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Introduction

Time flies by in a flash and already over 10 years have passed since our first
edition. During this time, work in quantum cognition has entered a new stage.
We discussed many of the relevant issues and ideas in the first edition of this
book — the “first movement” of our “composition.” Although we can’t keep up
with the superluminal pace of quantum entanglement, we can follow the traces
left from quantum walking and pluck the hidden strings that play this “second
movement” of our “composition.”

Quantum mechanics and human behavior are two fields that most people
would think are unrelated. For more than two decades, however, scientists have
been exploring and clarifying connections between the two fields: Theories
in both fields aim to predict how indeterministic systems that are sensitive to
measurement will behave in the future. Their difference is that one field aims to
understand the nature of the material world through physical processes, while
the other aims to understand the nature of our mental world through cognitive
processes. Quantum mechanics was originally conceived to explain what
seemed to be puzzling behavior at the subatomic level. Likewise, quantum
cognition was inspired by the need to account for puzzling behavior at the
human level. Classical probability and decision theory are often used to predict
how people make inferences and choices from the information they are pro-
vided. But there are many manifestations of human behavior that are “contrary
to rationality” and so these predictions often fail, sometimes strikingly so.
Quantum probability theory turns out to provide robust explanations why these
failures occur.

Quantum cognition is a steadily growing new approach to building compu-
tational models of cognition and decision based on principles from quantum
probability, dynamics, and information processing theory. It is an interdisci-
plinary field involving researchers from physics, computer science, psychol-
ogy, social science, and philosophy. Models of quantum cognition need to
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be distinguished from models based on quantum physics: The former uses
only the abstract mathematical principles of the latter, without the physics.
For example, a quantum model of cognition might employ a Schrodinger
equation that involves a dynamic parameter analogous to a Planck constant,
but it certainly won’t be the same numerical value as the Planck constant! In
other words, quantum cognition is an application of the conceptual framework
and formalism of quantum theory to human behavior. It is actually not
uncommon for mathematics that was originally developed for application
to the physical world to migrate outside of physics. For example, classical
diffusion models were originally developed to describe the Brownian motion
of molecules in a liquid, but have since been applied outside of physics to
finance, disease epidemics, cognitive and neural decision models, and many
other fields. The same is happening now with the mathematics from quantum
theory: Applications have appeared in psychology (e.g., this book), linguistics
[e.g., Heunen et al., 2013], social science [e.g., Bagarello, 2019; Haven and
Khrennikov, 2013; Wendt, 2015], finance [e.g., Baaquie, 2004], artificial
intelligence [e.g., Wichert, 2014], information retrieval [e.g., Melucci, 2015;
Van Rijsbergen, 2004], and engineering [e.g., Dong et al., 2010; Schuld et al.,
2014].

1.1 Why Quantum Cognition?

A reader new to this field may wonder: What is quantum about cogni-
tion? What makes this a viable approach to understanding human behavior?
Quantum physics was developed to describe and predict the behavior of
minuscule particles from the subatomic world like photons and electrons.
In contrast, humans deal with a macro-level ‘“classical” world, such as, for
example, coin flips and billiard balls. Predicting coin flipping behavior only
requires classical probability theory, and predicting the motion of colliding
billiard balls only requires classical dynamic theory. It is well understood
that the behavior of billiard balls can be described by classical physics,
but what about the behavior of the billiard players? Classical probability
might describe coin flipping, but maybe not a cat dodging an angry dog.
Still the fundamental question might persist: What could human behavior
possibly have in common with the behavior of a subatomic particle such as
an electron? What justifiable reasons are there for considering a quantum
approach to cognition? There are a number of answers to these very important
questions.
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1.1.1 Psychological Reasons

The probabilities generated by a system (e.g., an electron or a person) depend
on the state of the system. According to classical theory, it is only the lack
of knowledge of the exact state of the system that prevents a deterministic
model of behavior. Probabilities arise from this lack of knowledge. This kind
of uncertainty is called epistemic uncertainty. For example, if we close our
eyes and spin a classical spinner, like a roulette wheel, then immediately before
we observe it, the spinner is either definitely pointing either more upward or
more downward, but not both. Before we look, we can only assign probabilities
to each event because of our ignorance of its definite state. However, if the
spinner is pointing up just before we observe it, and then we look, we will
certainly see what existed (the spinner pointing up) before we looked at it.
Similarly, if a juror is following a classical inference process, like Bayes’ rule,
then at some moment during the trial she has a probability favoring guilty
(a probability greater than equally likely) or a probability favoring not guilty
(a probability less than equally likely) but not both. Before a judge asks the
juror, the prosecutor can only predict the verdict with some probability because
he is ignorant of the juror’s state. If the juror is favoring guilty just before the
judge asks for a verdict, and the judge asks for a verdict, the prosecutor will
certainly hear the guilty answer that existed before the judge asked.

