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Abstract

Dielectric elastomers (DEs) find applications in many areas, particularly in the field of soft robotics. When model-
ing and simulating DE-based actuators and sensors, a substantial portion of the literature assumes the selected DE
material to behave in some perfectly hyperelastic manner, and the vast majority have assumed invariant permittiv-
ity. However, studies on simple planar DEs have revealed instabilities and hastened breakdowns when a variable
permittivity is allowed. This is partly due to the intertwined electromechanical properties of DEs rooted on their
labyrinthine polymeric microstructures. This work focuses on studying the effects of a varying (with stretch) per-
mittivity on the out-of-plane deformation of a circular DE, using a model derived from principles of strain-induced
polymer birefringence. In addition, we utilize the Edward—Vilgis model, which attempts to account for effects
related to crosslinking, and length extension, slippage, and entanglement of polymer chains. Our approach reveals
the presence of “stagnation” regions in the electromechanical behavior of the DE actuator material. These stagnation
regions are characterized by both electrical and mechanical critical electrostrictive coefficient ratios. Mechanically,
certain values of the electrostrictive coefficient ratio predict cases where deformation does not occur in response
to a change in voltage. Electrically, certain cases are predicted where changes in capacitance cannot be measured
in response to changes in deformation. Thus, some combined conditions of loading and material properties could
limit the effectiveness of DE membranes in either actuation or sensing. Therefore, our results reveal mechanisms
that could be useful to designers of actuators and sensors and unveil an opportunity for exploring new theoretical
materials with potential novel applications. Furthermore, since there are known analogous formulations between
electrical and optical properties, criticality principles studied in this article could be extended to optomechanical
coupling.

1. Introduction

Inspired by nature, soft robotics offer unique opportunities to develop autonomous systems that can
provide multi-functional features, structural flexibility, and more degrees of freedom than traditional
robotics. While the foregoing attributes are highly desirable, they pose various challenges that limit their
implementation in realistic situations. Particularly in the area of dielectric elastomer (DE) transducers,
which have found many applications [1-15], some of these challenges can be related to the diversity
of behaviors exhibited by typical DE materials, depending on loading and environmental conditions,
at least. Modeling challenges stem from the dynamic and complex microstructures of polymeric mate-
rials and their effects on the electromechanical behavior during operation (see Fig. 1). Besides stretch
state-dependent electrical properties, DEs exhibit mechanical behaviors with dependence on both strain
rate and temperature. Also, they can display hysteresis, strain-softening, and strain-hardening behaviors
during cycling loading [16, 17], see Fig. 1. These combined effects call out for more careful modeling
and model implementations, especially in realistic configurations that depart from lab-based schemes
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Figure 1. A dielectric elastomer membrane is typically a polymeric material with highly complex
molecular structure: crosslinking, entanglement, sliplinks, impurities, etc. The membrane can be actu-
ated by the application of electrical potential (V). This causes the material to deform with principal
stretches (A, A, A3). The stress (o) induced is a function not only of stretch but also of temperature (®),
strain rate (7), and humidity (h). Electrically, the permittivity of the material changes with stretch due to
the rearrangement of the molecular structure. This state of affairs renders the material highly nonlinear,
viscoelastic and hysteric, and thus difficult to be universally modeled.

[18-22]. In fact, the aforementioned complexities have recently motivated researchers to explore data-
driven algorithms such as reinforcement learning to model DE material behavior [23, 24]. However,
this type of modeling scheme is in its infancy stage and physics-based material modeling is still the
de facto method in the research/development community. In order to alleviate some of the modeling
challenges, researchers and developers assume simplified models such as constant electrical properties.
Unfortunately, these assumptions can become critical in certain applications requiring a large range of
deformations [25, 26] or high accuracy requirements.

As perused in the literature, the deformation dependency of electrical properties (e.g. permittivity)
of DEs has rarely been implemented in actual soft robotic applications. Instead, as implied above, many
reported works were based on constant permittivity [27-33]. This has been a long-standing assumption
since it was shown that for a commonly used DE material, VHB 4910, the change in dielectric constant
is less than 5% for a radial stretch of five [34]. Using that assumption and the idea of ignoring the effects
of crosslinks in polarization, Suo [35] presented, what he called, an ideal DE where the polarization is
equivalent to that of a polymer melt. Hence, one of the tenets of this ideal DE is constant permittivity.
This allows for the easy relation between the true electric field, E, and true electric displacement, D, such
that, £ = %, where ¢, is the constant dielectric permittivity in any direction. Interestingly, there seems to
be some discrepancies related to reported values of ¢,. This can be noted from the wide range of values
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used for VHB 4910, for example.! Qiang et al. also reported changes in permittivity of unstretched VHB
4910 due to both frequency and temperature [40]. McKay et al. investigated this wide range of results
and reported that the dielectric permittivity “is highly sensitive to the characterization technique” [41].
This leads to the conclusion that more factors should be taken into account when reporting the dielectric
constant of a material, and assuming a constant permittivity is not always a valid assumption.

