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We propose two simple semiparametric estimation methods for ordered response
models with an unknown error distribution. The proposed methods do not require
users to choose any tuning parameters, and they automatically incorporate the mono-
tonicity restriction of the unknown distribution function. Fixing finite-dimensional
parameters in the model, we construct nonparametric maximum likelihood estimates
for the error distribution based on the related binary choice data or the entire ordered
response data. We then obtain estimates for finite-dimensional parameters based on
moment conditions given the estimated distribution function. Our semiparametric
approaches deliver root-n consistent and asymptotically normal estimators of the
regression coefficient and threshold parameter. We also develop valid bootstrap
procedures for inference. The advantages of our methods are borne out in simulation
studies and a real data application.

1. INTRODUCTION

We consider the following ordered response model in which the discrete dependent
variable Yi is defined by the threshold-crossing rule given covariates Xi, a latent
error term εi, an unknown threshold parameter α0, and a regression coefficient β0:

Yi =

⎧⎪⎨
⎪⎩

1, if εi ≤ X′
iβ0,

2, if X′
iβ0 < εi ≤ X′

iβ0 +α0,

3, if εi > X′
iβ0 +α0,

(1.1)
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2 RUIXUAN LIU AND ZHENGFEI YU

for i = 1, . . . ,n. We maintain the independence assumption between X and ε

throughout the paper. Let F0(·) be the true unknown distribution function of the
latent error ε. Given independent and identically distributed (i.i.d.) observations of
(Yi,Xi)

n
i=1, the likelihood function takes the following form:

Ln(α,β,F) = �n
i=1

{
F(X′

iβ)�1i
[
F(X′

iβ +α)−F(X′
iβ)

]�2i
[
1−F(X′

iβ +α)
]�3i

}
,

(1.2)

where the indicators are �ji = I{Yi = j}, for j ∈ {1,2,3}.
The ordered response model dates back to Aitchison and Silvey (1957) where

the error distribution F0 is parameterized and has been widely used to characterize
ordered categorical outcomes in economics. We refer readers to Greene and
Hensher (2010) for a comprehensive review. However, the fully parametric pro-
cedure leads to an inconsistent estimate and misleading inference if the parametric
model of the error distribution is misspecified. Flexible semiparametric estimation
has been studied by Lee (1992), Melenberg and Van Soest (1996), Klein and
Sherman (2002), Lewbel (2000, 2002), Chen and Khan (2003), and Coppejans
(2007), allowing for an arbitrary error distribution. This literature can be roughly
divided into two categories. The first branch employs either kernel- or sieve-based
nonparametric estimation of the functional nuisance component as in Klein and
Sherman (2002), Lewbel (2002), Chen and Khan (2003), and Coppejans (2007).
The implication is that the user has to choose a tuning parameter, such as the
bandwidth in kernel smoothing or the number of sieve basis functions, and there is
no clear answer about the optimal choice in this context.1 Inevitably, this requires a
considerable amount of intervention and judgment on the part of practitioners. The
second branch, which does not require tuning parameters, includes the maximum
score and maximum rank estimation. For the maximum score estimator (Lee,
1992), only the consistency result is available, and it is expected to have a non-
standard limiting distribution with cubic-root convergence rate. The rate of con-
vergence can be improved by smoothing the sample criterion function, as done by
Melenberg and Van Soest (1996), which once again introduces a smoothing param-
eter (bandwidth). Moreover, the convergence rate of the smoothed maximum-score
(SMS) estimator remains slower than the standard root-n rate (Horowitz, 1992,
2009). Using the maximum rank estimation, it is possible to develop a two-stage
estimator for the ordered response model. The first stage estimates the regression
coefficient β0 by recasting the ordered response model as a generalized regression
model (Han, 1987; Sherman, 1993; Cavanagh and Sherman, 1998), and the second
stage estimates the threshold parameter α0 by adapting the rank estimator for the
transformation model (Chen, 2002). We describe such a two-stage rank estimator
in Section 2.4.1 and treat it as an alternative to our main proposal.

1In Lewbel (2000), under an additional independence assumption between the special regressor and other covariates
(see Assumption A.5’ on page 157 of Lewbel (2000)), one can apply the ordered data estimator (Lewbel and
Schennach, 2007) without a tuning parameter. However, in general, the Lewbel (2000) estimator needs a kernel-
or sieve-type estimator of the conditional density in its first stage.
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SIMPLE SEMIPARAMETRIC ESTIMATION OF ORDERED RESPONSE 3

In this paper, we propose two simple semiparametric estimation methods for
ordered response models that are fully automatic and free of any tuning parameter.
The resulting estimators of the slope coefficient β0 and the threshold α0 are root-
n consistent and asymptotically normal. The first method consists of two stages.
The first stage starts with the likelihood function for related binary choice data
(�1i,Xi)

n
i=1:

L1n(β,F) = �n
i=1

{
F(X′

iβ)�1i
[
1−F(X′

iβ)
]1−�1i

}
, (1.3)

and follows Groeneboom and Hendrickx (2018) to get estimated β̂n and F̂n. Using
the monotonicity of the distribution function, the estimated F̂n(·;β) for any given
β can be obtained by the isotonic regression of �1i on X′

iβ or, equivalently, as
the nonparametric maximum likelihood estimator (NPMLE) in the sense of Kiefer
and Wolfowitz (1956) for the binary choice data.2 We then estimate the regression
coefficients by using a set of moment conditions. In the second stage, we obtain
the estimated threshold from a simple moment condition concerning the binary
choice data (�3i,Xi), for i = 1, . . . ,n. Our second method directly maximizes
the full likelihood in (1.2) for the ordered response data to obtain the NPMLE
F̃n(·;α,β) for any given (α,β). Thereafter, we estimate the regression coefficients
and threshold jointly by using the moment conditions as in our two-stage approach.
Throughout this paper, we name the first approach (isotonic) two-stage estimation
and the second one (NPMLE-based) joint estimation.

Our estimation approaches have three main appealing features. First, both
methods are free from any tuning parameter. This is because we estimate the error
distribution F in (1.3) or (1.2) by a well-defined isotonic estimator F̂n or NPMLE
F̃n (either using the binary choice data or the ordered response data), which exploits
the monotonicity of the distribution function. As a result, the estimator F̂n or F̃n

does not rely on any kernel smoothing or sieve penalization. Second, our estimators
of the error distribution are automatically nondecreasing functions by construction.
In contrast, the kernel-based approach in Klein and Sherman (2002) may not
yield a monotonic estimate of the error distribution,3 and the sieve estimator
in Coppejans (2007) has to incur additional computation costs by restricting
spline coefficients to accommodate monotonicity. Finally, our approach is easy
to implement. The isotonic estimator F̂n can be easily computed using the pool-
adjacent-violators algorithm (PAVA) (see Robertson, Wright, and Dykstra (1988,
Chap. 1) for details). For the NPMLE F̃n, we adapt the hybrid approach in Wellner
and Zhan (1997) that combines both the expectation-maximization (EM) algorithm
and the iterative greatest convex minorant algorithm. Our two-stage estimation is
particularly attractive from the computational point of view, in the sense that for
the given (β̂n,F̂n(·;β̂n)), the estimating equation for the threshold parameter α is

2In order to differentiate from the NPMLE in our second method, we will refer F̂n as the isotonic estimator throughout
the paper and reserve the NPMLE for F̃n. Indeed, F̂n can be obtained by an isotonic regression, whereas F̃n cannot.
3Figure 5 in Section 4.2 plots the estimated error distribution in a real data example.
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monotonic. In our simulations, the two-stage estimator is computationally fastest
among five semiparametric estimation methods under consideration.

We contribute to the literature in several ways. First, we propose a new tuning-
parameter-free semiparametric method for practitioners to estimate the ordered
response model. The Monte Carlo results also confirm robust finite sample
performances of our proposals. Second, our interest in model (1.1) stems from
the interdependent durations model proposed by Honoré and de Paula (2010),
in which the scalar representing the social interaction effect is directly related
to the threshold parameter in the resulting ordered response model. We demon-
strate the usefulness of the Honoré–de Paula model by estimating the derived
ordered response model in simulation experiments and real data. Third, our work
contributes to the literature of semiparametric estimation that involves shape-
restricted components (Groeneboom and Jongbloed, 2014). In the seminal works
of Newey (1994), Chen, Linton, and Van Keilegom (2003)), and Ichimura and Lee
(2010), general theorems are presented for semiparametric estimators involving
some first-stage nonparametric estimation under high-level assumptions and then
verified for sieve- or kernel-type estimators under smoothness restrictions. In our
setting, however, the isotonic estimate or NPMLE is not smooth. The crux of our
theoretical investigation is to prove that certain linear functionals (or the directional
derivatives) of the estimated distribution function are asymptotically normal, com-
bining the characterization of shape-restricted estimation and empirical process
theory. Fourth, we prove bootstrap consistency to facilitate inference. Note that the
bootstrap is known to fail for the pointwise distribution of the isotonic estimator
or NPMLE (Abrevaya and Huang, 2005). However, similar to Groeneboom and
Hendrickx (2017), the bootstrap is valid for our finite-dimensional parameters
because the influence of the isotonic estimator or the NPMLE is carried over by
linear functionals.

Our technical analysis is built on Groeneboom and Hendrickx (2018); however,
there are distinctions. A close examination reveals that the proof in Groeneboom
and Hendrickx (2018) regarding the regression coefficient β is relatively easier,
as they can utilize an orthogonal (to the nuisance tangent set) score function to
account for the estimation effect of the error distribution implicitly. This orthog-
onal direction is well known for single-index models (Ichimura, 1993; Klein and
Spady, 1993). On the other hand, we have to explicitly characterize the influence of
estimating the distribution through its linear functional in our two-stage estimation.
The corresponding issue related to our joint estimator goes beyond Groeneboom
and Hendrickx (2018). Unlike the binary choice case, in our model, the NPMLE
making use of information in all three categories lacks an explicit characterization.
As a result, determining the asymptotic behavior of its linear functional becomes
much more challenging, and we adapt the proof of NPMLE for the “interval
censoring, case 2 model”4 (Van de Geer, 1995; Geskus and Groeneboom, 1996,

4To clarify the comparison with Groeneboom and Hendrickx (2018), the binary choice model there is also known as
the “interval censoring, case 1 model” (see Groeneboom and Wellner, 1992).
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1997, 1999). From a different perspective, the linear functional of the isotonic
distribution estimator can be analyzed under the framework of Beare and Fang
(2017) using their least concave majorant (LCM) operator, because the isotonic
estimator can be equivalently defined as a left derivative of a proper LCM (see
Mukherjee and Sen (2019) for an application to the integral functional of the
isotonic density estimator). Unfortunately, the theory of Beare and Fang (2017)
does not apply to the NPMLE of our joint estimation. In response, we have to
follow a more abstract route by analyzing the score operator and its adjoint (Van
der Vaart, 1991).

