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1.1 Introduction

The most common approach to adaptive optics (AO), as originally employed in astro-
nomical telescopes, has been to use a wavefront sensor to measure aberrations directly.
In situations where such sensing provides reliable measurement, this is clearly the ideal
method (see Chapter 2), but this approach has limitations, and particularly so in the
context of microscopy. In order to understand this, one should consider the constraints
the use of a wavefront sensor places on the nature of the optical configuration. A wave-
front is only well defined in particular situations, for example, when light is emitted by
a small or distant, pointlike object, such as a star for a telescope or a minuscule bead
in a microscope. In these situations, a wavefront sensor provides a clear and reliable
measurement, and this phenomenon has been used to great effect, as explained in Chap-
ter 2. However, not all sources of light have these necessary properties. For example, a
large, luminous object comprises an arrangement of individual emitters, each of which
produces its associated wavefront. In this case, a wavefront sensor would respond to all
of the light impinging upon it, thus giving potentially ambiguous measurements. In an
extreme case, such as where light is emitted throughout the volume of the specimen,
the sensor would be swamped with light and thus be unable to provide sensible aber-
ration measurement. For this reason, in microscopy, direct wavefront sensing has been
effective where pointlike sources have been employed, either through the introduction of
fluorescent beads [1, 2] or using localized fluorescent markers [3] and nonlinear excited
guide stars [4, 5, 6].

What happens if such sources cannot be employed? The use of beads or additional
fluorescence markers in specimens is often not practical; nonlinear guide stars can only
be produced in certain microscopes – particularly two-photon fluorescence microscopes
– and require specialized and expensive laser sources. Moreover, all of these options
are only relevant to fluorescence microscopes, but there are many other microscope
modalities for which aberration correction might be required. A related challenge is
that, if point sources cannot be used, then the source is by definition an extended object.
How can one be certain that the aberration measured corresponds to that induced in the
path to or from the focus, rather than to or from another region, perhaps out of focus
or displaced laterally? A key observation is realizing that a microscope already has a
method for determining the light that comes from the focal plane, as that is the light that
forms the useful part of the image. The image itself can therefore be used indirectly as
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the source for wavefront measurement, as long as the information contained within the
image can be interpreted correctly.

The general approach to wavefront sensorless adaptive optics (or “sensorless AO”
for short) relies upon the optimization of a measurement that is known to be related to
the aberration content. For example, in an adaptive laser focusing system, one might
maximize the intensity at the center of the focused beam. In image-based AO systems,
which are a subcategory of sensorless AO systems, an appropriately chosen image prop-
erty is optimized. In certain microscopes (e.g., confocal or multiphoton microscopes),
the total image intensity (sum of all pixel values) is an appropriate optimization metric
[7, 8, 9, 10, 11, 12, 13, 14, 15], as it exhibits a maximum value when no aberration
is present. If the aberration in the system is nonzero due to refractive index variations
in the specimen, then the value of the metric will be lower than its optimal value. The
goal of the sensorless AO routine would be to use the adaptive element to maximize the
metric by minimizing the total aberration in the system.

This concept can be illustrated through analogy with a user refocusing a microscope.
The refocusing operation through translation of the specimen is optically equivalent to
the application of a spherical phase aberration. The user has a good intrinsic apprecia-
tion of what constitutes an in-focus image, namely, that the features are sharp and the
image shows the greatest amount of detail and contrast. If the object is not in focus,
then the image appears blurred. The user changes the focus of the microscope until the
quality of the image is maximized. Although this operation is performed subjectively, it
is equivalent to a search algorithm, where the input variable (focal position) is changed
until the quality metric (image sharpness or contrast, for example) is maximized.

A sensorless AO system is an extension of this concept, where the input variables cor-
respond to all of the different aberration modes (e.g., spherical, coma, astigmatism) that
can be corrected by the system and the image quality metric is defined mathematically,
rather than subjectively. For practical operation, the algorithm used to find the optimal
correction should be efficient, so that the number of measurements (and hence the time
taken) is as small as possible.