It has been shown that, in fact, the electrical permittivity can exhibit a highly nonlinear dependency
on stretch [25, 42-50]. Furthermore, under certain conditions, deformation-dependent permittivity can
reveal material instabilities and/or potential dielectric breakdowns [42, 51-53]. This is partly due to the
intricate electromechanical properties exhibited by DEs that are rooted on their labyrinthine polymeric
(or nanocomposite) microstructure. Based on the pioneering work by Kuhn and Griin [54], some authors
have proposed deformation-dependent permittivity models [20, 42-46, 55]. Others have attempted to
accomplish this by empirical means [18, 25, 56, 57]. The implementation of such models has been
limited, however, to uniaxially or biaxially loaded planar DE actuators (DEAs), and hence their utiliza-
tion on more complex (or realistic) configurations is lacking. For example, a particular configuration
that has found many applications in soft robotics is the family of the so-called conical DEAs (CDEAs)
[15, 58-61]. These CDEAs can be used for multiple applications being that they can exhibit motion
with large ranges, high prescribability, smoothness, reasonable bandwidth of O(10°) to O(10*) Hz, and
capability of resonance. Due to their broad potential, their employment is pursued by both experts and
non-experts in the field of soft robotics [15, 30, 31, 59, 60, 62, 63]. In none of those aforecited works,
the electrical properties of the DE were assumed to vary with stretch state. However, in cases of inho-
mogeneous deformation, as typically observed in single-cone DEA (SCDEA) [58] or double conical
DEA [33, 64], the permittivity is expected to vary throughout the membrane. For applications that rely
on those configurations, such as knee joints [7, 8], pumps [14, 15, 59], and pulse tracking devices [60], a
model that accurately describes the inhomogeneities experienced by the membrane is required for highly
precise control and sensing. In addition, for implementation of models in finite element analysis (or the
like), more robust modeling schemes would enhance local (mesh level) accuracy. As far the authors
know, there has not been any modeling work for CDEAs that include stretch-dependent permittivity.

Therefore, in the current work, we present a study of the out-of-plane deformation (OPD) of a SCDEA
using a constitutive stretch-dependent permittivity model. Furthermore, our work utilizes a hyperelastic
model that accounts for the effects of entanglement and sliplinks of the polymer network. Even though
our base configuration is described as a conical actuator, our analysis and conclusions are extended to
DE-based sensors. A direct example application would be a self-sensing CDEA for a soft robotic limb
to create a feedback loop for sensing and controlling the displacement.

This article starts by presenting a brief compilation of the stretch-dependent permittivity mod-
els, followed by the equations of state for describing the deformation of a SCDEA. Afterwards,
we combine our selected mechanical and electrical models to investigate the OPD of the SCDEA.
Discussions are presented that reveal certain bifurcation behaviors due to the electromechanical cou-
pling of hyperelasticity with stretch-dependent permittivity, applicable to both actuators and sensors.
The deformation-dependent permittivity results and discussion can be viewed as a theoretical study of
material properties at the limit.

2. Electrical and hyperelastic material models

In the sequel, a brief survey of the permittivity-varying models is presented. Emphasis is placed on
a particular constitutive model, which is later employed in this work. In addition, six commonly used

IWhile the datasheet for VHB 4910 lists a dielectric constant of 2.68 (measured at | MHz) and 3.21 (at 1 kHz) [36], others have
listed a dielectric constant of 4.55 [34] and 4.7 [37]. Ma and Cross [38] measured a dielectric constant of approximately 6 across
frequencies ranging between 100 Hz and 100 kHz. Choi et al. measured a dielectric constant for VHB 4910 between 4.5 and 3.6
for frequencies between 10 Hz and 100 kHz [39].
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Figure 2. From biaxial stretch states, the relative permittivity of VHB4910 exhibits a deformation
dependence for across a range of alternating-current (AC) frequencies. Recreated from ref. [25].

hyperelastic material models® are used in a later comparison using the OPD of a SDCEA configuration.
Ultimately, a hyperelastic model that considers the effects of entanglements and sliplinks in the polymer
network is selected and later employed. A detailed description of the hyperelastic models considered
can be found in Appendix A.

2.1. Deformation-dependent permittivity models

The electrical properties of DEs can be highly nonlinearly dependent on the stretch state, see Fig. 2.
Table T provides a summary of a selection of the reported literature on such models.> Some of the
models reported can be classified as constitutive in that they were developed from: either (a) statistical
mechanics principles based on the polymer networks, (b) continuum mechanics principles, or (c) a sim-
plified expression of the previous two. The empirical models borrowed the invariant-based-polynomial
approach typical of some hyperelastic modeling scheme (such as Yeoh or Ogden). The interested reader
is invited to peruse the provided literature in Table I for more details.

Theoretical pioneering work developed by Kuhn and Griin [54] predicted that both electrical and
optical properties of some elastomers are dependent on the deformation state. Several experimental
studies* have shown that the dielectric permittivity is highly dependent on the deformation (or stress) of
the DE membrane [43—-49]. Following the framework outlined by Kuhn and Griin [54], Jimenez et al.
developed an analytical solution for determining the dielectric permittivity provided the stretch state is
known [42, 55]. Based on the work by ref. [55] and assuming incompressibility, the resulting equation
for deformation-dependent dielectric permittivity in the i-direction (i = 1,2,3), ¢;, was found to be:

? =141+ 1/3(/1,) +1/3(1, /1,)] <?»f - %L) ; ey

0

2Qther existing models were not considered for the sake of conciseness.