The rest of the paper is organized as follows. Section 2 verifies the identification,
and introduces two simple semiparametric estimation methods that are based on
isotonic estimation/NPMLE of the error distribution. Section 3 investigates the
asymptotic properties of our estimators for the finite-dimensional parameters,
proving their consistency and asymptotic normality. We also develop bootstrap
procedures for the confidence intervals. Section 4 conducts simulation studies
to evaluate the finite sample properties of the estimators and also illustrates the
proposed methods using a real dataset. The final section concludes. Proofs of main
theorems are in the Appendix, whereas other theorems and technical lemmas are
proved in the Supplementary Material. The Supplementary Material also collects
auxiliary results and additional simulation evidence.

2. SIMPLE SEMIPARAMETRIC ESTIMATION

Throughout the paper, we work with the i.i.d. data (Yi,Xi) for i = 1, . . . ,n. It
is convenient to introduce the indicators �ji = I{Yi = j}, for i = 1, . . . ,n and
j = 1,2,3. Responses with more than three categories are discussed in Section
S1.3 of the Supplementary Material. Let K denote the dimensionality of covariates
X, and write β0 ≡ (β01,β02, . . . ,β0K)′. Note that the regression coefficient β0

is only identified up to some scale normalization for an unspecified F0 (Klein
and Sherman, 2002). Without loss of generalization, we normalize β01 = 1 and
denote β ′

0 = (1,β ′
0−). In accordance, covariates are partitioned as X′ = (X1,X′

−1).

Furthermore, our coefficient estimators are denoted by β̂ ′
n = (1,β̂ ′

n−) and β̃ ′
n =

(1,β̃ ′
n−) in the sequel.

Let η = (θ,F (·;θ)) be the unknown parameter containing both finite-
dimensional parameter θ ≡ (α,β ′−)′ and the distribution function F. Furthermore,
we consider α ∈ A, β− ∈ B, and F ∈ F , where A ⊂ R+, B ⊂ R

K−1, and F is the
class of distribution functions. The distance between two parameter values (η1,η2)

is defined in terms of the following metric:

d (η1,η2) = |θ1 − θ2|+‖F1 (·;θ1)−F2 (·;θ2)‖,

where |·| is the standard euclidean distance, and ‖·‖ is some norm for the class of
distribution functions. We work with the L∞-norm in the consistency proof and
the L2-norm in showing the rate of convergence, as well as killing smaller-order
terms for technical convenience.
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2.1. Identification

The identification of the finite-dimensional parameters (β ′
0−,α0)

′ and the nonpara-
metric component F0 can be achieved in two stages. First, the coefficients β0−
and the cdf F0 can be identified using the binary choice data (�1i,X′

i)
′. Then, the

threshold α0 can be identified using another set of binary choice data (�3i,X′
i)

′,
in particular, from the moment restriction E[�3i|X′β0] = 1−F0(X′β0 +α0). This
idea of identification is inspired by Klein and Sherman (2002) and Lewbel (2002).
For completeness, we state the identification conditions and results as follows.

Condition 1. (i) We observe i.i.d. data (Yi,Xi) for i = 1, . . . ,n. (ii) The covariates
X and latent error ε are independent. (iii) The distribution of first element X1

conditional on other elements X−1 has an everywhere positive Lebesgue density.

(iv) The support of X is not contained in any proper linear subspace of R
K

.

Condition 2. (i) The distribution function F0 is differentiable. (ii) F0 is not
constant over the support of X′β0 and over the support of X′β0 +α0.

Condition 3. Let X′
−1 ≡ (X′

c,X
′
d), where Xc ∈ R

Kc and Xd ∈ R
Kd be the con-

tinuous and discrete components of X−1. Write β ′− ≡ (β ′
c,β

′
d) to denote the

corresponding coefficients. Denote the supports of X1, Xc, and Xd as X1, Xc, and
Xd, respectively. Then, for any β− ∈ B, there exist Kd +1 vectors c0,c1, . . . ,cKd ∈
Xd satisfying the following two conditions: (i) the vectors cl − c0 for l = 1, . . . ,Kd

are linearly independent; and (ii) the following set

Kd⋂
l=0

{
x1 + x′

cβc + c′
lβd : x1 ∈ X1,xc ∈ Xc

}

contains an open interval.

Condition 4. The support of X′β0 contains the support of ε.

Conditions 1–3 are adapted from the literature on the single-index model
(Ichimura, 1993; Horowitz, 2009) and the binary choice model (Manski, 1985;
Klein and Spady, 1993). For the ordered response model, the independence
between ε and X in Condition 1 is also imposed by the kernel- or sieve-based
estimators (Klein and Sherman, 2002; Coppejans, 2007) and the rank estimator
described in Section 2.4.1. Condition 3 corresponds to Assumption 4.2(4) in
Ichimura (1993), which guarantees the overlap of the support of X′β when the
discrete components of X−1 vary over Kd + 1 different values. Condition 4 is a
support assumption on the linear index X′β0, which allows us to identify the entire
distribution of F0 and thus facilitates the identification of α0.

THEOREM 2.1. Under Conditions 1–4, the regression coefficients β0−, the
threshold parameter α0, and the distribution function F0 in the model (1.1) are
identified.
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Remark 2.1. Lewbel (2002) studied the identification and estimation of the
ordered response model using the special regressor, which, in our notations,
corresponds to X1. In his approach, the independence and the support assumptions
are imposed on the special regressor X1 conditional on other covariates X−1. This
special regressor approach permits heteroskedasticity of the error term ε, and it
can also be conveniently extended to deal with the random thresholds. Because
our primary focus is on new estimation methods, we follow the classical approach
from Ichimura (1993), which is also adopted in Klein and Sherman (2002) and
Coppejans (2007).

2.2. Two-Stage Semiparametric Estimation

Following the identification strategy in the previous section, our two-stage esti-
mation method first estimates the coefficients β0 and the distribution F0 using the
binary choice data (�1i,Xi)

n
i=1 and then estimates the threshold parameter α0 using

another set of binary choice data (�3i,Xi)
n
i=1. Unlike Klein and Sherman (2002),

who resort to the kernel estimator in Klein and Spady (1993), or Lewbel (2002),
who requires a preliminary nonparametric estimation of the conditional mean
function, we estimate the nonparametric component by an isotonic regression
which does not require tuning parameters. This is possible when the monotonicity
restriction is imposed on the nonparametric component, which is natural in our
setup as the distribution function is nondecreasing. We now describe the two-
stage semiparametric estimation for the ordered response model. The first stage
is adapted from Groeneboom and Hendrickx (2018).

Stage 1(i). For any β, we compute the estimator for F(·) based on the binary choice
data (�1i,Xi)

n
i=1:

F̂n(·;β) = argmax
F∈F

n∑
i=1

[
�1i logF(X′

iβ)+ (1−�1i) log(1−F(X′
iβ))

]
, (2.1)

where F is the class of all distribution functions.

Stage 1(ii). Given F̂n(·;β), our estimator β̂n for the regression coefficients is the
zero-crossing point5 of the estimating equation

ϒn(β) ≡ 1

n

n∑
i=1

Xi,−1

[
�1i − F̂n(X

′
iβ;β)

]
= 0. (2.2)

Stage 2. Given β̂n and F̂n(·;β̂n), we estimate α0 by α̂n, which is the zero-crossing

point of the estimating equation 
n

(
α̂n,β̂n,F̂n(·;β̂n)

)
= 0, where

5As F̂n(·;β̂n) is a piecewise constant function, the estimating equations may not hold exactly. Therefore, we adopt
Definition 4.1 from Groeneboom and Hendrickx (2018) so that the estimators are defined as zero-crossing points.
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n

(
α,β̂n,F̂n(·;β̂n)

)
≡ 1

n

n∑
i=1

[
1−�3i − F̂n(X

′
i β̂n +α;β̂n)

]
. (2.3)

The estimator F̂n(·;β) in Stage 1(i) and its characterization date back to Ayer
et al. (1955) in analyzing the current status data (Groeneboom and Wellner,
1992). The corresponding optimization problem is well defined, and it generates
a piecewise constant function F̂n(·;β), which can be characterized as follows:
fixing the parameter β, we consider the values of U(β)

i = X′
iβ, for i = 1, . . . ,n. Let

U(β)

(1) ≤ ·· · ≤ U(β)

(n) be the order statistics and �
(β)

1,(i),i = 1, . . . ,n, be the corresponding

indicators. Thereafter, F̂n(·;β) is equal to the left derivative of the convex minorant

of a cumulative sum diagram consisting of the points (0,0) and
(

i,
∑i

j=1 �
(β)

1,(j)

)
for

i = 1, . . . ,n.
In practice, F̂n(·;β) can be computed fast by the PAVA (Robertson et al., 1988,

Chap. 1), which determines a nondecreasing sequence r∗ = (r∗
1,r

∗
2, . . . ,r

∗
n) in the

following way with r∗
i = F̂n(U

(β)

(i) ;β).6 Starting with the initial sequence r[0] =
(�

(β)

1,(1), . . . ,�
(β)

1,(n)) and the unity weights w[0] = (1, . . . ,1), in the kth step, if r[k] is
a nondecreasing sequence, then we set r∗ = r[k] and stop. Otherwise, there must
exist an index j such that r[k]

j−1 > r[k]
j (i.e., the violators). Then, we update these

two elements (violators) r[k]
j−1 and r[k]

j by their weighted average: r[k+1]
j−1 = r[k+1]

j =
(w[k]

j−1r[k]
j−1 +w[k]

j r[k]
j )/(w[k]

j−1 +w[k]
j ), and also replace the two weights w[k]

j−1 and w[k]
j

by w[k+1]
j−1 = w[k+1]

j = w[k]
j−1 + w[k]

j . This process of “pool the adjacent violators” is

repeated until we reach a nondecreasing sequence. Given F̂n(·;β), the computation
of our Stage 1(ii) can be carried out by a spectral method (La Cruz, Martínez, and
Raydan, 2006), which avoids matrix computation and efficiently solves a nonlinear
system of equations. To be specific, the kth iteration of the algorithm is defined as
β[k+1] = β[k] − l[k]ϒn(β

[k]), where the step length l[k] = s′
k−1sk−1/s′

k−1yk−1 with
sk = β[k] −β[k−1] and yk = ϒn(β

[k])−ϒn(β
[k−1]). Note that 1/l[k], which is called

the spectral coefficient, is the least-squares solution to the equation bsk−1 = yk−1

for a scalar b. In comparison, a typical iteration of the quasi-Newton method looks
for an approximation of the matrix B that satisfies the equations Bsk−1 = yk−1.7

This spectral method can be implemented using the R package BB (Varadhan and
Gilbert, 2009). Our Stage 2 is easy to compute, as there is a single equation and
the function 
n is monotone with respect to α.

