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Abstract. We generalize a result of Lindenstrauss on the interplay between measurable
and topological dynamics which shows that every separable ergodic measurably distal
dynamical system has a minimal distal model. We show that such a model can, in fact,
be chosen completely canonically. The construction is performed by going through the
Furstenberg–Zimmer tower of a measurably distal system and showing that at each step
there is a simple and canonical distal minimal model. This hinges on a new characterization
of isometric extensions in topological dynamics.
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1. Introduction
The famous Furstenberg structure theorem shows that every distal minimal topological
dynamical system can be built from a trivial system only by successively performing
‘structured’ (that is, (pseudo)isometric) extensions; see, for example, [Fur63] and [dV93,
§V.3]. As shown by Zimmer (see [Zim76, Theorem 8.7]), this classical result has an
analogue for distal systems in ergodic theory introduced earlier by Parry in [Par68]: a
measure-preserving system on a standard probability space is distal if and only if it can be
constructed from a tower of measure-theoretically isometric extensions. The significance
of these measurably distal systems is due to the fact that—by the Furstenberg–Zimmer
structure theorem—any measure-preserving system can be recovered by taking a weakly
mixing extension of a distal one (see, for example, [Fur77], [Tao09, Ch. 2] or [EHK21]).
This allows one to reduce the proof of important results for measure-preserving transfor-
mations, such as Furstenberg’s recurrence result used for an ergodic-theoretic proof of
Szemerédi’s theorem, to the case of distal systems.
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Given a minimal distal system (K; ϕ) and an ergodic ϕ-invariant probability measure
μ on K, it is not hard to prove that (K , μ; ϕ) is also distal as a measure-preserving
system. While this has long been known, the converse question, whether a distal
measure-preserving system admits a distal topological model, was only answered much
later in an paper by Lindenstrauss (see [Lin99] and also [GW06, §§5 and 13]).

THEOREM. Every ergodic distal measure-preserving system on a standard probability
space has a minimal distal metrizable topological model.

Topological models such as these continue to prove useful since they allow us to use
a range of topological results to derive results in ergodic theory. For recent examples, we
refer to the proof of pointwise convergence for multiple averages for distal systems (see
[HSX19]), new approaches to the Furstenberg–Zimmer structure theorem (see [EHK21,
§7.4]), and a new approach to the Host–Kra factors in [GL19].

Lindenstrauss’s proof rests on the Mackey–Zimmer representation of isometric
extensions as skew-products and on measure-theoretic considerations. In this paper
we pursue an operator-theoretic approach to the result and even prove that for
every ergodic distal system there is a canonical minimal distal topological model.
This allows to construct such models in a functorial way: every extension between
ergodic distal systems induces a topological extension between their canonical
models.

The key step is to show that an isometric extension of measure-preserving systems
admits a completely canonical topological model that is a (pseudo)isometric extension
of topological dynamical systems. The proof of this requires a new functional-analytic
characterization of structured extensions in topological dynamics as established in
[EK21], related results from ergodic theory (see [EHK21]), as well as a result of
Derrien on approximation of measurable cocycles by continuous ones (see [Der00]). The
functional-analytic view makes the parallels between the structure theory of topological
and measure-preserving dynamical systems more apparent and leads to canonical models
in a straightforward way. In addition, our methods allow us to generalize Lindenstrauss’s
result to measure-preserving transformations on arbitrary probability spaces, following up
on a recent endeavor to drop separability assumptions from classical results of ergodic
theory (see [EHK21, JT20]).

Organization of the paper. We start in §2 with the concepts of structured extensions
of topological dynamical systems. Then, based on the results of [EK21], we prove an
operator-theoretic characterization of (pseudo)isometric extensions in terms of the Koop-
man operator (see Theorem 2.8). In §3 we consider structured extensions in ergodic theory,
that is, extensions with relative discrete spectrum, and recall an important characterization
from [EHK21] (see Proposition 3.8). The major work is done in §4 where we construct
topological models for structured extensions of measure-preserving systems (see Theorem
4.6). This result is applied in the final section of the paper to show that every ergodic
distal measure-preserving system has a minimal distal topological model (see Theorem
5.9). Finally, we discuss the meaning of our result in a category-theoretical sense in
Remark 5.11.
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Preliminaries and notation. We now set up the notation and recall some important
concepts from topological dynamics and ergodic theory. The monograph [EFHN15]
serves as a general reference for the operator-theoretic approach followed in this paper.

In the following all vector spaces are complex and all compact spaces are assumed
to be Hausdorff. If E and F are Banach spaces, then L(E, F) denotes the space of all
bounded linear operators from E to F. We write L(E) := L(E, E) and E′ := L(E, C).
If T ∈ L(E, F) is a bounded operator, then T ′ ∈ L(F ′, E′) denotes its adjoint.

Given a compact space K, we write UK for the unique uniformity compatible with
the topology of K. Moreover, C(K) denotes the space of all continuous complex-valued
functions which is a unital commutative C∗-algebra (cf. [EFHN15, Ch. 4]). Using the
Markov–Riesz representation theorem (see [EFHN15, Appendix E]), we identify its dual
space C(K)′ with the space of all complex regular Borel measures on K. Likewise, if X =
(X, �, μ) is a probability space, then we write Lp(X) with 1 � p �∞ for the associated
complex Lp-spaces and identify the dual L1(X)′ with L∞(X).

A topological dynamical system (K; ϕ) consists of a compact space K and a homeo-
morphism ϕ : K → K . It is minimal if there are non-trivial closed subsets M ⊆ K with
ϕ(M) = M . Moreover, we call (K; ϕ) metrizable if the underlying compact space K is
metrizable. We refer to [Aus88] for a general introduction to such systems. Topological
dynamical systems can be studied effectively via operator theory by considering the
induced Koopman operator Tϕ ∈ L(C(K)) defined by Tϕf := f ◦ ϕ for f ∈ C(K) (see
[EFHN15, Ch. 4]). We remind the reader that Tϕ is a *-automorphism of the C∗-algebra
C(K). In fact, every *-automorphism of C(K) is a Koopman operator associated to a
uniquely determined homeomorphism of K (see [EFHN15, Theorem 4.13]). We write
Pϕ(K) ⊆ C(K)′ for the space of all invariant probability measures μ on K, that is,
T ′ϕμ = μ. Moreover, supp μ denotes the support of such a measure (see [EFHN15, pp.
82]), and we say that μ is fully supported if supp μ = K . Moreover, we write (K , μ) for
the induced probability space.

Classically, a measure-preserving point transformation is a pair (X; ϕ) of a probability
space X = (X, �X, μX) and a measurable and measure-preserving map ϕ : X→ X which
is essentially invertible, that is, there is a map ψ : X→ X such that ψ ◦ ϕ = idX =
ϕ ◦ ψ almost everywhere. We refer to [EW11, Gla03] for an introduction. Given any
measure-preserving point transformation (X; ϕ), we define the Koopman operator on the
corresponding L1-space via Tϕf := f ◦ ϕ for f ∈ L1(X). These operators are so-called
Markov lattice isomorphisms on the Banach lattice L1(X), that is, invertible isometries
T ∈ L(L1(X)) satisfying:
• |Tf | = T |f | for every f ∈ L1(X), and
• T 1 = 1.
We refer to [EFHN15, Ch. 13] for more information on such operators. If X is a
standard probability space (see [EFHN15, Definition 6.8]), then a result of von Neumann
shows that every Markov lattice isomorphism T ∈ L(L1(X)) is a Koopman operator of
a measure-preserving point transformation (see [EFHN15, Proposition 7.19 and Theorem
7.20]). For a general probability space X one can only show that such operators are induced
by transformations of the measure algebra of X (see [EFHN15, Theorem 12.10]). Here, we
avoid these measure-theoretic intricacies by defining a measure-preserving system in terms
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of operators theory. A measure-preserving system is a pair (X; T ) of a probability space X
and a Markov lattice isomorphism T ∈ L(L1(X)) (cf. [EFHN15, Definition 12.18]). It is
ergodic if the fixed space

fix(T ) := {f ∈ L1(X) | Tf = f }
is one-dimensional (cf. [EFHN15, Proposition 7.15]). We say that (X; T ) is separable
if the measure space X is separable, or equivalently, if the Banach space L1(X) is
separable.