3Note that besides stretch dependency, there has been work (at least one article) on temperature-dependent permittivity [68].

4Note that in some of the cited works, the stretch-dependent permittivity must be interpreted via the Clausius-Mossotti
relationship combined with the fact that refraction index is related to the squared root of the electrical permittivity, see [69, 70].
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Table I. A brief summary of works (or models) that consider deformation -dependent permittivity.

Type

Model

Comments

Constitutive

Jimenez and McMeeking
[42, 55]

Ask, Menzel, and
Ristinmaa [65]

Zhao and Suo [66]

Cohen et al. [20, 21, 49] and
Grasinger and Dayal [22]

Lietal. [67]

The model was derived from Kuhn and Griin
principles for strain-induced polymer
birefringence. The model determines the
changes in permittivity in the principal
directions of the elastomer

The model developed from a continuum mechanics
approach to determining the deformation-
dependent permittivity. The model accounts for
viscoelastic effects in the material

The model consists of a truncated Taylor series
expansion of the multi-stretch-dependent
permittivity. The series was expanded at
stretches close to unity. The equation
approximates the permittivity at large
deformations with two parameters

The models connect the polymer dipole movement
to the permittivity through a statistical
mechanics approach

The model proposed is based on a statistical
mechanics view of the molecular polarization
and dipole orientation constrained by the
mechanical deformation which was modeled
with a Gent model

Empirical

Sheng et al. [56]

Gei et al. [51]

Kumar and Patra [25]

Schlogl and Leyendecker [57]

Ogden and Dorfmann [18]

The model is an empirical approach to predict the
biaxial stretch and temperature influence on the
dielectric permittivity

An investigation of the instabilities in soft
dielectrics with an electric free energy term
based on the invariants of the electric
displacement

An empirical model for a general deformation
state. The model utilizes two parameters for
measuring the undeformed permittivity and the
sensitivity to deformation

The model utilizes a lumped approach to separate
the changes in the dielectric permittivity based
on both the electrical load and the mechanical
load

An invariant modeling approach for nonlinear
electroelasticity

where ¢, is the undeformed permittivity, « is the ratio electrostrictive coefficient to the undeformed per-
mittivity of the incompressible material, A; is the stretch in the i-direction of the membrane (see Fig. 1),
and /, and I, are the regular and the limiting stretch first stretch invariants, respectively. Models similar
to that in Eq. (1) could, for example, be used to develop and represent materials with tunable dielec-
tric or optical properties. Similarly, Cohen et al. [49] presented a model following a microstructurally
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motivated approach. In the limit of small electric fields and uniaxial deformation, they determined the
relative permittivity, ¢,, to be:

1= L (e ! +1 )
8r — [ — L —
Xo Sn uniaal )‘uniaxial
__ {NogK

where xo = == is the initial susceptibility, ¢ is the persistence length of the polymer chains, N, is the
referential chain density, K is the number of monomers in a chain, A, 1S the uniaxial stretch, and ©
is the absolute temperature in Kelvins.

Besides deformation dependence, other models have been developed to explore thermal dependency
such as in ref. [56], which utilizes a framework based on the Debye model (DM) for the dielectric con-
stant of a gas. While the DM relationship accounts for the temperature dependence of the dielectric
permittivity, the model developed in ref. [S6] was empirical. Their approach consisted of using exper-
imental data produced by ref. [45], a squared-law prestretch-permittivity relationship, and the DM to
empirically fit the following expression:

&= a)‘giaxial + g + y (3)

where ;.o Tefers to a planar (biaxial) stretch, and «, 8, and y are empirical constants. In the Section 4,
temperature-independent conditions are assumed to be consistent with the scope of the current work, and
Eq. (1) will be used to model the deformation response of the dielectric permittivity. Other permittivity-
varying models are provided in the references in Table 1.

2.2. Hyperelastic material models

The mechanical properties of the hyperelastic material can be described by a multitude of possible strain
energy density functions. To predict the mechanical behavior of the material, the neo-Hookean (NH)
[71], Ogden (OM) [72], Yeoh (YM) [73], Gent (GM) [74], Arruda-Boyce (AB) [75], and the Edward—
Vilgis (EV) [76] hyperelastic models are compared with experimental data. The interested reader is
referred to read Appendix A to find descriptions and equations for each of the material models.

