPM (a variant of the RUM). Another popular model is
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the latent class model. Latent simply means hidden and the latent class model
(LCM) simply infers a finite set of classes (or categories) from observations and
assigns observations to these classes. Section 4.9.2 presents an interesting use
of both the RPM and the LCM. Individuals express their preferences between
various options for health insurance. Analysing the data according to the RPM
suggests heterogeneity in the parameters. At the same time, the subjects are
asked questions about socio-economic variables and the LCM is employed to
learn classes which explain the heterogeneity of parameters in the RPM. The
idea is to determine how the socio-economic category is related to preferences
for health insurance.

4.1 What Are Choice Experiments?
Discrete choice experiments (DCEs) are widely used in environmental eco-
nomics and health economics. The name may be confusing from the viewpoint
of an experimental economist because nearly all experiments in economics
involve some choices. The term also conceals the fact that a very similar
approach is used in other disciplines, notably marketing, where it is called
‘conjoint analysis’.
Whatever the name, the essence of the method is that each subject faces a

number of ‘choice sets’ involving decisions between two or more options. In
the lingo of experimental economics, it is thus a case of a within-subject design.
The options differ on a number of dimensions (called attributes). Different par-
ticipants may face different blocks of choice sets: the attributes and levels used
remain the same but the specific combinations comprising options and choice
sets are different. For example, sixty choice sets may be used divided into five
blocks, with each participant only going through one block of twelve choices.
Let us have a look at a typical example of a choice experiment in the field of
environmental economics.
Suppose you live in the west of Australia, a country well known for its

weird fauna (which might have evolved to adjust to walking upside down).
You are approached by researchers Subroy, Rogers, and Kragt (2018) who are
concerned about endemic species of small marsupials: numbats, also known
as walpurti [sic], and woylies, also known as brush-tailed bettongs [sic]. Both
species, once roaming across the continent, are now critically endangered, with
the wilderness of Dryandra Woodlands being one of their last strongholds. You
are told it is mostly red foxes and feral cats that are to blame for this unfortu-
nate course of events. Effective ‘management’ of these invasive predators in
the Woodlands is the numbats’ and woylies’ only chance for survival. You are
introduced to a number of possible strategies, such as fencing, trapping, and
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Figure 3 Choice experiment screenshot Subroy et al. (2018).

baiting (poisoning). You are told these strategies may involve yearly costs to
be covered from the taxes paid by all Western Australia households. You are
then asked to make six choices between four options each, such as the one
represented in Figure 3.
As can be seen in the picture, there are four attributes: the strategy, the num-

ber of numbats, the number of woylies, and the cost. On each dimension, one
of a few different levels may be taken into account. The attributes and its lev-
els are informed by the menu of policy options that may actually be available
and the preferences of the population that could be taken into account when
actually choosing one of these options.
Typically, trade-offs arise between the attributes. For example, in Figure 3,

Option C saves more numbats compared to Option B, but is more expensive.
These trade-offs will be different in each choice set, saving numbats (or woy-
lies) being cheap in some choice sets and expensive in others. By analysing your
pattern of answers, the researchers will thus be able to calculate how much you
are willing to pay to save one numbat or one woylie and perhaps if you have any
sympathy for the predators. In this case, Subroy and colleagues (2018) found
that a typical participant preferred combining different management strategies
over the currently implemented baiting. They were also willing to pay about
21.76 AUD for 100 numbats and 7.95 AUD for 1,000 woylies. The researchers
determined the second relationship by observing that increasing the cost of the
option by about 7.95AUDwas, on average, equally detrimental to its popularity
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as reducing the woylie population by 1,000. This also meant that each numbat
was worth some 25 woylies. The researchers also reported that these numbers
did not depend on whether the photographs of the marsupials were shown,
a condition randomised between subjects (although some googleable woylie
images are seriously cute). As a side note, with nearly 1 million households
in Western Australia and a typical numbat weighing just about 500 grams, this
amounts to some 100,000 AUD per kilogram, making the price of OliveWagyu
or Kobe beef look very reasonable in comparison.
If you do not have the stomach to poison one fluffy beastie to save another,

you may want to participate in a marketing study instead. While the content is
very different and the researchers may call it an example of a ‘choice-based
conjoint analysis’ rather than simply a choice experiment, the structure of
the decision task is rather similar. For example, Toubia and colleagues (2007)
would give you a choice between different wines. They would differ in terms
of closure type (traditional cork, synthetic cork, Metacork, 7 Stelvin (screw
cap)), type of wine (dry, aromatic, dry red, blush red), region of origin (Aus-
tralia/New Zealand, France, Sonoma/Napa, Chile/Argentina), vintner (small
boutique, midsize regionally known winery, large nationally recognized win-
ery, international conglomerate winery) and, not surprisingly, the price range.
Again, the sequence of choices between options, presented analogously to those
of Figure 3, would allow the researchers to estimate the utility of each level.

4.2 Discrete Choice Experiments in Health economics:
An Example

Health economics represents a domain in which choice experiments have been
used extensively. Let us discuss an example of this literature, which shows
some interesting features.
The aim of the study by Papoutsi and colleagues (2015) was to establish

how fiscal-food policies (subsidies of healthy products and fat taxes) affected
parents’ choice of diet for their children. Thereby, they wanted to control for
the children’s ‘pester power’ – the ability to persuade the parents to buy tasty
rather than healthy foods. For this reason, a between-subject manipulation was
used. Half of the parents would go through the choice tasks with (‘Pester’),
the others without (‘No Pester’) the presence of the child. Of course, to ensure
comparability of these groups, both were recruited in the same way and had to
show up with the child. The experiment also varied information provision: the
rationale of the food policies (subsidies and taxes) was revealed to the parents
(‘Info’ treatment) or not (‘No Info’ treatment). For both dimensions, within-
subject manipulation would have been problematic. In particular, it would
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have been relatively easy for the participants to guess the hypothesis if they
answered only some questions with their children present. Likewise, it would
have been impossible to have participants obtain and then immediately forget
the information about the fiscal policies.
Participants were asked to make four choices between pairs of foods. Three

attributes were considered: healthiness (less vs. more healthy), fat tax (present
vs. absent), and subsidy (present vs. absent). Perhaps not surprising, the fat tax
could be applied only to the unhealthy item and the subsidy only to the healthy
one. It is fairly common in choice experiments (and thus possible to imple-
ment in software packages helping to design them) that some combinations
are excluded. Here, burdening the healthy option only with a fat tax would not
make much sense and analogously for the subsidy.
A feature that is not common was that the values of the attributes were not

listed in a table. Instead, they were only revealed implicitly – participants could
see the amended prices and judge the healthiness of the products themselves.
The main findings were as follows:

• Implementing a fat tax and a subsidy simultaneously results in a significant,
positive interaction.

• Providing information regarding the fiscal-food policies can further
increase the impact of the intervention.

• Child pestering strongly moderates the effectiveness of the policies; it is
a heavy influence on the choices that parents make that leads them to
unhealthier choices.

Again, compared to a basic design (experimental group vs. control group),
combining different dimensions in a single choice experiments facilitated
comparing main effects and identifying interactions.

4.3 Choice Experiments in Core Experimental Economics
Choice experiments can be put to good use outside the domains in which they
are well established, namely environmental economics and health econom-
ics. One subfield in which this is happening is the study of attitudes towards
inequality between one’s own income and the income of others. For example,
Shigeoka and Yamada (2019) first asked their UK- and US-based responders
to whose income they are likely to compare their own (family members, for-
mer classmates, general population etc.). Subsequently, they instructed them
to make a series of hypothetical choices between pairs of situations (allowing
for indifference). Each situation was characterised by two attributes: one’s own
income and the reference group’s income. The possible levels corresponded to
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quantiles of the distribution of actual pre-tax monthly income levels in the rele-
vant country, ranging from 900 USD (700 GBP) to 7,200 USD (5,500 GBP) in
the US (UK). This is quite different from the more common method of inves-
tigating preference for the incomes of others (or, alternatively, for one’s own
relative income). The latter would involve eliciting subjective well-being or,
more narrowly, satisfaction with one’s own income as well as that of some
reference group (which, along with many control variables, would become a
regressor). Arguably, the key difference is that for this traditional approach,
the focus is on the level of utility actually experienced by an individual facing
given circumstances. By contrast, in DCEs, we hope to elicit decision utility
driving choices between different sets of circumstances. To the extent that peo-
ple may systematically mispredict the determinants of their happiness, these
two approaches just measure two different things and need not be in sync.
The traditional approach also has some characteristics which should better

be thought of as bugs rather than features and which can be avoided if a choice
experiment is run. In the choice experiment, variables of interest (own and oth-
ers’ income) are directly observable; they can be exogenously manipulated to
take several different values (rather than be fixed, endogenous, and measured
with error as in the standard approach); the estimates are much more compar-
able across cultures and languages than in the case of elicitation of home-grown
subjective well-beingmeasures. Using choice experiments here also has advan-
tages over alternative experimental designs (typically manipulating just one
variable) as discussed in Section 4.4.
In Clark, Senik, and Yamada (2017), the authors were able to compare the

results of a choice experiment with those of the traditional survey-based
approach. In a large online study conducted in Japan, they included two mod-
ules. The first module followed the traditional approach. The responders were
asked, ‘About how much do you suppose was the average personal income
(before taxes) in 2009, for people of the same age, sex, and education as you?’.
They were also asked about their own income and how satisfied they were
with it. The second module included a hypothetical choice experiment in which
one’s own and one’s peer group’s incomes were exogenously manipulated.
Interestingly, the two approaches led to rather similar conclusions, greatly
reinforcing their reliability.
The study of Cetre and colleagues (2019) is an example of a choice experi-

ment on relative income in which the choices could actually be implemented.
This is because it concerned low one-time payments in a group of five (rather
than wages relative to a wide peer group). The authors manipulated the source
of inequality (based on luck vs. based on performance) and whether the choice
was made before or after the positions were known. Overall, they found little
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support for the importance of relative income, with large majority of subjects
endorsing Pareto-superior distributions even if they reduced their own income
relative to that of the others.
On top of preference for relative income, choice experiments were occa-

sionally employed in a wide range of other topics in experimental economics.
For example, Steimle and colleagues (2022) investigated the determinants of
willingness to return to the campus (rather than postpone it) during the Covid-
19 pandemic. The choice of attributes and their levels was informed by the
recommendations that the US universities had obtained from the Centers for
Disease Control and Prevention. A typical decision screen showing all the attri-
butes included is exhibited in Figure 4. A DCE is an appealing design choice
for a number of reasons. Firstly, a decision like this is indeed likely to hinge
on a number of dimensions which can be reflected as attributes of a choice
experiment. Secondly, several of these attributes are nominal variables taking
a few distinct levels, which naturally fits a DCE. Thirdly, they may interact; for
example, regulations concerning masks may be more important when classes
are conducted in person. Identifying these interactions would not have been
possible if each dimension had been studied separately. Fourthly, the decisions
made by students are unprecedented. It would have thus likely been difficult for
them to express their preference in an abstract manner, whereas it was easier
to make choices between specific combinations. Fifthly (and related), ex ante,

Figure 4 Choice experiment screenshot Steimle et al. (2022).
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not only the relative sizes of the effect of different dimensions were unclear,
but also their directions. For example, it cannot be excluded that some students
preferred strict restrictions on the permitted size of gatherings. A choice experi-
ment enables identification of such cases. Finally, it should be noted that some
campus rules could send a signal about the seriousness of the pandemic con-
ditions: severity of restrictions could be perceived as indicative of the severity
of the situation. In a between-subject design, this could lead to a paradoxical
situation in which a student who is highly concerned about safety is less willing
to return to the campus when the restrictions are more severe. This is because
these strict regulations would send them a signal that the pandemic situation is
serious. A choice experiment in which a whole range of different sets of restric-
tions is presented reduces the probability of such an artefact; participants are
likely to understand that they should assume that all of the possible choice
determinants that are not listed on the screen stay constant.
As before, one of the attributes – in this case the tuition reduction – was

of monetary nature. This allowed a direct estimation of the WTP for various
campus Covid-policy changes.

4.4 Pros and Cons of Choice Experiments
The same problem of estimating WTP could be addressed more directly using
open questions. The participantsmay be asked about themaximum amount they
would pay (in terms of tuition in the case of Covid-19 restrictions at the cam-
pus, in terms of taxes in the case of environmental protection policies, etc.).
Such open-ended contingent valuation methods were used extensively in the
past. By now, they have been largely replaced by DCEs. One reason for this
switch is that open questions tend to trigger a lot of zero responses and, at the
same time, a large number of unreasonably high responses. Naturally, it may
well be that some people indeed have zero WTP for certain (environmental)
public goods; likewise, it may be difficult to tell if a response is indeed ‘unrea-
sonable’. Nevertheless, the consensus in the community is that many of these
cases are artefacts of the cognitive difficulty of coming up with a specific num-
ber. By contrast, choosing between two or three options tends to be easier.
This shift parallels development in some subfields of experimental economics.
For example, in decisions under risk, direct valuation of gambles is nowadays
rarely used; utility is instead inferred from choices between gambles. On top
of cognitive difficulty considerations, a bonus gain is that one can directly
incentivise choices, whereas incentivising valuations requires methods such as
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the Becker–DeGroot–Marschak (BDM). Such methods are often criticised; we
discuss some problems with the BDM method in Section 5.5.3.
Problems with incentivisation also arise in non-choice-based conjoint ana-

lysis in marketing. Here, the traditional approach is that each option (charac-
terised by different attributes) is presented separately; the subject indicates on
a scale, of say, 0 to 100, the level of personal liking of the product or the like-
lihood that the subject would buy it. Again, even if all versions of the product
are available, there is no obvious and direct way to incentivise statements such
as ‘I’d buy this product with a probability of 65 per cent’ and the well-known
ways of incentivising probabilistic predictions, such as proper scoring rules,
do not apply to situations where the forecaster can actually easily affect the
outcome.