According to quantum theory, a system can be in an indefinite state, called a
superposition state, such that several outcomes have the potential to be realized
by a measurement at the same moment. No definite state exists before the
measurement. Instead, the measurement creates an observed outcome with
some probability, and this probability cannot always be driven to zero by
additional knowledge of conditions. This kind of uncertainty is called ontic
uncertainty. For example, just before we observe it, the spin of an electron can
be superposed between spin-up and spin-down directions at that moment: If
we observe it at that moment, we could see either up or down, with associated
probabilities. These probabilities are not due to our ignorance of a definite spin
state, because no definite up or down state existed before we looked. In other
words, there is no underlying fact of the matter. Even if we had all information
available, we would not be able to determine the definite spin-state of the
electron. In quantum physics, the nature of this uncertainty is referred to as
indeterminacy. The uncertainty is intrinsic to the electron itself, not what we
can know about it.

Likewise, if the juror is following a quantum inference process, then before
a juror makes up his or her mind, the juror can be superposed between a belief
favoring guilty (a belief greater than equally likely) and a belief favoring not
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guilty (a belief less than equally likely) at the same moment. If the juror is
asked for a verdict, the judge could receive a “guilty” verdict or a “not guilty”
verdict with associated probabilities. Again these probabilities are not due to
ignorance about a definite cognitive state in the juror’s mind, because no such
definite state existed before the verdict was requested. These probabilities are
intrinsic to the juror [see Colyvan, 2004]. As aptly described by Aerts and de
Bianchi,

if the quantum approach to cognition works so well, it is because both the
“microscopic layer” of our physical reality, populated by so called quantum
“particles,” and the “cognitive layer” of our mental reality, populated by conceptual
entities, are realms of genuine “potentialities,” not of the type of a “lack of
knowledge of actualities.” [Aerts and de Bianchi, 2015, p. 53]

The formal representation of a superposition state is presented later in
Chapter 2.

Sensitivity to measurement is another key property that electrons and
humans share. For example, an electron has no definite spin direction before
it is measured. Rather, the measurement of the spin creates a definite spin
direction from the indefinite superposition (see sections 1-5 of Peres [1998]
for a discussion of this point). Measuring the spin of an electron in the
vertical direction and finding an outcome of spin-up reduces its state from a
superposition to a definite state consistent with spin-up. If the state of spin is
measured again immediately after, then the outcome is certain to be spin-up.
Likewise, the juror is not in a definite cognitive decision state corresponding
to the judgment ‘guilty’ or ‘not guilty’ before he has made up his mind.
Requesting a final verdict creates a definite judgment from the underlying
indeterminate state. Deciding that a defendant is guilty changes the cognitive
state of the juror from an indeterminate state of superposition into a definite
state corresponding with a verdict of guilty. If the verdict is requested again
immediately after, the outcome is certain to be guilty; however, this effect
may not last long because of subsequent dynamic evolution of the cognitive
decision state. The creation of a definite state from the indefinite by means of
measurement changes the nature of both electrons and humans. This change
from indefinite to definite following measurement is called the “collapse” of
the superposition state. The word “collapse” is in quotes because the issue
about what is collapsing is controversial, which we try to address in Chapter 2.

Some might argue that the reduction in state following a measurement is
nothing more than computing a classical conditional probability [Marinoff,
1993]. For example, the probability of rolling a pair of dice and getting a
sum greater than 5 is much higher after we observe that the first die turns
out to be a 4; the probability that we think a juror will assign a life sentence
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will be different if we observe that the juror thinks the defendant is guilty.
In some ways, this argument is correct, because the “collapse” forms a new
updated state conditioned on the observation. However, the reduction that
occurs in quantum theory can be more complex than in classical theory
because sensitivity to measurement produces what are called inferference
effects [Feynman et al., 1965; Peres, 1998].

In classical theory, the probability of the event “sum of pair is greater
than 5 must equal the total probability of “first die is 4 and the sum of pair is
greater than 5 or “first die is not 4 and sum of pair is greater than 5.” Likewise,
if the events “the defendant is guilty” and “the punishment is life impris-
onment” are two events in a common classical probability space, then the
probability of the event “the punishment is life imprisonment” must equal the
total probability of “the defendant is guilty and the punishment is life imprison-
ment” or “the defendant is not guilty and the punishment is life imprisonment.”

In quantum theory, sensitivity to measurements can result in interference
effects, which appear to be violations of total probability. For example,
consider the effect of measuring spin in the horizontal direction before the
vertical direction, as compared to only measuring the vertical direction. The
probability that an electron is found to be spin-up when measuring only the
vertical direction differs from the total probability that the electron is found to
be “spin-left and then spin-up” or “spin-right and then spin-up.” Apparently,
the event “spin-up” measured alone is not the same as the event “spin-left and
then spin-up” or “spin-right and then spin-up,” producing an apparent violation
of the distributive axiom and hence a violation of the law of total probability.
Likewise, the probability of deciding “the punishment is life imprisonment”
may differ from the total probability of deciding “the defendant is guilty and
then the punishment is life imprisonment” or “the defendant is not guilty
and then the punishment is life imprisonment.” Once again, the event “the
punishment is life imprisonment” is not the same as the event “the defendant is
guilty and then the punishment is life imprisonment” or “the defendant is not
guilty and then the punishment is life imprisonment.” Measurement of a first
event changes the nature of a second event as compared to measurement of the
latter alone. Interference effects of measurement are very common in human
judgments and quantum theory provides a natural way to represent these effects
[Khrennikov, 2010]. Interference effects appear in many chapters of this book,
especially in Chapters 4 and 5.