2.3. Employment of material models

For each material model, the mechanical (elastically storable) energy density, ® Wi (see note®), is added
to the electrical energy density, W, to produce the total free energy density, W, or:

W= "W+ W,. 4)
where
W 1 2 1 D? 152)\_21_2 5
= =¢ = - = —— s
ET o™ 2e, 2& 72

where E is the true electric field, D is the true electric displacement, and D is the nominal electric
displacement. Also, A, and X, are the principal stretches in the 1- and 2-directions, respectively (see
Fig. 1). Finally, note that &; refers to the dielectric permittivity in the through-thickness direction (refer to
Fig. 1). Note that, although, the current work will ultimately include deformation-dependent permittivity
[Eq. (1)], for the selection of the hyperelastic model (in the next section) constant values will be assumed.
After that, the model will be expanded to include deformation-dependent permittivity by substituting
Eq. (1) into Eq. (5) for the through-thickness permittivity (i = 3). Finally, the in-plane nominal stresses,
s, and s,, and nominal electric field, E, are derived by taking partial derivatives of Eq. (4) w.r.t. A, A,,

SThe left superscript © is used to denote two symbols for the specific material model; for example: 2 Wy refers to the strain
energy given by the Arruda-Boyce (AB) model.
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and D, respectively, which results in:

aw
- 6
N o (6a)
Iaw
= — 6b
S FYe (6b)
14
EF=— 6¢
b (6¢0)

3. Deformation of a CDEA

To compare the various hyperelastic models (and for the remainder of this work), we analyze the OPD
of a SCDEA.S Here, we provide a brief summary of the state equations. For more details, the interested
reader can consult the reference work in [28] and the easy-to-follow numerical framework proposed
in [58].

Consider the DEA configuration shown in Fig. 3. The elastomer begins at the undeformed state with
outer radius, B, and inner radius, A, and thickness, 7. The membrane is then prestretched, A, a force, F,
is applied to the center of the membrane, and an electric field, E, is applied through the thickness of the
membrane resulting in OPD in the z direction, as shown in Fig. 3. The final position of a particle from
the undeformed state, R, is determined by r(R) and z(R).

The following system of four equations completely describes the motion of the system due to
electrical and mechanical inputs. These equations, which are independent of material model, can be
used to determine the state of any particle from the undeformed to the deformed membrane and are
expressed as:

a5 cost (7a)
RoM cos a
d
ﬁ — ), sind (7b)
do Sy .
— =———ysinf (7¢)
dR SIR
0=27TRs,sinf — F (7d)
with the following boundary conditions (BCs):
rA)=a
r(B)=>b
2(B)=0 (®)

The first two BCs at r are defined by the radius of the inner, a, and outer, b, rigid supports, respectively.
The condition at z is due to the definition of the r-z coordinate system. Furthermore, for convenience,
the following dimensionless forms will be used when presenting the results: F, = F/(2raTp) and V, =
E/(\/1t]/¢€), where w is the shear modulus.

6 An extension of SCDEA, the double conical dielectric elastomer actuator (DCDEA) involves other complexities not considered
here. For DCDEA applications, see refs. [8, 33, 64, 77].
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Figure 3. (a) The undeformed membrane with the key points denoted. (b) The deformed membrane
with key points and dimensions shown. (For meaning of symbols, see Nomenclature, Section 7 or the
description in Section 3).

4. Results
4.1. Material model differences and selection

The hyperelastic material models considered (see Appendix A) were calibrated to a uniaxial tensile
experiment for VHB4910 at a strain rate of 0.01 Hz (see Fig. 4a). Those models were used to compute
the OPD behavior for the SCDEA shown in Fig. 4b. In general, the cone-like deformation observed
results from a complex 3D stretch state (see Fig. 3). The A, and 1; dominate the stretch state; however,
the prestretch in the membrane affects also A,. Because of the complex stretch state, wrinkling of the
membrane at locations close to the rigid disk (» = a) could occur at voltages near the breakdown voltage.
With the maximum stretch state occurring near the rigid disk, A; is highly compressive in that region,
resulting in an increased likelihood of dielectric breakdown due to membrane thinning. Toward the
outer ring, A; decreases and approaches the prestretch value causing the membrane to transition from
the highly compressive stretch state near the rigid disk to a less compressive state near the rigid support.
With this state of affairs, the effects of the compressive Maxwell stress can cause higher stresses to be
“felt” near the rigid disk (when compared to the outer edges) due to the membrane being thinner.

For the example at hand (Fig. 3), the performance of the various hyperelastic models previously
outlined (and briefly described in Appendix A) is compared. Best-fit curves are shown in Fig 4a and
the model parameters are in Table II. The relative undeformed permittivity was taken to be 3.211 from
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Figure 4. (a) Model predictions from a uniaxial tensile test of VHB4910 at 0.01 Hz. Note the Ogden
and EV models almost overlap. (b) Comparison of various material models applied to the out-of-
plane deformation of a SCDEA configuration. Only for this material selection step, the permittivity
was assumed constant. Note the neo-Hookean model overlaps the Gent model predictions. V, =0.2,
F,=20,1,=20,b/a=4.0.

