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Abstract

We prove that a Banach algebra B that is a completion of the universal enveloping algebra of a
finite-dimensional complex Lie algebra g satisfies a polynomial identity if and only if the nilpotent radical
n of g is associatively nilpotent in B. Furthermore, this holds if and only if a certain polynomial growth
condition is satisfied on n.
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Introduction

The theory of representations of a finite-dimensional complex Lie algebra g on a
Banach space and, more generally, Lie-algebra homomorphisms from g to a Banach
algebra, unexpectedly turned out to be not as trivial as it might seem at first glance
(see the book [7]). Indeed, in the solvable case, all irreducible representations of g are
one-dimensional. Moreover, it was proved by Taylor that in the semisimple case, all
(not only irreducible) representations of g are finite dimensional [23]. Nevertheless,
a general representation on a Banach space can be quite complicated even when g is
nilpotent.

Here we consider arbitrary finite-dimensional Lie algebras but restrict to represen-
tations (and homomorphisms) with range generating a Banach algebra satisfying a
polynomial identity (a PI-algebra). We give an answer to the question: When does a
Banach algebra that is a completion of the universal enveloping algebra U(g) satisfy a
PI? We do this by providing several necessary and sufficient conditions (algebraic and
analytic) in terms of the nilpotent radical n of g (Theorems 1 and 2). We also include
some examples, which show how the criterion works in concrete cases.

According to the nature of the conditions, the argument can be divided in two
parts, algebraic and analytic. The proof of the algebraic part is based on two results
in algebraic PI-theory, a theorem of Bahturin [6] on PI-quotients in the semisimple

© The Author(s), 2022. Published by Cambridge University Press on behalf of Australian Mathematical
Publishing Association Inc.

493

https://doi.org/10.1017/S0004972722000788 Published online by Cambridge University Press

http://dx.doi.org/10.1017/S0004972722000788
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S0004972722000788&domain=pdf
https://doi.org/10.1017/S0004972722000788


494 O. Yu. Aristov [2]

case and the Braun–Kemer–Razmyslov theorem on the nilpotency of the Jacobson
radical. In the proof of the analytic part, we use a result of Turovskii [24] on topological
nilpotency, the theorem of Taylor on semisimple Lie algebras mentioned above and a
small piece of the theory of generalised scalar operators.

This study was initially motivated by noncommutative spectral theory. In [13], Dosi
considered a Fréchet algebra Fg, ‘the algebra of formally-radical functions’, associated
with a nilpotent Lie algebra g. His goal was applications to noncommutative spectral
theory (see [10, 11, 12, 14]). (Dosi’s construction is extended to the case of a general
solvable Lie algebra in the author’s article [3]. It is also shown there that Fg is an
Arens–Michael algebra, that is, it can be approximated by Banach algebras.) It is
proved in [13, Lemma 4] that in the nilpotent case, an embedding g to a Banach
algebra B can be extended to a continuous homomorphism Fg → B if and only if g
is supernilpotent, that is, every element of [g, g] (which is equal to n in this case) is
associatively nilpotent. This paper comes from a desire to understand what form this
condition can take in the general case. Our main results show that the property to
satisfy a PI, which is formally weaker that the supernilpotency, is reasonable in this
context.

This paper is just the beginning of work on PI-completions. As a continuation
of the study, we discuss such completions of the algebra of analytic functionals
on a complex Lie group in subsequent articles [4, 5], which contain the following
topics: a generalisation of Theorem 1, a relationship with large-scale geometry and a
decomposition into an analytic smash product.

Statement of the main results

An associative algebra A (in our case, over a field, which usually is C) satisfies a
polynomial identity (in short, a PI-algebra) if there is a nontrivial noncommutative
polynomial p (that is, an element of a free algebra on n generators) such that
p(a1, . . . , an) = 0 for all a1, . . . , an ∈ A. PI-algebras can be both unital and nonunital,
but we usually assume that associative algebras are unital unless otherwise stated.
Banach PI-algebras are discussed in [19, 21], but we do not use the results contained
there. For up-to-date information on general PI-algebras, see [1] or [18].

The nilpotent radical n of a Lie algebra g is the intersection of the kernels of all
irreducible representations of g (see [8, Ch. I, Section 5.3, Definition 3, page 44] or [9,
Section 1.7.2, page 27].

The following two theorems are our main results.

