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Thermocapillary droplets with internal thermal singularities have potential applications in
drug delivery and cell analysis. Inspired by the work of Pak et al. (J. Fluid Mech., vol. 753,
2014, pp. 535–552), which was investigated for a surfactant-laden non-deformable droplet
in an isothermal Poiseuille flow, we have explored the droplet dynamics by taking account
of additional internal thermal singularities, namely monopole and dipole. A generalized
mathematical model is developed, which is solved by using the solenoidal decomposition
to describe the flow field in any arbitrary Stokes flow, and results are shown extensively for
the case of a non-isothermal Poiseuille flow. Under small Péclet number (Pes) limit, the
droplet with an off-centred monopole or a dipole oriented along the flow direction shows
cross-stream migration at O(Pe2

s ). However, a dipole oriented perpendicular to the flow
direction results in an O(1) effect due to thermocapillarity, and from O(Pes) onwards,
we observe the combined impact of thermocapillary and surfactant-induced Marangoni
stresses. As a surprise, we see cross-stream migration of the droplet from the Poiseuille
flow centreline in a non-isothermal field, in contrast to existing findings which rule out any
cross-stream migration. We show the trade-off between thermal Marangoni number (MaT )
and surfactant Marangoni number (MaΓ ). Our findings on droplet dynamics inspire new
possibilities for microfluidics-based design.

Key words: thermocapillarity

1. Introduction

The dynamics of suspending droplets and bubbles gained significant attention due to its
vast range of applications in biomedical technology, industrial operations, bio-engineering
products and microfluidic devices (Karabelas 1977; Kaushal & Tomita 2002; Stone,
Stroock & Ajdari 2004; Huebner et al. 2008; Teh et al. 2008; Baroud, Gallaire
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& Dangla 2010; Seemann et al. 2011; Stan et al. 2011; Zhu & Fang 2013). In
the case of cell analysis and droplet PCR, uniformly sized droplets (millimetre or
sub-millimetre) are separated from the base sample, and that process depends on
the flow geometry, fluid properties and external fields (such as magnetic, electric,
surfactant and temperature). Droplets generally exhibit rich science in shape deformation,
cross-migration, encapsulation, break-up and merging (Ahn et al. 2006; Link et al. 2006;
Anna 2016; Bandopadhyay et al. 2016). During the droplet sorting technique, external
fields are applied to create unbalanced surface forces to achieve lateral motion and
separation.

The migration of droplets can also be managed without using external fields. There are
droplets that migrate due to their internal activity, called ‘active droplets’ (Ramos, Cordero
& Soto 2020; Grauer et al. 2021; Rajabi et al. 2021; Shankar, Raju & Mahadevan 2022).
Studies on Escherichia coli encapsulated in an emulsion droplet showed motility due to
internal heat generation by the micro-organism (Rothbaum & Stone 1961), which can be
modelled as a droplet subjected to an internal thermal singularity. An important challenge
is to find a way to control the droplet propulsion and the dependence based on the nature
of singularities present (Marchetti 2012; Shankar et al. 2022).