2. Structured extensions in topological dynamics
In order to state and prove one of our main results, Theorem 4.6, we need to briefly recap
the notions of structured extensions in topological dynamics and ergodic theory together
with their different characterizations. So we start with the notion of (pseudo)isometric
extensions of topological dynamical systems and their functional-analytic characterization
in Theorem 2.8.

Definition 2.1. An extension q : (K; ϕ)→ (L; ψ) between topological dynamical
systems (K; ϕ) and (L; ψ) is a continuous surjection q : K → L such that the diagram

K

q

��

ϕ �� K

q

��
L

ψ
�� L

commutes. In this case, we call (L; ψ) a factor of (K; ϕ). We write Kl := q−1(l) for the
fiber of K over l ∈ L and define the fiber product K ×L K of K over L as

K ×L K :=
⋃
l∈L

Kl ×Kl ⊆ K ×K .

Remark 2.2. There is an equivalent functional-analytic perspective on extensions based
on Gelfand duality. Let (K; ϕ) be a topological dynamical system and call a subset M ⊆
C(K) invariant if TϕM = M . If q : (K; ϕ)→ (L; ψ) is an extension, then Tq : C(L)→
C(K), f 	→f ◦ q is an isometric *-homomorphism intertwining the Koopman operators.
Therefore, Aq := Tq(C(L)) ⊆ C(K) is an invariant unital C∗-subalgebra of C(K). On the
other hand, if A ⊆ C(K) is such an invariant unital C∗-subalgebra, then Tϕ induces a
homeomorphism ψ on the Gelfand space L of A and the embedding A ↪→ C(K) gives rise
to an extension q : (K; ϕ)→ (L; ψ) with A = Aq (see [EFHN15, Ch. 4]). Thus, instead
of looking at factors of a given system (K; ϕ), one can also examine the invariant unital
C∗-subalgebras of C(K).

We now look at structured extensions of topological dynamical systems. There are
basically two ways to start from the notion of an isometric or equicontinuous system and
relativize it to extensions: one is based on the existence of invariant (pseudo)metrics, while
the other generalizes the concept of equicontinuity (cf. [dV93, §§V.2 and V.5] and [EK21,
Definition 1.15]).
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Definition 2.3. An extension q : (K; ϕ)→ (L; ψ) of topological dynamical systems is
called:

(i) pseudoisometric if there is a family P of continuous mappings

p : K ×L K → R�0

such that:
• p|Kl×Kl is a pseudometric on Kl for every l ∈ L and p ∈ P ,
• {p|Kl×Kl | l ∈ L} generates the topology on Kl for every l ∈ L, and
• p(ϕ(x), ϕ(y)) = p(x, y) for all (x, y) ∈ K ×L K and p ∈ P ;

(ii) isometric if it is pseudoisometric and P in (i) can be chosen to only have one element
(which then defines a metric on every fiber);

(iii) equicontinuous if for every entourage V ∈ UK there is an entourage U ∈ UK such
that for every pair (x, y) ∈ K ×L K

(x, y) ∈ U ⇒ (ϕk(x), ϕk(y)) ∈ V for every k ∈ Z.

Remark 2.4. Every pseudoisometric extension is equicontinuous by [EK21, Proposition
1.17], while the converse may fail (see [EK21, Example 3.15]). However, if (K; ϕ)
(and hence also (L; ψ)) is minimal, then the two notions coincide (see [dV93,
Corollary 5.10]).

The following is a standard example of an isometric extension.

Example 2.5. (Skew-rotation) Let T := {x ∈ C | |x| = 1} and a ∈ T. We consider (K; ϕ)
defined by K := T

2 with ϕ(x, y) := (ax, xy) for (x, y) ∈ K , and (L; ψ) given by L :=
T with ψ(x) = ax for x ∈ L. Then the projection q : T2 → T onto the first component
defines an isometric extension q : (K; ϕ)→ (L; ψ).

Recall that a system (K; ϕ) is equicontinuous (see [Aus88, Ch. 2]) if and only if the
induced Koopman operator Tϕ ∈ L(C(K)) has discrete spectrum, that is, C(K) is the
closed linear hull of all eigenspaces of the Koopman operator (see, for example, [Ede19,
Proposition 1.6]). Is there a more general version of this that can be used to characterize
when an extension q : (K; ϕ)→ (L; ψ) is pseudoisometric? If (L; ψ) satisfies a mild
irreducibility condition, Theorem 2.8 below provides an affirmative answer. To state it, we
require the definition of topological ergodicity (analogous to ergodicity) and we need to
recall the module structure an extension gives rise to.

Definition 2.6. A topological dynamical system (K; ϕ) is topologically ergodic if the fixed
space

fix(Tϕ) := {f ∈ C(K) | Tϕf = f }
of the Koopman operator Tϕ ∈ L(C(K)) is one-dimensional.

Every minimal system is topologically ergodic, but the class of topologically ergodic
systems is considerably larger and contains, for example, all topologically transitive
systems.
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Remark 2.7. One of the key tools in the study of extensions of dynamical systems is the
module structure that canonically emerges from an extension and is often tacitly used.
Let q : K → L be a continuous surjection between compact spaces and Tq : C(L)→
C(K), f 	→ f ◦ q the induced isometric ∗-homomorphism. Via this embedding we can
define a multiplication

C(L)× C(K)→ C(K), (f , g) 	→ Tqf · g

that turns C(K) into a C(L)-module in a canonical way.

We now obtain the following operator-theoretic characterization of pseudoisometric
extensions in terms of a relative notion of discrete spectrum. Recall here that a module
M over a unital commutative ring R is projective if there is another module N over R such
that the direct sum M ⊕N is free, that is, has a basis.

THEOREM 2.8. Let q : (K; ϕ)→ (L; ψ) be an extension of topological dynamical
systems. Assume that (L; ψ) is topologically ergodic and q is open. Then the following
assertions are equivalent.
(a) q is pseudoisometric.
(b) The union of all closed, invariant, finitely generated, projective C(L)-submodules is

dense in C(K).
(c) The unital C∗-algebra generated by all closed, invariant, finitely generated, projec-

tive C(L)-submodules is the whole space C(K).
If K is even metrizable, then (a) can be replaced by
(a′) q is isometric.
If (L; ψ) is minimal, the assumption that q is open can be dropped.

Remark 2.9. Loosely speaking, assertions (b) and (c) of Theorem 2.8 mean that C(K) is
generated by invariant parts which are ‘small’ relative to C(L).

We remark that, except for the last statement about minimal (L; ψ), Theorem 2.8 is
a special case of [EK21, Theorem 7.2]. Thus, we only need to prove this additional
statement. To do this, we show that, in case of a minimal system (L; ψ), each of the
assertions (a) and (c) (and consequently also the stronger conditions (b) and (a′)) imply
that q is open.

We start by proving that (a) yields that the extension is open. In fact, this implication is
valid for the more general class of distal extensions (cf. [Bro79, §3.12]).

