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1. In [2], K. D. Magill, Jr. has proved that every automorphism of the semigroup (with
respect to composition) of all real-valued differentiable functions of a real variable is
inner. The purpose of this paper is to generalize this fact to arbitrary finite-dimensional real
Banach spaces. '

Let E be a real Banach space and 2 be the semigroup of all (Fréchet-) differentiable
mappings of E into itself. We shall prove the following theorem,

THEOREM. If E is finite-dimensional, every automorphism ¢ of D is inner, i.e., there exists
a bijection he D such that ™' € D and

¢(f) = hfh™" for any fe 9. (1)

For the proof, we shall only need the following two properties of the finite-dimensional
spaces:

E is separable. Q)

Sequential weak convergence implies strong convergence. €)]

In fact, in the following, we shall prove that, if E is separable, then for any automorphism
¢ there exists a bijection h such that h and h™* are weakly Fréchet-differentiable and the relation
(1) holds.

NotaTioNs. The notations and terminologies used in this paper are almost the same as
those in [4] and [5]. In particular, we shall frequently use the following notations.

The set of all real numbers is denoted by . By {¢,}€(c,) we mean that {¢,} = # and
limeg, = 0. '
n—+ow

The conjugate space of E is denoted by E. For acE and ae E, the mapping a®a is
defined by

(a®a)(x) = {x, a)a,

where {x, a) denotes the value of  at x.
The constant mapping whose single value is a is denoted by ¢,, i.e., ¢,(x) = a for every
xekE.

2. Proof of the theorem. Let E be a separable real Banach space and 2 be the semigroup
(with respect to composition) of all Fréchet-differentiable mappings of E into itself. Let
¢ be an automorphism of this semigroup 2. The method which Magill [2] has used for one-
dimensional spaces can be applied here to show that there exists a bijection h of E such that
the relation (1) holds. For the details of the proof of this fact, we refer to [4, Theorem 1, p. 456]
and [5, p. 505], where it is also shown that we can assume that

h(0) = 0.
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This bijection 4 is determined uniquely by the automorphism ¢. If we start with ¢~
instead of ¢, then we obtain A~!. Therefore, we may make use of the fact that any statement
proved for 4 is also true for 471,

In [5, p. 506], we have shown that, for any ae E and ae E, the function, of (€ 2,

<hiSa), a5

is continuous. Therefore, if the space is one-dimensional, 4 is a homeomorphism of # and
hence, being monotone and continuous, it is differentiable except for a countable number of
points. Magill [2] has used this fact and, using the semigroup property, has proved that 4 is
differentiable everywhere. When the space is not one-dimensional, we cannot use this method.
In fact, if a Banach space E has the dimension not less than two, there exists a homeomorphism
which is not differentiable at any point even in the sense of Giteaux. We owe the following
example to Dr S. Swierczkowski and Prof. I. Mycielski: We take non-zero acE and acE
such that <a, @> = 0. This is possible since the dimension of E is not less than two. Let
o : & — & be any continuous function which is nowhere differentiable. Then the mapping

Sx) = x+a((x, Bd)a

is a homeomorphism of E onto E and is not Géteaux-differentiable at any point.
We now start the proof of the fact that, if E is separable, h is weakly Fréchet-differentiable
at every point. The proof will be divided into seven steps.

Step 1. Let X&) be a real-valued function defined on #. If
(i) A(&) is continuous,
(ii) there exists {e,} €(co) such that lim e '[AME+e,n)—A(E)] = O for any & and 1,
(iii) A(0) =0,
then 2 = 0.

Proof. Take any n and consider the function

H(&) = A(&n)—EA().
This function is continuous and has u(1) = u(0) = 0; so there exists {,€(0, 1) at which u(&)
takes its relative maximum (or minimum) value, i.e.,

HE) S uo) if & isnmearto &,.

Hence, for large n,

.“(fo ’__*'8") _S_ #(60)’
which implies that

A&onte,m)— (o)) S UEom)— Lo Am),
so that

MEon+e,m—A&on) < &,4(n) £ —[AUCon—e,m)— Ao,

and, therefore, it follows from (ii) that A(n) = 0. Since # is arbitrary, 4 is identically zero.
C
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STEP 2. For any nonzero acE and any {e,}€(co), the sequence {c; 'h(e,a)} does not
converge weakly to zero.