A third property that electrons and humans share is called complementarity.
Actually, Bohr’s famous principle of complementarity, which he formulated
for physics, may have been originated in a psychological form by William
James (James [1890]; see Blutner and beim Graben [2016] for a discussion),
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and quantum cognition has brought it back to psychology. Bohr’s idea was
that different measurement conditions are complementary if they are mutually
exclusive, but they are all necessary for a comprehensive understanding of
nature [Plotnitsky, 2012]. For example, it is not possible to arrange magnets
to measure electron spin simultaneously in the up-down vertical direction
and in the left-right horizontal direction; instead, they have to be measured
sequentially. James [1890] had a different idea that mental thoughts are
complementary if they are not simultaneously accessible to the person, but they
share knowledge. For example, judgments of guilt and punishment are never
made simultaneously, and instead judgments of punishment naturally follow
judgments of guilt. Importantly, when events have to be measured sequentially,
the sequence can change the results because of sensitivity to measurement. For
example, measuring an electron in the up-down vertical direction and then in
the left-right horizontal direction produces different results than the opposite
order. Similarly, judging guilt before punishment may produce different results
than when these judgments are made in the reverse order. In both cases, the first
measurement changes the state, which prepares a new context for the second
measurement. Of course, some pairs of measurements are sensitive to order
and some are not. For example judging something complex and uncertain, such
as guilt and punishment of a defendant, may depend on order; but judging other
characteristics, such as the gender and height of the defendant, may not.

If a pair of measurements are order dependent, then they are called incom-
patible; if they are not, then they are called compatible. If all measurements
were compatible, then there would be no difference between quantum and
classical probabilities. Question order effects are discussed in more depth in
Chapters 4 and 5. Incompatibility and its relationship with indeterminacy is
covered in more detail in Chapter 2.

1.1.2 Contextual Reasons

The principle of unicity (see Griffiths, 2003, chapter 27) states that there is a
unique exhaustive description which contains all events. In other words, there
is a single sample space of points from which all events can be composed.
However, the existence of incompatible measurements makes this principle
break down so that it is not possible to fit all the events into a single sample
space. Essentially, events produced by incompatible measurements require
separate sample spaces and separate probability distributions. In this setting,
a quantum phenomenon known as contextuality can be determined.

Suppose variable A is a yes/no question such as “Do you think the social
and economic state of country A is in good shape?” and X is another yes/no
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question such as “Do you think President X of country A is doing a good
job?” Let A denote the measurement of variable A alone, AX denote the
measurement of variable A followed by variable X, and XA the opposite
order. Then A,AX, and XA form three different measurement contexts.
If the variables A,X are compatible, a single two-way joint distribution
for AX can account for all of the probabilities of events from all three
measurement contexts. However, if A, X are incompatible, so that there are
interference effects and order effects, then a single two-way distribution
cannot represent the three contexts, and the three distributions must be kept
separate.

Different measurement contexts can also be formed by measuring different
combinations of variables. For example, suppose we are investigating four
binary psychological variables, A, B, X,Y, where A and X are the same as
before, B is about country B, and Y is about the president of country B. Then
consider four measurement contexts, AX,AY,BX, BY, where for example
BX refers to the measurement of variable B and then variable X. We can
form a separate 2 x 2 classical probability distribution for each context to
produce a collection of four tables, such as the hypothetical results illustrated
in Table 1.1. Even so, we might ask: Is it possible to reconstruct all four
separate distributions using a single 2*-way joint distribution of the four binary
variables A, B, X, Y, allowing arbitrary dependencies? It turns out that this may
not be possible for several reasons. One reason is that the marginal distributions
may be inconsistent. For example, the marginal distribution of variable X in
the context AX may be different from the marginal distribution of X in the
context BX. Now further suppose that the marginals are all consistent. Can
we then reconstruct the four separate distributions, each corresponding to a
measurement context, from a single 2*-way joint distribution (and note that
we are allowing any arbitrary dependencies among the four variables)? The
answer may still be no, but for a more subtle reason. The four correlations
produced by the four distributions could violate a property called the Clauser—
Horn—-Shimony-Holt (CHSH) inequality, which is required to achieve this
reconstruction (discussed later in Chapter 10). The four example distributions
shown in Table 1.1 actually violate the CHSH inequality, and so there is no
single four-way joint distribution that can reproduce these four tables. Once
again, a separate distribution must be used to describe each table.

For larger numbers of measurement contexts, even more constraints must
be satisfied, and Dzhafarov and Kujala [2012] identify the general conditions
needed to construct a single joint distribution for any collection of measure-
ment contexts. The inability to construct a single joint distribution is seen as
the signature of contextuality. Contextuality is a subtle notion that influences
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Table 1.1 Numerical example of four two-way tables produced
by four contexts*

X=y X=n Y=y Y=n
A=y 0.271 0.175 A=y 0.115 0.331
A=n 0.084 0.469 A=n 0.269 0.285
X=y X=n Y=y Y=n
B=y 0.335 0.035 B=y 0.296 0.073
B=n 0.021 0.610 B=n 0.088 0.543

*There are some slight rounding errors in the table.

how we must view the properties of the cognitive phenomenon being studied.
It is covered in more detail in Chapters 10 and 13.