Definition 2.10. An extension q : (K; ϕ)→ (L; ψ) is distal if the following condition is
satisfied: whenever (x, y) ∈ K ×L K and (ϕnα )α∈A is a net with nα ∈ Z for α ∈ A and
limα ϕ

nα (x) = limα ϕ
nα (y), then x = y.

LEMMA 2.11. Let q : (K , ϕ)→ (L, ψ) be a distal extension of topological dynamical
systems with (L, ψ) minimal. Then q is open.
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The result is stated as a remark in [Aus13, p. 2] without proof. Since we have found a
proof in the literature only for the case of minimal (K; ϕ), we provide a proof of Lemma
2.11 based on the arguments of [Bro79, Lemma 3.14.5] and [Aus88, Theorem 10.8].

Proof of Lemma 2.11. Consider the Ellis semigroup of the system (K; ϕ) given by

E(K; ϕ) := {ϕn | n ∈ Z} ⊆ KK

where the closure is taken with respect to the topology of pointwise convergence (see
[Aus88, Ch. 3]). For every l ∈ L the set

El := {ϑ : Kl → Kl | there exists τ ∈ E(K; ϕ) with ϑ = τ |Kl } ⊆ KKl
l ,

equipped with composition of mappings and the product topology, is a compact
right-topological semigroup (see [BJM89, §1.3] or [EFHN15, Ch. 16] for this concept).
As a preliminary step, we show that these are actually groups. To this end, we recall from
the structure theory of compact right-topological semigroups that every such semigroup
contains at least one idempotent and is a group if and only if it has a unique idempotent
(see [BJM89, Theorems 2.12 and 3.11]).

Now take l ∈ L and an idempotent ϑ ∈ El (that is, ϑ2 = ϑ). For x ∈ Kl consider y :=
ϑ(x) ∈ Kl . Then ϑ(y) = ϑ2(x) = ϑ(x), which implies x = y since q is distal. Therefore,
idKl is the only idempotent in El and thus El is in fact a group.

We now prove that q is open. Take an x ∈ K and let l := q(x). Assume that (lα)α∈A is
a net in L converging to l. It suffices to show that there is a subnet (lβ)β∈B of (lα)α∈A and
xβ ∈ Klβ for every β ∈ B such that limβ xβ = x. We recall that, since (L; ψ) is minimal,
for every α ∈ A,

E(L; ψ)(lα) = {ϕn(lα) | n ∈ Z} = L.

Moreover,

E(K; ϕ)→ E(L; ψ), τ 	→ [q(y) 	→ q(τ(y))]

is a surjective homomorphism of compact right-topological semigroups by [Aus88,
Theorem 3.7]. With these two observations we find τα ∈ E(K , ϕ) with q(τα(x)) = lα
for every α ∈ A. Passing to a subnet, we may assume that (τα)α∈A converges to some
τ ∈ E(K; ϕ). Moreover, τ(x) = limα τα(x) ∈ Kl , which already implies τ(Kl) ⊆ Kl
(see [Bro79, Lemma 3.12.10]), that is, ϑ := τ |Kl ∈ El . But then xα:=(τα(ϑ−1(x)))α∈A
converges to x and xα ∈ Klα for every α ∈ A.

Since equicontinuous (and, in particular, pseudoisometric) extensions are distal (see
[Bro79, Lemma 3.12.5]), we now obtain that assertion (a) of Theorem 2.8 implies that the
extension is open if (L; ψ) is minimal. The following result combined with Lemma 2.11
shows that, for minimal (L; ψ), (c) also implies openness, which proves Theorem 2.8. In
the proof, we will use the canonical correspondence between Banach bundles and Banach
modules; the reader can find a self-contained summary of the essentials in [EK21, §4].
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LEMMA 2.12. Let q : (K , ϕ)→ (L, ψ) be an extension. Suppose that the C∗-algebra
generated by all closed, invariant, finitely generated, projective C(L)-submodules is the
whole space C(K). Then q is equicontinuous.

Proof. The uniformity on K is generated by the sets Uf ,ε which, for f ∈ C(K) and ε > 0,
are defined as

Uf ,ε:={(x, y) ∈ K ×K | |f (x)− f (y)| < ε}.
Our assumption therefore yields that q is equicontinuous if and only if the assertion
following holds. For every C(L)-submodule M ⊆ C(K) that is closed, invariant, finitely
generated, and projective, for every f ∈ M and every ε > 0, we find an entourageU ∈ UK
such that

for all (x, y) ∈ K ×L K : (x, y) ∈ U ⇒ |f (ϕk(x))− f (ϕk(y))| < ε for all k ∈ Z.

It suffices to show the claim only for f ∈ M with ‖f ‖ � 1. By looking at finitely many
generators for M, we will in fact be able to show that the uniformity U can be chosen
uniformly for all f ∈ M with ‖f ‖ � 1. We will do so by constructing a continuous
pseudometric p : K ×K → R�0 from M such that

for all f ∈ M ∩ B1(0), for all x, y ∈ K : |f (x)− f (y)| � p(x, y).

The desired uniformity is then given by U = {(x, y) ∈ K ×K | p(x, y) < ε}. To do this,
we exploit the fact that there is a one-to-one correspondence between projective, finitely
generated C(L)-modules and locally trivial vector bundles over L: by [Gie82, Theorem 8.6
and Remark 8.7] and [EK21, Example 4.5], the vector spaces

Ml := {f |Kl | l ∈ L} ⊆ C(Kl)

for l ∈ L define a Banach bundle over L (see [Gie82] or [DG83] for this concept). This
is locally trivial by [EK21, Lemma 4.13], which—using [Gie82, Proposition 17.2 and
Corollary 4.5]—can be characterized in the following way.
• There are closed subsets L1, . . . , Lm ⊆ L with L =⋃m

j=1 Lj .
• For every n ∈ {1, . . . , m} there are sn,1, . . . , sn,kn ∈ M such that

�n : C(Ln)kn → M|q−1(L), (f1, . . . , fkn) 	→
kn∑
j=1

fj sn,j |q−1(Ln)

is a C(Ln)-linear (not necessarily isometric) isomorphism between the product Banach
space C(Ln)kn with the maximum norm and the subspace M|q−1(Ln)

⊆ C(q−1(Ln)).
For every n ∈ {1, . . . , m} we now consider the continuous seminorm

pn : K ×K → R�0, (x, y) 	→
kn∑
j=1

|sn,j (x)− sn,j (y)|

and show that there is a constant C > 0 such that

|f (x)− f (y)| � C · max
n=1,...,m

pn(x, y)

for all (x, y) ∈ K ×L K and f ∈ M with ‖f ‖ � 1. This will finish the proof.
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It suffices to show that for every n ∈ {1, . . . , m} there is a constant Cn > 0 such that
the inequality

|f (x)− f (y)|� Cn · pn(x, y)

holds for every pair (x, y) ∈ K ×L K with q(x) = q(y) ∈ Ln, and every f ∈ M with
‖f ‖ � 1. We fix n ∈ {1, . . . , m} and set Cn := ‖�−1

n ‖ > 0. For (x, y) ∈ K ×L K with
l := q(x) = q(y) ∈ Ln we then obtain, for all f1, . . . , fkn ∈ C(Ln),

|�(f1, . . . , fkn)(x)−�(f1, . . . , fkn)(y)| �
kn∑
j=1

|fj (l)(sn,j (x)− sn,j (y))|

� ‖(f1, . . . , fkn)‖ · pn(x, y).

Since �n is an isomorphism, we conclude that

|f (x)− f (y)| � Cn · pn(x, y)

for every pair (x, y) ∈ K ×L K with q(x) = q(y) ∈ Ln, and every f ∈ M with ‖f ‖ � 1.
This is the desired inequality.