ref. [36]. As shown in Fig. 4b, there are important differences in deformation among the various models,
particularly near the inner disc. Only because of the high value of the limiting stretch invariant, J,,, the
NH and GM models nearly overlap. An analysis of the effects of J,, on the maximum OPD was given
in ref. [58]. In general, and some minor exceptions, the OM seems to exhibit the highest deformation
values while the EV model exhibits the lowest. When compared against either the AB or GM models,
the EV model is said to model better strain-softening behaviors seen in DE materials (see Fig. 3 in
ref. [78]). Consideration of the effects due to sliplinks can be accounted as part of the cause for the
difference exhibited by the EV model in comparison to the others, as shown in Fig. 4b. It is worth
noting that the reported robustness of well-known models such as GM or AB was validated mainly for
traditional rubber-like materials, without showing specific applications using softer DE materials, such
as VHB4910/05. Furthermore, from observing the behavior of each of the material models, the results
could indicate the need for the invariant-based phenomenological models to be fit to multiple stress-
stretch tests, for more accurate implementation. For example, the large deformations observed for the
model OM in Fig. 4b could be due to it being fit only to uniaxial stress data. Based on the aforementioned
observations and the apparent advantages offered by the EV model to represent DE materials, in the
sequel we use such a model for permittivity-varying analysis.

4.2. Effects of deformation-dependent permittivity

Figure 5 was developed using the EV model and stretch-dependent permittivity based on Eq. (1) and
applied to the SCDEA example. Figure 5 shows the different effects of changing the electrostrictive
coefficient ratio on the deformation state of the material. The electrostrictive coefficient was found to
influence the maximum deformation along with the maximum stresses and stretches in the material. Of
interest is the stress in the 1-direction and the electric field (see Figs. 5d and f). As the electrostrictive
coefficient becomes more negative, the maximum stress and electric field in the membrane increase
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Table II. Material model parameters as obtained from a uniaxial stress-stretch test

conducted at 0.01 Hz.
Strain rate
Material model 0.01 Hz
EV N} =20.371kPa, Ny =32.388kPa, v =0.0916, n =0.147
AB P=31.695kPa, N=47.95
Gent u=32.141kPa, J, =227
neo-Hookean u=34.303 kPa
Ogden C“ =673 kPa, C12 =3.07 kPa, C13 =667 kPa
C21 = 00688, C22 = 336, C23 = 00692
Yeoh C,=18.696kPa, C, = —0.223 kPa, C; =0.007 kPa
(a) (b) (c)
3 o
k= 0.05

A2

0 L L
1 2 3 4

r/a
Membrane Shape

k= —0.15

— k=—01 ||
—— k= —0.05

A1
.
— k=00
10.0 k=0.05 H

: S 16
3 2 \g
S g >
LR
r/a
o1 o2 E

Figure 5. With decreasing electrostrictive coefficients, the maximum deformation increases (a) along
with an increase in the stretches in the 1 and 2 directions (b—c). However, the stress in the 1-direction
increases (d) while the stress in the 2-direction significantly decreases near the center of the cone (e).
Furthermore, the electric field significantly increases near the center of the cone (f). The loading and
geometry parameters are V, =0.1, F, =2.0, A, =3.0, b/a=4.0.

throughout and further increase near the inner rigid disk. With this increase in electric field and material
stress, dielectric breakdown or tearing of the material becomes more likely to occur. When selecting
a material for constructing a DEA, the consideration of the electrostrictive coefficient is found to be
important for determining maximum voltages. It might be worth noticing the differences in o, between
Fig. 5e, in the current work, and Fig. 4 in the work of He et al. [28]. The general use of figures such
as those shown in ref. [28] as well as those Fig. 5 might be limited by the lack of other important
parameters (e.g. the prestretch or material model parameters). Similarly, Fig. 6 shows how the prestretch
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Figure 6. With an increase in the pre-stretch of the material, the maximum stretches and stress increase
with a corresponding increase in applied voltage (a—c). However, due to nonlinearities with relation to
the electrostrictive coefficient ratio, there is a critical value for certain negative electrostrictive coeffi-
cients where the maximum stress in the 2-direction now longer maximum stretches and stretches in the
material as a result of varying the electrostrictive coefficient ratio and prestretched state. The simulations

were performed with V, =0.15, F,=1.0, b/a=4.

state of the membrane influences the deformation and electrical state of the membrane. With increasing
prestretches, the membrane follows the expected trend of larger stresses and stretches in the material.
With the influence of the deformation-dependent permittivity, the stretches and stress are observed to
increase with decreasing electrostrictive coefficient. For example, in Fig. 6a and c, the differences in
the maximum stress and stretch state between the smallest and largest electrostrictive coefficients are
significant that applying similar loadings to both cases would yield drastically different results with the
material possibly failing in the case of a very negative electrostrictive coefficient. Furthermore, while the
stretch in the 2-direction does not show a large change among the electrostrictive coefficients, the stress,
0,, changes rapidly with a decreasing electrostrictive coefficient (see Fig. 6b and d). The rapid increase
in the maximum A,-stretch could contribute to an increased likelihood of material failure as a result of
the sudden thinning. The importance of understanding the electrostrictive properties of a selected DE
can help in the designing of soft actuators against material failure.

Next, the electrostrictive coefficient, applied voltage, and maximum deformation were analyzed to
find parameters for achieving conditions of maximum OPD for a single-cone actuator (see Fig. 7).
Figure 7b—d shows that for various A,, greater maximum deformations were shown to occur at lower
voltages when the material had a more negative electrostrictive coefficient.