Quantum probability theory was specifically created to be a contextual
theory that can account for the effects of measurement context. A super-
position state is used to account for interference effects, such as finding
the marginal probability of X in the context AX to be different than the
probability of X in the context of XA. Additionally, quantum theory includes
the important concept of an entangled superposition state to account for deeper
contextual effects, such as violations of the CHSH inequality. An entangled
superposition state that represents the AX context cannot be decomposed
into two separate states, one for variable A and another for X; instead there
are interdependencies so that observing the outcome of a measurement of A
now changes the probabilities for X. Of course, classical probability theory
also allows for dependencies between the variables, but these dependencies
must satisfy the CHSH inequality. When entangled states are combined with
incompatible measurements (e.g., suppose in our example above, the variables
X, Y are incompatible), then quantum theory can provide an elegant account
of violations of the CHSH inequality. One then might ask: Is quantum
probability empirically testable? In fact, quantum probability must satisfy
another inequality, the Tsirelson inequality.

Entangled states are useful for conceptual combinations that are not seman-
tically compositional [Bruza et al., 2015b]. For example, the semantics of the
conceptual combination BLACK CAT can be argued as being compositional
due to the non-empty intersection of black objects with the set of objects
that are cats. In contrast, the intersective semantics of ASTRONAUT PEN
are empty, and yet humans can attribute semantics to this combination. How
quantum cognition can furnish semantics to language is covered in Chapter 11.
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Of course quantum probability is not the only way to account for context
effects. However, it provides a general and principled way to do this, rather
than relying on ad hoc and specialized assumptions.

1.2 Two Challenges for Quantum Cognition

Often the audience in our talks, or the reviewers of our articles, ask two
important questions that challenge the quantum cognition research program.
One question asks: Why would biological evolution produce a cognitive
system that is quantum-like? The second question concerns the prospects of
a neurophysiological basis for quantum-cognitive processing.

1.2.1 Why Would Evolution Pick Quantum Reasoning?

If the physical world that we encounter at the macroscopic level is essen-
tially classical, why would evolution generate a cognitive system that uses
quantum rather than classical probability? One reason is that perhaps our
mental world is not adequately described by a classical view. Khrennikov
[2007] and Blutner and beim Graben [2016] have both proposed that per-
haps the neural system is a classical (deterministic) dynamical system that
operates on a high-dimensional continuous state space, called the micro-
state space. However, the key argument is that a person’s mental experi-
ences are provided by macroscopic (global brain) measurements of billions
of micro-states, which provide a coarse-graining of the micro-states into
“macro-states.” Information is lost and the state of the microsystem becomes
uncertain. Different macroscopic mental measurements can be incompati-
ble, generating different but overlapping Boolean algebras of experienced
events [beim Graben and Atmanspacher, 2006]. A collection of different but
overlapping Boolean algebras is called a partial Boolean algebra. Assigning
probabilities to events that form a partial Boolean algebra is problematic
for a single classical probability distribution that relies on unicity. Quantum
probability is ideally suited for assigning probabilities to a partial Boolean
algebra of events. Thus, the challenge of dealing with a mental world that
generates a partial rather than a complete Boolean algebra of experienced
events may have prompted the evolution of a quantum probability reasoning
system.

Some readers might still not be convinced. Although problematic for a
single classical probability distribution, assigning probabilities to a partial
Boolean algebra does not necessarily require quantum probability, because

https://doi.org/10.1017/9781009205351.002 Published online by Cambridge University Press


https://doi.org/10.1017/9781009205351.002

10 Introduction

other generalized probability theories could also apply. So some additional
reason is needed to motivate quantum probabilities.

A second reason is based on the idea that quantum probability theory
provides more parsimonious (less complex) descriptions than classical joint
probability models [Atmanspacher and Romer, 2012]. Many believe that the
mind strives to be rational within the limits of its cognitive resources. One
popular approach to rational reasoning is Bayesian reasoning, but this approach
encounters serious tractability problems. The dimension of a classical joint
probability space grows exponentially as the number of variables increases.
Consequently, resource limitations of cognition require various simplifications,
such as for example, using Bayesian networks that impose strong conditional
independence assumptions. This is but one way to be rational within bounded
cognitive resources; quantum probability theory provides an alternative to
meet the resource constraints for rational reasoning under uncertainty. The
dimension of the quantum probability space does not increase exponentially
with increasing number of variables. Why is this? As we discuss in the
next section, quantum probability defines variables as operators acting on a
vector space. (Most computational neural network models actually assume a
system operating on a vector space.) The advantage of using a vector space
representation is that different variables can be represented by changing the
basis (rotating the axes) used to describe them within the same vector space.
There is an infinite number of ways to select a basis within a fixed, finite-
dimensional vector space, which can then provide an infinite number of ways
to describe variables within a limited cognitive resource. An example aims to
illustrate this important point.