4.5 Hypothetical Bias: Incentivising Choice Experiments
Sticking to standard choice experiments does not necessarily help address the
problem of incentive compatibility. Indeed, in both choice experiments and
conjoint analysis in marketing, the choices are typically hypothetical. This may
give rise to a discrepancy between hypothetical responses and those that would
have been given if responders were incentivised to reveal true preference. Such
a hypothetical bias may arise due to many reasons. Participants may fail to take
hypothetical questions seriously; they may be tempted to answer quickly, with-
out careful examination of the situation and their preference. This is likely to
be the case when the decision problem is complex. Secondly, the problem may
be aggravated when some options appear more socially acceptable, morally
superior, or more fashionable than others. Participants may then want to mis-
represent their preference. For example, when considering desirable features
of a product, people may want to signal that they value ‘organic’ more highly
than they actually do. They may also actually believe that they value it highly,
even if this is not really reflected in their choices.
Of course, some choice experiments involve choices between options that

can be implemented easily. For example, Buckell, White, and Shang (2020)
ran a choice experiment with current smokers who have also used e-cigarettes
in the past. They were asked to make choices between traditional cigarettes and
vapes differing in terms of their health consequences, flavour, and price (with
the option of abstaining always available). Before they started, the randomly
chosen half of the subjects were told they would receive 100 USD worth of
their preferred merchandise (from among one randomly selected choice set)
at the end of the experiment. They were thus incentivised to choose in accord-
ance with their genuine preference, while the choices were merely hypothetical
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for the remaining participants. While this was feasible, giving away (or sell-
ing) cigarettes under the disguise of science was certainly something that
needed serious consideration of the relevant institutional review board or ethics
committee.
Needless to say, such an approach may be implemented in choice-

experiment-like designs studying more typical behavioural economics issues,
such as other-regarding preferences. We would give the participant a number of
choice sets involving options differing in terms of payments for oneself and oth-
ers and simply implement the option chosen by the participant from a randomly
selected choice set.
In many applications, however, the choices do not involve private goods,

but rather community-level policies (e.g. how to kill some foxes in the most
optimal way), and it is thus not possible to reward each subject directly with
their most preferred option. Environmental economists often deal with this by
trying to orchestrate ‘consequentiality’ (Vossler and Evans 2009). The idea is
that participants may be led to believe that their responses could eventually
affect actual policy choices.
Arguably, it requires a major leap of faith to conclude that this is anything

similar to incentive compatibility that we have in typical lab experiments.
Firstly, participants may doubt that study results will be looked at at all. Sec-
ondly, even if they do, some policies featured in it such as zero-cost policies
other than the status quo may be unimplementable. Please note, by the way,
that it may still make a lot of sense to include them, because they help esti-
mate the importance of different dimensions. Thirdly, it seems plausible that
said policies may be further modified before implementation, perhaps not to the
participant’s liking. Fourthly, except for the case of a single binary question, it
may be optimal to distort true preferences. Suppose, for example, that respond-
ents are given the choice between options A, B, and C and the most popular
of them is going to be implemented. If one can expect that C is going to be
unpopular, whereas A and B have a chance, then it is individually rational to
choose the most preferred from among these two, even if C is actually preferred
Vossler, Doyon, and Rondeau (2012). This is akin to strategic voting in first-
past-the-post elections, resulting, for example, in very few votes for candidates
not endorsed by either of the two main parties in US presidential elections.

4.6 Social Desirability
The fact that we cannot immediately observe the effect of any attribute taken
individually has another positive aspect to it, due to social desirability bias
and related effects. When several attributes are involved in a study, it is more
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difficult for the participants to guess what the hypotheses are. Even if they
can guess, they may be less inclined to hide their preferences because they
are not so obviously on display. Suppose, for example, that somebody does
not care about the environmental impact at all, but recognises that such an
attitude may not be widely appreciated. Because the design manipulates sev-
eral dimensions, it may not be immediately obvious from the patterns of the
responses that environmental impact considerations do not change the subject’s
choices.
In a recent DCE in which one of us was involved (Krawczyk et al. 2023),

European respondents indicated their willingness to support a policy of tem-
porary protection of hypothetical groups of future migrants characterised by
attributes such as fraction of children among them, country of origin, religious
background, or reason for displacement (economic reasons, climate change,
war). After theymade their choices, we asked them directly how important each
of these attributes was. Comparing these two types of responses, we realised
that variation on some dimensions, notably migrants’ religious background,
affected participants’ choices in the DCE to a much greater extent than they
were willing to admit. Apparently many people were hesitant to welcomeMus-
lim migrants and their DCE choices reflected this preference. By contrast, they
were not willing to admit it when asked explicitly.
Even more direct evidence that DCE can help overcome social desirability

bias (SDB) comes from a recent study byHoriuchi, Markovich, and Yamamoto
(2022) (which also discusses the use of DCEs in political science). These
authors compared preferences concerning a sensitive issue (e.g. whether the
respondent would vote for a congressional candidate involved in a case of sex-
ual harassment) elicited in two ways. The first was a standard DCE, in which
the attribute of interest (AoI) was hidden among several others. In the sec-
ond design, only the AoI was manipulated; other attributes were kept constant.
Only in the second design was the extent to which participants reacted (or not)
to candidates’ involvement in sexual harassment transparent (and participants
knew it).
Then again, this intervention could have an effect beyond and above SDB;

in particular, it is likely that this attribute received more attention, regardless
of whether it was sensitive. The authors ran additional comparisons to dis-
entangle this effect from SDB. For example, for non-sensitive attributes, one
would expect no SDB, so the entire difference (i.e., the difference between the
estimates obtained in a standard DCE and the design in which only the target
dimension was manipulated) could be attributed to the difference in attention.
Using a difference-in-differences approach, they could thus estimate the effect
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of SDB. The results they obtained suggested that SDB effect can be as high as
about two-thirds of the true effect of the level of the sensitive attribute itself.

4.7 Key Numerical Choices to Make
Conducting a choice experiment requires setting a few numbers right. These
include the number of choice sets in a block, the number of options in each
choice set, the number of attributes, and the levels of each attribute. While
separate considerations apply to each, they are interrelated.
A choice set is simply a subset of all of the available options; it is also referred

to as a question; the subject chooses one of the alternatives in the choice set. A
choice set has the following elements:

• Alternatives: A number of hypothetical alternatives.
• Attributes: The attributes of the alternatives.
• Levels: Each attribute has a number of possible levels or values that the
attribute may take.

4.7.1 The Number of Choice Sets

Because every choice is inherently random, the key advantage of including
more choice sets in a block is that it raises precision of estimation. Naturally,
a larger number of choices is necessary when the number of attributes and/or
levels per attribute is also large. Another consideration is whether the researcher
is interested in interactions between different attributes; if so, more choices
will typically be needed. Likewise, if substantial heterogeneity of participants
is expected or if we need to estimate parameters at the individual level (rather
than for a ‘representative’ participant), the blocks must be longer.
Then again, with too many choice sets, respondents can eventually become

inattentive or drop out. Clearly, the decision will depend on the mode of col-
lecting data: one can have more choice sets in the lab, fewer online; more
with a sample of accountants, fewer with a sample of teenagers diagnosed with
ADHD;more when the participants are sufficiently rewarded. Most DCEs have
ten or fewer choices – although Czajkowski, Giergiczny, and Greene (2014)
had as many as twenty-six and did not observe a decline in data quality. A
longer discussion of pros and cons of within-subject designs, to which typical
choice experiment belongs, was provided in Section 2.5.

4.7.2 The Number of Options in a Choice Set

Practical limitations are of importance here: how many options can fit on the
screen? This number may be just two if we want to design a mobile-friendly
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online survey and it is difficult to label each level with one or two words.
Assuming we can have more options, we need to decide how many. Three
options, one of which may be understood as a ‘status quo’ in which nothing
changes, is a popular choice.While to the practitioners it may feel about right in
most cases, overall the findings concerning the impact of the number of options
on the estimates seem to be mixed; see section 3.1.2 of Mariel et al. (2021).

4.7.3 The Number of Attributes

Just as for the number of options, the number of attributes may be restricted
by what can be comfortably seen on the screen. Moreover, both dimensions
of the table to be shown to the participant – the number of options and the
number of attributes – should be considered jointly in the context of the partici-
pant’s cognitive capacity. In practice, it is rare to have more than five attributes.
Then again,Meyerhoff, Oehlmann, and Weller (2015) observed no drop in data
quality when the number of attributes increased from four to seven. Clearly,
however, we cannot readily extrapolate this observation to any application;
handling seven distinct dimensions can be very difficult in some (unfamiliar)
domains, when there are too many options to choose from etc.

4.7.4 The Choice of Levels

The choice of the number of levels on each attribute and what these levels
should specifically be is mostly dictated by the research question at hand and
expected estimates. If we expect non-linear effects and it is important to detect
them, then, obviously, more than two levels must be included. This is of par-
ticular importance when we may suspect the non-monotonic impact of some
attribute (an internal optimum).
The choice of specific levels should typically be informed by what values

are realistic or interesting from the viewpoint of applications. Another consid-
eration is the anticipated strength of the effect. If the researcher expects some
attribute to play a very large role, then the range of levels should be small or
else it will be difficult to detect any effect of the other attributes. Clearly, it is
advisable to consult experts in the subject matter and run pilot studies to make
the best choice possible.

4.8 Designing Experiments and Modelling Data
4.8.1 Introduction

The distinctive feature of choice experiments, compared to typical experiments
in economics, namely that we manipulate several dimensions at the same time,
also has important consequences for statistical inference. Our objective is to
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identify the impact of different attributes, how the fact that an option is char-
acterised by a specific level of a specific attribute affects the probability that it
is selected. Because different choice sets differ in terms of several attributes,
we cannot look at the simple summary statistics, which would be informative
if there were only one change. Consider the simplest possible scenario of bin-
ary choices between a policy and the status quo. If Policy A, characterised by
some combination of levels of various attributes, is preferred over the status
quo 40 per cent of the time, and Policy A′, which differs from Policy A on
only one attribute, is chosen over the status quo 70 per cent of the time, we
could conclude that the change from A to A′ made the policy more attractive.
Because there is only one difference between the two, it is this attribute that has
made the difference. Such direct inference is generally not possible in choice
experiments, because several attributes are manipulated simultaneously (and,
typically, their levels change in more than one option). To estimate the effect
of each attribute, parametric assumptions must thus be made.
It is fair to say that many experimental economists have a natural dislike of

parametric methods. One reason is that they are aware of artefacts of arbitrary
modelling choices aimed at obtaining attractive publishable results. The prac-
tice of preregistration of the methods of analysis and presentation of several
specifications may, to some extent, alleviate these concerns. One seemingly
positive aspect of the parametric approach is that the researcher explicitly mod-
els noise and this consideration informs design. Naturally, experimenters often
team up with an expert when modelling choice-experimental data.

4.8.2 Random Utility and Related Models

We feel that we cannot add much to the excellent description of the RUM and
several important variants found in Croissant (2020); the RUMwhere the utility
in choice situation i of choice j is:

Uij = Vij + ϵij

where

Vij = αj + β′xij + ν ′tj + γ′
jzi + δ

′
jwij; (4.1)

the covariates are:

• xij specific to the choice situation/alternative combination (i, j), with gen-
eric coefficients β and covariates tj specific to the alternative j with a
generic coefficient ν.

• Choice situation specific covariates zi with alternative specific coefficients
γj.
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• Alternative and choice situation specific covariates wij with alternative
specific coefficients δj.

Note that Vij is a linear function of observable covariates and unknown
parameters, which are to be estimated (see Croissant 2020 for details). In Sec-
tion 5, we’ll see that the adaptive designs of Chapman and colleagues (2018)
and Toubia and colleagues (2013) allow for prospect theory utility functions,
which have weighted probabilities and parameters which model loss aversion
and risk aversion. It turns out (as pointed out in Croissant 2020) that the Gum-
bel distribution provides a convenient distribution for the error terms and the
probability of choosing alternative j is:

Pj =
eVj∑J
j=1 eVj

.