4.3. Analysis of critical kappa values

From Fig. 7b, at approximately « = 0.5, the maximum OPD of the SCDEA does not change signif-
icantly with increasing voltage. Furthermore, the plot implies that there should a theoretical singular
value of k¥ where the voltage applied does not affect the maximum deformation. This “stagnation” value
should be considered in the design of DEA (as well as for DE sensors, for that matter). This theoretical
stagnation « will be named the critical mechanical electrostrictive coefficient ratio, k.. The k., value
characterizes a specific combined material-and-loading configuration, for which the electromechanical
coupling leads to minimum deformation. Figure 8 highlights a dependence of «, on both the applied
load and the prestretch. To further investigate parameters influencing the k., value, a parametric study
was conducted using symbolic regression from an open source package [79], which led to the following
relationship:
Fy

0.778 ) ©)

A

Keom = 1.03 sin(
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Figure 7. (a) The contour curves of maximum deformation dependent on the applied voltage and
electrostrictive coefficient ratio. (b—d) Contours of electrostrictive coefficient to achieve a desired
deformation at a specified voltage. (b) Near an electrostrictive coefficient value of 0.5, the maximum
deformation of the membrane does not change. (c—d) As the prestretch increases, the linearity observed
in (c) begins to disappear (d). (e) For any configuration of the material, an electrostrictive coefficient
exists which results in minimal changes in the maximum deformation. F, = 1.5, b/a =4.0.

Straightforward reduction and simplification of Eq. (9) can lead to a different expression:

() o(5)
2\ 207 4

These equations were verified to closely approximate the simulated data with a relative error below
10% for a moderate range of applied loads and a wide range of prestretches (see Fig. 9).

Kcm

(10)

5. Discussion
5.1. Material model influence

The variety of available hyperelastic models creates a trade-off between accuracy, complexity, and inter-
pretability. While simple models, like the NH, provide a view of the material, the accuracy is limited to
small stretches. The phenomenological models, such as the Ogden and Yeoh, can be accurate when fit to
multiple types of material tests; however, minimal microstructural information can be determined from
the model’s parameters. In general, constitutive models could shed some light on the microstructure
of the material even when parameters are found via macroscopic testing. For example, from Table II,
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Figure 8. For larger prestretches, the critical mechanical electrostrictive coefficient ratio, k.,, begins
to decrease. As the applied force increases, the required critical mechanical coefficient decreases. For
large prestretches and applied forces, an actuator could enter a state where deformation does not occur
regardless of applied voltage limiting the usefulness of the system. Figure represents a system with
b/a=4.
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Figure 9. (a) Relative error for Eq. (9). (b) Relative error for Eq. (10). 1,, =230.0, b/a = 4.

within some limitations of interpretation, N} and Ny values could indicate that there are more sli-
plinks than crosslinks per unit volume in the VHB4910 tested at 0.01 Hz strain rate. Further studies
are recommended to explore the dependence of N} and N on the strain rate.

The selection of EV model for this study was based on its potential to be fed from or provide
microstructural insight of the material.
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For the EV’ model, the information provided by parameters about the microstructure could assist
in understanding the response of the material to other environmental conditions such as humidity or
temperature. It is important to note, however, that typically, models are fit to data from what is assumed
to be a quasi-static tensile tests, as opposed to microstructure characterization via mechanical (such as
AFM and SEM), chemical techniques, or ab initio computations. It is expected then, that for a typical
viscoelastic material the model parameters do change depending on the strain rate (and temperature).
Hence, EV parameters such as N; and N§ are expected to be strain rate as well as temperature dependent.

5.2. Results from modeling with deformation-dependent permittivity

It is expected that the electrical and mechanical behaviors of the DE are intertwined. The traditional
decoupling of these effects implies orthogonality on those behaviors. The addition of deformation-
dependent permittivity has allowed a more careful study on how electromechanically induced effects can
affect the limitations of the material. Furthermore, this approach gives rise to not only a critical electri-
cal electrostrictive coeflicient ratio but its mechanical counterpart. This modeling scheme produces two
scenarios where the material is either limited mechanically or electrically. Mechanically, certain values
of the electrostrictive coefficient ratio produce theoretical cases where deformation does not occur in
response to a change in voltage. Electrically, certain cases are predicted where changes in capacitance
cannot be measured in response to changes in deformation. The assumption of deformation-dependent
permittivity produced new cases of material behavior which limit the effectiveness of DE membranes for
applications in actuation and sensing. Furthermore, these revealed cases provide insight to both design-
ers, about design constrains, and material scientists, about hypothetical materials that can be synthesized
and with potential novel applications.

5.3. Impact of the critical mechanical electrostrictive coefficient ratio

The critical mechanical electrostrictive coefficient ratio provides opportunities for improving design
frameworks involving DE materials for actuator configurations. The ratio reveals a region where the
deformation is very small (even negligible) in response to voltage. The ratio highlights the intricate
connection between the mechanical and electrical properties of the material. It is therefore limiting
to the design process of DEAs to consider individually the electrical and mechanical properties. The
deformation-dependent-permittivity paradigm allows for the consideration of both energy domains
simultaneously.