THEOREM 1. Suppose that g is a finite-dimensional complex Lie subalgebra of a
Banach algebra B. Let ‖ · ‖ denote the norm on B and n the nilpotent radical of g. If B
is generated by g as a Banach algebra, then the following conditions are equivalent:

(1) B is a PI-algebra;
(2a) every element of n is nilpotent;
(2b) the nonunital associative subalgebra of B generated by n is nilpotent;
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(3a) eb − 1 is nilpotent for every b ∈ n;
(3b) there is d ∈ N such that eb − 1 is nilpotent of degree at most d for every b ∈ n;
(4) there are C > 0 and α > 0 such that ‖eb‖ ≤ C(1 + ‖b‖)α for every b ∈ n.

Note that the conditions (2b) and (3b) are the uniform versions of the point-wise
conditions (2a) and (3a).

In Theorem 1, we assume that g is embedded into B. Is not hard to extend the
result to the case of an arbitrary Lie-algebra homomorphism g→ B (or equivalently, a
homomorphism U(g)→ B). Namely, the following result holds.

THEOREM 2. Suppose that g is a finite-dimensional complex Lie algebra, B is a
Banach algebra and θ : U(g)→ B is a homomorphism of associative algebras. Let
‖ · ‖ be the norm on B, | · | a norm on n and U(n)0 the augmentation ideal of U(n),
that is, the kernel of the trivial representation. If θ has dense range, then the following
conditions are equivalent:

(1) B is a PI-algebra;
(2a) θ(η) is nilpotent for every η ∈ n;
(2b) the nonunital associative algebra θ(U(n)0) is nilpotent;
(3a) eθ(η) − 1 is nilpotent for every η ∈ n;
(3b) there is d ∈ N such that eθ(η) − 1 is nilpotent of degree at most d for every η ∈ n;
(4) there are C > 0 and α > 0 such that ‖eθ(η)‖ ≤ C(1 + |η|)α for every η ∈ n.

The proof of Theorem 2 is placed after the proof of Theorem 1, to which we now
turn.

The algebraic argument

As mentioned in the Introduction, the proof of the theorem is divided into two parts,
algebraic and analytic. The algebraic part is in the following proposition.

PROPOSITION 3. Let g be a finite-dimensional Lie subalgebra of an associative
algebra A over a field of characteristic 0, s a Levi subalgebra and n the nilpotent
radical of g. Suppose that A is generated by g as an associative algebra. Then A is a
PI-algebra if and only if the unital subalgebra generated by s is finite dimensional and
every element of n is nilpotent.

For the proof, we need three lemmas.

LEMMA 4. Let A be an associative algebra over a field, g a finite-dimensional Lie
subalgebra that generates A as an associative algebra and n the nilpotent radical of g.

(A) Then n is contained in the Jacobson radical of A.
(B) If, in addition, A is a PI-algebra, then n is associatively nilpotent, that is, there is

d ∈ N such that b1 . . . bd = 0 for all b1, . . . , bd ∈ n.

The proof of part (B) is based on a deep result in PI-theory, the Braun–Kemer–
Razmyslov theorem on the nilpotency of the Jacobson radical.
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PROOF. It is obvious that A is a quotient of U(g) and, in particular, finitely generated.
(A) Recall that the Jacobson radical, Rad A, of A is the intersection of the kernels

of all irreducible representations of A. However, the nilpotent radical n of the Lie
algebra g is the intersection of the kernels of all irreducible representations of g. Since
irreducible representations of U(g) are in one-to-one correspondence with irreducible
representations of g and every irreducible representation of A can be lifted to an
irreducible representation of U(g), it follows that n ⊂ Rad A.

(B) The Braun–Kemer–Razmyslov theorem asserts that the Jacobson radical of a
finitely generated PI-algebra over a commutative Jacobson ring (in particular, over a
field) is nilpotent [18, Theorem 4.0.1, page 149]. This completes the proof. �

A theorem of Wedderburn asserts that a finite-dimensional associative algebra
over a field (of arbitrary characteristic) with linear basis consisting of nilpotent
elements is nilpotent (see, for example, [16, Theorem 2.3.1, page 56]). We need a
more general result in characteristic 0: if h is a Lie subalgebra of an associative
algebra and h is generated by finitely many associatively nilpotent elements, then the
nonunital associative subalgebra generated by the solvable radical of h is nilpotent [17,
Theorem 8]. In particular, we have the following lemma.