Are the droplet dynamics not understood in the presence of thermal fields earlier? Partly
yes, in the form of uniform or non-uniform thermal gradients in the ambient field, but
without any internal thermal heating to mimic living cells cultured situation. First, we
overview earlier mathematical findings on thermocapillary-based droplet dynamics, and
then we proceed to explain our work on the thermal singularities. Young, Goldstein &
Block (1959) have found that droplets with small Reynolds number (Re ≈ 0) migrate from
the cold to the hot side due to thermocapillary forces. Bratukhin (1975) has obtained a
flow field solution up to O(Re), when a constant temperature gradient is present at the
far field. Thompson, DeWitt & Labus (1980) have extended the solutions up to O(Re2)
and found far-field boundary conditions are difficult to satisfy similar to the Whitehead
paradox. Subramanian (1983) has used the method of matched asymptotic expansions in
terms of the Marangoni number (Ma) for the Stokes flow, and found the droplet velocity up
to O(Ma2). Under zero gravity conditions, Balasubramaniam & Chai (1987) have shown
that the solution obtained by Young et al. (1959) is an exact solution of the Navier–Stokes
equations for any value of Re as long as Ma is small. Subramanian & Balasubramaniam
(2001) indicated that the droplet migration velocity is unaffected by the surface shear
viscosity but depends on the surface dilatational viscosity. Similar to thermocapillary
effects, the surfactant concentration variation on the droplet interface can also alter the
droplet velocity (Leal 2007). For example, a tiny surfactant presence on the droplet
interface reduces the velocity (Sadhal & Johnson 1983, 1986). Hanna & Vlahovska (2010)
have shown that droplets released at an arbitrary location in a Poiseuille flow (one special
case of an arbitrary Stokes flow) reach the centreline for large surface Péclet numbers (Pes).
Schwalbe et al. (2011) investigated the effects of surface viscosities and found that the
presence of interfacial stresses significantly alters the slip velocity and the flow circulation.
Dandekar & Ardekani (2020) examined the same for small Pes, and found that the droplet
cross-stream migration is due to O(Pe2

s ) terms. Das, Mandal & Chakraborty (2018) have
shown that when the interfacial tension is modelled as a linear combination of surfactant
and temperature, the droplet exhibits cross-stream migration at O(Pe2

s ). Moreover, the
direction of this motion changes depending on the thermal Marangoni number MaT .
Sharanya, Raja Sekhar & Rohde (2019) have found that the cross-stream migration
increases due to O(Pes) if the interfacial tension is modelled as a nonlinear combination
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Surfactant-laden droplet with internal thermal singularity
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Ũ
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Figure 1. Schematic of a surfactant-laden droplet (of radius a) moving with velocity Ũ in an ambient Stokes
flow. The ambient flow has velocity ṽ∞ and is subjected to a thermal gradient ∇̃T̃∞ (represented as a blue to red
shade), coinciding with gravity g. Based on the droplet centre, a spherical coordinate system (r̃, θ, φ) is chosen
that connects with a Cartesian coordinate system (x̃, ỹ, z̃) by general transformation rule. The streamwise
direction is z̃, and the cross-stream directions are x̃ (perpendicular to gravity) and ỹ (into the plane). In our
work, droplets consist of different thermal singularities such as (i) a centred monopole, (ii) an off-centred
monopole with a source in the streamwise direction, and (iii) a dipole with an arbitrary orientation. The red
circle in the droplet is a hot source, and yellow for a cold sink. Surfactant is represented as a coiled ball on the
droplet surface.

of surfactant and temperature field. Panigrahi et al. (2021) have shown that the droplet
cross-stream migration gets suppressed with the inclusion of shear and dilatational surface
viscosities.

To the best of our knowledge, the droplet dynamics with internal thermal singularities
(due to the importance of cell separation techniques) has not been modelled yet. In
this work, we have investigated a surfactant-laden droplet suspended in an arbitrary
non-isothermal Stokes flow subjected to internal thermal singularities in the form of
a monopole and a dipole (see figure 1). In our model, we have allowed the droplet
thermophysical properties to be different from the outside ambient so that the stress and
thermal balance conditions at the interface determine the droplet dynamics. We have
varied the monopole location and the dipole orientation inside the droplet, and investigated
the overall drag and the corresponding migration velocity. The interfacial tension in
our model is a linear function of the temperature and the surfactant concentration.
Our investigation highlights that in a specific arbitrary Stokes flow (i.e. a Poiseuille
flow), the droplet with internal thermal singularities can show high velocity compared
to the results mentioned in the previous works. Further, we have shown that the
droplet can show cross-stream migration even if it is released on the Poiseuille flow
centreline.