3. Structured extensions in ergodic theory
We now turn to structured extensions of measure-preserving systems. In our operator-
theoretic language the following is the natural definition of an extension in ergodic theory.
Recall here that if X and Y are probability spaces, then an isometry J ∈ L(L1(Y), L1(X))
is a Markov embedding (or Markov lattice homomorphism) if:
• |Jf | = J |f | for every f ∈ L1(Y);
• J1 = 1.

Definition 3.1. An extension (or morphism) J : (Y; S)→ (X; T ) of measure-preserving
systems is a Markov embedding J ∈ L(L1(Y), L1(X)) such that the diagram

L1(X) T �� L1(X)

L1(Y)

J

��

S
�� L1(Y)

J

��

commutes. If J is also bijective, then it is an isomorphism of measure-preserving systems.

Remark 3.2. Given any Markov lattice homomorphism J ∈ L(L1(Y), L1(X)) for proba-
bility spaces X and Y, the adjoint J ′ ∈ L(L∞(X), L∞(Y)) extends uniquely to a bounded
positive operator EY ∈ L(L1(X), L1(Y)) satisfying EY((Jf ) · g) = f · EY(g) for all f ∈
L∞(Y) and g ∈ L1(X) (see [EFHN15, §13.3]). We call EY the conditional expectation
operator associated with J. If J is an extension of measure-preserving systems, then EY

intertwines the dynamics.

Remark 3.3. As in the topological setting, we obtain a canonical module structure (cf.
Remark 2.7). Indeed, if f1, f2 ∈ L∞(Y), then J (f1 · f2) = J (f1) · J (f2) (see [EFHN15,
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§13.2]) and this implies that the multiplication

L∞(Y)× L1(X)→ L1(X), (f , g) 	→ J (f ) · g
turns L1(X) into a module over L∞(Y). For every p ∈ [1,∞] the space Lp(X) is a
L∞(X)-submodule of L1(X).

As in topological dynamics, there are several notions of ‘structured extensions’ in
ergodic theory. We use the following one, implicitly used by Ellis in [Ell87] and inspired by
the classical notion of discrete spectrum for measure-preserving systems. Here, as above,
a subset M ⊆ L1(X) is invariant if T (M) = M .

Definition 3.4. An extension J : (Y; S)→ (X; T ) of measure-preserving systems has
relative discrete spectrum if the union of all finitely generated invariant submodules of
L∞(X) over L∞(Y) is dense in L1(X).

Example 3.5. Consider the skew-rotation q : (K; ϕ)→ (L; ψ) of Example 2.5. By
equipping the torus L = T with the Haar measure ν and its product K = T

2 with
the product measure μ = ν × ν, we arrive at an extension (L, ν; Tψ)→ (K , μ; Tϕ) of
measure-preserving systems which has relative discrete spectrum (see [EHK21, Example
6.12]). More generally, homogenous skew-products are prototypical examples of exten-
sions with relative discrete spectrum (see, for example, [Zim76] and [Ell87, §§4 and 5]).

Equivalent definitions of relative discrete spectrum are listed in [EHK21, Proposition
6.13]. We need one using modules with an orthonormal basis which uses the idea that

L∞(X)× L∞(X)→ L∞(Y), (f , g) 	→ EY(f g)

can be thought of as an L∞(Y)-valued inner product. We refer to [EHK21] for a systematic
approach to this idea in terms of Hilbert modules.

Definition 3.6. Let J : (Y; S)→ (X; T ) be an extension of measure-preserving systems.
A finite subset {e1, . . . , en} ⊆ L∞(X) is Y-orthonormal if EY(ei · ej ) = δij1 ∈ L∞(Y)
for i, j ∈ {1, . . . , n}. In this case we say that e1, . . . , en is a Y-orthonormal basis of the
L∞(Y) -module generated by e1, . . . , en.

Remark 3.7. If {e1, . . . , en} ⊆ L∞(X) is a Y-orthonormal basis of an L∞(Y)-submodule
M as in Definition 3.6, then every f ∈ M can be written as

f =
n∑
j=1

EY(f · ej )ej .

With this observation it is readily checked that any submodule M ⊆ L∞(X) having a
Y-orthonormal basis is automatically a free (and, in particular, projective) module and
closed in L∞(X).

The following result (see [EHK21, Proposition 8.5 and Lemmas 8.3 and 6.8] or
[Ell87, Remark 5.16 (1)]) shows that for extensions of ergodic systems with relative
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discrete spectrum there exist ‘many’ invariant finitely generated submodules with an
Y-orthonormal basis.

PROPOSITION 3.8. Let J : (Y; S)→ (X; T ) be an extension of ergodic measure-
preserving systems. Then the following assertions are equivalent.
(a) J has relative discrete spectrum.
(b) The union of all finitely generated invariant L∞(Y)- submodules of L∞(X) having a

Y-orthonormal basis is dense in L1(X).

4. Topological models for structured extensions
Comparing Theorem 2.8 and Proposition 3.8 (combined with Remark 3.7) makes the
parallelisms between structured extensions in topological dynamics and ergodic theory
apparent. We now study the relation between both worlds. Recall first that, as in Example
3.5, we can always construct extensions of measure-preserving systems from extensions of
topological dynamical systems by picking an invariant measure.

Definition 4.1. Let q : (K; ϕ)→ (L; ψ) be an extension of topological dynamical sys-
tems. Moreover, letμ ∈ Pϕ(K) be an invariant probability measure on K and q∗μ ∈ Pψ(L)
its pushforward, that is, q∗μ = T ′qμ. Then the extension

Tq : (L, q∗μ; Tψ)→ (K , μ; Tϕ), f 	→ f ◦ q
is the extension of measure-preserving systems induced by (q, μ).

With the help of Theorem 2.8 we now immediately obtain the following proposition.

PROPOSITION 4.2. Assume that q : (K; ϕ)→ (L; ψ) is an open pseudoisometric exten-
sion with a topologically ergodic system (L; ψ). For every μ ∈ Pϕ(K) the induced
extension Tq : (L, q∗μ; Tψ)→ (K , μ; Tϕ) has relative discrete spectrum.

Proof. By Theorem 2.8 the union of all closed, invariant, finitely generated, projective
C(L)-submodules is dense in C(K) and, via the canonical map C(K)→ L1(K , μ), also
dense in L1(K , μ). However, if M is a finitely generated invariant C(L) submodule
of C(K) with generators e1, . . . , en, then the L∞(L, q∗μ)-submodule of L∞(K , μ)
generated by the canonical images of e1, . . . , en in L∞(K , μ) is also invariant. This shows
the claim.

In particular, by Lemma 2.11 we can construct extensions with relative discrete
spectrum from pseudoisometric extensions of minimal topological dynamical systems.
In the remainder of this section we study the converse situation. Given an extension
J : (Y; S)→ (X; T ) of measure-preserving systems with relative discrete spectrum, can
we find a pseudoisometric topological model? In order to make this question precise, we
recall the following definition (cf. [Gla03, §2.2] and [EFHN15, Ch. 12]).

Definition 4.3. Let Ji : (Yi ; Si)→ (Xi ; Ti) be extensions of measure-preserving systems
for i = 1, 2. An isomorphism from J1 to J2 is a pair (�, �) of an isomorphism
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� : (Y1; S1)→ (Y2; S2) and an isomorphism � : (X1; T1)→ (X2; T2) such that the
diagram

L1(X1)
� �� L1(X2)

L1(Y1)

J1

��

�
�� L1(Y2)

J2

��

commutes.
If J : (Y; S)→ (X; T ) is an extension of measure-preserving systems, then a topolog-

ical model for J is a pair (q, μ; �, �) such that
• q : (K; ϕ)→ (L; ψ) is an extension of topological dynamical systems;
• μ ∈ Pϕ(K) is a fully supported invariant probability measure; and
• (�, �) is an isomorphism from the extension Tq induced by (q, μ) to J.