Consider a game with two players, in which each player has three choices
of move. When planning a move, each player needs to estimate the probability
of the move of the opponent and then consider the probability for his/her
own move. According to a Bayesian probability model, this requires forming
32 = 9 joint probabilities that each of two players takes one of three actions.
If there are n players, then a Bayesian model requires 3" joint probabilities,
producing an exponential growth in probabilities. In contrast, according to
the quantum approach, the state of the three actions by each player could be
represented by a vector in a three-dimensional vector space. The probabilities
assigned to different players can be obtained by “rotating” the basis used to
describe the vector within the same three-dimensional space. In this way, n
players are described by n different bases within the same three-dimensional
space.

There is, however, a cognitive price to be paid by representing different
variables using different bases. Changing the basis used to describe two
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variables makes the two measurements incompatible. It is not possible to
evaluate two incompatible events simultaneously, because changing the basis
must be done sequentially by rotating from one basis to another. Further-
more, Heisenberg’s famous uncertainty principle is a consequence of this
incompatibility. For example, in our n-person game example, changing the
basis used to represent the beliefs about the players implies that it is not
possible to be certain about the moves of all players simultaneously. Increasing
certainty about the move of one player (rotating to agree with one basis)
implies increasing uncertainty (rotating away from another basis) about others.
In quantum physics, the uncertainty principle is a consequence of the nature
of incompatible observables such as position and momentum. However, for
psychology, it may be a consequence of the need to represent an infinite
number of variables within a mind constrained by limited cognitive resources
[Blutner and beim Graben, 2016]. The uncertainty principle for quantum
cognition models is derived in Chapter 2.

1.2.2 Does Quantum Cognition Imply a Quantum Brain?

The quantum brain hypothesis asserts that the brain actually uses quantum
physical processes to perform significant cognitive operations [e.g.,
Hammeroff, 1998, 2007]. We do know that the rods in the human eye can
detect a single photon, and therefore some quantum computation is happening
at least at very low levels of human information processing [Hecht et al.,
1942]. But many have argued strongly against the quantum brain hypothesis
[e,g., Litt et al.,, 2006; Tegmark, 2000], because the brain operates in a
hot and uncontrolled environment and quantum superposition states needed
for quantum computation would not last long enough to do any meaningful
cognitive operations. More recently, new proposals have been put forward
arguing that it is possible for the brain to maintain coherent superposition
states long enough for quantum physical cognition to take place [Fisher, 2015;
Weingarten et al., 2016].

Most researchers in quantum cognition do not rely on the hypothesis that the
brain is some kind of quantum computer. Of course there are various opinions
on the matter, and it is still an important open question, but quantum cognition
research proceeds simply on the application of the mathematical principles
to human and possibly other animal behavior. However, if quantum cognition
researchers do not want to rely on the quantum brain hypothesis, how else
would these computations be performed by the brain? Although this is still an
important open question, several proposals have been made for describing how
a classical neural system could possibly implement the computations required
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for quantum probability theory [de Barros, 2012; de Barros and Suppes, 2009;
Busemeyer et al., 2017; Khrennikov et al., 2018; Selesnick and Piccinini, 2018;
Selesnick et al., 2017; Takahashi and Cheon, 2012]. Nevertheless Hameroff
[2013] continues to argue that “From a well-known example of inductive
reasoning: If the brain swims, looks, and quacks like a (quantum) duck, then
it probably is a (quantum) duck” (p. 290). We will return to this controversial
subject in Chapter 13.

1.3 Brief Overview

Although the later chapters of this book will go into much greater depth, it
will be useful to first give a brief introduction to the fundamental aspects
of quantum cognition, which comprise quantum probability theory, quantum
dynamics, and quantum information processing.

1.3.1 What Is Quantum Probability?

What is quantum probability and how does it differ from classical probability?
The purpose of a probability theory is to assign probabilities to events. For
example, an event might be “the defendant committed the crime” and we
may want to assign a probability (a number ranging between zero and one) to
that event. A probability theory provides the rules (axioms) for making these
assignments. Most social and cognitive scientists are only trained on classical
probability, and so it comes as a surprise that other probability theories even
exist. Like classical probability theory, quantum probability theory is based
on a small set of axioms, but they happen to be different than the axioms of
classical probability theory (also see Narens [2015] for a discussion of a variety
of other probability theories). Chapter 2 presents more details about quantum
probability theory, but here we present a few important ideas.

Classical probability has a long history, beginning in the seventeenth
century with contributions by Pascal, Laplace, and other mathematicians, and
it has continued to develop since that time. Much of classical probability
theory was initially motivated by problems arising in classical physics, and
later applications appeared in economics, engineering, statistics, cognitive
science, and so on. The generally accepted axiomatic foundation for classical
probability theory was proposed by Kolmogorov [1933/1950].

Classical probability theory is founded on the premise that events are
represented as subsets of a larger set called the sample space. The collection
of subsets forms a Boolean algebra that satisfies the axioms of closure (if A, B
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are events, then A N B is also an event), commutativity, AN B = BN A, and
distributivity, AN(BUC) = (ANB)U(ANC). A classical probability function
is used to assign probabilities to events in an additive manner: If A and B are
mutually exclusive, then the probability of A or B equals the probability of
A plus the probability of B. Additivity is crucial for the theory to satisfy a
standard test of “rationality” called the Dutch book test: A Dutch book (taking
a gamble with a guaranteed loss) cannot be made against a person basing her
decisions on expected value with an additive probability measure [de Finetti,
2017]. The classical law of total probability follows from the distributive
property of events and the additive property of the probability function.