LEMMA 5. Let A0 be a nonunital associative algebra over a field of characteristic 0.
Suppose that A0 is generated by a nilpotent Lie subalgebra h. If every element of h is
nilpotent, then so is A0.

REMARK 6. In [10, Lemma 2.2], Dosi gave a direct proof of the lemma in the
particular case when h = [g, g] for a nilpotent g.

LEMMA 7. An extension of a PI-algebra (over an arbitrary commutative ring) by an
ideal that is a PI-algebra is also a PI-algebra.

PROOF. Let I be an ideal of an algebra A. Suppose that A/I and I satisfy polynomial
identities p and q, respectively. Let n and m be the numbers of variables in p and q,
respectively. If aij ∈ A (i = 1, . . . , n, j = 1, . . . , m), then p(a1j, . . . , anj) ∈ I for every j
because p(a1j + I, . . . , anj + I) ⊂ I. Hence, q(p(a11, . . . , an1), . . . , p(a1m, . . . , anm)) = 0.
It is easy to see that since p and q are not trivial, this noncommutative polynomial is
not trivial. Thus A is a PI-algebra. �

PROOF OF PROPOSITION 3. Denote by S the unital subalgebra of A generated by s and
suppose that A is a PI-algebra. Then S is a quotient of U(s) and satisfies a PI. Since we
work in characteristic 0 and s is semisimple, we can apply a result of Bahturin, which
asserts that every quotient of U(s) that is a PI-algebra is finite dimensional (see [6,
Theorem 1 and Corollary]). In particular, S is finite dimensional. However, it follows
from Lemma 4 that every element of n is nilpotent. The necessity is proved.

Suppose now that S is finite dimensional and every element of n is nilpotent. Denote
by I the ideal of A generated by n. From Lemma 7, it suffices to show that I and A/I
are PI-algebras.
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Denote by A0 the nonunital subalgebra of A generated by n and by U(n)0 the
augmentation ideal of U(n). Note that n is a nilpotent Lie algebra. So by Lemma 5,
there is a d ∈ N such that Ad

0 = 0. Since n is a Lie ideal of g, it easily follows that
U(g)U(n)0 = U(n)0U(g). Then, (U(g)U(n)0)d ⊂ U(n)d

0U(g) and therefore Id = Ad
0A =

0. Hence, I is nilpotent and, in particular, a PI-algebra.
On the other hand, being reductive, g/n is a direct sum of a semisimple summand

and an abelian summand a [9, Proposition 1.7.3, page 27]. Note that the restriction of
the map g→ g/n to s is injective and so we can identify the semisimple summand in
g/nwith s. Consider the naturally defined homomorphisms S→ A→ A/I and U(a)→
U(g/n)→ A/I. Their ranges commute since U(s) and U(a) commute in U(g/n) and the
diagram

s

��

�� g/n

��
A �� A/I

is commutative. By the universal property of tensor products of associative algebras,
we have the induced homomorphism S ⊗ U(a)→ A/I. This homomorphism is surjec-
tive because A/I and S ⊗ U(a) are quotients of U(g)/(U(g)U(n)0) and U(s) ⊗ U(a),
respectively, and the last two algebras are isomorphic being isomorphic to U(g/n).
By Regev’s theorem [18, Theorem 3.4.7, page 138], the class of PI-algebras is stable
under tensor products. Thus, S ⊗ U(a) is a PI-algebra since it is the tensor product of
a finite-dimensional and abelian algebra. Being a quotient of a PI-algebra, A/I also
satisfies a PI. This completes the proof of the sufficiency. �

The analytic argument

Now we turn to auxiliary lemmas, which are needed in the analytic part of the proof
of Theorem 1. The first lemma is a corollary of a result of Turovskii in [24].

LEMMA 8. Suppose that the hypotheses in Theorem 1 hold. Then n ⊂ Rad B.

PROOF. Note that n = [g, r], where r is the solvable radical of g [9, Proposition 1.7.1,
page 26]. Turovskii’s theorem [24] asserts that [g, h] ⊂ Rad B for every solvable ideal h
of g (for a proof, see [7, Section 24, Theorem 1, page 130]). By putting h = r, we have
the result. �

An element of a Banach algebra is topologically nilpotent if ‖bn‖1/n → 0 as
n→ ∞.

LEMMA 9. Let b be a topologically nilpotent element of a Banach algebra. Then b is
nilpotent if and only if eb − 1 is nilpotent. Moreover, b has degree of nilpotency at most
d if and only if eb − 1 does.
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PROOF. Put r := eb − 1. If bd = 0 for some d ∈ N, then r = b + · · · + bd−1/(d − 1)! and
therefore rd = 0.