In § 2, we explain the mathematical model, corresponding boundary conditions and
the parameters involved. In § 3, we outline the solution procedure using the solenoidal
decomposition method for small and large Pes. In § 4, we investigate detailed results for
droplets suspended in a non-isothermal Poiseuille flow. A summary with future scope is
given in § 5.
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2. Mathematical formulation

2.1. Description of the mathematical model
In figure 1, we have shown the schematic of a surfactant-laden droplet of radius a,
suspended in an ambient flow that is subjected to an external temperature gradient ∇̃T̃∞.
The density, dynamic viscosity, thermal conductivity and thermal diffusivity internal to
the droplet are ρi, μi, κ i and αi, respectively. The same quantities external to the droplet are
ρe, μe, κe and αe, respectively. We define two coordinate systems: (1) spherical (r̃, θ, φ)

to find the detailed solutions, and (2) Cartesian (x̃, ỹ, z̃) to show results on droplet velocity.
Here, θ is the angle made by the vector r̃ with the z̃ axis, and φ is the angle made by
the projection of r̃ on the x̃–ỹ plane with the x̃ axis. Consequently, we can express the
relationships as x̃ = r̃ sin θ cos φ, ỹ = r̃ sin θ sin φ and z̃ = r̃ cos θ . The gravitational force
g acts along the z̃ direction. The unit vectors along the x̃, ỹ and z̃ directions are î, ĵ and k̂,
respectively. On a co-moving frame attached to the droplet centre, the mass, momentum
and energy equations that describe internal and external flow fields satisfy (Leal 2007;
Subramanian & Balasubramaniam 2001),

∇̃ · ũ j = 0, (2.1a)

ρ j
(

∂ũ j

∂ t̃
+ ũ j · ∇̃ũ j

)
= ∇̃ · τ̃ j, (2.1b)

∂T̃ j

∂ t̃
+ ũ j · ∇̃T̃ j = α j ∇̃2T̃ j, (2.1c)

where j = i (for internal) and e (for external). The other variables are as follows: ũ j is the
relative velocity of flow with respect to the droplet centre velocity Ũ (i.e. ũ j = ṽ j − Ũ ,
where ṽ j is the flow velocity in the laboratory reference frame), τ̃ j is the stress tensor, T̃ j

is the temperature, and ∂/∂ t̃ is the partial derivative with respect to time. For Newtonian
fluids (as we use), the stress tensor is modelled as τ̃ j = −p̃ jI + μ j[∇̃ũ j + (∇̃ũ j)′], where
p̃ j is the pressure, I is the identity tensor, ∇̃ is the gradient operator, and ′ denotes the
transpose. The surfactant concentration Γ̃ at the droplet interface r̃ = a satisfies (Stone &
Leal 1990; Stone 1990)

∂Γ̃

∂ t̃
+ ∇̃s · (ũsΓ̃ ) = Ds ∇̃2

s Γ̃, (2.2)

where ũs is the relative velocity at the surface, and Ds is the surfactant diffusivity. The
surface gradient operator is ∇̃s ≡ ∇̃ − ñ(ñ · ∇̃), for a surface described by a normal vector
ñ, and a tangent vector t̃. The interface conditions correspond to: (1) vanishing normal
velocity, ũe · ñ = ũi · ñ = 0; (2) continuity in tangential velocity, ũe · t̃ − ũi · t̃ = 0;
and (3) jump in the tangential stress, τ̃ e · ñ · t̃ − τ̃ i · ñ · t̃ = −∇̃sσ̃ · t̃. The interfacial
tension (σ̃ ) in our work is modelled as σ̃ (T̃) = σ̃0 − γ (T̃ − T̃0) − RgT̃0Γ̃ for the dilute
concentrations and moderate temperature differences (Homsy & Meiburg 1984; Kim &
Subramanian 1989; Leal 2007). The equilibrium interfacial tension (σ̃0) is considered
at reference temperature T̃0, γ is a positive constant, and Rg is the ideal gas constant.
The temperature field at the interface satisfies T̃e = T̃ i and κe(∂T̃e/∂ r̃) = κ i(∂T̃ i/∂ r̃).
The far-field conditions (at r̃ → ∞) for the velocity, pressure and temperature are
ũe → ũ∞ = ṽ∞ − Ũ , p̃e → p̃∞ and T̃e → T̃∞, respectively. Internal to the droplet (at
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Surfactant-laden droplet with internal thermal singularity