Quantum mechanics was invented by a brilliant group of physicists in the
1920s, including Planck, Einstein, de Broglie, Bohr, Heisenberg, Schrodinger,
Born, Dirac, and others. Quantum theory was motivated by puzzling physical
phenomena that ran counter to any kind of explanation in classical physics.
Initially, quantum theorists were unclear about what they had created, but
eventually it became clear that they had invented a new theory of probability.
The generally accepted axiomatic foundation for quantum probability theory
was proposed by Dirac [1930/1958] and von Neumann [1932/1955].

Quantum probability is founded on the premise that events are represented
as subspaces of a vector space, called a Hilbert space (see Figure 1.1).!
The collection of subspaces, however, does not form a Boolean algebra,
and instead it forms a collection of overlapping Boolean algebras, called
a partial Boolean algebra, which does not necessarily obey the closure,
commutative, and distributive axioms. A quantum probability function is used
to assign probabilities to events, which also satisfies additivity, and so quantum
probability can also claim “rationality” on the basis of satisfying the Dutch
Book test [Barnum et al., 2000; Pothos et al., 2017]. However, because the
distributive axiom does not necessarily hold for quantum events, it follows
that the law of total probability can be violated with quantum probabilities.

A famous theorem by Gleason [1957] tells us exactly how to compute the
quantum probability function. We present more details in the next chapter,
but Figure 1.1 illustrates the general idea using a three-dimensional space.
Suppose a juror must decide between ‘murder degree 1°, ‘murder degree 2°,
or ‘innocent’. We can represent the event X = ‘murder degree 1’ by the ray
(a one dimensional subspace) labeled X in the figure, and the event ¥ =
‘murder degree 2’ as the ray labeled Y in the figure, and the event Z =
‘innocent’ by the ray labeled Z in the figure. The event M = ‘murder degree 1

1A Hilbert space is a vector space defined on a complex field endowed with an inner product.
Completion of the inner product space is also required; however, quantum cognition researchers
normally use finite-dimensional spaces, and the latter are always complete.
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Figure 1.1 The rule for computing the probability of an event M given a state
S. The event M is represented as a two-dimensional subspace (the X-Y plane)
in a three-dimensional vector space. The state S is projected on the subspace
M to produce the projection T, and the probability is the squared length of the
projection ||T||2 .

or murder degree 2’ is then represented by the X-Y plane (a two-dimensional
subspace) in the figure. The probabilities that a person assigns to these events
are determined by a unit length state vector denoted S in the figure. The
coordinates of a state with respect to some basis are called amplitudes. In
general, the amplitudes can be complex numbers, although in this example
they are real-valued. The probability of an event is obtained by (1) projecting
the state on the subspace corresponding to an event, and then (2) squaring
the length of the projection. For example, the probability of the event M is
obtained by (1) projecting the state S onto the plane representing the event
M producing the projection 7', and then (2) computing the squared length of
this projection, ||T||2. Gleason’s theorem states that “in a separable Hilbert
space of dimension at least three, whether real or complex, every measure on
the closed subspaces is derived in this fashion” [see p. 885 in Gleason, 1957].
More informally, if we want to define events as subspaces instead of subsets,
and we want the probabilities to satisfy additivity, then these probabilities must
be computable from a single quantum state using a quantum algorithm as
illustrated in Figure 1.1.2

2 As discussed in Chapter 3, the quantum algorithm is more generally applied to probabilistic
mixtures of superposition states represented efficiently by density matrices.
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1.3.2 What Are Quantum Dynamics?

One can next ask: What are quantum dynamics and how do they differ from
classical dynamics? The purpose of a probabilistic dynamical theory is to
describe how probabilities assigned to states of a system change over time.
Quantum dynamics are presented in Chapter 6, but here we present some basic
ideas. Consider, for example, a juror who is evaluating evidence during a trial.
Suppose the juror can express different degrees of belief in guilt on a rating
scale ranging from O (definitely not guilty) to 100 (definitely guilty) in steps of
1 unit. While listening to the evidence, the juror’s beliefs on this scale change
over time. According to a classical probabilistic dynamic process, at each
moment in time the juror is actually located at a specific level of belief, and
the juror’s belief moves from one belief level to another like a particle moving
across time to produce a trajectory. In the left panel of Figure 1.2, the trajectory
is the jagged path moving up and down and eventually drifting down toward
not guilty. At the point in time when a decision is required, the juror simply
reads out the existing level of belief to make a decision. The probabilities that
are assigned to the belief levels across time for a classical dynamic system
represent an outside observer’s (e.g., a prosecutor’s) uncertainty about a juror’s
trajectory.