Remark 4.4. We use the following observation to construct topological models. If
(q, μ; �, �) is a topological model for J : (Y; S)→ (X; T ) with q : (K; ϕ)→ (L; ψ),
then

Aq,μ := �(C(L)) ⊆ L∞(Y) and Bq,μ := �(C(K)) ⊆ L∞(X)

are invariant unital C∗-subalgebras of L∞(Y) and L∞(X), respectively, being dense in the
corresponding L1-spaces. Moreover, J (A) ⊆ B. Conversely, by Gelfand’s representation
theory, for every pair (A, B) of L1-dense invariant unital C∗-subalgebras A ⊆ L∞(Y) and
B ⊆ L∞(X) with J (A) ⊆ B, we can construct, in a canonical way, a topological model
(q, μ; �, �) for J such that A = Aq,μ and B = Bq,μ (cf. [EFHN15, Ch. 12]).

Using Theorem 2.8 and Proposition 3.8 we can always find a pseudoisometric topo-
logical model for extensions of ergodic measure-preserving systems with relative discrete
spectrum.

THEOREM 4.5. Let J : (Y ; S)→ (X; T ) be an extension of ergodic measure-preserving
systems with relative discrete spectrum. Then J has a topological model (q, μ; �; �) such
that q : (K; ϕ)→ (L; ψ) is an open pseudoisometric extension with (K; ϕ) topologically
ergodic.

Proof. We define A := L∞(Y) and take B as the unital C∗-algebra generated by all
invariant, finitely generated, projective L∞(Y)-submodules of L∞(X) which are closed
in L∞(X). Clearly, A is dense L1(Y), and, in view of Remark 3.7 and Proposition 3.8, B is
also dense in L1(X). By Remark 4.4 we find a topological model (q, μ; �, �) for J where
q : (K; ϕ)→ (L; ψ) is an extension of topological dynamical systems. We obtain that
�(C(L)) = A = L∞(Y). Since the system (X; T ) is ergodic, fix(Tϕ) is one-dimensional
and therefore (K; ϕ) is topologically ergodic. Also, since we have chosen A to be the
whole space L∞(Y), the induced extension q is open by [Ell87, Corollary 1.9]. Finally,
since B = �(C(K)) we obtain that C(K) is generated as a unital C*-algebra by all closed,
invariant, finitely generated, projective C(L)-submodules. Thus, q is pseudoisometric by
Theorem 2.8.
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Note that the construction of the topological model in the proof of Theorem 4.5 is
completely canonical. However, it is still unsatisfactory in some ways. For example, by
relying on the ‘Stone model’ (that is, the topological model for the algebra A = L∞(Y))
in the proof of Theorem 4.5, we cannot find metrizable models for extensions between
separable probability spaces since L∞(Y) is only separable if it is finite-dimensional.
A yet more serious problem is that, given two extensions J1 : (Z; R)→ (Y; S) and
J2 : (Y; S)→ (X; T ) with relative discrete spectrum, Theorem 4.5 does not allow us to
construct pseudoisometric models q1 and q2 which ‘fit together’ since in Theorem 4.5
the base of the constructed extension is the Stone model. This will be essential in the
construction of distal models by means of successive extensions. The following result fixes
these problems, at least in certain situations, by allowing us to impose that the topological
model at the bottom of an extension be any specific given topological model instead of the
Stone model.

Recall that a measure ν ∈ Pψ(L) is called ergodic if the induced measure-preserving
system (L, ν; Tψ) is ergodic.

THEOREM 4.6. Let (L; ψ) be a minimal topological dynamical system, ν ∈ Pψ(L) a fully
supported ergodic measure and J : (L, ν; Tψ)→ (X; T ) an extension of ergodic systems
with relative discrete spectrum. Then there are

(i) an open pseudoisometric extension q : (K; ϕ)→ (L; ψ),
(ii) a fully supported ergodic measure μ ∈ Pϕ(K) with q∗μ = ν, and

(iii) an isomorphism � : (K , μ; Tϕ)→ (X; T ),
such that (q, μ; Id, �) is a topological model for J. Moreover, if X is separable and L
is metrizable, then K can be (non-canonically) chosen to be metrizable such that q is an
isometric extension.

The challenge in proving Theorem 4.6 is, given an abundance of finitely generated
invariant L∞(L, ν)-submodules, to find an abundance of finitely generated invariant
C(L)-submodules. It is non-trivial that this can be done, and it is this and only this point
that forces us to restrict to Z-actions in this paper. The following lemma shows that,
at least for Z-actions, finitely generated invariant L∞(L, ν)-submodules can indeed be
approximated by finitely generated invariant C(L)-submodules.

LEMMA 4.7. Let (L; ψ) be a topological dynamical system, ν ∈ Pψ(L) fully supported
and ergodic, and J : (L, ν; Tψ)→ (X; T ) an extension. Let M ⊆ L∞(X) be an invariant
L∞(L, ν)-submodule with orthonormal basis {e1, . . . , en}. For every ε > 0 there is an
(L, ν)-orthonormal set {d1, . . . , dn} ⊆ M such that:
(i) the C(L)-submodule generated by d1, . . . , dn is invariant (as well as closed in

L∞(X) and projective); and
(ii) ‖di − ei‖L1(X) � ε for all i ∈ {1, . . . , n}.

The proof rests on the following approximation result which is, in essence, due to
Derrien (see [Der00]). It shows that, given a measurable map with values in the compact
group U(n) of unitary n× n matrices, one can find an arbitrarily close continuous map
that is cohomologous (cf. [Lin99, Theorem 3.1]).
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LEMMA 4.8. Let (L; ψ) be a metrizable topological dynamical system and μ ∈ Pψ(L)
fully supported and ergodic. Assume that F : L→ U(n) is a Borel measurable map. For
every ε > 0 there are a Borel measurable map G : L→ U(n) and a continuous map H :
L→ U(n) such that:
(i) ν({l ∈ L | G(l) �= Id}) � ε; and

(ii) (G ◦ ψ) · F ·G−1 = H almost everywhere.

Proof. If ν has no atoms, then [Der00, Theorem 1.1] shows the existence of a Borel
measurable map G : L→ U(n) satisfying (ii). However, an inspection of the proof (see
the remarks after [Der00, Theorem 1.2]) reveals that for a given ε > 0 one can also
ensure (i).

Now assume that ν has an atom. Then there is a periodic finite orbit of measure one and
therefore, since ν is fully supported, L is a discrete finite space. In particular, every (Borel
measurable) map G : L→ U(n) is continuous and there is nothing to prove.

Proof of Lemma 4.7. As a first step, we reduce the problem to the case of a metrizable
space L. So let M ⊆ L∞(X) be a finitely generated invariant L∞(L, ν)-submodule with
orthonormal basis e1, . . . , en. Then

T ei =
n∑
j=1

fij ej for every i ∈ {1, . . . n},

where fij :=E(L,ν)(T ei · ej ) ∈ L∞(L, ν) for i, j ∈ {1, . . . , n} (see Remark 3.7). Let B ⊆
L∞(L, ν) be the unital invariant C*-subalgebra generated by the coefficients fij for
i, j ∈ {1, . . . n}. Then B is separable. Since C(L) is dense in L1(L, ν), we find a separable
invariant C*-subalgebra A of C(L), the L1-closure of which contains B. The canonical
inclusion map A ↪→ C(L) induces an extension q : (L; ψ)→ (M; ϑ) (see Remark 2.2),
that is, Tq(C(M)) = A. Since A is separable, the space M is metrizable (see [EFHN15,
Theorem 4.7]). We equip M with the pushforward measure q∗ν. Then Tq defines an
extension Tq : ((M , q∗ν); Tϑ)→ ((L, ν); Tψ). In particular, we obtain a new extension
JTq : ((M , q∗ν); Tϑ)→ (X; T ) and L1(X) is thus a L∞(M , q∗ν)-module (cf. Remark
3.3). By choice of A, the L∞(M , q∗ν)-submodule generated by e1, . . . , en is still invariant.
Replacing (L; ψ) by (M; ϑ) and ν by q∗ν, we may therefore assume that L is metrizable.