The k., is dependent not only on material properties and geometrical configuration but also on
applied load. For a given set of properties and geometry, the loading conditions would influence the
dynamic variation of this critical parameter. While the material may perform as expected under one set
of operating condition, under a different but still feasible set of operating conditions the critical mechan-
ical electrostrictive ratio may limit the final deformation of the membrane. It is recommended that for
DE applications outside the laboratory environment, the full range of operating conditions should be
explored to determine regions of inactivity.

5.4. Impact of a critical electrical electrostrictive coefficient ratio

The sensitivity of the capacitance was investigated to further understand the electromechanical impli-
cation of deformation-dependent permittivity, as applied to sensory systems. For the single-conical
configuration, the capacitance, C, was determined using:

27 (P .,
C="-| eXA’RdR an
T Js
7A similar argument could be made for other constitutive models such as AB.
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Figure 10. Contours of ratio of the deformed capacitance, C, and the undeformed capacitance, C, for
a range of applied voltages and k values. F,, =1, b/a=4, I,, =230, A, =2.0.

The results for the capacitance are presented (see Fig. 10) in dimensionless form by dividing the
undeformed capacitance, Cy:

2re,(B: — A2
o= 7 Eo( )
T

Analogous to the k., value, which is related to the restraining of mechanical deformation, the capac-
itance has a set of nearly linear contour lines for a range of positive x values. Hence, a critical electrical
electrostrictive coefficient ratio, .., is introduced and it was shown to produce conditions of near-zero
capacitance (see Fig. 10).

The aforementioned can be specially applicable when utilizing DEs as sensors. As the electrostric-
tive coefficient ratio becomes more negative, a greater variation in capacitance can be observed for
changes in the applied load (see Fig. 10). These larger changes in capacitance relative to the undeformed
capacitance could lead to improvements in sensitivity, and hence more accurate applications for either
sensing or self-sensing DEs. Further research on the changes in capacitance sensitivity with respect to
electrostrictive coeflicient is recommended. Because the precision of DE-based sensors (including self-
sensing configurations) relies on the ability to capture changes in measured capacitance to small changes
in displacement of the DE, the electrostrictive characteristic of the selected polymeric material can be
essential in the design of sensitive sensors.

12)

6. Conclusions

This work focuses on the contributions of a variable electrical permittivity for the OPD of a DEA mem-
brane. First, an overview of the permittivity-varying models for DEs is provided. Then, from a list of
some of the most common hyperelastic models used for DEs, the EV model was selected and utilized
to analyze the OPD of the DEA through a range of electrostrictive coefficients. The DEA is shown to
exhibit increased deformation for more negative electrostrictive coefficient values, which, even at low
applied voltages, could lead to premature failure of the material. For negative electrostrictive coefficient
values, the material exhibits a region of instability where the principal stress in the 2-direction transi-
tions from tension to compression. Therefore, a singularity of zero stress must exist. From an analysis of
contours showing the relationship between deformation and electrostrictive coefficient, a critical value
was identified, which results in a “dead zone” of the electromechanical coupling in the DEA. This state
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of affairs reveals mechanisms that could be useful to actuator designers and developers. In addition, it
creates an open gap for material scientists to explore.

Our results revealed that under some particular conditions and materials: (a) for actuators, an increase
in applied voltage could lead to no change in the deformation state, which would not be desired for an
actuator; (b) for sensors, changes in deformation would not lead to changes in capacitance. Those effects
could be relevant where DEs are used as actuators (e.g. knee joints or robotic flapping wings) or as
sensors where they provide tactile feedback. For either case, a loss of sensitivity to the applied stimulus
could result in damage to the robot or environment.

Finally, since there are known analogous formulations between electrical and optical properties, a
future research could include exploring the criticality principles studied in this article, but applied to
optomechanical coupling, for example.

7. Nomenclature

S

rigid disk radius

A position of a point on undeformed membrane that will end up at the outer edge of the
rigid ring

rigid ring inner radius

position of a point on undeformed membrane that will end up at the inner edge of the
rigid ring

undeformed capacitance

deformed capacitance

empirical constant for Yeoh model

empirical constant for the Ogden models

true electric displacement

nominal electric displacement

true electric field

nominal electric field

force to deform conical dielectric elastomer actuator out of plane
dimensionless force

humidity

first strain invariant of the left Cauchy-Green deformation tensor

limiting first stretch invariant

limiting stretch invariant for the Gent model

Boltzmann constant

number of monomers per polymer chain

chain length

model order for the Ogden and Yeoh model

chain density

number of statistical links of length /

number of crosslinks per volume

number of crosslinks per volume times the Boltzmann constant and absolute
temperature

number of sliplinks per volume

number of sliplinks per volume times the Boltzmann constant and absolute temperature
AB material model constant

radial position on cone

point of interest on undeformed membrane

original thickness of the elastomer

o =<

=
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electric potential (voltage)

dimensionless voltage

w free energy density

W dielectric energy density

YW strain energy density for material model ”
Y

b4

o

p

14

=<

small strain tensile modulus (Young’s Modulus)
vertical position on cone

empirical coefficient

empirical coefficient

empirical coefficient

A principal stress in i-direction

i strain rate

& deformation-dependent permittivity in the i-direction
o undeformed permittivity

n measure of slip strain

® absolute temperature

K electrostrictive coefficient ratio

Kem critical mechanical electrostrictive coefficient ratio
Kee critical electrical electrostrictive coeflicient ratio