According to a quantum dynamic process, at each moment in time the juror
is superposed across belief levels. That is, at a particular moment in time
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Figure 1.2 Markov random walk (left) and quantum walk (right) views of
evidence accumulation. The vertical axis represents the different levels of beliefs
and the horizontal axis represents time (the trial duration). The vertical line
represents the time at which a decision must be made. In this example, the
evidence is driving belief toward not guilty.
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each belief level has an amplitude representing its potential to be selected.
This superposition state (unit vector) is rotated (say from amplitudes favoring
equally likely to amplitudes favoring innocent) across time to produce wave
function. The right panel of Figure 1.2 illustrates the evolving probability
distribution over belief levels produced by the rotating superposition state. At
the point in time when a decision is required, the superposition state collapses
to a definite decision. The amplitudes assigned to the belief levels across time
represent the juror’s uncertainty about her own beliefs.

Markov processes are very often used to model classical probabilistic
dynamical systems. Such processes describe how a probability distribution
across states evolves over time. Considering our juror example, the prob-
ability distribution represents an external observer’s (e.g., the prosecutor’s)
uncertainty about where the juror’s belief is located at a particular moment in
time. A transition operator transforms the probabilities from one distribution
at an earlier point in time to another distribution at a later point in time. The
transition matrix is derived from a differential equation called the Kolmogorov
forward equation.

Quantum processes describe how the juror’s superposition state, an ampli-
tude distribution, evolves over time. Considering our juror example again, the
superposition state represents the juror’s internal uncertainty over the belief
scale at any moment. A unitary operator rotates the superposition state from
one superposition state to another over time. The unitary operator is derived
from a differential equation called the Schrodinger equation, named after the
famous quantum theorist Erwin Schrédinger. (See Busemeyer et al. [2020a]
for a comparison of Markov and quantum dynamic models.)

Recently a very general probabilistic dynamic model has been employed in
cognitive research called an open systems model [Busemeyer et al., 2020a;
Rivas and Huelga, 2012]. The name “open systems” comes from the idea
that the cognitive system is influenced by both internal thought dynamics
and external environmental influences. This provides a way to model both the
external uncertainty about the state of the decision maker as well as the internal
uncertainty that the decision maker has regarding his or her own beliefs. This
more general model uses a differential equation called the Master equation that
combines quantum and Markov processes by adding what are called Lindblad
operators to the quantum process. Later in Chapter 7 we describe all of these
dynamical models in more detail.

1.3.3 What Is Quantum Information Processing?

Finally, one can ask: What is quantum information processing and how does it
differ from classical information processing? Information processing systems
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Figure 1.3 Controlled-U gate with a control input vector entering the upper line,
and a target vector entering the U gate. The control input is passed unchanged
to the output. The target vector may or may not be transformed by the U gate,
depending on the control input vector.

generally accept input information, which is then used in a computation that
eventually produces output actions. Information processing systems go beyond
single-stage dynamics because they are used to perform multiple stages with
sequences of actions in response to a sequence of inputs; for example, playing
a game of chess. A classical example of an information processing system is
a collection of if-then production rules like those used in classical cognitive
architectures such as ACT-R [Anderson et al., 2004] or SOAR [Laird, 2012].
Quantum information processing operates according to a similar idea using
controlled-U gates. A controlled-U gate is a unitary operator that takes a super-
posed vector as input and transforms it into another superposed output vector.
The input vector is composed of two parts: The first part is the control signal,
which determines whether or not to apply the U gate; the second part contains
the target that is transformed by the U gate into an output vector, which is then
used to determine the probability of actions. In Figure 1.3 the control input is
a vector with coordinates represented by the upper column of shaded dots, and
the target is another vector with coordinates represented by the lower column.
The U gate in Figure 1.3 flips the target vector coordinates. Unlike symbolic
production rules, but like connectionist networks, the inputs to a controlled-
U gate are superpositions representing a distribution of uncertainty regarding
the input features, and the outputs are also superpositions that produce prob-
abilistic rather than deterministic actions. Also like connectionist networks,
the unitary transformation matrix can be viewed as a network that connects
inputs lines to output lines. Unlike connectionist networks, but like Bayesian
reasoning, the probabilities computed from quantum information processing
systems obey a coherent set of probability axioms. Sequences of situations
and actions are generated by concatenating a sequence of controlled-U gates.
The field of quantum computing and quantum information is very advanced.
Quantum computers are universal computing systems with the same com-
putational power as classical computers, but with possibly faster speed of
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computations [Nielsen and Chuang, 2000]. The work in quantum cognition
does not assume or require a quantum computer. Instead it uses these principles
to build information processing systems designed to model situation—action
sequences performed during problem solving and dynamic decision making by
humans. Quantum information processing models applied to cognitive science
are presented in Chapter 8.

1.4 Is There a Quantum Measurement Problem
in Quantum Cognition?

As we discussed earlier, one of the key features of quantum theory is that
measurement of a system changes the behavior of the system. There are at
least two different ways to interpret the effect of measurement (see chapter 18
of Griffiths [2003] for a discussion). One common interpretation (by the way,
not preferred by Griffiths for quantum physics) is that the observation causes a
superposition state, containing the disposition for many states to be measured,
to reduce to a definite state that will be observed in the actual measurement.
The superposition state of the system before observation is sometimes viewed
as a “quantum wave” and the transition from a superposition state to definite
state associated with the observed outcome is often called the “collapse of the
wave.” This interpretation suggests that the superposition state has some type
of actual physical existence (perhaps as an unstable neural state) and a physical
collapse actually occurs when a measurement is made (pushing the neural
dynamics into an attractor state). Another interpretation (preferred by Griffiths
for quantum physics) is that a measurement determines the “preparation state,”
which is then used to compute the outcome probabilities, and an observed
outcome is used to form a new conditional state. The latter interpretation
suggests that the quantum state is a pre-probability used by a person to make
predictions, and a measurement outcome is used to form a new conditional
state for computing future predictions. Either one of these interpretations
appears in various works on quantum cognition.