Croissant (2020) go on to describe the heteroscedastic logit model, where the
errors are Gumbel, but no longer with the same parameters, the nested logit
model and the random parameters logit model (RPLM).
The text of Croissant (2020) gives a full and user-friendly description of

the RPLM. It is a popular model among practitioners, who find that it gives
improved results over the RUM (this was the conclusion in both the examples
of Section 4.9). While the standard RUM has the probability of a randomly
chosen subject choosing alternative l in choice situation i as:

Pil =
exp{β′xil}∑
j exp{β′xij}

,

where the parameters β are the same for each subject (and have to be esti-
mated), the RPLM allows some variation. If we have n subjects, we take
β1, . . . , βn, the parameters for the respective subjects, as IID draws from a dis-
tribution, say (for example) N( β(0),C), where the parameters β(0) and C have
to be estimated. The covariance matrix C provides a measure of heterogen-
eity, – that is, the spread of β parameters between subjects. The packagemlogit
permits several distributions (e.g. normal, log normal, truncated normal). If
the parameter vector is of length p where p is large (so that C has 1

2p( p + 1)
entries), we can restrict to C diagonal (assuming the different parameters are
independent of each other) (details in Croissant 2020).
It is to be emphasised, therefore, that an optimal design for the RPLM will

increase the ability to detect heterogeneity, since it will include the parameters
ofC (or at least the diagonal elements) which express the variation in the param-
eters between individuals. At the same time, though, for β a p-vector, then there
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are at least p additional parameters required (for parameter variances) if het-
erogeneity is suspected and hence more data is needed for accurate estimation,
even with an optimal design.

4.8.3 Latent Class Model

We give more details about the LCM, since it is not described in Croissant
(2020). It is, however, implemented in the package apollo (Hess and Palma
2019), a package which has many other useful implementations for choice
experiments (including RUM, RPLM). The apollo website has a very useful
collection of examples. The LCM for discrete choice analysis is an alterna-
tive method to the RPLM. The LCM for discrete choice analysis assumes a
finite number of categories; for each category there is a ‘true’ parameter vector
β and each individual belongs to one of these categories. This makes it less
flexible than the RPLM, where each individual can have different parameters,
but it is clearly more useful when it is important to locate the sources of the
heterogeneity for individual preferences.
The LCM groups respondents in a finite number of classes (the number

of classes may be chosen by analysing models with different numbers of
classes and then using one of the standard selection criteria, such as the Akaike
Information Criterion (AIC) or the Bayesian Information Criterion (BIC)).
Membership of a specific class is based on the subject’s answers to the DCE
questions posed and also other characteristics (e.g. socio-demographic factors).
The LCM assumes that the preferences of respondents are homogeneous within
each class; they may be heterogeneous across classes. Grouping respondents
with homogeneous preferences in a finite number of classes is relevant for deci-
sion makers because it helps them to understand the sources of heterogeneity
between individuals.
The LCM works as follows: We place a prior probability of Hiq, that indi-

vidual i is from class q, where q ∈ {1, . . . ,Q} and there are Q classes. The
probability that individual i in choice set t chooses option j given that the
individual is from class q is Pit |q( j) where j ∈ {1, . . . J} (choice set has J
alternatives). Here

Pit |q( j) =
exp{x′it.jβq}∑J
j=1 exp{x′it.jβq}

.

The log-likelihood function for all the respondents is:

log L =
N∑
i=1

log


Q∑
q=1

Hiq

( T∏
t=1
Pit |q( j)

) .
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A convenient and standard choice of prior H is a multinomial logit:

Hiq =
exp{z′iθq}∑Q
p=1 exp{z′iθp}

q = 1, . . .Q, θQ = 0.

Here, zi denotes a set of observable characteristics (e.g. socio-demographics
such as age, income, and sex) that enter the model for class membership.
The parameters to be estimated are now the βq parameters and also the θq

parameters. Once these have been estimated, the Bayes rule may be used to
obtain respondent-specific (posterior) estimates of the class probability Ĥq |i,
conditioned on their estimated choice probabilities:

Ĥq |i =
P̂i |qĤiq∑Q
p=1 P̂i |pĤip

.

These respondent-specific (posterior) estimates of the class probability may
then used in a beta regression analysis to profile the members of each class. To
determine the number of classes, the Consistent Akaike Information Criterion
(CAIC), and the BIC may be used.
After deciding on the number of classes and classifying respondents, each

class may be characterised using, among other things, information on the atti-
tudes and socio-demographic characteristics of respondents. Those variables
may then be regressed against respondent-specific (posterior) estimates of the
class probability Ĥq |i. Since the dependent variable is in form of probability, a
beta regression model for each segment may be used.
For the first example of Section 4.9 (Shopping for Pasta in Italy, Sec-

tion 4.9.1), the RPM is used and the questions are chosen according to a
D-optimal design. In Section 4.9.2, again the RPM is used and questions chosen
according to an efficient design. Analysis of the data suggests heterogeneity.
The participants were asked further socio-economic questions and, based on
the answers, the LCM was used. This model was more informative, since it
shed light on the heterogeneity revealed by analysing data using the RPM. The
aim was to provide long-term healthcare bundles appropriate to the various
socio-economic categories.

4.9 Examples with Focus on Design and Modelling
This section contains two examples, both of which use the RPLM with a
design that is (approximately) D-optimal. The long-term care insurance con-
tracts example also analysed the data using an LCM, which indicated that the
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heterogeneity revealed by the RPLM was due to socio-economic categories
(and there was parameter homogeneity within these categories).

4.9.1 Case Study: Shopping for Pasta in Italy

This example illustrates the use of Bayesian truth serum (BTS) and inferred
valuation to elicit truthful answers in an incentivised choice experiment, opti-
mal design (Section 3) and the RPM for analysing the data. The RPM adds an
extra Bayesian layer over the mixed logit model; a prior distribution is placed
over the parameters.
The choice experiment is by Menapace and Raffaelli (2020) and the aim

is to determine whether BTS and inferred valuation are effective methods
for dealing with hypothetical bias. Much of the detail is taken verbatim
from Menapace and Raffaelli (2020), since we would like to represent their
study accurately. We describe the study in some detail because it is well
thought out and illustrates clearly the issues that have to be taken into account.
Their study indicates that both BTS and inferred valuation can reduce, but not
completely eradicate, hypothetical bias.
The authors collected both stated and revealed preference data from a sam-

ple of grocery shoppers; the revealed preference shows the true preferences
and comparison with stated preferences enables the hypothetical bias to be
quantified. The focus in this experiment was on socially desirable preference –
for example, something being ‘organic.’ The interventions used here would be
unlikely to reduce hypothetical bias in the expression of preference for some-
thing which was socially neutral and only a matter of personal taste, with no
externalities.
The details of the empirical study are as follows. A sample of Italian shoppers

were intercepted at organic stores belonging to an organic grocery chain. The
study protocol consisted of three parts:

1. a discrete choice experiment, providing the stated preference data;
2. recording shoppers’ pasta purchases during that one shopping trip (pro-

viding the revealed preference data needed to estimate the true WTP);
and

3. recording of socio-demographic information.

The product used in the study was durum wheat organic pasta in the form
of ‘penne rigate’. By choosing organic pasta from an organic store, the vast
range of attributes relevant to the purchase decision is narrowed, the most pop-
ular pasta brands are avoided, and the group of customers in the study is more
homogeneous.
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Six attributes were considered; by ‘desirable public’ we mean positive exter-
nalities:

Attribute Nature Levels

Guaranteed fair price
paid to farmers

Desirable public Present, Not present

Employment of
disadvantaged
people

Desirable public Present, Not present

Processed with
renewable energy

Desirable public /
Undesirable private

Present, Not present

100% Italian Desirable public and
private

Present, Not present

Produced from
ancient varieties

Desirable public and
private

Present, Not present

Slow dried Desirable private Present, Not present

Price (euros / 500 g
package)

1.19, 1,69, 2.19,
2.69, 3.19, 3.69

Describing ‘renewable energy’ as undesirable privatemay seem odd; it gener-
ally has positive associations as an environmental dimension of sustainability
and is seen as a way to avoid the adverse environmental impacts of use of
fossil fuels. As Menapace and Raffaelli point out, though, Italian consumers
tend to hold renewable energy responsible for the price increase for agricul-
tural raw materials (cereals in particular) and, consequently, the price increase
for pasta. This amounts to a negative private connotation of renewable energy.
Therefore, ‘renewable energy’ is the only attribute that combines desirable and
non-desirable aspects.
Customers were presented with a choice card, each giving three alternatives:

two product profiles and a no-buy option. Each choice card was associated with
a direct or indirect question. For example, one card gave the choices found in
Figure 5.
At this point, participants were randomly allocated to one of three treatments.

In each treatment, 30 per cent of participants would obtain a couponworth thirty
euros, but the way the coupons were distributed depended on the treatment.

• Control (CT) In the control treatment, the thirty-euro coupons were allo-
cated at random, therefore the monetary incentives were not connected
with any move to encourage participants to state their true preferences; this
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Figure 5 Choice experiment screenshot Menapace and Raffaelli (2020).

aspect simply indicated whether the existence of money changed the behav-
iour. For CT, only the question about the participant’s own preference was
asked.

• Bayesian Truth Serum (BTS) Participants were asked both the direct
question about their own preference (choose between either A or B or none)
and the indirect question about what they believed the preference of others
would be when faced with the same choice: Alternative A, Alternative B,
or none (giving their estimate of the proportion of customers in each cat-
egory). Coupons were assigned to the top 30 per cent of respondents with
the highest BTS scores.

• Inferred Valuation Treatment (IV) The thirty-euro coupons were
assigned randomly. Respondents were only asked to judge the percentages
of customers who would opt for Alternative A, Alternative B, or refuse to
buy; no monetary incentives were offered to encourage the participants to
reveal their actual beliefs.

When asked to assess the choices that other customers would make, the
respondents were presented with the same options A and B. The respondents
were asked to judge the percentage of customers who would opt for these three
available options.
To refine the study of BTS, two further groups were assessed:

• The same set-up as BTS, except that only the prediction score was
used when determining the 30 per cent of participants who were given
coupons.
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• The same set-up as BTS (both questions asked), except that coupons were
assigned randomly (no incentives).

Designing the Experiment The authors used a Bayesian D-optimal
design. Pretests and a pilot study (eighty interviews) were carried out to esti-
mate prior probabilities for the experimental design and the final design for the
main study was a D-efficient block design based on the information obtained
in the pilot and pretests.

Empirical Specification Here, the utility that the respondent i experiences
when selecting the pasta alternative j at time/occasion t is modelled by an RUM:

Uijt = αipj + X′
j βi + ϵijt,

where, as the structure of an RUM dictates, the ϵijt’s are independent identically
distributed Gumbel random variables. pj is the price of option j, Xj is the vector
of attributes of option j (excluding price), and βi is the vector of parameters for
participant i.

4.9.2 Case Study: Long-Term Care Insurance Contracts

We now turn to an example which illustrates a situation where the LCM pro-
vides a distinct advantage. The DCE aims to elicit preferences for long-term
care insurance (LTCI), where for each choice two bundles at different prices
are presented. In addition to the choices made, information on a large num-
ber of socio-economic variables was presented. The participants were therefore
categorised according to their responses to the questions about LTCI and the
various categories were then described in terms of the socio-economic vari-
ables. The study aimed to elicit the needs, preferences, and WTP for LTCI
and to establish the association between LTCI preferences and socio-economic
situation.
Akaichi, Costa-Font, and Frank (2020) present a study where performing a

DCE seems the only way to overcome the within-subject difficulties of reset-
ting the subject after each question. Previous studies indicated that for other
survey experiments tackling the same problem, responses to subsequent ques-
tions were heavily influenced by the first question presented; there was a ‘first
question effect’ which was not additive and which could not be removed when
analysing the results. By presenting pairs of options in a suitably randomised
order, the DCE methodology solved this problem.
TwoDCEs on LTCIwere designed and carried out and the data analysed. The

experiments examined choices made by a large sample of 15,298 individuals
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in the United States with and without insurance. The valuation of a number of
insurance attributes was studied. These attributes were:

• the daily insurance benefit,
• insurance coverage, and
• the compulsory and voluntary nature of the insurance policy design
alongside

• costs (insurance premium) and
• health requirements.

The data was analysed in two ways: firstly, using an RPLM to dicover the pref-
erences of respondents and and their WTP for the various attributes; the RPM
is clearly appropriate due to heterogeneity of choice responses (i.e. the choices
of different respondents are governed by different β vectors).
While analysis of the data using RPL clearly shows this heterogeneity

(through covariance of the posterior), it gave no information about the causes
of heterogeneity. Therefore, the data were also analysed using the LCM demo-
graphic, socio-economic information and also measures of attitude from each
participant were gathered in a debriefing session. Analysis using the LCM
segmented the respondents into homogeneous groups based on these attributes.

Description of the Choice Experiment The DCE was part of a lar-
ger Long-Term Care Awareness and Planning Survey commissioned by the
US Department of Health and Human Services to examine consumer pref-
erences for specific features of individual LTCI policies (e.g. benefit levels,
duration of coverage, sponsorship). The sample was made up of 24,878 non-
institutionalised adults forty to seventy years of age. In total, 15,298 people
responded to the survey, yielding a 61.5 per cent response rate. The survey con-
tained a long list of question on attitudes towards long-term care, the answers
to which should give a good understanding of potential demand for LTCI.
Respondents completed two related sets of DCE questions about insurance
plans. The questions involved six attributes:

• daily benefit amount,
• benefit period,
• elimination period (deductible),
• health requirements,
• type of insurer, and
• monthly premium.