Next, we show that we can pick representatives for the coefficients fij ∈ L∞(L, ν)
which define a U(n)-valued function. To that end, note that

n∑
k=1

fikfjk = E(L,ν)(T ei · T ej ) = TψE(L,ν)(eiej ) = Tψδij1 = δij1.

Picking suitable representatives for fij ∈ L∞(Y) for i, j ∈ {1, . . . , n}, which we denote
by the same symbol, we therefore obtain a Borel measurable map

F : L 	→ U(n), l 	→ (fij (l))i,j

from L to U(n). For ε > 0 set

δ := ε · [2n ·max{‖ei‖L∞(X) | i ∈ {1, . . . , n}}]−1.

https://doi.org/10.1017/etds.2022.53 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2022.53


Distal systems in topological dynamics and ergodic theory 2665

Apply Lemma 4.8 to find a Borel measurable map

G : L→ U(n), l 	→ (gij (l))i,j

and a continuous map

H : L→ U(n), l 	→ (hij (l))i,j

such that:
(i) ν({l ∈ L | G(l) �= Id}) � δ; and

(ii) (G ◦ ψ) · F = H ·G almost everywhere.
Now consider the elements di :=∑n

k=1 gikek ∈ M ⊆ L∞(X) for i ∈ {1, . . . , n}. Since

T di =
n∑
k=1

(Tψgik) · T ek =
n∑
k=1

n∑
j=1

(Tψgik) · fkj · ej

=
n∑
j=1

( n∑
k=1

(Tψgik) · fkj
)
ej =

n∑
j=1

( n∑
k=1

hikgkj

)
ej =

n∑
k=1

hikdk

for every i ∈ {1, . . . n}, the C(L)-submodule of L∞(X) generated by d1, . . . , dn is
invariant. Moreover, a quick computation confirms that E(L,ν)(didj ) = δi,j1 for i, j ∈
{1, . . . , n}, which shows that {d1, . . . , dn} is an (L, ν)-orthonormal set. In particular,
the C(L)-submodule generated by d1, . . . , dn is free and hence closed in L∞(X) and
projective. Finally, since ν({l ∈ L | G(l) �= Id}) � δ we obtain, for i ∈ {1, . . . , n},

‖di − ei‖L1(X) = ‖E(L,ν)(di − ei)‖L1(L,ν) =
∥∥∥∥

n∑
k=1

gikE(L,ν)ek − E(L,ν)ei

∥∥∥∥
L1(L,ν)

� δ ·
∥∥∥∥

n∑
k=1

gikE(L,ν)ek − E(L,ν)ei

∥∥∥∥
L∞(L,ν)

� δ ·
∥∥∥∥

n∑
k=1

gikek − ei
∥∥∥∥

L∞(X)
� ε.

We can now prove Theorem 4.6.

Proof of Theorem 4.6. Let B be the unital C∗-subalgebra generated by all closed,
invariant, finitely generated, projective C(L)-submodules of L∞(X). We show that B
is dense in L1(X). Since J has relative discrete spectrum, it suffices to approximate
elements f contained in a finitely generated L∞(L, ν)-submodule of L∞(X) with an
orthonormal basis (see Proposition 3.8). Take an orthonormal basis {e1, . . . , en} of
such a module M. Let f =∑n

i=1 fiei ∈ M for f1, . . . , fn ∈ L∞(L, ν) and ε > 0. Set
c1 :=∑n

i=1‖fi‖L∞(L,ν) + 1 > 0. Using Lemma 4.7, we find an (L, ν)-orthonormal set
{d1, . . . , dn} ⊆ M such that its C(L)-linear hull N is invariant and

‖di − ei‖L1(X) �
ε

2c1
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for all i ∈ {1, . . . , n}. Set c2 :=∑n
i=1‖di‖L∞(X) + 1 > 0. Since C(L) is dense in

L1(L, ν), we now also find g1, . . . , gn ∈ C(L) such that

‖fi − gi‖L1(L,ν) �
ε

2c2
.

For g :=∑n
i=1 gidi ∈ N we then obtain

‖f − g‖L1(X) �
n∑
i=1

‖fi‖L∞(L,ν)‖ei − di‖L1(X) +
n∑
i=1

‖fi − gi‖L1(L,ν)‖di‖L∞(X)

� ε.

Since N is a closed, invariant, finitely generated, projective C(L)-submodule of L∞(X)
(use Remark 3.7), this shows that B is dense in L1(X). By Gelfand theory we now find
an extension q : (K; ϕ)→ (L; ψ), an ergodic measure μ ∈ Pϕ(K) with q∗μ = ν and
an isomorphism � : (K , μ; Tϕ)→ (X; T ) with �(C(L)) = B such that (q, μ; Id, �) is
a topological model for J (see Remark 4.4). By definition of B and Theorem 2.8, the
extension q is pseudoisometric.

Finally, assume that X is separable and L is metrizable. Then we find a sequence
(Mn)n∈N of finitely generated L∞(L, ν)-submodules of L∞(X) with an orthonormal
basis such that their union is dense in L1(X). For every n ∈ N we find a sequence
(Nn,k)k∈N of closed, invariant, finitely generated, projective C(L)-submodules contained
in Mn the union of which is dense in Mn with respect to the L1-norm. Let B the unital
C∗-subalgebra of L∞(X) generated by {Nn,k | n, k ∈ N}. Since C(L) is separable (see
[EFHN15, Theorem 4.7]), Nn,k is separable for all n, k ∈ N. Therefore B is separable.
Proceeding as above yields a pseudoisometric extension q : (K; ϕ)→ (L; ψ), an ergodic
measure μ ∈ Pϕ(K) with q∗μ = ν and an isomorphism � : (K , μ; Tϕ)→ (X; T ) with
�(C(L)) = B such that (q, μ; Id, �) is a topological model for J. Again using [EFHN15,
Theorem 4.7], we conclude that K is metrizable and therefore q is isometric (see
Theorem 2.8).

5. Topological models for distal systems
With the help of Theorem 4.6, we now prove the existence of minimal distal topological
models for ergodic distal measure-preserving systems. Recall that a topological dynamical
system (K; ϕ) is distal if the extension q : (K; ϕ)→ ({pt}; id) over a one-point system
is distal in the sense of Definition 2.10, that is, if the following condition is satisfied:
whenever (x, y) ∈ K ×K and (ϕnα )α∈A is a net with limα ϕ

nα (x) = limα ϕ
nα (y), then

x = y.
A typical example of a distal system is the skew-torus discussed in Example 2.5 which is

given by an isometric extension of an isometric system. Put differently, it can be built from
a trivial system by performing two isometric extensions. Furstenberg’s structure theorem
extends this observation, stating that in fact any minimal distal system can be built up
from a trivial system via successive (pseudo)isometric extensions and projective limits.
We recall the latter concept (see also [dV93, §E.12]).
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Definition 5.1. Let I be a directed set. For every i ∈ I let (Ki ; ϕi) be a topological
dynamical system, and for i � j let qji : (Kj ; ϕj )→ (Ki ; ϕ) be an extension. Assume
that:
(i) q

j
i ◦ qkj = qki for all i � j � k; and

(ii) qii = idKi for every i ∈ I .