At this point, it is important to clarify what counts as a measurement in
quantum cognition. Let’s reconsider the experiments on the disjunction effect
to see how this idea was applied. In the Shafir and Tversky [1992] experiment,
the player is informed by the experimenter about the opposing player’s move.
In this case, the experimenter provides information about the opponent that is
used to update the initial state of the player before the player takes an action in
the prisoner’s dilemma (PD) game. If we view the state as a superposition over
the possible moves of the opponent, and we assume that the player actually
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accepts the experimenter’s statement about the opponent’s move, then the
superposition should break down, aligning the initial state with the known
move of the opponent. If the initial state is aligned with the known move of
the opponent, then this has the same effect as a measurement that collapses the
state on known move of the opponent player. Next consider the experiment by
Croson [1999], which required predicting the move of the opponent. In this
case, the experimenter requests a prediction and records a response from the
player, and so it seems rather clear that an observation or measurement has
taken place. By doing this, however, we are assuming that the superposition
state over opponent moves is broken down and revised so that it aligns with
prediction before taking the next action. In other words, it is assumed that if
the player predicts the opponent will defect, then the player acts accordingly.
It is as if the prediction is used as information to change the state. Finally,
perhaps a person can ask him or herself a question (such as “What will my
opponent do?”’) and thus perform a “self measurement.” It is unclear whether
or not this last example would result in a collapse or conditioning of the state.
From these three examples, we see that the question of when a measurement is
taken, or alternatively when a state is revised conditioned on new information,
is a very important issue for quantum cognition.

1.5 Brief History and Chapter Summary

Quantum physical models of the brain have been discussed for over 50 years,
perhaps beginning with [Ricciardi and Umezawa, 1967] with later work
by [Jibu and Yasue, 1995] (also see Vitiello [2001] for a more accessible
presentation of this theoretical work). However, as we mentioned earlier,
models of quantum cognition only rely on the abstract mathematics of quantum
theory, and are not directly based on quantum physical laws.

The idea of applying the abstract mathematics of quantum theory outside
of physics to cognition and decision making began later, in the 1990s. Some
of the earliest proposals were by Aerts and Aerts [1995] and Bordley [1998;
Bordley and Kadane, 1999] on decision making; Roy and Kafatos [1999] and
Conte et al. [2007] on perception; Gabora and Aerts [2002] to conceptual
reasoning, and Khrennikov [1999] and Atmanspacher and Romer [2002] to
psychology more generally.

The field began growing with a series of international meetings and their
proceedings [see Bruza et al., 2007, for the first] held each year, called the
Quantum Interaction Conference. A special issue appeared in 2009 in the
Journal of Mathematical Psychology [Bruza et al., 2009] that provided a solid
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foothold for the field to move forward, and numerous special issues have
appeared on the topic since that time [see, e.g., Gray, 2013]. General reviews
of the field started appearing beginning with Pothos and Busemeyer [2013],
later Ashtiani and Azgomi [2015] and Bruza et al. [2015a], and most recently
Pothos and Busemeyer [2022]. Day-long in-person tutorials have been held
almost every year at the Cognitive Science Society beginning in 2007, and
published tutorials have appeared in Yearsley and Busemeyer [2016] and later
Yearsley [2017]. Books on quantum cognition and decision have been written
including the first edition of this book [Busemeyer and Bruza, 2012] as well as
an earlier book by Khrennikov [2010] and a later one by Bagarello [2019].
Van Rijsbergen [2004] introduced the application of quantum principles to
information retrieval. A related area to quantum cognition known as “quantum
social science” has also emerged [Haven and Khrennikov, 2013; Wendt, 2015].

In summary, we began this chapter by discussing reasons for considering a
quantum program of research for cognition. Motivating psychological reasons
included applying the concepts of superposition to represent decision-maker
states of uncertainty, sensitivity to measurement that produces interference
effects, and the correspondence principle that is closely related to incompatible
measurements and sequential effects of measurement. We also discussed
reasons based on the contextual nature of judgments and decisions and pointed
out how the concept of entanglement can be used to account for these effects.
Two other important issues were addressed: Why evolution might generate a
quantum reasoning system when we interact with a classical world, and how
the brain might perform the computations required for quantum reasoning. The
chapter also provided a overview of the three main topics within quantum
cognition by briefly reviewing the basic ideas behind quantum probability,
quantum dynamics, and quantum information processing. In addition, we
examined how these three quantum principles compare to classical probability,
dynamics, and information processing. The chapter included an example
application of quantum cognition modeling to a puzzling phenomenon in
decision making called the disjunction effect, and we discussed some of the
measurement issues that arose with this application. Hopefully this introduc-
tion has generated sufficient interest and momentum for the reader to continue
and discover the broad variety of applications of quantum theory to human
cognition.
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