Proof. Let us assume that there are nonzero ae E and {g,} €(c,) such that

lim {e; 'h(e,a),X) =0 forany xXeE. 4

For any ée 4, we always have the following equation:
&y '[h(Eate,a)—h(£a)] = ¢(¢c, 2 1Y (0)(e; *h(e, a))+e, ' r((Ec,+1), 0, e, ).
Since ¢(éc,+1)(0) is a continuous linear mapping, it follows from (4) that
lim {¢(éc,+1)'(0)(e; *h(e,a)), Xy =0 for every XekE.

n—+ow

On the other hand, we have
lim e, 'r(¢(Ec, 1), 0, h(e,a)) = 0.

n—+ow

In fact, (4) implies that the sequence {e, 'h(e,a)} is bounded and hence
lim “ h(e,a) " =0.
Therefore, since ¢p(¢c,+1)e 2,
[l ex 'r(p(¢eat 1), 0, h(e,a)) | < (|| &5 e, @) )| Alena) | || H(d(Ecat 1), 0, h(e,a)) [) 0
when #n - co. Thus

lim e, '[h(éate,a)—h(Ea)], Xy =0 forevery XeE. ©)

n=w

Now consider the functions of (€ Z:
45(8) = <h(Za), X.

By [S, p. 506] they are continuous, and the above formula (5) shows that each A; satisfies the
conditions of the previous Step 1. Therefore A; = 0 for every Xe E, which means that

h(la)=0 forevery (e4.

This is a contradiction.

Step 3. For any acE and any {&,} €(c,), the sequence {¢; *h™ (¢, a)} is bounded.
Proof. Let us assume that there are nonzero a€ E and {¢,} €(c,) such that the sequence
{e; 1h~'(e,a)} is not bounded. Taking a subsequence of {¢,} if necessary, we can assume that

lim || &, *h~ (g, a) | = + 0.
n-w
Then there exists e E such that, taking a subsequence if necessary,

lim e, th™ (e, a), a) = . (6)

B= w0
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For these ae E and ae E, since a®de 2, ¢(a®a) is in @ and
$(a®a)'(0)(a) = lim &, ' $p(a®a)(e,a)

n—=w

= lim (e; '<h™ (g, 0), @)(Kh™ (e, 0), @)™ 'h[<hT (e, a), @Da],

and hence, from (6), it follows that
lim 6, *h(6,a) =0 for 6,=<h '(e,a),a),

n— o

where, since (h™!(éa), a) is continuous with respect to &, {5,}€(co). This contradicts the
fact proved in the previous Step 2.

STEP 4. For any nonzero acE, there exists a€ E such that $(a®a)'(0)(a) # 0.
Proof. Let us suppose that
¢@®x)'(0)a) =0 forevery xeE.
Then, fqr any {e,} €(c,), we have
0 = lim ¢, '¢(a®@x)(e, a)

n=w

= lim (e, 'Ch™ (e, ), D)(Ch (6, 0), )7 H[CH™ (e, 0), X)a]

n—o

forevery xe E. Now let X be fixed temporarily; we shall show that there are positive numbers
o and f such that

«< |67 h(B,a)| =B for n=1,2,...,

where 8, = (h™'(¢,a), X). Since {J,}€e(co), the existence of such g follows from Step 3. If
such a does not exist, then there is a subsequence {5, } of {8,} such that

tim [ 65 h(5,,a) | = O,
k=

which is impossible because of the fact proved in Step 2. Thus such « and B exist.
Then, since

Bt &7 ' d(a@a)(e,a) | < | & <A™ (ena), B | S a7t | &7 ' P(a®EN(e,a) ||,
we have
lim &, '¢h™ (g, a), Xy =0,

and this is true for any xe E. However, by Step 2, this is impossible.

We note that, if e E satisfies ¢p(a®ad)'(0)(@) # 0, then —a also satisfies this condition.
This can be proved as follows. Since —(a®a) = a®(~—a), we have

$(@®(—a)) (0) = ¢((- 1)(@®a)) (0) = ¢(- 1Y (0)¢(a®a) (0).
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Moreover, ¢(—1)'(0) is a bijection because
((=1)(0))* = ¢(1Y(0) = 1.
Therefore ¢p(a®a)’(0)(a) # 0 is equivalent to ¢(a®(—a))'(0)(a) # 0.