The two sets of questions were called DCE1 and DCE2; DCE1 included only
the attributes just listed and DCE2 additionally included an attribute of whether
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participation in the LTCI plan was voluntary or mandatory. Therefore, the value
of a ‘voluntary’ insurance scheme could be identified from the responses to
DCE2. Since DCE2 was more complete, the analysis was carried out using the
data from DCE2.
The opt-out alternative was chosen in all the choice sets in DCE2 by 19 per

cent of respondents; their responses were excluded from the data so they did
not distort the responses of the other respondents.

The Experiment The DCE survey consisted of a choice section and a ques-
tionnaire. In the choice section, participants were successively provided with
eight different choice sets and were repeatedly asked to choose one of three
options: there were two different LTCI policies and an opt-out option. Each
LTCI policy displayed five choice sets (DCE1) described in terms of the six
attributes. The LTCI policies shown to respondents in the last three choice sets
(DCE2) were described in terms of seven choice sets: the six attributes already
present in DCE1 and additionally the attribute ‘type of enrollment’.
The first dimension of benefit design studied, in addition to the premium,

was the so-called daily benefit. Other important dimensions were the type of
insurer (public/private) and the type of enrollment (voluntary/compulsory).

Optimal Design There were 6 attributes in DCE1, giving 26 = 64 possible
policies. For each question, the subject was presented with a pair of policies;
there were

(64
2
)
= 32×63 = 2,016 possible pairs. For DCE2 there were 27 = 128

possible combinations of attributes and hence 8,128 possible pairs. Clearly, it
is unwise to ask a subject to sit long enough to make 2,016 choices. The article
states that ‘the optimal design was drawn to minimise the standard errors of
the parameter estimates (i.e., marginal utilities for the various insurance attri-
butes)’; such a statement could correspond either to A-optimality (minimising
the sum of the variances) or to D-optimality (minimising the determinant of the
covariance) (see Section 3 for a discussion of alphabet optimality). Since it is
not the parameters themselves that are in view, but rather estimates of the WTP
coefficients, we would recommend a C-optimal design, where optimisation is
with respect to variances of the WTP coefficient estimates.
The final design consisted of 500 unique choice questions (i.e. designs which

repeated the same question were avoided), and they were split into 100 blocks
of five choice questions each initially for DCE1. For the additional questions,
300 unique choice questions were broken into 100 blocks of three choice sets
each.
Thus, each respondent was first asked to complete five choice questions, then

given information about the seventh attribute (‘type of enrollment’) and asked
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to answer three more choice questions. In each choice set, respondents were
asked to mark the alternative they preferred most (i.e. Policy A, Policy B, or
no insurance), and within each block, the choice sets were randomly ordered.
Furthermore, the A/B policies were randomly ordered between left and right
sides of the screen.
In addition to responding to the eight choice questions, respondents were

asked to answer several debriefing questions, which enabled the subjects to be
categorised into homogeneous groups. The debriefing questions were asked to
collect information on the following issues:

• Risk of needing long-term care,
• Psychological characteristics,
• Knowledge,
• Skills,
• Experience,
• Beliefs and concerns about long-term care,
• Retirement and long-term care planning,
• Information gathering and decision-making about insurance,
• Core demographic and socio-economic information, and
• Comparing insurance policies with a combination of features.

DCE Modelling The utility function for the RPL is (as usual):

Uijt = β′X ijt + ϵijt,

where β is the vector of unknown utility parameters associated with the product
attributes X ijt.
The variables corresponding to the attributes ‘Daily Benefit’, ‘Deductible

Period’, and ‘Monthly Premium Cost’ were coded as continuous variables
using their original values. For each of the rest of the attributes, zero-sum con-
straints were employed; L− 1 dummy variables were generated, where L is the
number of levels of the attribute. The Lth level of each attribute was omitted to
avoid the problem of multicollinearity. The omitted levels ‘1 year’, ‘Healthy
and not Disabled’, ‘Federal Government’, and ‘Universal Plan’ correspond-
ing to the attributes ‘Benefit Period’, ‘Health Requirements’, ‘Type of Insurer’,
and ‘Type of Enrollment’, respectively, were set as the baseline levels. Thus
the estimated parameters represent the demand response of the respondents to
the levels included with respect to the baseline level.

Summarising the Results The WTP coefficients were of importance;
results from the estimation of the RPLM showed that attitudes of respondents
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were highly heterogeneous (as shown by diagnostics of the posterior over β).
The RPLM enabled heterogeneity to be included, but (of course) could not
explain the source of the heterogeneity.

Latent Class Model The RPLM showed existence of heterogeneity, but
did not pinpoint the causes of heterogeneity, which are important for under-
standing attitudes towards LTCI. The LCM was used with the aim of assigning
individuals to homogeneous classes, which may be described by the socio-
demographic factors and the information obtained in the debriefing.
The prior H over classes used in this study was a multinomial logit:

Hiq =
exp{z′iθq}∑Q
p=1 exp{z′iθp}

q = 1, . . .Q, θQ = 0,

where zi denotes a set of observable characteristics (e.g. socio-demographics
such as age, income, and sex, information obtained in the debriefing) and q ∈
{1, . . . ,Q} denotes the class label.

5 Adaptive Designs
In this chapter we explore adaptive designs in which the stimuli are not pre-
determined. Instead, subsequent questions depend on previous answers. We
discuss how such ‘chaining’ can give substantial improvement to the efficiency
of data collection, but also some of the challenges it creates, notably with
incentivising choices (while maximising transparency and avoiding decep-
tion). Focusing on individual decision-making under risk, we discuss both
non-parametric and parametric methods.

5.1 Introduction
The natural way to find out is to ask. Often, a single question is not sufficient and
eliciting information is a dynamic process; answers to previous questions deter-
mine subsequent questions. This is why, when talking to a four-year-old, it is
sometimes best not to give any answer at all, because whatever we say is bound
to provoke another ‘why?’. Although some four-year-olds are exceptions, we
do not usually ask questions we know will not be answered. Likewise, there is
little point in asking questions to which we already know the answer (unless
we are professors examining our students, or we are politicians radicalising the
voters).
A good design could follow the same natural rules of communication. One

research technique that clearly does this is an interview, where we only have a
loose scenario and adjust our questions on the fly. This is very helpful, espe-
cially in exploratory research, but interviews clearly have their downsides.
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Interviewing can be costly to implement. Also, the researcher may have an
undue effect on the outcome; results may depend heavily on the skills as well as
the preconceptions of the interviewer. This is not good, since we want research
results which are replicable (and which remain the same for a variety of valid
methods). Also, with an ‘on the fly’ approach, the researcher may be unable
to come up with the optimal question to be posed next, on the spot. Therefore,
especially when carrying out an experiment (rather than an exploratory pilot
study), it is usually more practical to let the algorithms do their magic, choos-
ing the next question from a predetermined list. In this chapter we overview
some examples of how this can be done.
A note on the terminology may be in order here, since there are a few

terms that are nearly synonymous which are used in this respect. Questions
that depend on previous answers are sometimes referred to as being chained
and, in other sources, linked. The design may be called dynamic or adaptive;
these terms are used interchangeably.

5.1.1 Connection to Choice Experiments and Optimal Design

This section is a natural continuation of Section 4 whereby, instead of decid-
ing on all the questions at the same time, we choose the questions sequentially;
each question is chosen to give as much additional information as possible. The
discussion of Lindley’s SIG criterion, which we described in Section 3, is par-
ticularly pertinent here; with this criterion, the information from the experiment
as a whole can be seen as the sum of the information gained in each succes-
sive part. When we construct a sequential design, the subsequent questions are
likely to be different from each other, so that the assumption of independ-
ent answers for within-subject questioning is reasonable. Furthermore, this
section represents a progression from Section 4; the RUM and its variants
used in the examples in Section 4 are based on linear utilities, while for the
adaptive designs of Chapman et al. (2018) and Toubia et al. (2013), probability
weighting and utilities from prospect theory are incorporated.

5.1.2 Benefits

The key potential advantage of dynamic designs is that, compared with stand-
ard static designs, they allow us as researchers collect more information and/or
take less of the subject’s time. This is becausewe do not waste time asking ques-
tions that are unlikely to modify substantially the estimates of the parameters
of the utility function. The additional advantage of avoiding such uninforma-
tive questions is that many of them would seem uninteresting also from the
subject’s point of view. That is particularly true for obvious questions where,
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from the viewpoint of a given subject, one option may be dramatically better
than the other. Again, if it can be inferred from previous answers that a given
question will be obvious for a given subject, a dynamic design may allow us to
ask some other question instead.
Another possible advantage is that dynamic procedures allow the subjects

to face a short series of easier tasks (e.g. answering binary questions) rather
than a large, difficult task (e.g. matching). Since we avoid obvious questions
and cognitively very demanding questions, there is a better chance that subjects
will remain engaged and provide meaningful responses.
By formulating questions taking previous responses into account, response

errors or violations of key assumptions can be accommodated within the
experiment.
Finally, a typical feature of dynamic designs is that at least some param-

eters of the utility function are estimated in real time. This may be convenient,
particularly when we want to provide some feedback to the subjects (e.g. for
didactic purposes) and if wewant to classify subjects immediately; for example,
we may want endogenous matching in another behavioural task.

5.2 Problems and Challenges
Naturally, on-the-fly estimation also presents challenges. Programming the
experiment may be trickier than with static designs and we may need com-
putational power to ensure that subjects do not have to wait for the program to
decide on the next question. Furthermore, adaptive designs may require add-
itional or stronger assumptions and so be less robust to changes in functional
forms. A question that is dynamically optimal based on one theory may be way
off based on another theory. In this sense, a longer, static design may yield
data that is more amenable to the whims of Reviewer 2 who requires (ex post,
obviously) an analysis based on a completely different set of assumptions. Then
again, an adaptive design could thus also be thought of as a commitment device,
providing us with a good argument not to yield to the whims of Reviewer 2. In
this sense, it plays a similar role to that of preregistration of design and analysis
(but, naturally, an adaptive design can also be preregistered).
Similarly, a dynamic design many not be very robust in the face of mis-

takes. Propagation of errors, whereby misrepresentation of the preferences of
subjects in early questions has serious bearing for the estimates obtained in
subsequent questions, is a real possibility.
Also, the techniques available, as we shall see, are of a hierarchical Bayesian

flavour which requires functional assumptions and distributional assumptions,
both over the likelihood and prior, for all the hierarchical levels required.
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Finally, incentive compatibility and the rule of avoiding deception usually
require more scrutiny with dynamic designs than with standard static designs.
This is because when answers determine future questions, it may not be optimal
to answer truthfully (and we may be guilty of deception if we tell the subjects
that it is optimal).

5.3 A Simple Example: Bisection and Iterated Multiple Price List
Suppose that almost for everyone, a widget is worth between e0 and e100.
The simplest way to pin it down for a specific subject is of course to ask dir-
ectly, ‘How much is the widget worth to you?’ (matching). This, though, is
often a cognitively demanding question. Asking, say, nine questions ‘Is the
widget worth more than e10 / e20 / …/ e90 to you?’ (nine simple binary
choice questions) may be annoying and only gives us a e10 interval, not a
point estimate. Asking ‘Is the widget worth more than e50 to you?’ and then
‘Is it worth more thane25 /e75?’ etc., depending on previous answers (bisec-
tion), makes for greater precision with just four questions (of which only the
first one or two will tend to be obvious). The iterative multiple price list tech-
nique is analogous, except that the interval which should, in view of previous
answers, cover the value of interest gets partitioned into more than two at each
stage. The basic method is also known by other names, including titration and
the staircase method.
In the simple application of the iterative multiple price list technique, incen-

tive compatibility and deception may not be a large problem. If an iterated
procedure yieldse1 precision, it means that the subject has explicitly or impli-
citly answered questions ‘Is the widget worth more than ex’ for x = 1, . . . ,99,
so we can pick one of them at random and implement it. It is in subject’s best
interest to answer all questions truthfully.
Still, such a BDM approach has been criticised and justly so; Horowitz

(2006) points out that when the declared maximum WTP is not based on sim-
ple expected utility, it is not necessarily equal to the actual WTP. He gives
an example of disappointment aversion; the BDM approach is seen as a game
with a probability distribution F over the price c. Let ν be the declared max-
imal WTP and let c̃(ν) denote the certainty equivalent price. This is the price
where, if the good were offered with certainty at that price, the utility of having
the good, together with a remaining income of Y − c̃(ν) (where Y denotes the
individual’s total income), would be equivalent to the game. More formally, if
u(1,x) and u(0,x) denote the respective utilities of having and not having the
good, with income x, then c̃(ν) is the value that satisfies:
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u(1,Y − c̃(ν)) =
∫ ν

0
u(1,Y − c)dF(c) + u(0,Y)(1 − F(ν)).

The individual will be disappointed if c̃(ν) < c < ν or if c > ν (and the
individual does not get the good). If α and β are the respective weights attached
to these disappointments, the expected utility for a declared WTP upper bound
ν is then:

U(ν) =
∫ ν

0
u(1,Y − c)dF(c) + u(0,Y)(1 − F(ν))

− α
∫ ν

c̃(ν)
(u(1,Y − c̃(ν)) − u(1,Y − c))dF(c)

− β(u(1,Y − c̃(ν)) − u(0,Y))(1 − F(ν)).

