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AN ANSWER TO A QUESTION OF KEGEL
ON SUMS OF RINGS

A. V. KELAREV

ABSTRACT. We construct a ring R which is a sum of two subrings A and B such that
the Levitzki radical of R does not contain any of the hyperannihilators of A and B. This
answers an open question asked by Kegel in 1964.

Kegel [6] proved that a ring is nilpotent if it is a sum of two nilpotent subrings. Several
related results on rings which are sums of their subrings were obtained by a number of
authors. We shall mention only a few papers [1], [2], [3], [4], [5], [7], [8], [10], [11],
[12]). The aim of this note is to answer another related question which still remains open.

Let R be a ring which is a sum of two subrings R1 and R2. In 1964 Kegel asked
whether at least one of the hyperannihilators N(R1) or N(R2) is contained in the Levitzki
radical L(R) ([7, p. 105]). Recall that L(R) is the largest locally nilpotent ideal of R, and
the hyperannihilator N(R) of R is equal to the union

S
ã½1 Nã(R), where

N1(R) = fz 2 R j zR = Rz = 0g;

Nï(R) =
[
ãÚï

Nã(R) for limit ordinals ï;

Nã+1(R)ÛNã(R) = N1

�
RÛNã(R)

�
otherwise

THEOREM 1. There exists a ring R = R1 + R2 such that L(R) does not contain any of
the rings N(R1) and N(R2).

PROOF. If F is a semigroup with ideal J, then we write FÛJ for (F\J)ÛJ to simplify the
notation. We use a construction similar to the one introduced in [8]. Let X = fx1Ò x2Ò   g,
Y = fy1Ò y2Ò   g, and let F be the free semigroup with the set of free generators X [ Y.
For s 2 F, let nx(s) (ny(s)) denote the number of letters of s belonging to X (respectively,
Y). Let jsj = nx(s) + ny(s). Put h(s) = nx(s) � ny(s), G = fs 2 F j h(s) Ù 0g, E = fs 2 F j
h(s) = 0g, F1 = G [ E, F2 = F n G. Let J be the ideal generated in F by the set

Z =
1[
i=1
fx2

i F1 [ F1x2
i [ y2

i F2 [ F2y2
i g

Let R be the ring of real numbers. Consider the contracted semigroup ring R(FÛJ). Then
R(FÛJ) = R(F1ÛJ) + R(F2ÛJ).
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It is easily seen that N1(R1) is the subring generated by all x2
i for i ½ 1, because

x2
i R1 = R1x2

i = 0 by the definition of Z. Take any r 2 R1 n N1(R1). There exists a
letter xj which does not occur in any of the terms of the element r. Then xjr 6= 0.
Thus N1

�
R1ÛN1(R1)

�
= 0. Therefore N(R1) = N1(R1). Similarly, N(R2) is the subring

generated by all y2
i for i ½ 1.

Consider the ideal K generated in R by x2
1 2 N(R1). Put u = y1y2y3x2

1y4y5y6. Then
u 2 K and uk 6= 0 for any k Ù 1. Hence K is not nil. Therefore N(R1) 6� L(R). Similarly,
N(R2) 6� L(R).

In conclusion we note that an example of a primitive ring which is a sum of two
Wedderburn radical subrings was constructed in [9]. This answers negatively all questions
asked in [11, Section 2.4] and seriously simplifies the proof of the main theorem of [8]
which answered a long standing question considered by several authors.
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