STEP 5. For any acE and {&,} €(c,), there is a subsequence {, } such that the sequence
{e.. (e, a)} is convergent.

Proof. We can assume that g is nonzero, and, by Step 4, we can take ae E such that
¢(a®a)'(0)(@) #0. Again we depend on the following equation:

0 # ¢(a®a)'(0)(a)
= lim (37 'Ch™*(a), @))(Kh ™ (6a), @)~ h(<h™ ' (Ba), @)a). M
6—0
It is clear from this equation that the function (A~ !(da), @) of Se# takes nonzero values in

any small neighbourhood of zero, because, if this is not the case, ¢(a®a)’'(0)(a) has to be
zero. Therefore, since this function is continuous, there exists {d,} €(c,) such that

<h™'(0,a),8) =¢, or —g,

is true for large n. Hence, taking a subsequence of {¢,} and replacing a by —a if necessary,
we can assume that

¢h™1(6,a), @y =¢, forlarge n.
Then, from (7) it follows that
0 # $(a®a)'(0)(a) = lim (8, 'Ch™*(8, a), aD)(e; *h(e,a)).

n=*o0

On the other hand, the fact proved in Step 3 implies that the sequence {5, '¢h™(5,a), a)} is
bounded, and hence that there is a subsequence {3, } of {5,} such that the limit

lim &, '¢h™1(8,, a), @) = «
k=
exists. Since, again by Step 3, the sequence {e, 'h(e, a)} is bounded, the fact that

¢(a®a)'(0)(a) # 0 implies that the limit « can not be zero. Therefore, we arrive at the
conclusion that the following limit exists:

lim ¢, *h(g,, a) = o~ '¢(a®a) (0)(a).
k-

STEP 6. The limit lime™'h(ea) exists for any acE.

&0

Proof. We can assume that a is nonzero. We take an arbitrary ae E such that |a || =1,
and first we shall show that the function of é e %:

A(¢) = (h(Za), @)
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is differentiable almost everywhere. In fact, as in the proof of Step 2, for any {¢,} €(c,), we
have

| e {[AE +&) - 28)] |
< | & '[h(€a+e,a)—h(¢a)] |
= || §(€ca+1Y'(0)(e; ' hlen @) +&5 ' r((Ec, +1), 0, h(g,a)) |
< || e+ 1Y) | | & *hena) | + || &7 hleaa) || - | Blena) |~ || r(d(Ec,+ 1), 0, B(e,a)) ||,

which means that none of the Dini derivatives of A1 can take infinite value. Therefore, by
[3, p. 271], the function A is differentiable almost everywhere.
We now turn to the proof of the existence of the limit lime~*h(e¢a). In view of the fact

e—0

proved in the Step 5, what we have to show is the following: If there are {6,}€e(c,) and

{e,} €(co) such that ’
lime, ‘h(e,a) =a; and lim 5, 'h(3,a) = a,,

then a, = a,.

Since the space is separable, by [1, p. 124] we can take countable @€ E such that the
condition that {x, a;» =0 for every i implies that x = 0. We consider the following functions
of (eR:

A(8) = (h(ka), a;).
Since each A, is differentiable almost everywhere, there exists « € where all A, are differentiable,
i.e., the limit
lime™ [A(a+e)—A()]

&0

exists for every i. On the other hand, we have

lim g7 ![h(xa +¢,a)— h(xa)] = ¢(ac,+1)'(0)a,)

and
lim & '[h(xa + &, a) — h(aa)] = $(ac,+1)'(0)(a,).
Therefore

{Plac,+1Y(0)ay), 3> = {P(ac, +1)(0)(a2), a:>

for every i, which implies that

P(ac,+1)'(0)(ay) = ¢(ac, +1)'(0)(as).

Here ¢(xc,+ 1)'(0) is injective, because, since

(1—ac)(ac,+1) =1,
we have

¢(1 —ac,) (h(@a))p(ac,+1Y (0) = 1.

We therefore have a, = a,.
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STEP 7. h is weakly Fréchet-differentiable.

Proof. This statement means that for any x € E there exists a continuous linear mapping
of E into itself, which we denote by A#’(x), such that

wl&laz:}l(:}im [y~ *[hx+y)=B(x)=H'(x)(¥)] = 0.

This can be proved in exactly the same manner as in the proofs of Steps 6, 7, 8, 9 and 10 of
our previous paper [5].
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