There are other advantages to sensorless AO in microscopes. As the measurements
are derived from images, the detected aberrations are certain to correspond to those that
have affected the image formation. This is not necessarily the case when a wavefront
sensor is employed, as different aberrations could affect the imaging and sensing optical
paths, due to differences in their optical properties or to relative misalignment between
the two paths. These errors in measuring the aberrations that affect the final image would
not arise in the sensorless AO arrangement. In many practical systems, this can be an
important consideration, as instrument aberrations can be appreciable. This is illustrated
in Figure 1.1.

In principle, these sensorless AO schemes are broadly applicable across all micro-
scopes, as there are relatively simple hardware and software requirements. On the
hardware side, an adaptive element must be introduced into the microscope; on the soft-
ware side, the only requirements are that a suitable combination of image quality metric
and optimization procedure can be defined, in order to control the adaptive element.
However, the wide range of microscope modalities means that each implementation
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Figure 1.1 Correcting instrument aberrations with adaptive optics. (top) Axial sections of a
confocal microscope PSF before (left) and after (right) correction of instrument aberrations. (bot-
tom) Confocal image of a chloroplast located 30 μm deep in intact plant tissue where instrument
aberrations were not corrected (left) and where instrument aberrations were corrected (right).
Even though specimen-induced aberrations were not yet compensated, there was a measurable
improvement in the image after correction. Scale bars are 500 nm. Images are raw data.

will be different. Examples of a range of such implementations are shown in Figure 1.2.
In this chapter, we elaborate on the principles behind the indirect, sensorless approach
to wavefront measurement and outline the application of these schemes to a range of
microscopes.

1.2 Simple Sensorless Adaptive Optics System

In order to explain the principles behind model-based AO systems, we use a simple opti-
cal system consisting of a focusing lens, an adaptive element, and a pinhole detector.
While this system is not an imaging system – and hence cannot be used for image-based
AO – it provides a useful basis for outlining the principles of sensorless aberration
correction. The system, as illustrated in Figure 1.3, consists of an input beam whose
wavefronts contain phase aberration �(r, θ ), which passes through an adaptive element
that adds an aberration �(r, θ ). The beam is then focused by the lens onto a pinhole
aperture placed before a photodetector. The pinhole diameter is chosen to be slightly
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(d)

Figure 1.2 Correction results from image-based microscope AO systems, in each case showing
images before and after aberration compensation. (a) Transmission microscope image of a US
Air Force test chart. Reprinted with permission from [16], Optics Express. (b) Axial sections
from third harmonic microscopy of mouse embryos; scale bar: 5 μm. Reprinted with permission
from [12], Optics Express. (c) Axial sections from an AO 3D stimulated emission-depletion
microscope (the precorrection image has been increased in brightness to highlight detail); scale
bar: 1 μm. Reprinted with permission from [17], Optics Express. (d) Two-photon fluorescence
images of neurons in a Drosophila melanogaster brain; scale bar: 5 μm. Images reproduced from
references with the permission of the Optical Society (OSA).

Figure 1.3 Simple optical system to illustrate the principles of sensorless adaptive optics. An
input beam with phase aberration �(r, θ ) passes through an adaptive element (AE), which adds a
phase aberration �(r, θ ), and is focused onto a photodetector covered by a pinhole (P).
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smaller than the diffraction-limited spot, so that it samples the on-axis focal intensity.
If the residual aberration �(r, θ ) + �(r, θ ) = 0, most of the light will pass through
the pinhole and fall onto the photodetector. On the contrary, if the residual aberration is
nonzero, a larger part of the light will be blocked by the pinhole, resulting in a lower
signal being measured by the photodetector. In this simple situation, one can use the
signal measured by the photodetector as a metric to apply aberration correction. In prac-
tice, to obtain aberration correction, one must sequentially apply different aberrations
with the adaptive element and measure the corresponding value of the metric until this
is maximized.

Frequently in AO, it is helpful to express aberrations using a modal expansion. The
most common modal expansion uses Zernike polynomials [18] to describe aberrations,
so that �(r, θ ) is expanded as follows:

�(r, θ ) =
∞∑

i=1

uiZi(r, θ ), (1.1)

where ui is the coefficient of the ith Zernike polynomial, Zi. Each coefficient ui can be
related to a geometrical aberration [19] such as defocus or astigmatism. In most practi-
cal situations, it is possible to represent significant aberrations with a small number of
modes, so that the summation in Eq. (1.1) need only be taken over N terms. It is also
sensible to neglect the first (piston) mode and assume u1 = 0, as the piston mode con-
stitutes the average value of the phase �(r, θ ), and it has no effect on the photodetector
signal.