Within the context of binary choice models, the isotonic estimator F̂n(·;β) is
used by Cosslett (1983) to define the tuning-parameter-free profile likelihood esti-
mator. However, only consistency results are available for Cosslett’s estimator. The

6We call F̂n(·;β) the isotonic estimator because r∗ is the solution to the constrained least-squares problem:

minr1,...,rn

∑n
i=1

(
ri −�

(β)

1,(i)

)2
, such that r1 ≤ r2 ≤ ·· · ≤ rn.

7To achieve the global convergence, the described spectral iteration needs to be combined with a descent condition
(see (La Cruz et al., 2006, pp. 1431–1432) for details).
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key to develop a root-n consistent and asymptotic normal estimator for β0 while
maintaining the tuning-parameter-free feature is the Z-estimator in Stage 1(ii)
adapted from Groeneboom and Hendrickx (2018). Modulo the estimated latent
distribution function, one makes use of the population-level moment condition

E[X−1(�1 −F0(X
′β0))] = 0, (2.4)

and plugs the isotonic estimator F̂n(·;β) in the sample analog of (2.4). In the same
spirit, Stage 2 of our procedure is based on a very simple moment condition:

E[(1−�3 −F0(X
′β0 +α0))] = 0. (2.5)

We emphasize that it is necessary to use both sets of moment conditions for the
sake of consistency. The naive approach where one uses only the binary choice
data (�2i,Xi) and then directly applies Groeneboom and Hendrickx (2018) does
not work because the intercept α0 and the distribution function F0 cannot be
separately identified in the binary choice data alone (Ichimura, 1993). We focus on
the just-identified case to be consistent with Groeneboom and Hendrickx (2018).
In principle, a generalized method of moments estimator based on overidentified
moment conditions could be developed.

Remark 2.2. Aside from avoiding any bandwidth selection, our procedure
also sidesteps the trimming or truncation. Note that some other semiparametric
methods require trimming mainly for two reasons (Ichimura and Todd, 2007):
(i) trimming is sometimes needed to establish the uniform consistency of the
nonparametric estimator, which in turn is required for establishing the asymptotic
properties of the semiparametric estimator, and (ii) the statistic or the moment
condition itself may not be well behaved without the trimming. Echoing these
two points, we observe that the trimming can be avoided for our estimation
method because (i) the isotonic estimator for the distribution function is uniformly
consistent without trimming the support,8 and (ii) the moments in (2.4) and (2.5)
and their variances are generally well defined without any trimming. Referring to
point (i), the NPMLE is consistent in terms of the Hellinger distance without any
trimming (Van de Geer, 1993). This implies the pointwise consistency if the true
error distribution function is absolutely continuous. Since both NPMLE and the
true distribution are monotone, pointwise consistency implies uniform consistency
(see Example 3.3(a) in Van de Geer (1993)). Regarding point (ii), note that the
efficient score function derived from the smoothed maximum likelihood estimator
of Klein and Spady (1993) is

˜̇lβ ≡ f0(X′β0)

F0(X′β0)(1−F0(X′β0)))
X−1(�1 −F0(X

′β0)), (2.6)

8When the dependent variable is unbounded, the isotonic regression is not consistent at the boundary in general. This
also motivates the recent works on regularizing the isotonic estimator by the bounded isotonic regression (see (Chen,
Lin, and Sen, 2020)). However, this is not a concern for our problem, as the dependent variable is always bounded
between [0,1] herein (see also the first equation on page 79 of Groeneboom and Wellner (1992)).
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(a). Normal errors (b). Exponential errors
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Figure 1. The estimating function 
n(α,β̂n,F̂n(·;β̂n)) in α, generated by the interdependent duration
model in Section 4.1, α∗ = 1, n = 500.

which may not be well defined due to the additional weighting factor f0
F0(1−F0)

(see
the example in Remark 2.1 in Groeneboom and Hendrickx (2018)). As specified
in Condition C.7 in Klein and Spady (1993), a proper trimming is required for the
Klein–Spady estimator. The efficient shape-restricted estimator in Section 4.2 of
Groeneboom and Hendrickx (2018) also needs trimming as it uses the efficient
score function in (2.6). We also conduct Monte Carlo simulations to evaluate the
effect of trimming (see Section S2.1 of the Supplementary Material). We find
that the bias and mean square error (MSE) are similar between the two-stage
estimator with and without trimming. A similar observation can be made for the
joint estimator proposed below.

Figure 1 depicts a typical shape of the estimating function 
n(α,β̂n,F̂n(·;β̂n))

in (2.3) with respect to α. The data are generated by the interdependent duration
model described in Section 4.1, with the true value α∗ = 1. The plotted estimating
function 
n(α,β̂n,F̂n(·;β̂n)) is decreasing in α, and the zero-crossing points are
close to the true value: they are about 1.07 in Panel (a) and 1.02 in Panel (b).

2.3. Joint Semiparametric Estimation

It is natural to ask whether it is possible to develop a similar tuning-parameter-free
estimation approach utilizing the entire ordered response data altogether, instead of
breaking it into two sets of binary choice data. The answer is affirmative, and such
an approach, termed as the joint estimation method, is introduced in this section.
Our joint semiparametric method makes use of information in all three categories
to estimate the distribution function and returns the estimates for the regression
coefficients and the threshold parameter simultaneously.

For any α and β, we employ the NPMLE for F̃n(·;α,β) based on the ordered
response data:
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F̃n(·;α,β)

= argmax
F∈F

n∏
i=1

{
F(X′

iβ)�1i
[
F(X′

iβ +α)−F(X′
iβ)

]�2i
[
1−F(X′

iβ +α)
]�3i

}
,

where F is the class of all distribution functions. The above NPMLE is well
defined, and it is a (sub)distribution function and piecewise constant with jumps
over a subset of {X′

iβ,X′
iβ +α : i = 1,2, . . . ,n}. Given F̃n(·;α,β) from the previous

step, we obtain the joint estimator (α̃n,β̃
′
n) as the zero-crossing point of the

estimating equations simultaneously:

�n(α̃n,β̃n) = 0, (2.7)

where

�n(α,β) ≡
⎡
⎣ 1

n

∑n
i=1 Xi,−1

[
�1i − F̃n(X′

iβ;α,β)
]

1
n

∑n
i=1

[
1−�3i − F̃n(X′

iβ +α;α,β)
]
⎤
⎦ .

The NPMLE F̃n(·;α,β) can be computed by the iterative convex minorant algo-
rithm in Groeneboom and Wellner (1992) and Groeneboom and Jongbloed (2014).
The iterative convex minorant algorithm can be implemented using the R package
Icens (Gentleman and Vandal, 2018).9 Then, the estimators (α̃n,β̃

′
n) are solved from

the estimating equations (2.7). The computational details are described in Section
S1.2 of the Supplementary Material.

Figure 2 plots an example of the estimating functions �n(α,β̃n) with respect to
α for fixed β = β̃n. The design once again follows the one in Section 4.1, with five
covariates. Therefore, there are five estimating equations, as plotted in Figure 2,
where the downward sloping solid line corresponds to the last row of (2.7). The
estimate α̃n is the value where all the estimating functions cross zero, which equals
to 1.06 in Panel (a) and 1.04 in Panel (b).

2.4. Alternative Semiparametric Estimators

This section summarizes three alternative semiparametric estimators for the model
(1.1). Among them, the two-stage rank estimator is also tuning-parameter-free,
whereas the kernel-based estimator and the SMS estimators require the users to
choose the smoothing parameter (and possibly other tuning parameters).

2.4.1. The Two-Stage Rank Estimator. An alternative tuning-parameter-free
method is a two-stage rank estimator that combines Cavanagh and Sherman (1998)
and Chen (2002). Although the original focus of Chen (2002) is estimating the
unknown link function in the transformation model, his method also applies to

9The R package Icens also provides a function for a faster hybrid algorithm proposed by Wellner and Zhan (1997)
which combines the iterative convex minorant and the EM algorithm.
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(a). Normal errors (b). Exponential errors
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Figure 2. (Color online) The estimating functions 
n(α,β̃n,F̃n(·;β̃n)) in α, generated by the
interdependent duration model in Section 4.1, 
n contains five components, α∗ = 1, n = 500.

the estimation of the threshold parameter in the ordered response model.10 We
describe the two-stage rank estimator as follows. Note that model (1.1) implies
that E[Yi|Xi] = 3 − F(X′

iβ0 + α0) − F(X′
iβ0) is a decreasing function in X′

iβ0, so
that one can apply the rank estimator of Cavanagh and Sherman (1998) to estimate
β0− in the first stage. The rank estimator β̂R− is given by

β̂R− = argmax
β−

n∑
i=1

YiRn(−X′
iβ), (2.8)

where Rn(−X′
iβ) denotes the rank of −X′

iβ. We denote β̂ ′
R = (1,β̂ ′

R−). Furthermore,
note that Pr(Yi = 1|Xi) = F0(X′

iβ0) and Pr(Yi ≤ 2|Xi) = F0(X′
iβ0 +α0). Applying

the key idea of Chen (2002) yields the relationship

E
[
I{Yi = 1}− I{Yj ≤ 2}|Xi,Xj

] ≥ 0 whenever X′
iβ0 −X′

jβ0 ≥ α0 for i �= j.

A maximum rank correlation estimator for α0 can be obtained in the second stage:

α̂R = argmax
α

1

n(n−1)

n∑
i=1

∑
j�=i

(
I{Yi = 1}− I{Yj ≤ 2})I{X′

i β̂R −X′
j β̂R ≥ α}.

Our simulation studies demonstrate a stable performance of this two-stage rank
estimator for estimating the finite-dimensional parameters. In particular, the bias
of the rank estimator is small. On the other hand, its standard error and the overall

10This approach is suggested by an anonymous associate editor in an early submission of the paper to another journal.
Given that this two-stage rank estimator has not been proposed for estimating the ordered response model, we expand
our discussion here. The duality between the ordered response model and the transformation model is also mentioned
in Klein and Sherman (2002, p. 665).
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MSE are larger than those of the isotonic two-stage estimator and the NPMLE-
based joint estimator. This gap is larger for the estimation of β0− than for α0.