Suppose now that there is d ∈ N such that rd = 0. Since b is topologically nilpotent,
its spectrum is {0}. Let f be the function on C such that f (z) = (ez − 1)/z when z � 0
and f (0) = 1. Since f is holomorphic, it follows from the spectral mapping theorem
[15, Theorem 2.2.23] that the spectrum of f (b) is {1} and therefore f (b) is invertible.
Since b f (b) = eb − 1 = r and rd = 0, we have bd f (b)d = 0. Since f (b) is invertible,
bd = 0. �

LEMMA 10. Let r be a topologically nilpotent element of a Banach algebra with the
norm ‖ · ‖. Then the following conditions are equivalent:

(1) there are C > 0 and α > 0 such that ‖(1 + r)k‖ ≤ C(1 + |k|)α for all k ∈ Z;
(2) r is nilpotent.

Moreover, we can assume that C and α depend only on ‖r‖ and the degree of nilpotency
of r.

Note that (1 + r)k is well defined for negative k because the spectrum of r is {0}.

PROOF. If (1) holds, then 1 + r is generalised scalar [20, Theorem 1.5.12, page 66], that
is, admits a C∞-functional calculus on C. (This result and the proposition cited below
are stated for operators but, in fact, the arguments for them use only the Banach algebra
structure.) Shifting by a number does not change the property of being generalised
scalar. Thus, r is both topologically nilpotent and generalised scalar. It follows from
[20, Proposition 1.5.10, page 64] that r is nilpotent.

However, if r is nilpotent, then we immediately have the desired estimate for
positive k with constants C > 0 and α > 0 depending only on the degree of nilpotency
of r, say d, and ‖r‖. To prove it for negative k, note that (1 + r)−1 = 1 + r′ for some
nilpotent r′ whose degree of nilpotency and norm depend only on d and ‖r‖. It follows
that (1) holds with C and α also depending only on d and ‖r‖. �

PROOF OF THEOREM 1. We show that (1)⇔(2a) and (2a)⇒(2b)⇒(3b)⇒(4)
⇒(3a)⇒(2a). Let s be a Levi subalgebra of g, A the associative unital subalgebra
of B generated by g and A0 the nonunital subalgebra of A generated by n.

(1)⇔(2a). Since s is semisimple, it follows from a result of Taylor [23] (see also [7]
or [2]) that the image of U(s) in a Banach algebra is finite dimensional. Being dense
in B, the subalgebra A satisfies a PI if and only if so does B. Applying Proposition 3 to
A, we conclude that (1) and (2a) are equivalent.

(2a)⇒(2b). Applying Lemma 5 to A0 shows that A is nilpotent when every element
of n is nilpotent.

(2b)⇒(3b). Suppose that A0 is nilpotent, that is, there is d ∈ N such that Ad
0 = 0.

In particular, every b in n is of degree of nilpotency at most d and so is eb − 1 by
Lemma 9.

(3b)⇒(4). Let d be a positive integer such that eb − 1 is nilpotent of degree at most
d for every b ∈ n. Applying the implication (2)⇒(1) in Lemma 10 shows that there are
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constants C > 0 and α > 0 such that

‖ekb‖ ≤ C(1 + |k|)α for b ∈ n and k ∈ Z (4.1)

when ‖eb − 1‖ ≤ 1. Therefore, there is ε > 0 such that (4.1) holds when ‖b‖ ≤ ε.
Now fix a nonzero element b of n. Take k ∈ N such that (k − 1)ε ≤ ‖b‖ ≤ kε and put

b′ := k−1b. Then ‖b′‖ ≤ ε and

‖eb‖ = ‖ekb′ ‖ ≤ C(1 + k)α. (4.2)

Since k ≤ 1 + ε−1‖b‖, we have

1 + k ≤ 2 + ε−1‖b‖ ≤ 2
(
1 +
ε−1

2

)
(1 + ‖b‖).

Combining this with (4.2) shows that there is C′ > 0 such that ‖eb‖ ≤ C′(1 + ‖b‖)α and
C′ is independent in b.

(4)⇒(3a). Suppose that for some C > 0 and α > 0, the inequality ‖eb‖ ≤ C(1 +
‖b‖)α holds when b ∈ n. We claim that r := eb − 1 is topologically nilpotent whenever
b ∈ n. Indeed, Lemma 8 implies that b ∈ Rad B. Note that r =

∑∞
n=1 bn/n! and Rad B is

closed. So r is also contained in Rad B. Being an element of the radical of a Banach
algebra, r is topologically nilpotent.