We consider the simple case of correcting 0.5 radians of defocus aberration Z4, so
that we have �(r, θ ) = x4Z4(r, θ ), where x4 = 0.5. A plot of the photodetector signal,
which we use as our optimization metric m, is shown in Figure 1.4. It can be seen that m
is a function of u4, which is the amount of defocus that we introduce with the adaptive
element. For u4 = −0.5, the residual aberration x4 + u4 is zero, and the metric assumes
the maximum value.

It is possible to treat the system in Figure 1.3 as a black box, where one can control
u4 and measure the corresponding value of the metric, but otherwise one has no fur-
ther knowledge of the underlying system. In this scenario, one could apply a general
optimization algorithm to maximize the metric. For example, in Figures 1.5 and 1.6, we
applied, respectively, a genetic algorithm [20] and the Nelder–Mead algorithm [21]. The
figures show the sequence of measurements required in each case to locate the maximum
of the curve and the residual aberration at each stage of the process.

On the other hand, one can create a model for the system in Figure 1.3 that can be used
to reduce the number of measurements that are necessary to maximize the metric. For
example, when considering a vanishingly small pinhole, the metric signal measured with
the photodetector corresponds to the intensity of the point-spread function measured at
the origin of the image plane, I0. From a classical result [22], it is known that for small
aberrations, the Strehl ratio S, defined as the ratio between the aberrated and unaberrated
focal intensities, is given by

S = I0(x4 + u4)

I0(0)
≈ 1 − (x4 + u4)2. (1.2)
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Figure 1.4 Plot of the optimization metric m (photodetector signal) as a function of applied
correction aberration u4. The metric has been normalized to its maximum value.

This suggests that one can model the metric in Figure 1.4 with a parabola, i.e., m ≈
I0(0)(−u2

4 +αu4 +β), where α and β are the coefficients of the parabola. By taking two
measurements of the metric and solving a curve-fitting problem, one can estimate the
coefficients α and β, which allows to determine the optimal value of u4 that maximizes
the metric. An example of applying this principle is depicted in Figure 1.7. As long as the
initial aberration is in the region where the metric curve is approximately parabolic, the
estimation of the aberration will be correct. It can be seen that this optimization method
is more efficient than the previous black-box approach, where many more measurements
were required.

If more aberration modes are present, as considered in Eq. (1.1), this procedure can
be extended to include maximization of each mode. In this particular case, the mathe-
matical principle is the same, but the parabola is replaced by a multivariate quadratic
polynomial. An example comparison between the approach explained above and the
Nelder–Mead algorithm is shown in Figure 1.8, where it can be seen that the former
method is more efficient.

1.3 Image-Based Adaptive Optics Systems

An image-based AO system operates on many of the same sensorless AO principles
outlined in the previous section. The main difference is that a single measurement now
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Figure 1.5 Optimization of the metric m using a genetic algorithm (GA). A GA is a search
algorithm that tries to maximize a fitness function by simulating the process of natural selection.
For the problem of aberration correction, the metric m is used as the fitness function. The
population consists of a set of candidate values for u4. For each member of the population, the
GA measures the corresponding value of the metric m. The algorithm iteratively generates a new
population by stochastically combining the members of the current population that exhibit a high
fitness. This process results in a sequence of measurements of the metric m. Some values from
such a sequence are plotted along the metric curve using a color map to indicate the order in
which the measurements were acquired. The inset plot reports the residual aberration |x4 + u4|
for each measurement in the sequence.

involves acquiring a 2D image with a camera or recording a 2D image or a 3D volume
when using a scanning microscope. The measurement obtained in this way is converted
into a number using an image quality metric. One then optimizes the metric, as described
in the previous section, using an appropriate optimization algorithm. In this section, we
discuss additional aspects that should be considered when designing image-based AO
systems.