When α , 0 or β , 0, the optimal value of ν is not equal to the WTP upper
bound in a situation where the participant was presented with the good at a
fixed price on a take-it-or-leave-it basis.

5.4 Non-parametric Methods in the Context of Prospect Theory
More sophisticated dynamic designs have been used predominantly in the
domain of decision-making under risk. Particularly when we allow for non-
linear weighing of probabilities, comprehensive assessment of preference is a
challenge. Suppose, for example, that someone is inclined to appreciate a gam-
ble highly, even if it offers a low expected pay-off, as long as it gives a chance
(albeit a small one) for a very high pay-off. It would seem to mean that this
high pay-off is perceived as extremely attractive. In the framework of cumula-
tive prospect theory (CPT) (Tversky and Kahneman 1992), it could also mean
that it is given undue decision weight, much larger than its meager probability.
For simplicity, we restrict our attention to gambles with two outcomes at most.
Firstly, consider positive outcomes only. The CPT postulates the existence of
a continuous, increasing probability weighting function (PWF) for gains, w+

satisfying w+(0) = 0,w+(1) = 1 (see Figure 6).
The PWF determines decision weights of outcomes based not only on their

probability, but also their (de)cumulative probability: every outcome receives
a decision weight which, in general, not only deviates from its probability, but
also depends on whether the other outcomes are better or worse. Specifically, in
the case of a two-outcome non-negative gamble in which the highest outcome
is obtained with probability p, its decision weight is w+( p), whereas the deci-
sion weight of the lowest outcome is 1 −w+( p). This means that, for example,
a concave w+ function, yielding w+( p) > p for all ps, would give an undue
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Figure 6 CPT probability weighting function.

weight to the highest outcome, pushing the decision maker toward risk seek-
ing; note that this would not necessarilymake the subject risk-seeking, because
the shape of the utility function may work in the opposite direction.
One way to infer something about the shape of the utility function is to first

elicit a sequence of outcomes equally spaced in terms of utility (aka standard
sequence, Wakker and Deneffe 1996) – that is, such x0,x1 . . . ,xk that U(xi) −
U(xi−1) is identical for all i = 1, . . . ,k. For a linear utility function, we would
then have x1 − x0 = x2 − x1, etc. Under expected utility theory, risk aversion
would result from a concave utility function, meaning that xi − xi−1 > xj − xj−1
when i > j; each extra payment required to yield the same utility boost is larger
than the previous one. Again, under CPT, the shape of the utility function alone
does not determine risk posture.
To elicit the standard sequence, we make use of two reference outcomes

R > r > 0. Fixing the first element of the sequence, x0(> R) and probability
p, we seek to find s > x0 such that the gamble giving s with probability p and
r otherwise, denoted Right = (s,p; r,1 − p), is as good as the reference gamble
Left = (x0,p;R,1 − p). We can do it by asking binary questions and adjust-
ing the higher outcome s in Right upwards or downwards accordingly, as we
did before, seeking WTP for widgets. For example, with r = e10, R = e20,
x0 = e30 and p = 0.25, we can first ask the subject to choose between lotteries
Left = (30,0.25; 20,0.75) and Right = (60,0.25; 10,0.75). Note that in Right,
compared to Left, the higher outcome has been improved bye30, but the lower
outcome, which is three timesmore likely to obtain, has been worsened bye10.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/9

78
10

09
26

30
30

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/9781009263030


70 Behavioural and Experimental Economics

In terms of expected value, these changes balance each other out. Thus a
risk-neutral subject will be indifferent. A subject who seriously overweights
the relatively low probability of 0.25 may prefer Right. In other words, for such
a subject Right is too good, because we are seeking to establish indifference.
We may thus ask the subject to choose between the unchanged Left and and
a modified, less attractive version of Right, such as Right′ = (45, .25; 10, .75).
This time Leftmay be preferred which means the higher outcome of Rightmust
be improved a little, perhaps to 52.5 or 52 if we do not want to annoy the par-
ticipant with fractions. Note that we used our good old bisection here – if the
participant obeys first-order stochastic dominance, Left = (30,0.25; 20,0.75)
will be preferred over (30,0.25; 10, .75). Thus 30 is the logical lower bound for
the value of s, the better outcome of Right. Since 60 (which we tried first) was
apparently too high, we then tried 45, the midpoint between 30 and 60, which
turned out to be too low. Therefore, we tried 52.5 (the midpoint between 45
and 60) and so on. In a few steps we narrow it down as much as the (typically
fuzzy) preference of the participant will allow.
Once indifference is established for some level of s, whichwewill henceforth

call x1, the weighted utilities of the two gambles must be identical:

w+( p)u(x0) + (1 − w+( p))u(R) = w+( p)u(x1) + (1 − w+( p))u(r).

Rearranging gives:

u(x1) − u(x0) =
(u(R) − u(r))(1 − w+( p))

w+( p) .

This is the point where the less trivial adaptive nature of the design kicks
in. Once we know x1, we plug it into the Left gamble, instead of x0. In our
example, suppose we found indifference for s = x1 = 55. Leftwill then become
(55,0.25; 20,0.75) and again we will look for such Right = (t, .25; 10, .75) that
the two are equally good. Because Left is improved, compared to the previ-
ous round, so must be Right, so we must search for the right t among numbers
greater than 55. Once we find it (and, not surprisingly, henceforth start referring
to this level of t as x2), we will get another identity:

w+( p)u(x1) + (1 − w+( p))u(R) = w+( p)u(x2) + (1 − w+( p))u(r).

Naturally, this yields:

u(x2) − u(x1) =
(u(R) − u(r))(1 − w+( p))

w+( p) = u(x1) − u(x0),

as required, so that a standard sequence x0,x1,x2 has been found. The utility
gains corresponding to moving from x0 to x1 and from x1 to x2 are identical.
Because the intercept and the unit of the utility function are arbitrary, we can
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without loss of generality set x0 = 0 and x1 = 1which obviously implies x2 = 2.
In the same vein, the researcher may find as many additional xi points equally
spaced in terms of utility as she pleases. The initial choice of r, R, and p deter-
mines how large the intervals between the x’s will be, but they will obviously
also depend on the the preference of the participant at hand: for highly concave
utility functions and low weights associated with .25, the sequence of x’s will
rise quickly.
Once such a standard sequence is found, it is also possible to elicit the PWF

(Abdellaoui 2000; Bleichrodt and Pinto 2000). The simplest way to proceed is
as follows: if we can find the probability q for which obtaining x1 for sure is
as good as obtaining x2 with probability q and x0 otherwise, we conclude that
w+(q) = 0.5, because it is then true that both yield the weighted utility of 1.
If such q is equal to 0.5, we have a case of correct probability weighting; if a
higher q is required, it means that undue weight is given to the lower outcome,
which would be consistent with a concave PWF corresponding to pessimism.
Of course, we cannot be sure that PWF is globally concave, so in any case we
would often like to obtain the inverse of the PWF also for values other than 0.5.
There are two simple ways to do it. One is to iterate the operation just described.
For example, once the value of q we have just characterised (as q : w+(q) = .5)
is found, we can find q′ such that (x1,q; x0,1−q) and (x2,q′; x0,1−q′) are equally
good, from which it will follow that w+(q′) = .25. The inverse of the PWF at
0.75, and then at 0.125, 0.375, 0.625, and 0.875 can be found in the same
way, giving a very good idea of the shape of the PWF, whether it is convex,
concave, or inverse-S-shaped or takes yet another shape. Alternatively, we can
elicit a longer standard sequence, say of length k > 2. Then, finding pi such
that (xk,pi; x0,1 − pi) is as good as xi yields w+( pi) for i = 1, ...,k − 1. The
beauty of such an elicitation procedure is that we need not make any parametric
assumptions about the PWF or the utility function (although we may choose
a functional form ex post and estimate the parameters). As long as they are
both strictly increasing, we will always find appropriate values to establish the
equalities we need.
As indicated before, the propagation of error is a serious problem here. If, for

some reason, x2 is overestimated such that u(x2) − u(x1) > u(x1) − u(x0), then
the same is likely to be the case for all the subsequent intervals in the standard
sequence. Moreover, the inverse of the PWF cannot then be elicited correctly.
Another undesirable feature of the procedure is that halfway through the

experiment, we are switching from finding an outcome that would make two
gambles equally good to finding a probability that would make two gambles
equally good. This scale compatibility problem (Fox et al. 1998)makes the task
harder for the subjects and has been shown to distort choices. The variation of
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the method used by Bleichrodt and Pinto (2000) evades this problem, although
it leads to some other problematic features, as discussed by the authors.
Yet another issue is that eliciting the (inverse of the) PWFs at points that are

very close to one another would require either a very long standard sequence or
several iterations of bisection. To be fair, for the greatest part of the 0–1 interval
on which the PWF is defined, we are usually not very curious about its shape.
If, say, by our estimate w+(.6) = .5 and w+(.86) = .75, then, empirically, it is
a very good guess that w+(.73) = w+((.6 + .86)/2) = (w+(.6) + w+(.86))/2 =
(.75+ .5)/2 = .625, there is thus little need to actually elicit it. That is because
in this range, the PWF tends to be nearly linear. This is not so close to the
ends of the interval – that is, for unlikely outcomes (that are also extreme, i.e.
either the worst or the best, but, naturally, in the most commonly considered
case of two-outcome gambles, all outcomes are extreme in this sense). Existing
literature provides a strong hint that the PWF may be highly non-linear near 0
and 1. In particular, the leading explanation of high demand for lotteries is that
the very low probability of winning the jackpot is often highly overweighted,
generally meaning that the slope of the PWF at 0 is much higher than just a
bit further away from 0, a case of strong local concavity. By the same token,
almost-certain gains appear much worse than certain gains, implying that the
PWF is much steeper at 1 than it is just a bit further away from 1, a case of
strong local convexity.
For this reason, we would like to have a very detailed look at the shape of the

PWF very close to the ends of the interval on which it is defined. On top of the
difficulties mentioned before, another one arises here, related to the strength of
incentives. Suppose the researcher elicits five points equally spaced in terms of
utility. Denoting the inverse PWF at a by pa, such a sequence allows eliciting
p1/4 in the first step, p1/16 in the second step and overall p4−i in ith step. In this
procedure, the expected value of the gamble that the subject is asked to con-
sider (to reveal the point of indifference) is four times lower in each step than
in the previous step. As a result, either we start with extremely high expected
value (EV), or by the time we get to considering really low probabilities that
we are interested in, the EV is very low. This makes incentivisation, which is
problematic for this procedure anyway (as we will discuss later), even more
problematic. Unless we have a huge budget, we cannot truthfully (and cred-
ibly) tell subjects that their initial choices (those with very high EV) may be
implemented for real. If, by contrast, we start with reasonable EVs and end
up with tiny ones, it is hard to see why subjects would care much about these
later questions (involving tiny chances for gettingmoderate amounts of money)
even if one of them may be implemented for real.
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These considerations motivated the development of the procedure for direct
elicitation of a sequence of cumulative probabilities yielding constant deci-
sion weights proposed by Krawczyk. This time, the possibility of negative
pay-offs is also necessary, which, under CPT are weighted using a separate
PWF, w−. We will also need gambles with three outcomes, one of them being
positive, one negative, and one zero. Under CPT, positive and negative out-
comes are weighted separately, so obtaining some GAIN > 0 with probability
p, suffering a LOSS < 0 with probability r and obtaining nothing otherwise
yields w+( p)u(GAIN) + w−(r)u(LOSS). Because we are interested in very low
probabilities and, to make them meaningful, very high pay-offs, we may, for
example, start withGAIN = 1,000,000,LOSS = 10,p = p0 = 0, r = .2. We also
fix s = .3, the probability of a loss in an alternative gamble. Now, we seek such
q, the probability of GAIN in this alternative gamble, that indifference obtains
between the two:

w+( p0)u(GAIN) + w−(r)u(LOSS) = w+(q)u(GAIN) + w−(s)u(LOSS).

Because probability of the loss in the right-hand-side gamble is higher s = .3 >
.2 = r, to find indifference, so must be the probability of gain (q > 0, which is
fortunate, because probabilities are rarely below 0). The q for which indiffer-
ence is established will be denoted by p1. The reader will not be surprised to
hear that this p1 is subsequently plugged in instead of p0 in the left-hand-side
gamble and the whole operation is iterated. In Krawczyk, it was performed
seven times, yielding:

u(GAIN )[w+( pi) − w+( pi−1)] = u(LOSS)[w−(r) − w−(s)],

for i = 1, . . . ,8. Note that the right-hand side, as well as u(GAIN), is kept
unchanged, so that [w+( pi) − w+( pi−1)] must also be the same for all the i’s,
an equivalent of Wakker and Deneffe’s standard sequence of outcomes in the
probability space:

w+( p1) − w+( p0) = w+( p2) − w+( p1) = · · · = w+( p8) − w+( p7).