2.4.2. The Kernel-Based Estimator of Klein and Sherman (2002). This
approach also consists of two stages. In the first stage, the regression coefficient
is estimated by maximizing the following quasi-likelihood function:

n∑
i=1

τ̂ (Xi)

{
I{Yi = 1} ln P̂1(X

′
iβ)+ I{Yi = 2} ln[P̂2(X

′
iβ)− P̂1(X

′
iβ)]

+ I{Yi = 3} ln[1− P̂2(X
′
iβ)]

}
,

where P̂j(X′
iβ) is the kernel estimator of the conditional probability Pj(X′

iβ) ≡
Pr(Yi ≤ j|X′

iβ) for fixed β in Klein and Spady (1993), j = 1,2, and the trimming

function τ̂ (x) = I

{
|x| ≤ ξ̂

}
with ξ̂ being a sample quantile of |Xi|’s. In the

second stage, the threshold parameter α0 is estimated through the shift restriction
P2(X′

iβ0 −α0) = P1(X′
iβ0), which leads to

α̂ = 1

I{i ∈ T }
∑
i∈T

(V̂i − Ṽi2), (2.9)

where V̂i ≡ X′
i β̂ and Ṽi2 solves P̂2(Ṽi2) = P̂1(V̂i)

11 for each i ∈ T , T ={
V̂i : P̂L ≤ P̂1(V̂i) ≤ P̂U

}
, and (P̂L,P̂U) are determined by the pth and (1 − p)th

quantiles of a collection of estimated probabilities (Klein and Sherman (2002, p.
671)). In addition to the choice of bandwidth for P̂j(X′

iβ), this approach relies
on the trimming scheme in the construction of the target set T , which excludes
individual estimators V̂i − Ṽi2 with poor performance. Our simulations study in
Section 4.1 finds that the performance α̂ is sensitive to the trimming parameter p.

2.4.3. The Smoothed Maximum-Score Estimator. Horowitz (1992) initially
proposed the SMS estimator for the binary choice model. Melenberg and Van Soest
(1996) extended it to the ordered response model. The estimator in Melenberg
and Van Soest (1996) can also be viewed as the smoothed version of Lee’s
(1992) maximum-score estimator. Under the median independence condition, the
SMS approach estimates (α0,β

′
0−) by maximizing the smoothed sample criterion

function:

max
α,β−

n∑
i=1

(2I{Yi ≥ 2}−1)K

(−X′
iβ

h

)
+ (2I{Yi ≥ 3}−1)K

(−X′
iβ −α

h

)
,

11In the implementation, Ṽi2 is the point for which P̂2(Ṽi2) is closest to P̂1(V̂i) over a grid constructed following the
procedure given in pages 671 and 672 of Klein and Sherman (2002).
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where K(v) is an integral kernel function satisfying limv→+∞ K(v) = 1 and
limv→−∞ K(v) = 0.12 Users need to specify the bandwidth h. The convergence
rate of SMS is slower than the root-n rate, even with the MSE-optimal bandwidth
of order n−1/9 (for the fourth-order kernel; see Section 4.3.3 of Horowitz (2009)
for a detailed discussion). Simulation results in Section 4.1 find that SMS yields
larger MSEs than our two-stage and joint estimators, especially for the estimation
of the threshold.

In the simulation experiments, our two-stage and joint estimators are faster and
easier to compute than Klein and Sherman’s (2002) kernel estimator and SMS
estimator. The first reason is that the latter two require the choice of bandwidth,
which costs considerable computational resources when the data-driven bandwidth
selector such as cross-validation is implemented. The second reason concerns
Klein and Sherman’s (2002) estimator: solving Ṽi2 from the shift restriction
P̂2(Ṽi2) = P̂1(V̂i) turns out computationally expensive.

3. ASYMPTOTIC RESULTS

This section consists of two subsections that provide asymptotic results for our
isotonic two-stage estimator and NPMLE-based joint estimator, respectively.

3.1. Asymptotic Properties of the Two-Stage Estimator

The crux of our investigation related to the two-stage estimation is to pin down the
asymptotic contribution of F̂n(·,β̂n) to the finite-dimensional parameter. For the
slope coefficients β0−, we apply Groeneboom and Hendrickx (2018). The proof
in Groeneboom and Hendrickx (2018) regarding the regression coefficient directly
utilizes an orthogonal (to the nuisance tangent set) score function to incorporate the
estimation effect of the error distribution. This orthogonal direction involves the
conditional mean of covariates X given the true linear index U = X′β0 (Ichimura,
1993; Klein and Spady, 1993). In comparison, we have made efforts to determine
the influence function for the threshold parameter α0 by explicitly characterizing
the effect of estimating the unknown distribution through certain linear functional
that represents the directional derivative of the estimated distribution (Ichimura
and Lee, 2010).

We introduce additional notations to present our theoretical results. It is shown in
Groeneboom and Hendrickx (2018) that the first-stage isotonic estimator F̂n(·;β)

provides an estimate of

F0(u;β) ≡ P
{
�

(β)

1i |U(β)

i = u
}

=
∫

F0(u+ x′(β0 −β))fX|X′β(x|X′β = u)dx.

(3.1)

12Horowitz (1992) adopts a fourth-order kernel K(v) = 0.5+ (105/64)[v− (5/3)v3 + (7/5)v5 − (3/7)v7] if |v| ≤ 1;
K(v) = 0 if v < −1; and K(v) = 1 if v > 1.
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In the sequel, we let F0(u) = F0(u;β0). Denote the true linear index by Ui = X′
iβ0

for i = 1, . . . ,n. Let G0(u) and g0(u) be the distribution and density functions of
the random variable U. The following two terms appear in the Taylor expansion in
our asymptotic analysis:

Vα0 = ∂

∂α
E[F0(X

′β0 +α)]
∣∣
α=α0

, (3.2)

Vβ0 = ∂

∂β−
E[F0(X

′β +α0;β)]
∣∣
β−=β0−, (3.3)

whereas

Hβ0 = E

[
f0(X

′β0)
{
X−1 −E[X−1|X′β0]

}⊗2
]

(3.4)

denotes the Hessian matrix for β̂n in Groeneboom and Hendrickx (2018).
The following regularity conditions are adapted from Ichimura (1993), Klein

and Spady (1993), Klein and Sherman (2002), and Groeneboom and Hendrickx
(2018).

Condition 5. The true β0− belongs to the interior of B where B is a compact
set in R

K−1. The true threshold parameter α0 ∈ A ≡ (αL,αU), where [αL,αU] is a
compact interval on the positive real line.

Condition 6. The function F0(u;β) is twice continuously differentiable on the
interior of the support for all β. The function F0(·) has a strictly positive continuous
derivative, which stays away from zero.

Condition 7. The random variable X′β admits a continuous density func-
tion denoted by g0(u;β) for all β. For β = β0, the random variable [�1 −
F0(Ui)]g0(Ui −α0)/g0(Ui) has a finite second moment.

Condition 8. The density g0(u;β) and conditional expectationsE[X−1|X′β = u]
and E[X−1X′

−1|X′β = u] are twice continuously differentiable with respect to u.
The functions β �→ g0(u;β), β �→ E[X−1|X′β = u], and β �→ E[X−1X′

−1|X′β = u]
are continuous functions for u in the definition domain and all β.

Condition 9. The matrix Hβ0 is of full rank. The scalar Vα0 �= 0, where Vα0 =∫
f0(u+α0)g0(u)du.

The asymptotic property of β̂n is stated in Theorem 4.1 on page 1426 of
Groeneboom and Hendrickx (2018), and more generally in Theorem 3 on page
532 of Balabdaoui, Groeneboom, and Hendrickx (2019). Specifically, β̂n is root-n
consistent and asymptotically normal. Regarding the latent error distribution, one
gets a cubic-root rate (modulo the logarithm factor) convergence in the L2-norm.
Note that the statement in Groeneboom and Hendrickx (2018) applied trimming
on the distribution function (to be coherent with the efficient estimators they
developed). Here, we do not need any trimming, in the same spirit of Proposition
2 and Theorem 3 in Balabdaoui, Groeneboom, and Hendrickx (2019). We refer
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readers to Lemma S6 and its discussion in the Supplementary Material for more
details.

The large sample property of α̂n is more complicated, and it is our main focus.
We consider the following function:


n(α) = 1

n

n∑
i=1

[
1−�3i − F̂n(X

′
i β̂n +α;β̂n)

]
(3.5)

and its probability limit 
(α) = ∫ [
1−�3 −F0(X′β0 +α)

]
dP. Because our esti-

mation procedure belongs to the general Z-estimation with bundled parameter
and nuisance functional components, we follow the route in Nan and Wellner
(2013). Unlike the examples in Nan and Wellner (2013), which have nuisance
nonparametric components that are either estimable with root-n rate or subject to
certain smoothness restriction, the nonparametric part is estimated utilizing shape
restriction with a cubic-root rate in our model.

THEOREM 3.1. Under Conditions 1–9, for all large n, the unique zero-crossing
point α̂n of 
n(α) exists with probability tending to one and it is a consistent
estimator of α0. Moreover, the following linear representations hold:
√

n(β̂n− −β0−) = Gn
[
ψβ0(Zi)

]+op(1),and (3.6)

√
n
(
α̂n −α0

) = V−1
α0

Gn
[
(ψ0 +ψF0 +Vβ0ψβ0)(Zi)

]+op(1), (3.7)

where

ψβ0(Zi) = H−1
β0

(Xi,−1 −E[Xi,−1|Ui])(F0(Ui)−�1i), (3.8)

ψ0(Zi) = [1−F0(Ui +α0)−�3i], (3.9)

ψF0(Zi) = g0(Ui −α0)[�1 −F0(Ui)]

g0(Ui)
. (3.10)

Intuitively speaking, the linear representation for the threshold estimator α̂n

involves three parts: the oracle influence function ψ0 given true β0 and F0, the
effect from the estimation of F0 encoded in ψF0 , and the effect from the estimation
of β0 collected in ψβ0 . Given the linear representation for both α̂n and β̂n−,
an immediate corollary is the joint asymptotic normality for θ̂n = (α̂n,β̂

′
n−)′ as

follows. To simplify the presentation, we abuse the notation somewhat by setting
ψα0 ≡ V−1

α0
(ψ0 +ψF0 +Vβ0ψβ0).