Then the pair (((Ki ; ϕi))i∈I , (qji )i�j ) is a projective system.
A topological dynamical system (K; ϕ), together with extensions qi : (K; ϕ)→

(Ki ; ϕi) for every i ∈ I such that qi = qji ◦ qj for all i � j , is a projective limit of
(((Ki ; ϕi))i∈I , (qji )i�j ) if it satisfies the following universal property.
• Whenever (K̃; ϕ̃) is a topological dynamical system and pi : (K̃; ϕ̃)→ (Ki ; ϕi) are

extensions for every i ∈ I such that pi = qji ◦ pj for all i � j , then there is a unique
extension q : (K̃; ϕ̃)→ (K; ϕ) such that the diagram

(K; ϕ)

qi

��

(K̃; ϕ̃)
q��

pi�����
���

���
�

(Ki ; ϕi)

commutes for every i ∈ I .
In this case, we write

(K; ϕ) = lim←−
i

(Ki ; ϕi).

Remark 5.2. Every projective system (((Ki ; ϕi))i∈I , (qji )i�j ) has a projective limit, and
it is unique up to isomorphy. In fact, we obtain a concrete construction of a projective limit
by considering the dynamics on the compact space{

(xi)i∈I ∈
∏
i∈I

Ki

∣∣∣∣ πji (xj ) = xi for all i � j

}

induced by the product action on
∏
i∈I Ki (see [EFHN15, Exercise 2.18]). Moreover, if

(Ki ; ϕi) is minimal for every i ∈ I , then every projective limit of (((Ki ; ϕi))i∈I , (qji )i�j )
is also minimal (see [EFHN15, Exercise 3.19]).

Remark 5.3. The following is an operator-theoretic view of projective limits. Suppose
that (((Ki ; ϕi))i∈I , (qji )i�j ) is a projective system and (K; ϕ), together with extensions
qi : (K; ϕ)→ (Ki ; ϕi) for i ∈ I , is a projective limit. Then the corresponding invariant
unital C∗-subalgebras Ai := Tqi (C(Ki)) for i ∈ I (see Remark 2.2) satisfy:
(i) Ai ⊆ Aj for i � j ; and

(ii) the union ⋃
i∈I

Ai

is dense in C(K)
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(see [EFHN15, Exercise 4.16]). Conversely, assume that (Ai)i∈I is a net of invariant unital
C∗-subalgebras Ai ⊆ C(K) for i ∈ I satisfying (i) and (ii). For every i ∈ I we then find
an extension qi : (K; ϕ)→ (Ki ; ϕi) such that Ai = Tqi (C(Ki)) (see Remark 2.2) and the
canonical inclusion mapsAi ↪→ Aj for i � j induce extensions qji : (Kj ; ϕj )→ (Ki ; ϕi)
between the associated systems. A moment’s thought reveals that (K; ϕ) is a projective
limit of the projective system (((Ki ; ϕi))i∈I , (qji )i�j ).

The observations discussed in Remark 5.3 are helpful for showing that a system is a
projective limit of certain factors with specific properties. We demonstrate this by proving
the following lemma which will soon be important.

LEMMA 5.4. Let (K; ϕ) be a topological dynamical system. Then there are
(i) an inductive system (((Ki ; ϕi))i∈I , (qji )i�j ) of metrizable systems, and

(ii) extensions qi : (K; ϕ)→ (Ki ; ϕi) for every i ∈ I ,
such that (K; ϕ) together with the extensions qi for i ∈ I is a projective limit of
(((Ki ; ϕi))i∈I , (qji )i�j ).

Proof. Let I be the family of finite subsets of C(K) ordered by set inclusion. For every i ∈
I letAi be the invariant unital C∗-subalgebra generated by i. ThenAi is separable for every
i ∈ I and the net (Ai)i∈I satisfies properties (i) and (ii) of Remark 5.3. By Remark 5.3 we
therefore find a projective system (((Ki ; ϕi))i∈I , (qji )i�j ) and extensions qi : (K; ϕ)→
(Ki ; ϕi) for i ∈ I such that (K; ϕ) is a projective limit of (((Ki ; ϕi))i∈I , (qji )i�j ) and
Tqi (C(Ki)) = Ai for every i ∈ I . Since Ai is separable, Ki is metrizable for every i ∈ I
(see [EFHN15, Theorem 4.7]), which proves the claim.

Let us now recall the famous Furstenberg structure theorem for minimal distal systems
(see [Aus88, Ch. 7] and [dV93, §V.3]).

THEOREM 5.5. For a minimal system (K; ϕ) the following assertions are equivalent.
(a) The system (K; ϕ) is distal.
(b) There are an ordinal η0 and a projective system (((Kη; ϕη))η�η0 , (qση )η�σ ) such

that:
(i) (K1; ϕ1) is a trivial system ({pt}; id);

(ii) q
η+1
η is pseudoisometric for every η < η0;

(iii) (Kη; ϕη) = limγ<η(Kγ ; ϕγ ) for every limit ordinal η � η0.

One can take part (b) of Theorem 5.5 as an inspiration for the concept of measurably
distal systems. To formulate this concept, we briefly recall the notion of inductive limits
for measure-preserving systems (see [EFHN15, §13.5]).

Definition 5.6. Let I be a directed set. For every i ∈ I , let (Xi ; Ti) be a measure-preserving
system, and for i � j let J ji : (Xi ; Ti)→ (Xj ; Tj ) be an extension. Suppose that:

(i) J kj J
j
i = J ki for i � j � k; and

(ii) J ii = Id for every i ∈ I .

Then the pair (((Xi ; Ti))i∈I , (J ji )i�j ) is an inductive system.
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A measure-preserving system (X; T ), together with extensions Ji : (Xi ; Ti)→ (X; T )
such that Ji = JjJ ji for i � j , is an inductive limit of (((Xi ; Ti))i∈I , (J ji )i�j ) if it satisfies
the following universal property.
• Whenever (Y; S) is a measure-preserving system and Ii : (Xi ; Ti)→ (Y; S) are

extensions with Ii = Ij J ji for i � j , then there is a unique extension J : (X; T )→
(Y; S) such that the diagram

(Y; S)

(Xi ; Ti)

Ii

�����������

Ji

�� (X; T )

J

��

commutes for every i.
We then write

(X; T ) = lim−→
i

(Xi ; Ti).

Every inductive system has an inductive limit (see [EFHN15, Theorem 13.38]) and it is
unique up to isomorphy. We now recall the definition of distal systems used by Furstenberg
[Fur77, Definition 8.3].

Definition 5.7. A measure-preserving system (X; T ) is distal if there are an ordinal η0 and
an inductive system (((Xη; Tη))η�η0 , (J ση )η�σ ) such that:

(i) (X1; T1) is a trivial system ({pt}; Id);
(ii) J

η+1
η has relatively discrete spectrum for every η < η0;

(iii) (Xη; Tη) = limμ<η(Xμ; Tμ) for every limit ordinal μ � η0.

Remark 5.8. If X is a standard probability space, then there is an equivalent definition in
terms of so-called separating sieves (see [Par68] and [Zim76, Theorem 8.7]).

The measure-preserving system given by the skew-torus (see Example 3.5) is a standard
example for a distal measure-preserving system. By definition, it is obtained by equipping
a topologically distal system with an invariant probability measure. Our main result,
generalizing [Lin99, Theorem 4.4], shows that, up to an isomorphism, every ergodic distal
system can be obtained in this way. Moreover, the proof reveals a canonical choice for such
a minimal distal model of a given distal ergodic measure-preserving system.