As we have p0 = 0, this is equivalent to w+( pi)/w+( p1) = i for i = 2, . . . ,8.
Now, we do not know the specific value of any w+( pi). That would require
eventually reaching pj = 1 for some large j (in which case we would know that
w+( pj) = 1 and so would know that w+( pi) = i/j for all i = 1, . . . j). This is
not feasible, however, because we cannot consider probabilities of the positive
outcome higher than 1 − r here.
Even if we do not know any of thew+( pi)s (except, of course, p0 = 0), we can

still tell its shape (close to 0). For example p1 − p0 < p2 − p1 < · · · < p8 − p7
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would be equivalent to local concavity (changes in probability of gain being
less and less important as we move away from 0).
While we focused on the elicitation of the utility function and PWF, similar

logic could be applied to other domains in which we are interested in identi-
fying the shape of a function defined on a continuous set, such as in temporal
discounting.

5.5 Sequential Designs
In this section, we describe techniques where, given the answers to questions
1, . . . ,k−1, question k is chosen as the questionwhichwill give themost inform-
ative answer, based on information already given. While adaptive sequential
designs in principle enable more efficient questioning in terms of additional
information gained from each question, there is a price to be paid in terms
of assumptions. Here, we deal with Bayesian approaches, although it should
also be pointed out that the approach of Perny, Viappiani, and Boukhatem
(2016) is a good non-Bayesian approach. This is a minimax approach for
decision-making under risk with the rank-dependent utility model, which uses
linear programming. We focus on the Bayesian approaches (Chapman et al.
2018 and Toubia et al. 2013) while pointing out that there is also exten-
sive work (Cavagnaro et al. 2010) that adopts the Bayesian paradigm. The
set-up for utility and decision both for Chapman and colleagues (2018)
and Toubia and colleagues (2013) is based on the prospect theory of Tversky
and Kahneman; it is necessary to have strong limits on the number of param-
eters. We’ll also see heavy parametric assumptions on likelihood and prior. As
we have seen, the expected utilities are non-linear, adding to the computational
complexity. The questions are framed such that there is a binary choice (and
the possibility of refusing both options is not available). Logistic probability
models are used for choosing between the alternatives.
Three variants of this are

• DOSE (Dynamically Optimised Sequential Experimentation) by Chapman
and colleagues (2018),

• The approach by Toubia and colleagues (2013),
• ADO (Adaptive Design Optimisation) by Cavagnaro and colleagues
(2013).

The ‘abstract’ is straightforward; assuming we have received (and processed)
answers for m questions, question m + 1 is chosen to maximise the expected
additional information according to a sensible criterion. All three use SIG as
presented by Lindley (1956) (and discussed in Section 3.3), where the design
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is optimal (at least approximately) with SIG utility. While theoretically clear,
there are computational difficulties and approximations are required. Chapman
and colleagues and Toubia and colleagues take entirely different approaches
dealing with this; Chapman and colleagues take a finite discrete set of param-
eter values and then proceed according to a full Bayesian framework. Their
method therefore has all the theoretical guarantees of the Bayesian approach.
Toubia, on the other hand, use a truncated normal prior and normal approxima-
tions along the way. They make normal approximations along the way, which
are necessary to make the problem computationally feasible. These approxima-
tions correspond to the ‘mean field’ approximation of variational Bayes, which
provides a lower bound for the log partition function, but there are no theoret-
ical guarantees. The ADO approach, as with DOSE, takes a finite discrete set
of parameter values.
Having restricted themselves to a finite discrete parameter space, Chapman

and colleagues use Lindley’s approach to determine the next question. For
Toubia’s approach, normal approximations with the same mean and variance
structure are used to compute the SIG.
The approach of Toubia and colleagues adds an extra layer for the prior and

this has room for development; there is a first-stage prior over the parameter
vectors for the subjects and there is a second-stage prior over the parameters of
the first-stage prior. The parameter vectors for each subject are considered to be
conditionally independent, conditioned on the first-stage prior parameters (so
that the set-up has similarities to the move frommultinomial logit to the RPM).
In a situation where subjects can be clustered and the first-stage prior param-

eters are similar within a cluster (and markedly different between clusters), it is
straightforward to extend the approach of Toubia and colleagues by setting up a
suitable prior for assigning subjects to clusters. The first stage prior parameters
are drawn from the second stage prior, independently for each cluster.
We start with a utility function for the subject, with some unknown param-

eters. Based on the utility, we also have an expected utility (computed by
averaging the utility over the possible outcomes that may result from a decision,
according to their probabilities). The expected utility can include additional
unknown parameters – for example, the probability weights for the possible
outcomes of a decision could depend on a latent class variable. We place a prior
over these parameters and/or models and, based on that prior, select the ques-
tion that will give the most informative answer. After the answer is obtained,
the prior is updated to the posterior, the posterior is then the ‘new’ prior, which
is used to determine the next question, and so on. The sequence continues in
this way until either the participant has been asked the preset number of ques-
tions, or the precision of the estimates (based on the current posterior) for that
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participant is greater than some pre-specified criterion (or none of the possible
questions that can be posed are sufficiently informative according to, e.g., the
SIG criterion).
There is a consistency parameter which accommodates the fact that subjects

may give wrong answers that do not correspond to their expected utility. For
an RUM, this is the parameter which governs the error component. By includ-
ing all these parameters and placing an appropriate prior over them, we can
accommodate the fact that the participant may give some wrong answers; by
suitable choice of prior, if most of the answers are correct, the procedure will
still update to a posterior over the parameter space that gives a good assessment
of the correct parameters. In this sense, there are similarities, at least in spirit,
with the approach of Toubia, Hauser, and Garcia (2007) to conjoint analysis
where the possibility of errors is accounted for and hence a useful posterior is
obtained even if some of the answers are incorrect.

5.5.1 Errors and Choice Consistency

We assume that an individual has a utility function u(x; ζ), taking the sum of
money x and vector of individual characteristics ζ as arguments.
We also let α denote the additional parameters required to define the expected

utility and w = (ζ,α). The expected utility is then:

V(a|w) = Eαa [u(X|ζ)] =
∑
i
qiu(xi |ζ),

where the sum is over the possible outcomes when decision a is taken, (xi)
denotes the possible outcomes and the (qi)’s are the prospect theory probability
weights; qi the probability weight assigned to outcome i. Depending on the
PWF (for gains and losses) explored before, the qis are not necessarily equal to
the probability pi of outcome i; the parameters α parametrise the PWF.

Example 5.1 Consider a simple example where there are two options: the
first (which we denote a1) is to do nothing and receive e15, while the second
(denoted by a2) is to pay e10 to enter a lottery, where the payout is either e0
or e50, each with probability 1

2 . Suppose that E
α
a denotes a simple expectation

(no distortion; qi = pi), then:

V(a1 |ζ) = u(15|ζ) V(a2 |ζ) =
1
2
u(−10|ζ) + 1

2
u(40|ζ)

(bearing in mind that the second option involved buying a lottery ticket which
cost e10).
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Suppose a question has q possible responses, say a1, . . . ,aq (rather than two, a1
and a2, as in the example). Let A denote the choice set: A = {a1, . . . ,aq}. One
possibility for the probability distribution over A is:

P(a|w) = eνV(a |ζ )∑
b∈A eνV(b |ζ )

a ∈ A. (5.1)

This is basically a multinomial logit. Both Chapman and colleagues and Toubia
and colleagues restrict to binary choices and use this probability, with an
appropriate definition of V. The important point here is the parameter ν, the
consistency parameter. The larger the value of ν, the greater the probability
that the subject will choose the decision that gives the maximum value for V.
Toubia and colleagues restrict the discussion to the situation where:

• For each question, the subject has to decide between two options and
• Each option has two possible outcomes.

We follow this because it makes the notation easier, but the general idea can be
extended quite easily.

5.5.2 Probability Weighting and Time Discounting

Both Chapman and colleagues (2018) and Toubia and colleagues (2013) inves-
tigate a hypothesis central in behavioural economics, that people treat losses
and gains differently, where utility functions are motivated by prospect theory;
for the risk preference study, the two-parameter utility function,

u(x; ρ,λ) = xρ1[0,+∞)(x) − λ(−x)ρ1(−∞,0)(x), (5.2)

is used, where λ ∈ R+ describes loss aversion, while the parameter ρ ∈ R+
describes risk aversion and x ∈ R is the amount of money relative to the
reference point. If λ > 1, then the participant takes negative outcomesmore ser-
iously, while for λ < 1, the participant takes negative outcomes (with respect
to the reference point) less seriously. If the PWF is the identity function, then
a value of ρ < 1 shows risk aversion, while ρ = 1 means no risk aversion.
The two-parameter utility function (5.2) has the minimum number of param-

eters necessary to model both these points; risk aversion/tolerance modelled
by ρ, relative importance of gains versus losses modelled by λ. For param-
eter estimation, the fewer parameters that reasonably describe the picture, the
better.
Toubia and colleagues (2013) include the distortion of probabilitymodelled

using the PWF w±( p) which we will simply denote w( p) (since we take w+ =
w− = w). In Toubia, this is:
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w( p) = exp {− (− log p)α} .

The distortion is modelled by a single parameter α. If α = 1, then w( p) = p.
For all α > 0, the function w( p) satisfies w(0) = 0, w(1) = 1 as it should. For
p < e−1, we have w( p) > p for α ∈ (0,1) and w( p) < p for α > 1, so that, for
α ∈ (0,1), the distortion magnifies small probabilities. Again, we denote option
a by the quadruple (x,p; y,1− p), where the notation means that the outcome is
x with probability p and y with probability 1−p. The function V is then defined
as:

V(x,p; y,1−p) =
{

w( p)u(x) + (1 − w( p))u( y) x > y > 0 or x < y < 0,
w( p)u(x) + w(1 − p)u( y) x < 0 < y

where the values are ordered such that |x| > |y|. In Chapman and colleagues
the PWF is not included; w( p) = p.

Time Preference Utility For time preference, Chapman and colleagues add
a parameter to Equation (5.2) to accommodate time discounting. If an amount
x is to be paid at payment time t, the utility function may be written as:

u(t,x|ρ,λ, r) = e−rt(xρ1[0,+∞)(x) − λ(−x)ρ1(−∞,0)(x)). (5.3)

The parameter r enables comparison between pay-off now (time 0) and a
given time later (time t). Chapman and colleagues only consider one fixed
time t in the future. Toubia and colleagues consider a time-preference utility
function of:

u(t,x|r, β) = x
(
1{t=0} + βe−rt1(0,+∞)(t)

)
= V(t,x|r, β). (5.4)

The β parameter of Toubia and colleagues models present bias, a sudden dif-
ference between obtaining payment now and any time in the future. This can
easily be added to the risk-time preference utility of (5.3) at the expense of an
additional parameter:{

u(t,x|ρ,λ, β, r) = δ(t)
(
xρ1[0,+∞)(x) − λ(−x)ρ1(−∞,0)(x)

)
δ(t) = 1{t=0} + βe−rt1(0,+∞)(t)

. (5.5)

These utility functions encapsulate risk preference/aversion and loss prefer-
ence/aversion, and the modification from (5.2) to (5.3) and (5.5) also encap-
sulates time preferences. The problem here is that they are not conducive to
likelihoods which update a prior to a posterior within a conjugate family that
is computationally convenient.
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5.5.3 Implementation

The solution adopted by Chapman and colleagues (2018) is to map out all
possible sets of binary choices in advance; the tree is then used to route the
respondents through the survey. Mapping such a tree with a prior over a
large set of possible values is infeasible, hence a subset is chosen to make
this computationally feasible. After the responses are obtained, they may
then be processed using the full prior. The main outstanding question here
(of course) is where to get these parameter values from. These come from
previous studies of prospect theory utility functions and their parameter esti-
mates. Chapman and colleagues applied DOSE for a large survey of the US
population which studied risk preferences and time preferences; the choice of
parameters followed previous participant estimates studying similar questions,
taken from Sokol-Hessner and colleagues (2009) and Frydman and colleagues
(2011).

Simulation Studies Chapman and colleagues tested the method using sim-
ulation, using data from previous laboratory experiments. In each experiment,
participants were given the same set of 140 binary choices. The order of the
questions in the experiments was random, while in the simulation, the ques-
tions were ordered optimally for each participant using DOSE. After DOSE
selected a question, it was provided with the answer the participant gave in
the experiment. The procedure then updated the probability distribution over
parameters, selected the next question, and so on. At each stage, the inaccur-
acy of the DOSE estimate was computed in terms of the absolute distance of
the maximum a posteriori probability estimate (MAP) - that is, the value that
maximises the posterior - from the true parameter value as a percentage of the
true value. The true parameter values are (of course) not available, hence those
obtained using choices from all 140 questions are used; the aim is to seewhether
DOSE answers using fewer questions are close to these.
Simulation studies showed that a 20-question DOSE sequence provided

a similar amount of information as approximately 50 randomly ordered
questions.