COROLLARY 3.1. Under Conditions 1–9, we have
√

n(θ̂n − θ0) ⇒ N(0,�0), (3.11)

with the asymptotic covariance matrix �0 = E[(ψα0,ψ
′
β0

)′(ψα0,ψ
′
β0

)].
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Remark 3.1. It is a central theme in semiparametric econometrics to determine
the influence of the first-stage nonparametric estimation. General theorems avail-
able (Newey, 1994; Chen et al., 2003; Ichimura and Lee, 2010) lead to
√

n
[
Sn(θ0)+�(θ0)[F̂n −F0]

]
⇒ N(0,�), (3.12)

for some finite positive definite matrix �, given some generic nonparametric
estimator F̂n. Herein, Sn(θ0) stands for the (normalized) oracle score function for
the parametric part, whereas the directional derivative �(θ0)[F̂n −F0] encodes the
estimation effect of the nonparametric component. The latter one can further be
shown to have a linear representation

√
n
[
�(θ0)[F̂n −F0]

]
= 1√

n

n∑
i=1

ψi +op(1), (3.13)

for some zero-mean and square integrable random variables ψi. The examples
in Newey (1994), Chen et al. (2003), and Ichimura and Lee (2010) are about
nonparametric components with sufficient smoothness restrictions and estimated
by sieve- or kernel-type estimators. The essential part in our proof of Theorem
3.1 is to verify (3.13) by showing that the linear functional of the shape-restricted
nonparametric estimator is asymptotically normal. The verification in our context
is nontrivial due to the fact that the isotonic estimator or the NPMLE is neither
smooth nor linear.

Remark 3.2. As the two-stage rank estimator described in Section 2.4.1 is
another tuning-parameter-free estimation method for the ordered response model,
we comment on the relative efficiency between these two approaches. Section
S1.1 of the Supplementary Material presents the asymptotic variance of the two-
stage rank estimator. We highlight the hybrid nature of our isotonic estimator and
the one from Groeneboom and Hendrickx (2018): after the profiled NPMLE, the
finite-dimensional parameters are estimated by moment conditions (or estimating
equations) that correspond to inefficient scores. Thus, they do not satisfy the
generalized information equality. The main reason for the lack of efficiency
ranking between the isotonic estimator and the rank estimator lies in their different
ways of deviating from the efficient estimator (Coppejans, 2007). Our estimator
is not efficient, as it uses a simple moment condition rather than the complicated
efficient score. The efficiency loss in the maximum rank estimator, on the other
hand, lies in its ignorance of the information contained in the distribution function.
In the numerical example presented in Section S1.1 of the Supplementary Material,
the variances of the rank estimator for elements of β0− are almost twice as large as
those of the isotonic two-stage estimator over a wide range of values for β0−. When
the estimation of α0 is concerned, on the other hand, the isotonic estimator has a
smaller variance for small values of α0, whereas the rank estimator enjoys a smaller
variance for large values of α0. Our Monte Carlo study finds consistent results
that the isotonic two-stage estimator yields a smaller variance (and also a smaller
MSE) than the rank approach for estimating β0− and α0, with the gap larger for the
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estimation of β0− than for α0. Overall, we conjecture that our isotonic two-stage
estimator may have a smaller asymptotic variance in some circumstances, given
that it is likelihood-based, and also uses the information of the error distribution
and the moment conditions.13 In a recent study on the monotone single-index
model, Groeneboom and Hendrickx (2019) numerically compare the isotonic-
regression-based approach and the rank estimation approach, and find that the
former performs better than the latter in estimating the regression coefficients.

Despite the fact that we have a closed-form representation here, a plug-in
estimation of the asymptotic variance involves estimating density functions such
as g0(·) or f0(·). This motivates us to propose a simple bootstrap as follows. Note
that bootstrap for regression coefficients in the binary choice model can be found in
Groeneboom and Hendrickx (2017). Let (Mn1, . . . ,Mnn) ∼ Multi(n,(1/n, . . . ,1/n))

be the multinomial weights.

Stage 1(i)*. First of all, the bootstrap version F̂∗
n(·,β) is computed using the

weighted cumulative sum diagram formed by the point (0,0) and⎛
⎝ i∑

j=1

M(β)

n(j),

i∑
j=1

M(β)

n(j)�
(β)

1,(j)

⎞
⎠,

where M(β)

n(i) corresponds to the weight attached to U(β)

(i) .

Stage 1(ii)*. The bootstrap estimator of the regression coefficient β̂∗
n is defined as

the zero-crossing point of the following estimating equations:

1

n

n∑
i=1

MniXi

[
�1i − F̂∗

n(X
′
i β̂

∗
n ;β̂∗

n )
]

= 0. (3.14)

Stage 2*. Finally, the bootstrap version α̂∗
n is defined as the zero-crossing point of

the following estimating equation:

1

n

n∑
i=1

Mni

[
1−�3i − F̂∗

n(X
′
i β̂

∗
n + α̂∗

n;β̂∗
n )
]

= 0. (3.15)

Since the bootstrap estimate F̂∗
n is a stepwise monotone function, the estimating

equation for α̂∗
n is also monotone so that the computational advantage of our

approach is amplified along the bootstrap replications. Regarding the theoretical
underpinning, one could easily prove that α̂∗

n → α0 conditional on observations
(Z1, . . . ,Zn) almost surely. We characterize the conditional weak limit for α̂∗

n

in the next theorem. For completeness, we also state the result for β̂∗
n−, which

has been established by Groeneboom and Hendrickx (2017, pp. 3464–3465). A

13We thank an anonymous referee for the comments on the asymptotic variance comparison.
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direct consequence of the following theorem is the validity of percentile bootstrap
confidence intervals.

THEOREM 3.2 (Bootstrap validity for the two-stage estimator). Suppose Con-
ditions 1–9 hold. For the bootstrap estimators β̂∗

n− and α̂∗
n with the multinomial

weights (Mn1, . . . ,Mnn), we have
√

n(β̂∗
n− − β̂n−) ⇒ N(0,�β0), (3.16)

√
n
(
α̂∗

n − α̂n
) ⇒ V−1

α0
×N(0,�α0), (3.17)

conditional on observations (Z1, . . . ,Zn), almost surely.

3.2. Asymptotic Properties of the Joint Estimator

The asymptotic analysis of our joint estimation method is more involved, due
to the challenge to pin down the influence function capturing the effect of the
NPMLE F̃n. This is expressed via some linear functional of F̃n after eliminating
smaller-order terms. Unlike the binary choice case where the isotonic estimator
can be characterized as the left derivative of the greatest convex minorant of certain
cumulative sum diagram (described in Section 2.2), such an explicit representation
is lacking herein. Thus, we seek an alternative characterization that builds on
a sequence of research by Van de Geer (1995) and Geskus and Groeneboom
(1996, 1997, 1999) for the interval censored data (Case 2). This calls for a careful
analysis of the related score operator and its adjoint (Van der Vaart, 1991). For
that purpose, we define c1(u) = ∫ u

CL
E[X−1|v]g0(v)dv, c3(u) = G0(u − α0), and

c(u) = (c′
1(u),c3(u))′. Let ċ(u) be its derivative. Consider the linear functional

κ(F0) = ∫
c(v)dF0(v) and its canonical (with zero mean) gradient κ̃F(u) = c(u)−∫

c(v)dF(v). A key component in determining the asymptotic property of (α̃n,β̃n)

is κF̃n(·;α0,β0), i.e., the linear functional of the NPMLE when the finite-dimensional
parameter is set to be its true value. We denote u = x′β0 and the support of it as
[CL,CU]. Let δ1 and δ2 be the values of �1 and �2. It turns out that the influence
function takes the following form (Van de Geer, 1995, Exam. 4.2):

φF0(u,δ1,δ2) = δ1
ςF0(u)

F0(u)
+ δ2

ςF0(u+α0)−ςF0(u)

F0(u+α0)−F0(u)
− (1− δ1 − δ2)

ςF0(u+α0)

1−F0(u+α0)
,

(3.18)

where

ςF0(u) =
{−F0(u) [(1−F0(u))ω(u)+ (1−F0(u+α0))ω(u+α0)], for CL ≤ u ≤ α0,

(1−F0(u)) [F0(u)ω(u)+F0(u−α0)ω(u−α0)], for α0 ≤ u ≤ CU,

and ω(u) ≡ ċ(u)

g0(u)
.

We need one more set of assumptions to guarantee the asymptotic normality for
the linear functional of NPMLE (see page 31 of Van de Geer (1995)).
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Condition 10. We assume that ω(u) is uniformly bounded for all u in the
support. Moreover, the following ratios are all uniformly bounded:

sup
u

∣∣∣∣ ω̇(u)

f0(u)

∣∣∣∣ ≤ c, sup
u

∣∣∣∣ ω̇(u)

f0(u+α0)

∣∣∣∣ ≤ c, sup
u

∣∣∣∣ ω̇(u+α0)

f0(u)

∣∣∣∣ ≤ c,

sup
u

∣∣∣∣ ω̇(u+α0)

f0(u+α0)

∣∣∣∣ ≤ c, sup
u

∣∣∣∣ f0(u+α0)

f0(u)

∣∣∣∣ ≤ c, sup
u

∣∣∣∣ f0(u)

f0(u+α0)

∣∣∣∣ ≤ c,

for some universal finite constant c. Furthermore, for any α in the parameter space,
we assume that F0(u+α)−F0(u) is uniformly bounded away from zero for any u
in the support.

Denote the stacked estimator for the finite-dimensional parameter as θ̃n ≡
(α̃n,β̃

′
n−)′ and the true unknown parameter as θ0 ≡ (α0,β

′
0−)′. Let the Hessian

matrix evaluated at the true parameter be

H0 = −
(
E[(X−1 −E[X−1|X′β0])f0(X′β0)] E[(X−1 −E[X−1|X′β0])⊗2f0(X′β0)]

E[f0(X′β0 +α0)] E[(X−1 −E[X−1|X′β0])′f0(X′β0 +α0)]

)
.

The following theorem presents large sample properties of our joint estimator. Note
that the term φF0 captures the estimation effect of the distribution function and we
sought to verify an expansion like (3.13) in the proof.