THEOREM 5.9. Let (X; T ) be an ergodic distal measure-preserving system. Then there
are a minimal distal topological dynamical system (K; ϕ) and a fully supported ergodic
measure μ ∈ Pϕ(K) such that (X; T ) is isomorphic to (K , μ; Tϕ). If X is separable, then
K can be (non-canonically) chosen to be metrizable.

The following lemma (cf. the proof of [Lin99, Theorem 4.4]) is the last missing
ingredient for the proof of Theorem 5.9.

LEMMA 5.10. If (K; ϕ) is a distal topological dynamical system and there is a fully
supported ergodic measure μ ∈ Pϕ(K), then (K; ϕ) is minimal.
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Proof. Assume first that K is metrizable. Then the existence of a fully supported ergodic
measure guarantees the existence of a point x ∈ K with dense orbit {ϕn(x) | n ∈ Z}, use
Poincaré recurrence or Birkhoff’s ergodic theorem (see [KH95, Proposition 4.1.13]). But
then (K; ϕ) is already minimal since a distal system decomposes into a disjoint union of
minimal systems (see [Aus88, Corollary 7]).

If K is not metrizable, we use Lemma 5.4 to write (K; ϕ) as a projective limit of
metrizable factors (Ki ; ϕi) for i ∈ I . Since (Ki ; ϕi) is distal and admits a fully supported
ergodic measure (recall that the pushforward of an ergodic measure is again ergodic), we
obtain that (Ki ; ϕ) is minimal for every i ∈ I . Using that a projective limit of minimal
systems is minimal (see Remark 5.2), we obtain that (K; ϕ) is itself minimal.

Proof of Theorem 5.9. For an ergodic distal measure-preserving system (X; T ) take an
ordinal η0 and an inductive system

(((Xη; Tη))η�η0 , (J ση )η�σ )

as in Definition 5.7. Moreover, we write Jη : (Xη; Tη)→ (X; T ) for the corresponding
extensions for every η � η0. We now recursively construct
• a projective system (((Kη; ϕη))η�η0 , (qση )η�σ ),
• ergodic measures μη ∈ Pϕη(Kη) for every η � η0, and
• isomorphisms �η : (Kη, μη; Tϕη)→ (Xη; Tη) for every η � η0,
such that (qση , μσ ; �η, �σ ) is a topological model for J ση for all η � σ � η0 and such that
(((Kη; ϕη))η�η0 , (qση )η�σ ) is a projective system of minimal distal systems satisfying all
the properties of Theorem 5.5(b). From this the claim follows.

Let (K1; ϕ1) be a trivial system ({pt}; id), μ1 the unique probability measure on K1

and �1 : (K1, μ1; Tϕ1)→ (X1; T1) the identity operator. Now assume that η � η0 is an
ordinal and suppose we have already constructed (Kγ ; ϕγ ) for every γ < η; qσγ for γ �
σ < η; μγ for γ < η; and �γ for γ < η. We have to consider two cases.
(i) Assume that η is a successor ordinal, that is, η = γ + 1 for an ordinal γ . Since

(Kγ , μγ ; Tϕγ ) is isomorphic to (Xγ ; Tγ ) via �γ , we can apply Theorem 4.6 to
find
• a pseudoisometric extension qηγ : (Kη; ϕγ )→ (Kγ ; ϕγ ),
• a fully supported ergodic measure μη ∈ Pϕη(Kη) with (qηγ )∗μη = μγ , and
• an isomorphism �η : (Kη, μη; Tϕη)→ (Xη; Tη),
such that (qηγ , μη; �γ , �η) is a topological model for J ηγ . Since (Kγ ; ϕγ ) is distal
and qηγ is pseudoisometric, the system (Kη; ϕη) is also distal. Moreover, (Kη; ϕη) is
minimal by Lemma 5.10. We set qησ := qγσ ◦ qηγ for every σ < γ .

(ii) If η � η0 is a limit ordinal, we let (Kη; ϕη), together with maps qηγ : (Kη; ϕη)→
(Kγ ; ϕγ ) for γ < η, be a projective limit of the projective system (((Kγ ; ϕγ ))γ<η,
(qσγ )γ�σ ). Moreover, let μη be the ergodic measure on (Kη; ϕη) induced by the
net (μγ )γ<η (cf. [EFHN15, Exercise 10.13]), that is, μη ∈ C(Kη)′ is uniquely
determined by the identity (qηγ )∗μη = μγ for every γ < η. By setting

�η(Tqηγ f ) := J ηγ �γ f
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for every f ∈ C(Kγ ) and γ < η we obtain a (well-defined) map

�η :
⋃
γ<η

Tqηγ (C(Kγ )) ⊆ C(Kη)→ L1(Xη)

which extends to an isometric isomorphism �η : L1(Kη, μη)→ L1(Xη) intertwin-
ing the dynamics.

It is clear from the construction that (qση , μσ ; �η, �σ ) is a topological model for J ση for
all η � σ � η0.

Finally, if X is separable, then we can choose metric models in (i) (see Theorem 4.6).
Moreover, in (ii) we can find a subsequence (((Xγn ; Tγn))n∈N, (J γkγn )n�k) of the projective
system (((Xγ ; Tγ ))γ�η, (J σγ )γ�σ ) such that (Xη; Tη) is still the inductive limit of that
subsequence (this is an easy consequence of the characterization (iii) of inductive limits
in [EFHN15, Theorem 13.35]). By considering the now metrizable projective limit of
(((Kγn ; ϕγn))n, (qγkγn )n�k) in (ii) and then proceeding as before, we also obtain metrizable
models in (ii).

Remark 5.11. Our approach to the theorem of Lindenstrauss unveils a connection between
topological and measure-preserving distal systems at a categorical level. Inspecting the
definition of the canonical minimal distal model Mod(X; T ) := (K; ϕ) of an ergodic
distal measure-preserving system (X; T ) in the proof of Theorem 5.9 shows that the
assignment (X; T ) 	→ Mod(X; T ) is actually functorial: every extension J : (Y; S)→
(X; T ) of ergodic distal measure-preserving systems induces an extension Mod(J ) :
Mod(X; T )→ Mod(Y; S) between the corresponding canonical topological models. In
this way, we obtain a (contravariant) functor Mod from the category of ergodic distal
measure-preserving systems to the category of minimal distal topological dynamical
systems. It is noteworthy, however, that, even though we can also construct distal ergodic
measure-preserving systems from distal minimal systems (by simply choosing an ergodic
invariant probability measure), the functor Mod does not define an equivalence between
the two categories. In fact, if (X; T ) is an ergodic distal measure-preserving system and
(K; ϕ) its canonical model, then every eigenfunction of T corresponds to a continuous
eigenfunction of Tϕ . With this observation one can readily show that a minimal distal
system (K; ϕ) possessing
(i) a unique invariant Borel probability measure μ, and

(ii) an eigenfunction f ∈ L∞(K , μ) \ C(K) with respect to Tϕ
cannot be isomorphic to any canonical model Mod(X; T ) of an ergodic distal
measure-preserving system (X; T ). An example due to Parry (see [Par74, §3])
demonstrates that such systems indeed exist and hence Mod does not define a categorical
equivalence.

Remark 5.12. In his paper [Lin99], Lindenstrauss also discusses under what conditions
an ergodic distal measure-preserving system has a distal model which is strictly ergodic
(that is, minimal with a unique invariant Borel probability measure; see also [GL19]). It
is therefore an interesting problem to determine the cases in which the canonical model
constructed in this paper is strictly ergodic.
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