Survey of Risk and Time Preference The survey of Chapman and
colleagues included two DOSE survey modules, the first focusing on risk pref-
erences and the second on time preferences. The first consisted of ten binary
choices between a fixed certain amount and a lottery. The second consisted of
a further ten binary choices between differing amounts at two different dates.
The questions were designed to provide information about all the parameters of
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interest. The risk module was executed first and information was carried over
to the time module. For risk, the first four questions were restricted to lotter-
ies over gains so that precise information about ρ could be established before
moving onto λ.
The survey was implemented using YouGov’s online platform, where choos-

ing questions in real time was not possible. Instead, all possible sets of binary
choices were mapped out in advance on a binary tree. This binary tree was then
used to route respondents through the survey. The data was analysed using a
100-point discretised prior, but mapping such a tree with the 100-point discret-
ised parameter space was not possible, because of computational constraints
and also the limitations of YouGov’s interface; such a tree mapped over 20
questions would require more than 500,000 routes through the survey.
Therefore, a smaller number of possible parameter values was used to cre-

ate the binary tree and decide on the sequence of questions; the data was then
reanalysed ex post with the 100-point discretised parameter space. The risk-
preference values for the utility function were used for the time-preference
study; respondents were each assigned to one of ten prior distributions over
ρ, the risk preference/aversion parameter, based on their estimated value of ρ
from the risk-loss experiment.
Chapman and colleagues (2018) used an incentivised representative survey

of the US population with 2,000 subjects to estimate risk and time preferences;
they were particularly interested in loss aversion, modelled by the λ param-
eter in the risk preference and time preference utility functions (5.2) and (5.3).
It was comprehensive, using a wide range of elicitations to measure different
preferences and was repeated (i.e. the same participants are asked the same
questions) six months apart. The behavioural measures were all incentivised
by selecting two of the survey modules at random for payment at the end of the
survey.
All outcomes were expressed in YouGov points, an internal YouGov cur-

rency used to pay panel members, which can be converted to US dollars using
the approximate rate of $0.001 per point. To enhance the credibility of these
incentives, the sample was restricted to those who had already been paid (in
cash or prizes) for their participation in surveys. The average payment to
respondents (including the show-up fee) was $9 (9,000 points), which was
approximately three times the average for YouGov surveys.

5.5.4 Remarks

1. Chapman and colleagues and Toubia and colleagues both deal with
the same problem, Chapman approximating by taking a finite discrete
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parameter space, Toubia retaining the continuous state space, but essentially
using Gaussian approximations.

The class of problems has strong similarities to ‘classification and regres-
sion trees’, where the parameter is the ‘class’ variable (in the discretise
setting of Chapman et al.) or the ‘regressor’ (in the continuous setting of
Toubia et al.). This class of techniques has wide applications; the problem
we have here is to balance the use of simplifying approximations to make
the problem computationally feasible with required accuracy.

2. As we have seen, the DOSE procedure requires a discretisation and
only a few possible parameter choices can be considered. The approach
by Toubia and colleagues allows for continuous distributions, but uses
Gaussian approximations at several stages to make it computationally
feasible.

3. These approximations (Chapman et al. discretise the parameter space, while
Toubia et al. take continuous parameter space, but use normal approxima-
tions) seem necessary to produce the next question in real time. In both,
there is a ‘rough’ procedure that can be performed in real time for choosing
questions and then a more rigorous procedure for analysing the data once
all the answers have been obtained.

4. An important issue is the choice of priors; Chapman and colleagues chose
their discretised parameter space and the prior distribution over it from
earlier studies, Sokol-Hessner and colleagues (2009) and Frydman and
colleagues (2011).

5. Chapman and colleagues carried out simulations which showed that a
twenty-question DOSE sequence, using the ‘rough’ discretisation, provided
a similar amount of information as approximately fifty randomly ordered
questions. The extent to which a finer discretisation might lead to a further
reduction in the number of questions required to provide similar informa-
tion to fifty randomly ordered questions was not discussed. This would (of
course) slow down the computation of the next question. The reduction from
fifty to twenty already represents a substantial improvement.

5.6 Incentivising Dynamic Designs
Wenow consider the problem of incentivising dynamic designs, so that subjects
have a reason to give truthful answers.
As pointed out earlier, Chapman and colleagues (2018) incentivised their

experiment by, at the end of the experiment, randomly selecting two of the
modules for payment. This corresponds to the random lottery incentive sys-
tems typically used in static designs (whereby one or more of the choices made
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by the subject are chosen at random and implemented). This could be problem-
atic for an adaptive design, because the participants could, in principle, make
choices which are inconsistent with their preferences, with a view to yielding
them better options to choose from in subsequent questions, thus increasing
their expected pay-off. For example, when we elicit a standard sequence as dis-
cussed before, once x1 is plugged into the Left gamble, participants may guess
that it is in their interest that x2 is as high as possible because it will be fea-
tured in future options. They may thus keep saying that they prefer Left to get a
really good deal in subsequent questions. Telling participants in such a case that
it is actually in their best interest to choose the preferred option in each choice
is widely considered to be deceptive, both by experimentalists and participants
(Kachurka et al. 2021). One could thus consider one of several alternative ways
to incentivise dynamic designs.
One way is that the experimenter chooses at random one of many choice

situations that the subject could get. If this real choice situation (RCS) (the
term used by Johnson et al. 2021) already appears in the set optimally chosen
for a given subject, then implement it. If RCS does not appear in the sequence,
then assign one of the options of the RCS at random. The problem with this
approach is that the incentive could be very weak since, given the large number
of possible questions, the chance that the subject is actually asked the question
selected for reward is very small. If there are (say) 100,000 possible choice
situations and the subject is only exposed to (say) 10, then there is only a chance
of 1 in 10,000 that any answer matters, so that, for practical purposes, there are
no incentives.
Another method is to simply add an RCS to the otherwise optimal set of

questions. An extra question should not be very different from other questions.
If all but one of the questions are about millions of dollars, it will be easy to
guess that the odd one is to be implemented (and, for obvious reasons, we nor-
mally do not want extremely high payments featured in the RCS). Appending
a predetermined RCS may also be difficult in adaptive designs where succes-
sive questions refine the preference range, so that there is an internal logic to
the sequence; in such a case, it may be clear to the subject which question is
the artificially added RCS. A fine point concerns avoiding deception if such a
procedure is used. Researchers should not claim that RCS is picked at random
(because it is not). By contrast, a statement along the lines of ‘one of the choices
will be implemented and you cannot tell which one this would be’ should in
principle have analogous incentivising effects.
These two methods can be combined: we can use our target RCS if it appears

in the sequence that the subject saw and append it at the end of this sequence
otherwise. Again, a very malicious referee could claim that this is a subtle form
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of deception because we tell the participant that any of their choices can matter
while knowing it is extremely unlikely that any of the choices, except for the
last one, will matter.
Another mechanism trying to take the best of two worlds is PRINCE by

Johnson and colleagues (2021). These authors also propose that the RCS be
placed in a sealed envelope before the experiment so that it is transparent that
it is predetermined (and so it is indeed optimal to truthfully report the preferred
option in each question which may just turn out to be the RCS). It is not obvi-
ous how to implement it in an online experiment. A password-protected file
that the participant stores on their disc prior to the experiment, but is only able
to open after the experiment, could possibly serve as a virtual equivalent of a
sealed envelope (although most users have a reasonable aversion to download-
ing unusual files). The authors also suggest, and we believe they are right, that
transparency of incentive compatibility may be improved by making it easy for
the participants to record their own choices.1

An alternative approach would then be to estimate the utility function and
apply it to an exogenously chosen choice situation (Ding 2007). After answer-
ing the sequence of choice questions, the subject is presented with another
exogenous choice situation, but not asked to state a preference; instead, the
subject’s preferred option is inferred from the answers to previous choice ques-
tions and implemented. It is therefore in the subject’s best interest to help the
experimenter estimate the subject’s preference correctly.
One problem may be that the experimenter gets the preference of the subject

wrong, perhaps due to errors made by the subject in some of the answers. If
I participate in an experiment and come to a conclusion that inference along
the lines of ‘based on your previous answers, we believe that out of these two
options you prefer X over Y’ is blatantly incorrect, it can have a demoralising
effect. Indeed, it makes the researchers look incompetent and malicious – if
they wanted to know if I preferred X over Y they should have asked me! A
softer version of this mechanism could thus be considered in which the subject
has an option to revert to the inferred choice, but (to keep incentives in place)
at a price. Of course, this makes the procedure yet more complex. In either

1 Johnson and colleagues (2021) also insist that participants should be asked to give experiment-
ers ‘instructions’ as to which option from the RCS should be implemented. Perhaps we are
overly conservative and used to the traditional direction of instructions in experiments – from
experimenter to participants – but it seems to us that it is yet to be demonstrated that such a
framing improves transparency (and, as a result, e.g., reduces share of choices that are obvi-
ously inconsistent with preferences). In particular, formulating the BDM mechanism in terms
of participants giving ‘instructions’ does not seem to solve the problems which we discussed
earlier, described in Horowitz (2006), because the basic gamble taken by the subject when
stating the WTP threshold is the same.
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version, the scheme is not transparent to the subjects: because estimation of
preference is far from trivial, they cannot verify if and how their choices really
matter. Then again, in the times of Amazon and Netflix and a hundred other
services using mysterious algorithms to make recommendations based on our
previous choices, this may be a situation to which most of us are well used.
In the end, there are no one-size-fits-all solutions and the optimal approach to
the trade-off between simplicity, transparency, and strength of incentives may
depend on the design and sample at hand.
In any case, as in almost any experiment, participants’ trust is a precious

resource without which whole volumes devoted to efficient design of experi-
ments may not help much.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/9

78
10

09
26

30
30

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/9781009263030


References
Abdellaoui, Mohammed. Parameter-free elicitation of utility and probability
weighting functions. Management Science, 46(11):1497–1512, 2000.

Abdi, Hervé. Bonferroni and Šidák corrections for multiple comparisons.
Encyclopedia of Measurement and Statistics, 3:103–107, 2007.

Agranov, Marina, Andrew Caplin, and Chloe Tergiman. Naive play and the
process of choice in guessing games. Journal of the Economic Science
Association, 1:146–157, 2015.

Agresti, Alan. Categorical data analysis, volume 792. John Wiley & Sons,
2012.

Akaichi, Faical, Joan Costa-Font, and Richard Frank. Uninsured by choice?
A choice experiment on long term care insurance. Journal of Economic
Behavior & Organization, 173:422–434, 2020.

Andreoni, James. Why free ride? Strategies and learning in public goods
experiments. Journal of Public Economics, 37(3):291–304, 1988.

Bleichrodt, Han, and Jose Luis Pinto. A parameter-free elicitation of the
probability weighting function in medical decision analysis. Management
Science, 46(11):1485–1496, 2000.

Box, E. P. George, William Gordon Hunter, and J. Stuart Hunter. Statistics for
experimenters: Design, innovation, and discovery, 2nd edition. Wiley, 2005.

Brady, Henry E. Causation and explanation in social science. In Robert E.
Goodin, editor, The Oxford handbook of political science, Oxford University
Press, 2008.

Bucknell, John, Justin S. White, and Ce Shang. Can incentive-compatibility
reduce hypothetical bias in smokers’ experimental choice behavior? A
randomized discrete choice experiment. Journal of Choice Modelling,
37:100255, 2020.

Cavagnaro, Daniel R., Richard Gonzalez, Jay I. Myung, andMark A. Pitt. Opti-
mal decision stimuli for risky choice experiments: An adaptive approach.
Management Science, 59(2):358–375, 2013.

Cavagnaro, Daniel R., Jay I. Myung, Mark A. Pitt, and Janne V. Kujala. Adap-
tive design optimization: A mutual information-based approach to model
discrimination in cognitive science. Neural Computation, 22(4):887–905,
2010.

Cetre, Sophie, Max Lobeck, Claudia Senik, and Thierry Verdier. Preferences
over income distribution: Evidence from a choice experiment. Journal of
Economic Psychology, 74:102202, 2019.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/9

78
10

09
26

30
30

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/9781009263030


86 References

Chapman, Jonathan, Erik Snowberg, StephanieWang, and Colin Camerer. Loss
attitudes in the U.S. population: Evidence from Dynamically Optimized
Sequential Experimentation (DOSE). Technical report, National Bureau of
Economic Research, 2018.

Charness, Gary, Uri Gneezy, and Michael A. Kuhn. Experimental methods:
Between-subject and within-subject design. Journal of Economic Behavior
& Organization, 81(1):1–8, 2012.

Clark, Andrew E., Claudia Senik, and Katsunori Yamada. When experienced
and decision utility concur: The case of income comparisons. Journal of
Behavioral and Experimental Economics, 70:1–9, 2017.

Croissant, Yves. Estimation of random utility models in r: The mlogit package.
Journal of Statistical Software, 95(11):1–41, 2020. https://doi.org/10.18637/
jss.v095.i11.

Czajkowski, Mikolaj, Marek Giergiczny, andWilliamH. Greene. Learning and
fatigue effects revisited: Investigating the effects of accounting for unobserv-
able preference and scale heterogeneity. Land Economics, 90(2):324–351,
2014.

Ding, Min. An incentive-aligned mechanism for conjoint analysis. Journal of
Marketing Research, 44(2):214–223, 2007.

Fox, Armando, Steven D. Gribble, Yatin Chawathe, and Eric A. Brewer. Adapt-
ing to network and client variation using infrastructural proxies: Lessons and
perspectives. IEEE Personal Communications, 5(4):10–19, 1998.