THEOREM 3.3. Under Conditions 1–10, for large n, the zero-crossing point θ̃n

for 
n(θ̃n) exists with probability tending to one and is a consistent estimator of
θ0. We also have
√

n(θ̃n − θ0) ⇒ N(0,�̃0),

where �̃0 = H−1
0 E[(φ′

0 +φ′
F0

)′(φ′
0 +φ′

F0
)]H−1

0 , φF0 is defined in equation (3.18),
and

φ0 =
(

[�1i −F0(X′
iβ0)]Xi,−1

1−�3i −F0(X′
iβ0 +α0)

)
. (3.19)

Remark 3.3. It is known that NPMLE is more efficient than the isotonic esti-
mator only using the binary choice data in the sense that both n1/3(F̃n(t;α0,β0)−
F0(t)) and n1/3(F̂n(t;β0) − F0(t)) converge to the Chernoff distribution yet with
different scaling constant terms. Specifically, the NPMLE has a smaller asymptotic
variance than the isotonic estimator (Groeneboom and Jongbloed, 2014, Chap.
4, Exer. 4.27). Our simulation results also confirm the theory. Apropos of the
asymptotic covariances of the estimators for β0 and α0, the comparison between
our two-stage and joint estimation is not obvious analytically, as both influence
functions are complicated. Since the joint approach simultaneously estimates α0

and β0, one may naturally expect that it works better. This is supported by our
simulation results. Practitioners may decide to choose between the two-stage
estimator and the joint estimator based on their tasks and computing resources.
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Now, we describe the bootstrap inference for our joint estimator. For any α

and β, we can derive the bootstrap NPMLE for F(·;α,β) based on the ordered
response data:

F̃∗
n(·;α,β) =

argmax
F∈F

n∏
i=1

{
F(X′

iβ)Mni�1i
[
F(X′

iβ +α)−F(X′
iβ)

]Mni�2i
[
1−F(X′

iβ +α)
]Mni�3i

}
.

Given F̃∗
n(·;α,β) from the previous step, the bootstrap estimator θ̃∗

n ≡ (α̃∗
n,β̃

∗′
n−)′ is

the zero-crossing point of the estimating equations simultaneously:

1

n

n∑
i=1

MniXi,−1

[
�1i − F̃∗

n(X
′
i β̃n;α̃n,β̃n)

]
= 0,

1

n

n∑
i=1

Mni

[
1−�3i − F̃∗

n(X
′
i β̃n + α̃n;α̃n,β̃n)

]
= 0. (3.20)

The following theorem justifies the bootstrap confidence intervals of the regression
coefficients and threshold parameter for the joint estimator.

THEOREM 3.4 (Bootstrap validity for the joint estimator). Suppose Condi-
tions 1–10 hold. For the bootstrap estimator θ̃∗

n with the multinomial weights
(Mn1, . . . ,Mnn), we have
√

n(θ̃∗
n − θ̃n) ⇒ N(0,�̃0),

conditional on observations (Z1, . . . ,Zn), almost surely.

4. NUMERICAL RESULTS

In this section, we conduct Monte Carlo simulations to evaluate the finite sample
performances of the proposed isotonic two-stage estimator and NPMLE-based
joint estimators, and then apply them to an empirical example that studies the
retirement timing of married couples. We focus on an ordered response model with
three categories, derived from the interdependent duration model of Honoré and
de Paula (2010). The original model is a non-cooperative stopping game, in which
two players (e.g., a married couple), respectively, decide (T1,T2) as the optimal
timing of switching from an initial state (having a full-time job) to an alternative
state (retirement). The model setup allows the utility flow in the alternative state
for one player (the husband) to depend on whether the other player (the wife)
has switched or not, which causes an endogenous interaction effect. Honoré and
de Paula (2010) characterize the equilibrium of the switching (retirement) time
(T1,T2) by

Tj = inf{t : ta exp(X′
jβ0)exp[α∗

I
{
T−j ≤ t

}
] ≥ εj}, j = 1,2, (4.1)
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where a is a power parameter on the time scale, and latent variables (ε1,ε2) denote
random utility flows from the initial state (full-time job) and are assumed to have
a joint cdf G(·,·). Covariates Xj denote the vector of characteristics of the player
j. The subscript −j denotes the player j’s opponent. In this way, the parameter α∗
captures the endogenous interaction effect. When α∗ = 0, the model boils down to
the generalized accelerated failure time model (Horowitz, 2009).

Despite the sophisticated game structure and presence of multiple equilibria,
Honoré and de Paula (2010) prove the identifiability of parameters and show that
this interdependent duration model induces a simple ordered response model. The
ordered response variable Y contains three categories depending on whether the
switching decisions for two players are sequential or simultaneous. That is, Y = 1
if T1 < T2, Y = 2 if T1 = T2, and Y = 3 if T1 > T2. The resulting conditional choice
probabilities are

Pr {Y = 1|X1,X2} = H
(
(X1 −X2)

′β0 −α∗), (4.2)

Pr {Y = 2|X1,X2} = H
(
(X1 −X2)

′β0 +α∗)−H
(
(X1 −X2)

′β0 −α∗),
where H(w) = Pr{log(ε1) − log(ε2) ≤ w}. This falls into the setup of ordered
response model (1.1) with the normalization α∗ = α0/2 and ε = log(ε1)− log(ε2).
The covariate effect of the original interdependent duration model is captured by
the coefficients β0 and the endogenous interaction by α∗. The semiparametric
estimation does not impose parametric assumptions on the joint distribution G and
thus maintains the flexibility to leave the functional form of H unspecified.

4.1. Monte Carlo Simulations

In our simulation experiments, covariates Xj contain five variables
(
Xj1, . . . ,Xj5

)
and they are independent between j = 1,2. The first element Xj1 is a standard
normal variable truncated over [−5,5]; Xj2 is a χ2(1) variable standardized to
mean zero, variance one, and truncated from above at 3; the remaining compo-
nents (Xj3,Xj4,Xj5) are multivariate standard normal with the pairwise correlation
coefficient between Xjk1 and Xjk2 equal to 0.5|k1−k2|, all truncated over the interval
[−5,5]. We consider two types of distributions of the error terms (ε1,ε2): (I)
Normal errors: log(ε1) and log(ε2) have the truncated standard normal distribution
over the interval [−5,5], and (II) Exponential errors: log(ε1) and log(ε2) have the
unit exponential distribution truncated from above at 5. We write the corresponding
regression coefficients as β0 = (1,β02,β03,β04,β05)

′ and set the last four elements
(1,1,0,

√
2)′. The true interaction effect is α∗ = 1. All simulation results are based

on 1,000 replications. The sample size n = 250,500,750, and 1,000. Because
our empirical application only contains bounded covariates, we choose to work
with bounded covariates and errors herein. The Supplementary Material reports
simulation results for the unbounded cases. The findings are similar to the bounded
cases considered here.
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Figure 3a. (Color online) Finite sample performances of estimators for (β02,β03,α
∗), normal error:

two-stage (black, dashed, •), joint (red, solid, �), rank (blue, long-dashed, �), K–S (green, dotted, ×
for β02,β03; × and + for α∗ depending on p), SMS (brown, dot-dashed, �), ordered probit (violet,
two-dashed, �), and ordered logit (cyan, very long-dashed, ◦).

Figures 3a and 3b present the finite sample bias and root mean square error
(RMSE) of several estimators for (β02,β03,α

∗):14 the two-stage estimator and the
joint estimator for (β02,β03,α

∗) are tuning-parameter-free semiparametric estima-
tors proposed by this paper. As a comparison, we also include three alternative
semiparametric estimators described in Section 2.4, i.e., Klein and Sherman’s
(2002; hereafter K–S) kernel-based approach, Melenberg and Van Soest’s (1996)
SMS, and the rank estimator that combines Cavanagh and Sherman (1998)
and Chen (2002), and the parametric ordered probit and logit estimators. For the
K–S approach, the bandwidths (including a bandwidth, a pilot bandwidth,
and a smoothing parameter in the damping function) are chosen following
the guidelines of Klein and Sherman (2002).15 The trimming parameter ξ̂ for
the quasi-likelihood function (see Section 2.4.2) is set to be 0.95th quantile
of the euclidean norm of covariates. We experiment with two values for the
trimming proportion in constructing the target set: p = 0.05 and p = 0.20. For
the SMS approach, we use the kernel function in footnote 12 and select the
bandwidth by cross-validation based on maximizing the sample criterion function
in Section 2.4.3.

14For expository convenience, we focus on the coefficient estimators for (β02,β03). The performances of the
estimators for (β04,β05) are similar.
15The value δ in Klein and Sherman (2002, p. 669) is set to 1/6. The rate of bandwidth α is set as the middle point of
the allowed range ((3+ δ)/20,1/6) (see page 670). The rate of the pilot bandwidth follows Lemma 5A in Klein and
Sherman (2002). Finally, ε in the damping function is set as the middle point of the allowed range (0,1/40 − δ/20)

(see page 670).
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Figure 3b. (Color online) Finite sample performances of estimators for (β02,β03,α
∗), exponential

errors.

In terms of the computation time, the two-stage estimator is fastest among
all semiparametric estimators under consideration mainly because the isotonic
estimator F̂n(·,;β) can be computed efficiently by the PAVA. For example, one
replication of the two-stage estimator for a sample with n = 1,000 in our Monte
Carlo experiment takes about 1.4 seconds on an Intel Core i7 processor with 32 GB
of RAM. The computation of the joint estimator is more time-consuming because
the iterative convex minorant algorithm used to compute the NPMLE F̃n(·,;α,β) is
more complicated. As a result, in the same environment, a replication of the joint
estimator costs about 9.5 seconds, which is slower than the two-stage estimator
but is still reasonable for practical use. In comparison, the computation time per
replication for the rank, K–S, and SMS estimators are 2.0, 17.5, and 24.8 seconds,
respectively.

We make the following observations regarding the finite sample performances
of estimators presented in Figures 3a and 3b. First, the two-stage estimator and
especially the joint estimator yield smaller RMSE than other semiparametric
methods in almost all cases. For the coefficients β0−, the RMSE of the two-
stage estimator and the joint estimator are close to each other. For the threshold
parameter α∗, the joint estimator exhibits smaller RMSE than the two-stage
estimator. In comparison, the K–S estimator produces similarly small RMSE for
β0− but generates considerably larger RMSE for α∗. The RMSEs of the rank and
SMS estimators are consistently larger than those of the two-stage estimator and
the joint estimator. Second, although the bias of the two-stage estimator for β0− is
bigger than that of other semiparametric estimators, it is below 5% for n = 500
or larger. The joint estimator yields smaller bias than the two-stage estimator,
reflecting a benefit of using the information across three categories. The bias of
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the joint estimator is similar to that of the K–S estimator for coefficients β0− and
smaller than that of the latter for the threshold parameter α∗. The rank estimator
produces smaller bias than other semiparametric methods in most cases. Third,
the ordered probit estimator performs very well in Figure 3a, as the distribution
function H is (truncated) normal. However, its performance severely deteriorates
in the misspecified scenario (Figure 3b). The ordered logit estimator performs
badly in both Figures 3a and 3b, as the true distribution functions substantially
differ from logistic. Therefore, semiparametric estimators are recommended when
the H is unknown. Fourth, among the semiparametric approaches that rely on
tuning parameters, the performance of the K–S estimator for α∗ is sensitive to the
trimming parameter p, which determines the subset used for averaging individual
estimators (see Section 2.4.2). It is clear that p = 0.05 does not sufficiently exclude
individual estimators that perform poorly and thus leads to an unreliable estimate
for α∗. More trimming (p = 0.20) greatly improves the performance of the K–S
estimator for α∗; however, its bias and RMSE are still larger than those of the
two-stage estimator and the joint estimator. The SMS estimator also produces
larger RMSEs than our proposals, especially for the threshold parameter α∗. In
addition, the performance of SMS depends on the choice of the bandwidth. In
other experiments where we shift from the cross-validation bandwidth selector to
a simple rule c×n−1/9 for c = 0.25,0.5, and 1,16 there are cases in which the bias
increases by 50% and the RMSE by 15%.