Further, it follows from the assumption that

‖(1 + r)k‖ = ‖ekb‖ ≤ C(1 + ‖kb‖)α ≤ C(1 + ‖b‖)α(1 + |k|)α

for every k ∈ Z. So by the implication (1)⇒(2) in Lemma 10, r is nilpotent.
(3a)⇒(2a). Suppose that eb − 1 is nilpotent for every b ∈ n. Then it follows

immediately from Lemma 9 that b is nilpotent.
This completes the proof of Theorem 1. �

PROOF OF THEOREM 2. To deduce Theorem 2 from Theorem 1, note that every
Lie-algebra homomorphism φ : g1 → g2 maps the nilpotent radical of g1 into the
nilpotent radical of g2. If, in addition, φ is surjective, then so is the Lie-algebra
homomorphism r1 → r2 of the solvable radicals (see, for example, [3, Lemma 4.10]).
Since the nilpotent radicals of g1 and g2 coincide respectively with [g1, r1] and
[g2, r1] (see the reference in the proof of Lemma 8), we have a surjective Lie-algebra
homomorphism of the nilpotent radicals. Thus, (1), (2a), (2b), (3a) and (3b) are
equivalent since so are the corresponding conditions in Theorem 1.

The proof of the implication (4)⇒(3a) is a slight modification of the argument for
the corresponding implication in Theorem 1. First note that there is K > 0 such that

‖θ(η)‖ ≤ K|η| for every η ∈ n. (4.3)

Then writing θ(η) instead of b and using (4.3), we deduce from the inequality ‖eθ(η)‖ ≤
C(1 + |η|)α for η ∈ n that

‖(1 + r)k‖ ≤ C(1 + |η|)α(1 + |k|)α

and then apply Lemma 10.
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Finally, if (1) holds, then so does (4) in Theorem 1 for elements b of the form θ(η)
with η ∈ n. It follows from (4.3) that (4) in Theorem 2 is also satisfied. �

Some examples

There are many finite-dimensional Lie algebras such that every completion of the
universal enveloping algebra with respect to a submultiplicative prenorm (that is, every
completion that is a Banach algebra) satisfies a polynomial identity. The two simplest
cases follow.

PROPOSITION 11. If a finite-dimensional complex Lie algebra g is reductive, then
every completion of U(g) with respect to a submultiplicative prenorm satisfies a PI.

PROOF. Since g is reductive, the nilpotent radical is trivial. Thus by Theorem 2,
every completion of U(g) with respect to a submultiplicative prenorm satisfies
a PI. �

PROPOSITION 12. Let g be a two-dimensional nonabelian complex Lie algebra. Then
every completion of U(g) with respect to a submultiplicative prenorm satisfies a PI.

PROOF. There is a basis e1, e2 in g such that [e1, e2] = e2. Note that n = [g, g] = Ce2.
Let B be a Banach-algebra completion of U(g) and π the corresponding Lie-algebra
homomorphism from g to B. It is not hard to see that π(e2) is nilpotent (see, for
example, [22, Example 5.1]). Then B satisfies a PI by Theorem 2. �

However, there are Lie algebras whose universal enveloping algebra admits a
completion that does not satisfy a PI. Here we give a particular case.

PROPOSITION 13. Let g be a nonabelian nilpotent complex Lie algebra g. Then there
is a submultiplicative prenorm on U(g) such that the completion does not satisfy a PI.

PROOF. Since g is nonabelian and nilpotent, there is a sequence (θn) of representations
of U(g) on (finite-dimensional) Hilbert spaces such that the sequence (dn) of the
corresponding degrees of nilpotency of θn(n) is unbounded (see, for example, [3,
Proposition 4.14 and Lemma 4.16]). Using renormalisation, we can assume that the
set {‖θn(ej)‖}, where e1, . . . , ek are algebraic generators of g, is bounded for every j.
Then the infinite sum θ := ⊕∞n=1θn is a well-defined representation of U(g) on a Hilbert
space. Since for every p ∈ N+ there are n ∈ N+ and η ∈ n such that θn(η)p � 0, the
completion of the range of θ does not satisfy a PI by Theorem 2. �

For a general criterion, see the follow-up paper [5].
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