1.3.1 Image Quality Metrics

Image quality is inherently a subjective measure that depends upon the type of micro-
scope, the specimen, and the application. However, it is generally possible to define
mathematically a metric that reflects the necessary properties that a user would attribute
to a good image, i.e., an image obtained with zero aberration. For example, in a conven-
tional wide-field microscope, an aberration-free image would have the sharpest features,
so a measure of image sharpness or high spatial frequency content would be appropriate;
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Figure 1.6 Optimization of the metric m using the Nelder–Mead (NM) algorithm. The NM is a
search algorithm that repeatedly applies geometrical operations, such as reflection and
expansion, to a simplex until it converges to the optimal value that maximizes m. In this
particular case, with only one variable, the simplex consists of a line segment.
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Figure 1.7 Optimization of the metric m by fitting a parabola through the sequence of
measurements. The parabola is shown in the black dashed line and closely approximates the
actual metric function.
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Figure 1.8 Example comparing one application of multivariate quadratic optimization
algorithm [23] and the Nelder–Mead algorithm [21] using the same initial aberration for 37
aberration modes.

in a multiphoton microscope, the image brightness is strongly reduced by aberrations,
so in this case, a metric based upon the sum of all pixel values (i.e., the total image
intensity) would be relevant. In fact, multiple definitions of the image quality may
be satisfactory for a given microscope type, which reflects the inherent subjectivity in
assigning a numerical value to the quality of an image.

A suitable metric should satisfy some essential mathematical properties. In particular,
it should ideally exhibit a global extremum (maximum or minimum) at which the resid-
ual aberration x + u is zero by definition. The metric should not exhibit multiple local
extrema close to the global extremum, as in such a case, apparently optimal solutions
corresponding to nonzero residual aberration might be found. In this situation, the aber-
ration correction problem would be mathematically ill posed and, in practice, prone to
failure. As a final property, an ideal metric would resemble a convex or concave smooth
function for a large range of values of the residual aberration, so that a simple optimiza-
tion algorithm can be used to apply the aberration correction. Once we have defined the
metric function, we can use knowledge of its properties and its dependence upon aberra-
tions to design an estimation algorithm that provides efficient estimation of the required
correction.

1.3.2 Effects of Specimen Structure

It is important to consider the intertwined effects of the specimen structure and
aberrations on image formation. In many practical cases, an image can be expressed
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by a convolution between a function representing the specimen structure, f (p), and the
point spread function (PSF) of the microscope, h(p), where the vector p represents spa-
tial position in three dimensions. In an incoherent imaging system, the image would
therefore be expressed as

I(p) = f (p) ⊗ h(p) =
∫∫∫

f (p′ − p)h(p′) dp′. (1.3)

As a specific example, in a fluorescence microscope, f would represent the distribution
of fluorescent markers, and h would be the intensity PSF of the microscope. It should
be clear at this stage that the image I depends both on aberrations, via the PSF h, and
on the specimen structure f . Ideally, an image-based AO scheme should be insensitive
to specimen structure, providing the same aberration correction irrespective of the form
of f . It is therefore important to take into account possible variation in specimen structure
when designing the AO scheme. An illustrative example of such effects, comparing two
different specimen structures, is found in Figure 1.9.

In certain situations, the specimen structure may have a particularly simple form. For
example, if the specimen is a “guide star,” as discussed in Chapter 2, one may replace
f with the pointlike Dirac distribution, so that one is effectively measuring the PSF of
the microscope. In such a case, the functional form of I(p) is well known, and conse-
quently, the functional form of the image quality metric can also be obtained. On the
contrary, when f is given by a more involved function, or when one considers varia-
tions between specimens with significantly different structure, it is more challenging

(a) Zero (b) y coma (c) x coma (d) Spherical

10

Figure 1.9 Illustration showing how different aberrations affect the image quality when
considering two specimen structures, each consisting of parallel lines in different orientations.
Column (a) shows the images of the specimens when no aberration is present; column (b) shows
the effect of y coma, column (c) the effect of x coma, and column (d) the effect of spherical
aberration. The first row shows plots of the phase aberration function. Two specimens consisting
of vertical lines (second row) and horizontal lines (third row) are shown using the same color
map. Spherical aberration has a similar effect on the image quality of both specimens. On the
contrary, y coma and x coma affect the image quality of the two specimens in different ways.
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to predict the functional form of the image quality metric. This variability in the func-
tional form affects the number of measurements that must be taken to unambiguously
determine the correction aberration.