A uniaxial uniaxial stretch

Abiaxial biaxial stretch

A; principal stretch in the i-direction

Ap prestretch

nw small strain shear modulus

o; stress in the i-direction

Xo initial susceptibility

w measure of chain inextensibility

e the persistence length of the polymer chains
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A. Appendix A: Discussion of Hyperelastic Models

Arruda-Boyce

The Arruda-Boyce (AB) model, also known as the 8-chain model, is based on a statistical mechanics
treatment on the polymeric nature of the elastomeric material [75]. The model assumes that the elas-
tomer is composed of sufficiently long molecular chains that are randomly oriented. Noting that for
most practical applications, the number of chains is very large—thus allowing the use of the central
limit theorem—one can assume the chain orientation to obey Langevin statistics [80]. Hence, the AB
model can be expressed as:

BWe(hy, ) =P l(1 —3)+L(12—9)+1—1(13—27)
A A 20N 1050N2 !

19
+ o -8 +

5 —
70007 (05 243)1| (A1)

673750N*
Here P = nk®, where n is the chain density and k is the Boltzmann constant; N is the number of
statistical links of a particular length, say / (see note),® in the chain between chemical crosslinks.

Gent
The Gent model (GM) [74] can be considered a hybrid type of model.’ Boyce [81] compared it against
their AB model and highlighted that while the two models perform comparably, the AB provides the
extra ability to extend uniaxial-data fitting to other stress states [81].

The GM was originally proposed as:

I, -3

! Y
MW(ri, Ay) = _EJ’” In{1- (A2)

m
with two parameters: Y, the small strain tensile modulus, and J,,, the maximum value for /; — 3 as the

polymer chains reach their limiting stretched length.

8Assuming Gaussian statistics, the fully extended chain length, ry, is defined as r;, =1 x N, see ref. [75].
9 Although Gent’s paper is entitled “A New Constitutive Relation. . .”, yet the relationship derived was based on a proposed
empirical relationship (see Eq. (3) in ref. [74]).
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neo-Hookean
The neo-Hookean (NH) material also falls under the physically/statistically motivated models [80] and
can be derived from the GM. It describes well the behavior of hyperelastic materials only for small to
moderate strains.

In terms of stretches, NH model can be expressed as:

MWy 2 k) = S03 423+ 41 = 3). (A3)
where w is the shear modulus. The NH model is readily implemented as it only requires a single
parameter.

Ogden

The Ogden model (OM) is a phenomenological material model proposed in 1972 [80]. The model seeks
to overcome some of the issues encountered with other invariant-based phenomenological models by
increasing the effective range of stretches while decreasing their mathematical complexity [72]. The OM
takes the form:

MW (hys Aoy Ag) = 5~ Cu AT A A5 -3 A4
s(l,z,z)—;c—ﬁ(1+z+3_) (A4)
where C;; and C,; are best-fit constants with the stability condition Cy;C,; > 0. Ogden determined that
M = 3 provided a good fit that could be obtained through a set of simple tension, pure shear, and equib-
iaxial tension tests. Ogden found the model to be accurate up to a stretch of about 7 [72]. The addition
of further terms to Eq. (A4) increases the accuracy at the expense of potentially overfitting and even

rendering the model unstable.

Yeoh
The Yeoh model (YM) [82], proposed in 1993, is another commonly utilized phenomenological model.
It can be expressed as:

M
MWsOs ko hs) =Y AT+ A3 + A% = 3) (A5)
i=1

where M = 3 and C; are best-fit constants.

Edward-Vilgis

The Edward-Vilgis (EV) model was proposed in 1986 [76]. In contrast to the previously discussed
models, the EV model attempts to account for effects related to crosslinking, polymer chain length exten-
sion, polymer chain slippage, and polymer chain entanglement. The energy density associated with the
hyperelastic model, ®¥ Wy was proposed as:

(1 -

1
We(hy, Ay) ==Ni| ———
S( 1 2) 2 C|: 1—&)211

+log(1 — wzll)]

2 (I + )1 = 0?1)

where: N* = N kO, N = N;k©, and N, and N, are the number of crosslinks and sliplinks per volume,
respectively. Also, w provides a measure of the chain extensibility, and n provides a measure of the slip
strain. The EV model has been found to predict both the initial strain-softening and later strain-stiffening
effects in VHB 4905 [78].

i=1

3 _2V32
-|-1 ;[Z{ U+ md = o)k, +10g(l+7’/ki2)}+10g(l—a)211):| (A6)
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