We also examine the nonparametric estimators of the distribution H obtained
by different approaches. Figures 4a and 4b present the bias and RMSE of several
pointwise estimators of H evaluated at −2, − 1, and 1.17 The NPMLE-based
joint estimator performs better than the isotonic two-stage estimator, which once
again confirms the benefit of utilizing additional information that differentiates
the category with Y = 2 and the one with Y = 3. We also notice that the
kernel-based K–S approach outperforms the tuning-parameter-free approaches
for estimating the distribution function, as the former (which uses a smoothing
device) achieves faster convergence rate than the latter. Similar to the estimators
of finite-dimensional parameters, the parametric probit and logit models produce
substantially larger bias than the semiparametric approaches for the pointwise
estimation of H, when the distribution is misspecified.

Section S2.2 of the Supplementary Material investigates the performance of the
nonparametric bootstrap confidence intervals of β0− and α∗ obtained by the two-
stage, joint, and alternative semiparametric estimators mentioned above. We find
that the coverage proportions of the two-stage estimator and the joint estimator
are reasonably accurate. In sum, our simulation studies demonstrate encouraging
performances of the isotonic two-stage estimator and the NPMLE-based joint

16Note that n−1/9 is the MSE-optimal rate for the fourth-order kernel function used here.
17As the rank and SMS estimators themselves do not specify an estimator for the error distribution H, we plug their
estimates for the finite-dimensional parameters into the isotonic estimator described in Section 2.2, Stage 1(i) to
compute the corresponding pointwise estimate for H.
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Figure 4a. (Color online) Pointwsie estimators for the function H(w) at w = −2, −1, and 1, normal
errors: two-stage (black, dashed, •), joint (red, solid, �), rank (blue, long-dashed, �), K–S (green,
dotted, ×), SMS (brown, dot-dashed, �), ordered probit (violet, two-dashed, �), and ordered logit
(cyan, very long-dashed, ◦).
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Figure 4b. (Color online) Pointwsie estimators for the function H(w) at w = −2, − 1, and 1,
exponential errors.

estimator, especially for the threshold parameter α∗. They free the practitioners
from choosing any tuning parameters and meanwhile can have smaller RMSE
and shorter bootstrap confidence intervals than other competing semiparametric
approaches under consideration.
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Table 1. Couples’ retirement timing decisions. Sample size = 813, the coefficient on Age is normalized to 1, α∗ = interaction
parameter, 95% bootstrap confidence interval in the bracket.

Oprobit Two-stage Joint Rank K–S SMS

α∗ 1.17 0.93 1.11 0.93 1.44 1.50

[0.88, 1.59] [0.59, 1.39] [0.74, 1.45] [0.49, 1.34] [1.00, 3.54] [0.02, 3.26]

College −2.32 −1.78 −1.67 −1.41 −1.76 −1.30

[−4.01, −0.03] [−3.39, −0.08] [−3.14, −0.32] [−2.26, 0.31] [−8.36, 1.82] [−3.34, 2.11]

Health −5.08 −3.79 −3.95 −4.39 −3.94 −3.31

[−6.70, −2.23] [−5.57, −1.82] [−5.88, −2.19] [−5.29, −2.24] [−10.50, 1.40] [−5.45, −1.50]

Black −1.82 −0.02 −0.03 0.24 0.46 1.73

[−10.03, 12.52] [−3.36, 3.16] [−0.50, 1.05] [−0.99, 1.83] [−5.10, 8.95] [−4.00, 10.26]

Pension 0.37 0.17 −0.05 −0.05 −0.33 −1.28

[−1.67, 1.57] [−1.38, 1.44] [−1.55, 1.44] [−1.30, 1.29] [−3.28, 5.39] [−4.00, 2.50]
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4.2. Empirical Application: Joint Retirement Decisions of Couples

We revisit the joint retirement decisions of married couples in the United States
using the Health and Retirement Study (HRS) data, which were studied by Honoré
and de Paula (2018). The HRS data provide information on the retirement time of
the husbands and wives (denoted as T1 and T2) at a monthly frequency. We focus
on the households where both partners were in the labor market in the initial period
(year 1992), and at least one partner was above 60 years old. We define the three-
categorical ordered outcome as follows: Y = 1 if T1 < T2 − 1 (husband retired
first), Y = 2 if |T1 − T2| ≤ 1 (joint retirement), and Y = 3 if T1 > T2 + 1. Note
that if T1 (or T2) is right-censored due to death or the end of interview, as long as
the partner retired earlier, we can still assign Y = 3 (or Y = 1) to that couple. The
resulting sample contains 813 couples, among which 58.7% have Y = 1 and 7.3%
have Y = 2. We estimate the ordered response model (4.2) in which the covariates
Xj (j = 1,2 denotes the husbands and wives) contain Age (in years), College (= 1
if the person had some college or above), Health (= 1 if self-reported health status
is good or very good), Black (= 1 if non-Hispanic black), and Pension (= 1 if had
a defined benefit plan), and parameter α∗ captures the interaction effect between
the couple. For identification purposes, the coefficient on Age is normalized to 1.

Table 1 presents the estimates of the interaction parameter α∗ and the coef-
ficients on covariates obtained from various estimation methods: ordered probit
(Oprobit),18 the proposed two-stage and joint estimators, the rank estimator as an
alternative tuning-parameter-free method, and kernel-based K–S and SMS estima-
tors that rely on smoothing parameters (chosen in the same way as in Section 4.1).
The estimated coefficients on College and Health are both significantly negative
for the ordered probit model and our two-stage and joint estimators. The minus
sign suggests that college education and a good health status reduce the utility flow
of retirement relative to working and thus postpone the retirement decision. The
rank estimator yields a significantly negative coefficient estimate for Health but an
insignificantly negative estimate for College. K–S and SMS give insignificantly
negative estimates for both of these coefficients. When it comes to coefficients
on Black and Pension, all methods give insignificant results.19 We then focus on
the magnitude of the interaction parameter α∗ that captures the complementarity
within a household. According to the two-stage estimator and the joint estimator,
this complementarity amounts to about 25%–28% of the health effect. Consider a
household where the husband has a good health status but the wife does not; this
health effect is a driving force toward a sequential retirement decision (the wife
retires earlier). However, the estimate of the interaction parameter implies that
over one quarter of the heath effect leaning toward sequential retirement will be

18For comparison purposes, the estimates of the parametric Oprobit are divided by the coefficient on Age.
19The K–S and SMS estimators produce longer confidence intervals for some parameters, which is also observed
in our simulation results reported in Section S2.2 of the Supplementary Material. A different empirical study by
(Bellemare, Melenberg, and Van Soest, 2002, pp. 194–195) finds that the SMS estimate deviates from other methods
including the ordered probit, the partial linear, and the semiparametric least squares.
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Figure 5. (Color online) The estimated cdf of log(ε1/ε2): the distribution of the log ratio of husband–
wife unobservables, the coefficient on Age is normalized to 1, isotonic estimator for the cdf with the
two-stage estimate plugged in (blue, dashed), NPMLE for the cdf with the joint estimate plugged in
(red, solid), isotonic estimator for the cdf with the rank estimate plugged in (black, long-dashed), and
K–S (green, dotted).

countered by the complementary effect that synchronizes the retirement decision
of the couple.

Figure 5 plots the estimated cdf of the log ratio of the error terms (ε1,ε2) in the
interdependent duration model. By construction, both the isotonic estimates (with
either the two-stage or the rank estimate for (α∗,β ′

0) plugged in) and the NPMLE
(with the joint estimate plugged in) are nondecreasing step functions. In contrast,
the K–S estimate slightly fluctuates up and down in some parts. In addition, the
NPMLE in Figure 5 is quite close to the K–S estimate. Given that in theory the
smoothing estimator (e.g., the K–S estimator) of the nonparametric component
converges at a faster rate, this suggests a better performance of NPMLE over the
isotonic approach in estimating the nonparametric component.

5. CONCLUSION

In this paper, we have proposed two simple semiparametric estimation methods
for ordered response models with an unknown error distribution. We establish the
asymptotic properties of finite-dimensional parameters, tackling the challenging
issues related to the nonparametric components based on NPMLE. Our methods
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are easy to implement and free of any tuning parameter, complementing several
important contributions as in Lee (1992), Klein and Sherman (2002), Lewbel
(2002), and Coppejans (2007). Moreover, the methodology is applicable to esti-
mate the social interaction effect in the interdependent durations model by Honoré
and de Paula (2010). Both the Monte Carlo simulation and a real data application
demonstrate the usefulness of our approach.

APPENDIX

A. PROOFS OF MAIN RESULT

This appendix provides proofs of Theorems 2.1, 3.1, and 3.3. The proofs of Theorems 3.2
and 3.4 and all the lemmas are collected in the Supplementary Material. Some more tedious
proofs, such as the existence of the unique zero-crossing point for 
n and �n, are also
relegated to the Supplementary Material. In terms of notations, we denote some positive
constants by c or C whose value might change line by line. For a function f (·) of a
random vector Z = (Y,X) that follows distribution P, we use the standard empirical process
notations: Pf = ∫

f (z)dP(z),Pnf = n−1∑n
i=1 f (Zi), and Gnf = n1/2 (Pn −P) f .

Proof of Theorem 2.1. Using the binary choice data (�1i,X
′
i)

′ and Condition 1, we have

E[�1i | X = x] = F0(x′β0). (A.1)

According to Theorem 4.1 in Ichimura (1993), the coefficient β0− can be identified from
the single index model (A.1) under Conditions 1–3 ( see also Theorem 2.1 in Horowitz
(2009)). Let U be the support of X′β, and we have

F0(u) = [�1i | X′β0 = u], for all u ∈ U .

By Condition 4, the entire distribution function F0 is identified. Therefore, F0(X′β0 +α)

is knowable for all the values of X and α ∈ A.
We then use another set of binary choice data (�3i,X

′
i)

′ to identify α0. For u ∈ U , define


(α,u) ≡ 1−E[�3i | X′β0 = u]−F0(u+α).