1.3.3 Effects of Different Aberration Modes

When one investigates the effects of aberrations on the image formation process of a
microscope, it becomes apparent that different aberration modes affect images to differ-
ing degrees – the same magnitude of one mode can severely degrade the image, whereas
another can have little or no effect. An obvious example of a mode that has no effect in
most microscopes is piston (constant phase offset). Tip, tilt, and defocus modes, which
collectively give rise to three-dimensional image displacements, could also be consid-
ered to have no effect on image quality, as they merely cause a translation in image
position. It is usually sensible to remove such modes from the aberration correction
procedure [14, 24], as they could produce undesirable image shifts, and applying them
with the adaptive element may reduce the stroke that is available for correcting the other
aberration modes that affect the image quality.

Some modes may be more dominant in a particular microscope due to the nature of
the specimen – spherical aberration from a mismatch in refractive index is perhaps the
most common example. In other cases, the image formation process of the microscope
can enhance sensitivity to certain modes. This was revealed in structured illumination
microscopy [25], where certain modes that affected the gridlike illumination pattern had
greater effect than other modes. It was also seen that specimen-induced astigmatism
could severely affect localization microscopes, which relied upon the same astigma-
tism mode to retrieve the axial position of emitters [26]. An example of the effect of
incrementally correcting different aberrations modes is found in Figure 1.10.

1.3.4 Choice of Optimization Algorithm

The effectiveness of an image-based AO scheme depends greatly on the choice of opti-
mization algorithm, alongside the modal representation (Section 1.2) and the definition
of the image quality metric (Section 1.3.1). Image-based AO systems can in principle
be built around any optimization algorithm, but considerable differences in performance
can be observed between different approaches. We classify these algorithms into two dif-
ferent categories. The first class, which we refer to as model-free algorithms, comprises
general optimization routines that were not specifically designed to tackle aberration
correction problems. These algorithms make no assumption about the functional form
of the image quality metric. The second class we denote as model-based algorithms.
These methods assume that the image quality metric has a certain functional form, which
constitutes the model.

Many different heuristic algorithms for model-free optimization have been devel-
oped [27]. Examples of such algorithms that have been applied in microscopy and
imaging are hill-climbing algorithms [28, 29, 9, 30], evolutionary algorithms [7, 31,
9, 10, 11, 32], conjugate gradient methods [33], and stochastic parallel gradient descent
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Figure 1.10 Chloroplasts in intact plant tissue imaged by confocal microscopy of endogenous
fluorescence, 30 μm deep into the specimen. (bottom) When only instrument aberrations are
corrected, imaging is still significantly precluded by specimen-induced aberrations. Image
quality is gradually increased as the most severe aberrations are corrected, in this case, spherical
aberrations, astigmatism, and coma. Typically, the improvement in image quality is very
prominent for the first aberration modes corrected and stabilizes after a certain number of modes
are corrected. The number of modes necessary to reach such a plateau depends on the specimen
structure and possibly on the field of view. After aberration correction, the stacks of thylakoids
within the chloroplasts, structures whose diameter ranges from approximately 300 to 500 nm, are
clearly visible. Scale bars are 1 μm. The same linear color scale applies to all images. Images are
raw data.
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methods [34]. Such algorithms are designed to solve problems where very little back-
ground knowledge is available and where, contrary to the discussion in Section 1.3.1,
the metric may have any functional form. For example, evolutionary algorithms, such
as genetic algorithms, are typically used to tackle combinatorial problems, where dif-
ferentiation cannot be applied, or strongly multimodal optimization problems [20]. As a
result, these methods require a large number of measurements of the metric [35, 23, 36]
and still may not converge to the global optimum [21]. In a sensorless AO system, this
requires taking a large number of images before the aberration correction can be applied,
which leads to long image acquisition times and increased specimen exposure. Overall,
this means that model-free algorithms may be far from ideal in practical scenarios where
one desires rapid measurement and low exposure.