Frydman, Cary, Colin Camerer, Peter Bossaerts, and Antonio Rangel. Maoa-l
carriers are better at making optimal financial decisions under risk. Pro-
ceedings of the Royal Society B: Biological Sciences, 278(1714):2053–2059,
2011.

Harrison, Glenn W., Morten I. Lau, and E. Elisabet Rutström. Risk attitudes,
randomization to treatment, and self-selection into experiments. Journal of
Economic Behavior & Organization, 70(3):498–507, 2009.

Hess, Stephane, and David Palma. Apollo: A flexible, powerful and customis-
able freeware package for choice model estimation and application. Journal
of Choice Modelling, 32:100170, 2019.

Holland, Paul W. Causation and race. ETS Research Report Series, 2003(1):
i–21, 2003.

Holland, Paul W. Statistics and causal inference. Journal of the American
Statistical Association, 81(396):945–960, 1986.

Horiuchi, Yusaku, Zachary Markovich, and Teppei Yamamoto. Does conjoint
analysis mitigate social desirability bias? Political Analysis, 30(4):535–549,
2022.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/9

78
10

09
26

30
30

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.18637/jss.v095.i11
https://doi.org/10.18637/jss.v095.i11
https://doi.org/10.1017/9781009263030


References 87

Horowitz, John K. The Becker–DeGroot–Marschak mechanism is not neces-
sarily incentive compatible, even for non-random goods. Economics Letters,
93(1):6–11, 2006.

Jacquemet, Nicolas, and Olivier l’Haridon. Experimental economics. Cam-
bridge University Press, 2018.

Johnson, Cathleen, Aurélien Baillon, Han Bleichrodt, Zhihua Li, Dennie
Van Dolder, and Peter P. Wakker. PRINCE: An improved method for meas-
uring incentivized preferences. Journal of Risk and Uncertainty, 62(1):1–28,
2021.

Kachurka, Raman,Michał Krawczyk, and Joanna Rachubik. State lottery in the
lab: an experiment in external validity. Experimental Economics, 24: 1242–
1266, 2021.

Krawczyk, Michał. What should be regarded as deception in experimental eco-
nomics? Evidence from a survey of researchers and subjects. Journal of
Behavioral and Experimental Economics, 79:110–118, 2019.

Krawczyk, Michał, Andrea Blasco, Tomasz Gajderowicz, and Marek Gier-
giczny. Europeans’ attitudes towards displaced populations: Evidence from
a conjoint experiment on support for temporary protection, 2023. Available
at https://ssrn.com/abstract=4564737 or http://dx.doi.org/10.2139/ssrn.4564
737.

Krawczyk, Michał, and Marta Sylwestrzak. Exploring the role of deliber-
ation time in non-selfish behavior: The double response method. Journal of
Behavioral and Experimental Economics, 72:121–134, 2018.

Levitt, Steven D., and John A. List. Field experiments in economics: The past,
the present, and the future. European Economic Review, 53(1):1–18, 2009.

Lindley, Dennis V. On ameasure of the information provided by an experiment.
The Annals of Mathematical Statistics, 27(4):986–1005, 1956.

List, John. Sometimes winning means knowing when to quit. Wall Street
Journal, 30 December 2021.

Mahoney, James, and Laura Acosta. A regularity theory of causality for the
social sciences. Quality & Quantity, 56:1889–1911, 2021.

Mariel, Petr, David Hoyos, JürgenMeyerhoff, Mikolaj Czajkowski, Thijs Dek-
ker, Klaus Glenk, Jette Bredahl Jacobsen, Ulf Liebe, Søren Bøye Olsen,
Julian Sagebiel, and Mara Thiene. Environmental valuation with discrete
choice experiments: Guidance on design, implementation and data analysis.
Springer Nature, 2021.

Marks, David F., and John Colwell. The psychic staring effect. Skeptical
Inquirer, 24(5):41–49, 2000.

McFadden, Daniel. The measurement of urban travel demand. Journal of
Public Economics, 3(4):303–328, 1974.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/9

78
10

09
26

30
30

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://ssrn.com/abstract=4564737
http://dx.doi.org/10.2139/ssrn.4564737
http://dx.doi.org/10.2139/ssrn.4564737
https://doi.org/10.1017/9781009263030


88 References

McFadden, Daniel. Modeling the choice of residential location. In Anders Kar-
lqvist, Folke Snickars, and JürgenWeibull, editors, Spatial interaction theory
and planning models, pp. 75–96. North Holland, 1978.

Menapace, Luisa, and Roberta Raffaelli. Unraveling hypothetical bias in dis-
crete choice experiments. Journal of Economic Behavior & Organization,
176:416–430, 2020.

Meyerhoff, Jürgen, Malte Oehlmann, and Priska Weller. The influence of
design dimensions on stated choices in an environmental context. Environ-
mental and Resource Economics, 61(3):385–407, 2015.

Moffatt, Peter G. Experimetrics: Econometrics for experimental economics.
Macmillan International Higher Education, 2015.

Overstall, Antony M., and David C. Woods. Bayesian design of experiments
using approximate coordinate exchange. Technometrics, 59(4):458–470,
2017.

Papoutsi, Georgia S., Rodolfo M. Nayga Jr, Panagiotis Lazaridis, and
Andreas C. Drichoutis. Fat tax, subsidy or both? The role of information
and children’s pester power in food choice. Journal of Economic Behavior
& Organization, 117:196–208, 2015.

Pearl, Judea. Causality. Cambridge University Press, 2009.
Perny, Patrice, Paolo Viappiani, and Abdellah Boukhatem. Incremental pref-
erence elicitation for decision making under risk with the rank-dependent
utility model. In Alexander Ihler and Dominik Janzing, editors, Uncer-
tainty in artificial intelligence, pp. 597–606. AUAI Press for Association
for Uncertainty in Artificial Intelligence, 2016.

Shannon, Claude Elwood. A mathematical theory of communication. The Bell
System Technical Journal, 27(3):379–423, 1948.

Shigeoka, Hitoshi, and Katsunori Yamada. Income-comparison attitudes in
the United States and the United Kingdom: Evidence from discrete-choice
experiments. Journal of Economic Behavior & Organization, 164:414–438,
2019.

Smith, Mike D. Biased coin randomization. In Narayanaswamy Balakrishnan,
editor, Methods and applications of statistics in clinical trials. Volume 1:
Concepts, principles, trials, and design, pp. 90–105. Wiley, 2014.

Sokol-Hessner, Peter, Ming Hsu, Nina G. Curley, Mauricio R. Delgado,
Colin F. Camerer, and Elizabeth A. Phelps. Thinking like a trader selectively
reduces individuals’ loss aversion. Proceedings of the National Academy of
Sciences, 106(13):5035–5040, 2009.

Spirtes, Peter, Clark Glymour, and Richard Scheines, with additional material
by David Heckerman. Causation, prediction, and search. MIT Press, 2001.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/9

78
10

09
26

30
30

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/9781009263030


References 89

Steimle, Lauren N., Yuming Sun, Lauren Johnson, Tibor Besedeš, Patricia
Mokhtarian, and Dima Nazzal. Students’ preferences for returning to col-
leges and universities during the COVID-19 pandemic: A discrete choice
experiment. Socio-economic Planning Sciences, page 101266, 2022.

Student. Appendix to Mercer and Hall’s paper ‘The experimental error of field
trials’. Journal of Agricultural Science, 4, 128–131.

Subroy, Vandana, Abbie A. Rogers, and Marit E. Kragt. To bait or not to
bait: A discrete choice experiment on public preferences for native wildlife
and conservation management in Western Australia. Ecological Economics,
147:114–122, 2018.

Thye, Shane. Logical and philosophical foundations of experimental research
in the social sciences. In Murray Webster and Jane Sell, editors, Laboratory
experiments in the social sciences, pp. 53–82. Elsevier, 2014.

Titchener, Edward Bradford. Experimental psychology: A retrospect. Ameri-
can Journal of Psychology, 36(3):313–323, 1925.

Toubia, Olivier, John Hauser, and Rosanna Garcia. Probabilistic polyhedral
methods for adaptive choice-based conjoint analysis: Theory and applica-
tion.Marketing Science, 26(5):596–610, 2007.

Toubia, Olivier, Eric Johnson, Theodoros Evgeniou, and Philippe Delquié.
Dynamic experiments for estimating preferences: An adaptive method of
eliciting time and risk parameters. Management Science, 59(3):613–640,
2013.

Train, Kenneth E. Recreation demand models with taste differences over peo-
ple. Land economics, University of Wisconsin Press, 74(2), 230–239, 1998.

Tversky, Amos, and Daniel Kahneman. Advances in prospect theory: Cumu-
lative representation of uncertainty. Journal of Risk and Uncertainty,
5(4):297–323, 1992.

Tversky, Amos, and Richard H. Thaler. Anomalies: Preference reversals.
Journal of Economic Perspectives, 4(2):201–211, 1990.

Vossler, Christian A., Maurice Doyon, and Daniel Rondeau. Truth in con-
sequentiality: Theory and field evidence on discrete choice experiments.
American Economic Journal: Microeconomics, 4(4):145–171, 2012.

Vossler, Christian A., and Mary F. Evans. Bridging the gap between the field
and the lab: Environmental goods, policy maker input, and consequential-
ity. Journal of Environmental Economics and Management, 58(3):338–345,
2009.

Wakker, Peter, and Daniel Deneffe. Eliciting von Neumann–Morgenstern util-
ities when probabilities are distorted or unknown. Management Science,
42(8):1131–1150, 1996.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/9

78
10

09
26

30
30

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/9781009263030


90 References

Woodward, James. Causation and manipulability. In Edward N. Zalta, edi-
tor, The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab,
Stanford University, Winter edition, 2016.

Ziliak, Stephen T. Field balanced versus randomized field experiments in eco-
nomics: Why W. S. Gosset aka ‘Student’ matters. Review of Behavioral
Economics, 1(1–2):167–208.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/9

78
10

09
26

30
30

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/9781009263030


Behavioural and Experimental Economics

Nicolas Jacquemet
University Paris-1 Panthéon Sorbonne and the Paris School of Economics

Nicolas Jacquemet is a full professor at University Paris-1 Panthéon Sorbonne and the
Paris School of Economics. His research combines experimental methods and

econometrics to study discrimination, the effect of personality traits on economic
behaviour, the role of social pre-involvement in strategic behaviour and experimental

game theory. His research has been published in Econometrica, Management
Science, Games and Economic Behavior, the Journal of Environmental Economics and

Management, the Journal of Health Economics, and the Journal of Economic Psychology.

Olivier L’Haridon
Université de Rennes 1

Olivier L’Haridon is a full professor at the Université de Rennes I, France. His research
combines experimental methods and decision theory, applied in the study of individual
decision making as affected by uncertainty. His work has been published in American
Economic Review, Management Science, the Journal of Risk and Uncertainty, Theory and
Decision, Experimental Economics, the Journal of Health Economics, and the Journal of

Economic Psychology.

About the Series
Cambridge Elements in Behavioural and Experimental Economics focuses on recent
advances in two of the most important and innovative fields in modern economics. It
aims to provide better understanding of economic behavior, choices, strategies and
judgements, particularly through the design and use of laboratory experiments.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/9

78
10

09
26

30
30

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/9781009263030


Behavioural and Experimental Economics

Elements in the Series
Public Finance with Behavioural Agents

Raphaël Lardeux
Estimation of Structural Models Using Experimental Data From the Lab

and the Field
Charles Bellemare

Imperfect Perception and Stochastic Choice in Experiments
Pablo Brañas-Garza and John Smith

Advances in Efficient Design of Experiments in Economics
Michał Wiktor Krawczyk and John Masson Noble

A full series listing is available at: www.cambridge.org/BEE

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/9

78
10

09
26

30
30

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

http://www.cambridge.org/BEE
https://doi.org/10.1017/9781009263030

	Cover
	Title Page
	Imprints Page
	Advances in Efficient Design of Experiments in Economics
	Contents
	1 Introduction and Overview of the Element
	2 Causality and Random Assignment
	2.1 What Do You Mean by ‘Cause’?
	2.2 Counterfactuals and Randomisation Bias
	2.3 Randomisation Procedures
	2.4 Gosset versus Fisher, or Is Artificial Randomisation Really Necessary?
	2.5 Within-Subject and Between-Subject

	3 Optimal Designs
	3.1 Introduction
	3.2 Alphabet Optimality
	3.3 Optimisation Based on Shannon Entropy
	3.4 Aspects of Optimal Design for Discrete Choice Experiments

	4 Discrete Choice Experiments
	4.1 What Are Choice Experiments?
	4.2 Discrete Choice Experiments in Health economics: An Example
	4.3 Choice Experiments in Core Experimental Economics
	4.4 Pros and Cons of Choice Experiments
	4.5 Hypothetical Bias: Incentivising Choice Experiments
	4.6 Social Desirability
	4.7 Key Numerical Choices to Make
	4.8 Designing Experiments and Modelling Data
	4.9 Examples with Focus on Design and Modelling

	5 Adaptive Designs
	5.1 Introduction
	5.2 Problems and Challenges
	5.3 A Simple Example: Bisection and Iterated Multiple Price List
	5.4 Non-parametric Methods in the Context of Prospect Theory
	5.5 Sequential Designs
	5.6 Incentivising Dynamic Designs


	References