We show that E[
(α,U)] = 0 only at α = α0. First, it is obvious that E[
(α0,U)] = 0,
as 
(α0,u) = 0 for all u. We then focus on the uniqueness. Suppose to the contrary that
there exists an α′ �= α0 such that E[
(α′,U)] = 0. By the monotonicity of F0, 
(α,u)

is nonincreasing in α for all u. As a result, the only way to make E[
(α′,U)] = 0 is

(α′,u) = 
(α0,u) for all u, which is equivalent to F0(u + α′) = F0(u + α0) for all u.
In other words, it requires that F0(u) = F0(u +α′ −α0) for all u ∈ U +α0, which is only
possible if F0 is periodic over U + α0. Together with the monotonicity, it enforces the
function F0 to be constant over U +α0, which violates Condition 2(ii). �

Proof of Theorem 3.1. Recall that the estimating equation in Stage 2 is


n(α) = 1

n

n∑
i=1

[
1−�3i − F̂n(X′

i β̂n +α;β̂n)
]
,
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with its probability limit 
(α) = E
[
1−�3 −F0(X′β0 +α)

]
. Observe that

sup
α

|
n(α)−
(α)| ≤ sup
α

∣∣∣(Pn −P)
[
�3 + F̂n(X′β̂n +α;β̂n)

]∣∣∣
+sup

α

∣∣∣P[
F̂n(X′β̂n +α;β̂n)−F0(X′β0 +α)

]∣∣∣.
Hence, the uniform convergence supα |
n(α)−
(α)| →p 0 holds by the Glivenko–Cantelli
property in Lemma S3 in the Supplementary Material and the fact that F̂n(u;β̂n) converges
to F0(u) in the L∞-norm w.p.1. Considering the monotone estimating equation 
n(α) given
the monotonic estimate F̂n, the consistency result is a direct consequence of Lemma 5.10
in Van Der Vaart (1998).

The linear representation of the coefficient estimator β̂n and its asymptotic normality
follow Theorem 3 and equation (34) on page 533 of Balabdaoui, Groeneboom, and
Hendrickx (2019) with the general monotone link function ψ0 being the cdf F0, the response
Y = �1, S being the identity function, and JS being the identity matrix.20 Here, we focus
on the threshold estimator α̂n. Note that 
n(α̂n) is the convex combination of the left and
right limits at α̂n:


n(α̂n) = λ
n(α̂n−)+ (1−λ)
n(α̂n+) = 0,

where we can choose λ ∈ [0,1] such that the above equation holds, following Groeneboom
and Hendrickx (2018). We start with the estimating equation 
n(α̂n) = 0 and decompose
the left-hand side as

1

n

n∑
i=1

[
1− F̂n(X′

i β̂n + α̂n;β̂n)−�3i

]
= I1n + I2n + I3n,

where

I1n = 1

n

n∑
i=1

[
1−F0(X′

iβ0 +α0)−�3i
]
,

I2n = 1

n

n∑
i=1

[
F0(X′

iβ0 +α0)− F̂n(X′
iβ0 +α0;β0)

]
,

I3n = 1

n

n∑
i=1

[
F̂n(X′

iβ0 +α0;β0)− F̂n(X′
i β̂n + α̂n;β̂n)

]
.

Here, F̂n(X′
iβ0 + α0;β0) is the (oracle) NPMLE computed using the true unknown β0.

Apparently, the term I1n is of Op(n−1/2) with its influence function equal to ψ0 as defined
in Theorem 3.1. Recall that U = X′β0. Referring to I2n, we get I2n = Ia

2n + Ib
2n, where

Ia
2n = P

[
F0(U +α0)− F̂n(U +α0;β0)

]
, Ib

2n = (Pn −P)
[
F0(U +α0)− F̂n(U +α0;β0)

]
.

20The terms S and JS in Balabdaoui, Groeneboom, and Hendrickx (2019) stem from their normalization scheme,
which sets the euclidean norm of the coefficient vector equal to one. Recall that we instead normalize the first
component to one.
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We utilize the P-Donsker property (Van Der Vaart and Wellner, 1996) to show Ib
2n =

op(n−1/2) in Lemmas S3 and S4 in the Supplementary Material. By Lemma S8 in the
Supplementary Material, we obtain the linear representation for Ia

2n as follows:
√

nIa
2n = GnψF0 +op(1).

When it comes to I3n, we decompose it into three terms I3n = Ia
3n + Ib

3n + Ic
3n, where

Ia
3n = P

[
F0(X′β̂n + α̂n;β̂n)−F0(X′β0 +α0)

]
,

Ib
3n = P

[
F̂n(X′β̂n + α̂n;β̂n)− F̂n(X′β0 +α0;β0)−F0(X′β̂n + α̂n;β̂n)+F0(X′β0 +α0)

]
,

Ic
3n = (Pn −P)

[
F̂n(X′β̂n + α̂n;β̂n)− F̂n(X′β0 +α0;β0)

]
.

Lemmas S4 and S10 in the Supplementary Material prove that Ib
3n = op(n−1/2) and Ic

3n =
op(n−1/2) using the P-Donsker property of related functional classes. Furthermore, we have
the following expansion:

Ia
3n = Vα0(α̂n −α0)+Vβ0 (β̂n− −β0−)+op(n−1/2 + α̂n −α0 +|β̂n −β0|).

In sum, the desired linear representation for α̂n follows by collecting the leading terms in
I1n, Ia

2n, and Ia
3n and substituting the linear representation for β̂n−. �

Proof of Theorem 3.3. Given the compactness of the parameter space, any subsequence
of θ̃n has a further subsequence θ̃nk converging to some element θ∗ = (α∗,β∗′− )′. In the proof
of Lemma S13 in the Supplementary Material, we apply Theorem 7.4 in Van de Geer (2000)
to show the following convergence in terms of the Hellinger distance:

sup
θ

h(q̃n,θ,q0,θ ) = Op(n−1/3 log2 n),

where the underlying density function is

q0,θ ≡ F�1i
0 (X′

iβ;θ)× (
F0(X′

iβ +α;θ)−F0(X′
iβ;θ)

)�2i × (
1−F0(X′

iβ +α;θ)
)�3i ,

and q̃n,θ is the corresponding maximum likelihood estimator given θ . Moreover, by Lemma
S13 in the Supplementary Material,

sup
θ

‖ F̃n(α + x′β;θ)−F0(α + x′β;θ) ‖2= Op(n−1/3 log2 n),

in the L2-norm. As a consequence of the uniform convergence for NPMLE, we have

F̃nk (α̃nk + x′β̃nk ;α̃nk,β̃nk ) → F0(α∗ + x′β∗;α∗,β∗).

Thereafter, the following uniform convergence is immediate:

|�nk (θ̃nk )−�(θ∗)| →p 0.

Given that the true θ0 is the unique root of the limiting function �(·) (see Section S4 of the
Supplementary Material), we must have θ∗ = θ0, which leads to the consistency of θ̃n.

As for the linear representation, denote the stacked moment conditions by

ζ(Zi;α,β,F(;α,β)) =
(

[�1i −F(X′
iβ;α,β)]Xi,−1

1−�3i −F(α +X′
iβ;α,β)

)
. (A.2)
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Let �n,j be the jth component of �n in (2.7), and we represent it as a convex combination

of the left and right limits at θ̃n:

�n,j(θ̃n) = λj�n,j(θ̃n−)+ (1−λj)�n,j(θ̃n+) = 0, (A.3)

where we can choose λj from the unit interval in such a way that (A.3) holds since we have
a crossing of zero for each component without changing the location of the zero-crossing
point. Then, we proceed with

0 =(Pn −P)ζ(Z;α̃n,β̃n,F̃n(·;α̃n,β̃n))

+P[ζ(Z;α0,β0,F̃n(·;α0,β0))− ζ(Z;α0,β0,F0(·))]
+P[ζ(Z;α̃n,β̃n,F̃n(·;α̃n,β̃n))− ζ(Z;α0,β0,F̃n(·;α0,β0))]. (A.4)

For the first term in (A.4), Lemma S14 in the Supplementary Material gives

(Pn −P)ζ(Z;α̃n,β̃n,F̃n(·;α̃n,β̃n)) = Pnζ(Z;α0,β0,F0)+op(n−1/2).

For the third term in (A.4), applying Lemma S14 in the Supplementary Material and a Taylor
expansion yields

P[ζ(Z;α̃n,β̃n,F̃n(·;α̃n,β̃n))− ζ(Z;α0,β0,F̃n(·;α0,β0))]

= P[ζ(Z;α̃n,β̃n,F0(·;α̃n,β̃n))− ζ(Z;α0,β0,F0(·))]+op(n−1/2)

= H0

(
α̃n −α0

β̃n− −β0−

)
+op(n−1/2 + (α̃n −α0)+|β̃n −β0|),

where the Hessian matrix H0 is calculated in Lemma S21 in the Supplementary Material.
When it comes to the second term in (A.4), we have

P[ζ(Z;α0,β0,F̃n(·;α0,β0))− ζ(Z;α0,β0,F0(·))] =
∫

c(u)d(F̃n −F0)(u) = κ(F̃n)−κ(F0), (A.5)

where c(u) = (c′
1(u),c3(u))′ is defined at the beginning of Section 3.2. To see the first

equality of (A.5), note that, by (A.2), the first component of the left-hand side of (A.5)
becomes∫

(F0(u)− F̃n(u))E[X−1|u]g0(u)du,

by the law of iterated expectation. Integration by parts yields∫
(F0(u)− F̃n(u))E[X−1|u]g0(u)du =

∫
c1(u)d(F̃n −F0)(u),

where c1(u) = ∫ u
CL

E[X−1|v]g0(v)dv. Similarly, the second component of the left-hand side
of (A.5) becomes∫

(F0(u+α0)− F̃n(u+α0))dG0(u) =
∫

G0(u−α0)d(F̃n −F0)(u),

where c3(u) = G0(u−α0). The second equality of (A.5) follows from the definition of κ .
Equation (A.5) reduces the problem to characterizing the asymptotic property of the

linear functional for the NPMLE. Then, we apply Lemma S17 in the Supplementary
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Material to get

P[ζ(Z;α0,β0,F̃n(·;α0,β0))− ζ(Z;α0,β0,F0(·))] = (Pn −P)φF0 +op(n−1/2).

In sum, we obtain

H0

(
α̃n −α0

β̃n− −β0−

)
= Pnζ(Z;α0,β0,F0)+ (Pn −P)φF0 +op(n−1/2 + (α̃n −α0)+|β̃n −β0|).

Hence, the stated conclusion follows given the shorthand notation φ0 ≡ ζ(Z;α0,β0,F0) in
(3.19). �

SUPPLEMENTARY MATERIAL
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