In most microscopes, the effects of aberrations on the imaging process can be modeled
using theory or measured through empirical observations. As such, an imaging model
is usually available and can be used to inform the design of an efficient image-based
AO scheme that should outperform any model-free approach. Image-based AO schemes
built around such models have been implemented in a range of microscopes, including
confocal [8], two-photon [37, 13, 14], harmonic-generation [12, 38, 24], wide-field [16],
structured-illumination [25], stimulated emission depletion [39, 40, 17] (STED), and
single-molecule localization microscopes [26]. In each case, an appropriate optimiza-
tion metric had been defined that exhibited the desired properties outlined earlier. In
several cases, such as confocal or multiphoton methods, the total image intensity was
found to be appropriate, whereas other microscopes required more complex metric def-
initions, such as in the STED microscope, where a metric combining image brightness
and sharpness provided the required properties.

Zernike polynomials often provide a convenient basis to concisely represent aber-
rations, as they include the three image displacement modes (tip, tilt, and defocus)
and modes such as astigmatism, coma, and spherical aberration, which are frequently
encountered in microscopy. Nevertheless, better performance might be achieved through
use of modes derived from the mirror deformation functions [41]. The reason for this
is that deformable mirrors can produce aberrations that are restricted by the mirror con-
struction, for example, the arrangement of the actuators, and therefore can generate
each Zernike mode with a varying degree of accuracy [42, 24]. It is, however, possi-
ble to derive [41] a set of mirror modes that exhibit the same orthogonality properties of
Zernike modes but more closely represent the range of aberrations that the deformable
mirror can generate. Generally, aberration correction has been applied considering
around 10 to 20 low-order aberration modes, as this provided a sensible trade-off for
most applications between the required capability of the active element and the expected
benefit of the aberration correction [43]. See also Figure 1.10.

The optimization metric function has in different applications been approximated by
quadratic [44, 35, 45, 16, 25, 13, 38, 46, 47, 14], Gaussian [25, 38], or Lorentzian
functions [16, 13, 14]. Such functions provide an accurate model of the metric for
aberrations within a certain range, which depends upon the type of microscope and
the definition of the metric. In some cases, one may use multiple image quality metrics,
for example, modeled by two different Gaussian functions. These can be used to handle
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aberrations of different magnitudes, for example, by first correcting larger aberrations
with a coarse accuracy and then correcting smaller aberrations with a finer accuracy [16].

The minimum number of measurements required to be able to compute a solution to
the fitting problem depends on the number of free parameters of the function used to
model the image quality metric. For instance, when considering Figure 1.7, the parabola
has two unknown coefficients. The number of unknowns can reflect the variation that
the metric exhibits for different specimen structures. For example, in sensorless adaptive
optics systems where a final image is not formed [35, 48, 46, 23], the functional form
of the metric is not affected by any specimen structure. In this case, correction of N
aberration modes has been shown using as few as N + 1 measurements of the metric.
On the contrary, for fully fledged imaging systems, such as [16, 25, 13, 38, 14, 15],
aberration correction of N modes has been shown using at least 2N + 1 measurements,
as exemplified in Figure 1.11. In this case, the additional measurements are necessary
to account for the interaction of the specimen structure with the PSF, as outlined in
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Figure 1.11 Basic principle of image-based adaptive optics. Here we exemplify the aberration
correction procedure for the first-order astigmatism mode (Zernike 5) in a confocal microscope.
By computing the total intensity of x-y images of a gold bead for symmetrical biases (±0.5 rad
rms) and for no bias, and fitting the plot with a parabola, the optimal bias may be determined as
the coordinate of the peak of the parabola. This method is called the “2N + 1 algorithm” [25]
because it requires a minimum of 2 times the number of modes to be corrected (symmetrical
biases) plus 1 (0 bias) measurements. Scale bar is 200 nm and images are raw data.
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Figure 1.12 Convergence of optimization algorithm in sensorless adaptive optics. Here we show
the variation in total intensity of an image (the adopted metric) throughout the optimization
procedure. (a) Chloroplasts located 30 μm deep in a broad bean plant leaf were imaged by
confocal microscopy, and the improvement in the image quality metric can be seen as a function
of individual Zernike modes corrected. In total, 18 Zernike modes were used, and the same
correction procedure was repeated. The first- and second-order spherical modes were highlighted
to exemplify the significant influence of these modes when imaging deep into tissue with
prominent refractive index mismatch. The scale bar is 3 μm and images are raw data.
(b) Schematic illustrating why repetition of the aberration correction procedure may further
improve image quality, for the simple case where only two aberration modes are present. The
metric’s dependence on the two orthogonal modes may be approximated by a paraboloid. If the
main axes of such paraboloid are not aligned with the x and y axes [25], the convergence of the
described optimization algorithm requires more than one round of correction [15]. In both (a)
and (b), the black dot represents the initial state of the system. The first, second, and third rounds
of corrections are indicated with the color map. More than one round of correction is required, as
the axes of the paraboloid are not aligned with the coordinate axes. However, another set of
modes can usually be chosen for which the axes are aligned [25], so that more efficient
correction can be implemented. The image before the correction is reported in the inset with the
color bar. The image after the correction is reported using the same color scale in the inset with
the light border.

Eq. (1.3), which may result in detectable spatial variations in the functional form of the
metric [24]. We further remark that collecting extra measurements in addition to the
minimum necessary number improves the accuracy of the aberration correction [14].
Ultimately, factors such as the specific structure of the specimen, image noise, and the
required level of correction will dictate how many measurements are required, especially
if a mathematically optimum set of modes cannot be used, e.g., due to the limitations
of the deformable mirror. Figure 1.12 demonstrates such a correction procedure in a
confocal microscope using Zernike modes.
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It should be noted that the speed of image-based aberration correction is limited only
by the rate at which the necessary images can be acquired. As the metric is calculated
from a whole image, useful measurements can be taken using images with far lower
exposure levels that is usually required for the final scientific image. This means that
the measurement images can be acquired much more quickly with fewer pixels and
lower illumination levels than usually required for a good quality image. For example,
measurement of N = 10 modes through a sequence of 2N + 1 = 21 image acquisitions
could be readily implemented in less than a second in a typical confocal microscope. As
aberrations are predominantly static over an image period, the image-based AO method
implemented in this way would be highly practical.

1.4 Conclusion

We have outlined in this chapter the principles behind adaptive optical microscopy
through image-based aberration measurement. This approach has broad application
across microscopy, although different schemes are required for each type of microscope.
On the hardware side, it requires only the addition of an adaptive element into an exist-
ing microscope design. Once set up, image-based AO schemes are straightforward to
operate and do not require complex computation. An image-based AO scheme requires
specification of an image quality metric, a modal aberration expansion, and an optimiza-
tion algorithm. While there are a wide range of model-free methods that can be used to
optimize the metric, it is generally the case that model-based algorithms provide more
efficient aberration correction, requiring a smaller number of images and hence less time
and lower specimen exposure.

A drawback of current model-based algorithms is that they provide good correc-
tion only over a limited range of aberration amplitudes. However, this range can be
extended through use of schemes that are sensitive over different aberration ranges.
There is scope for further development of such schemes, for example, through the use
of other optimization metrics and advanced optimization algorithms. Further advances
could be made where spatial variations in aberrations are present. Current methods
measure, in effect, an average of the aberrations across the image field, whereas it is
known that significant variations may occur within this region [15, 49]. Image-based
AO could be extended to measure these variations and be combined with multiconjugate
AO correction to provide more accurate aberration compensation [50, 51].

In conclusion, we note that there are similarities between the concepts of sensorless
AO explained in this chapter and the methods of scattering compensation described
in Chapter 5 and subsequent chapters. In both cases, an image quality metric, such as
total intensity, is optimized using a suitable algorithm. The main difference between
these methods is the regime in which they operate: AO is concerned with compensa-
tion of low-order aberrations arising from the nonuniform refractive index distribution
throughout relatively transparent specimens, whereas the methods of Chapter 5 and sub-
sequent chapters are applicable to opaque, strongly scattering media, where multiple
scattering events cause significant changes in amplitude and phase. Furthermore, in AO,

https://doi.org/10.1017/9781316403938.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781316403938.002


Adaptive Optical Microscopy Using Image-Based Wavefront Sensing 19

the expected performance of the corrected system would be equivalent to a Strehl ratio
approaching the ideal value of 1; compensation of scattering, on the other hand, results
in much lower Strehl ratios, although the improvement ratio after correction may be
considerably higher than for AO systems.
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