r̃ → 0), both the velocity ũi and the pressure p̃i are bounded, and the temperature satisfies,
T̃ i → T̃s, for a prescribed thermal source that generates temperature T̃s.

2.2. Control parameters and dimensionless governing equations
To non-dimensionalize the variables, we need to define relevant characteristic quantities.
For example, in a cylindrical Poiseuille flow of radius R̃0 with the centreline flow
velocity Uc, we define the dimensionless variables as u j = ũ j/Uc, ∇ = a ∇̃, r = r̃/a,
p j = p̃ j/(μeUc/a), σ = σ̃/σ̃0, T j = (T̃ j − T̃0)/a |∇̃T̃∞|, Γ = Γ̃ /Γ̃0 and t = t̃/(R̃0/Uc).
Here, R̃0/Uc denotes the advection time scale. With these non-dimensional variables, the
governing equations (2.1) reduce to

∇ · u j = 0, (2.3a)

Re (ρ j/ρe)

[
a

R̃0

∂u j

∂t
+ (u j · ∇u j)

]
= −∇p j + (μ j/μe)∇2u j, (2.3b)

PeT

[
a

R̃0

∂T j

∂t
+ (u j · ∇T j)

]
= (α j/αe)∇2T j, (2.3c)

where Re (≡ ρeUca/μe) is the Reynolds number, and PeT (≡ Uca/αe) is the thermal
Péclet number. Note that index j = i for the internal flow and e for the external flow.

The surfactant transport equation (2.2) in dimensionless form is

Pes

[
a

R̃0

∂Γ

∂t
+ ∇s · (Γ us)

]
= ∇2

s Γ, (2.4)

where Pes (≡ Uca/Ds) is the surface Péclet number. The interface conditions (at r = 1) in
dimensionless form are: (1) ue · ñ = ui · ñ = 0, (2) ue · t̃ − ui · t̃ = 0, and (3) τ e · ñ · t̃−
μ τ i · ñ · t̃ = ∇s(MaT Te + MaΓ Γ ) · t̃, where μ = μi/μe, MaT = γ |∇̃T̃∞| a/μeUc is
the thermal Marangoni number, and MaΓ = RgT̃0Γ̃0/μ

eUc is the surfactant Marangoni
number. Note that the tangential stress balance condition is simplified using
σ = 1 − Ca (MaT T + MaΓ Γ ), where Ca = μeUc/σ̃0 is the capillary number. The
thermal field at the interface satisfies Te = Ti and ∂Te/∂r = κ(∂Ti/∂r), where κ = κ i/κe.
The far-field conditions (at r → ∞) are ue → u∞ = v∞ − U , pe → p∞, and Te → T∞.
Internal to the droplet (as r → 0), we have ui and pi bounded with Ti → Ts, the thermal
singularity.

To give an idea about the mentioned dimensionless numbers, we discuss
two examples: (1) a thermocapillary droplet (Nallani & Subramanian 1993)
of radius 50–146 μm suspended in an ambient fluid with ρe = 955 kg m−3,
μe = 0.0478 N s m−2, κe = 0.1 W m−1 K−1; and (2) a deionized water droplet (Panigrahi
et al. 2021) suspended in another medium with the properties ρe = 971 kg m−3, μe =
0.04855 N s m−2, αe = 7 × 10−8 m2 s−1, Ds = 10−11–10−8 m2 s−1 and Γ̃0 = 10−10–
10−6 mol m−2. Based on these examples, the corresponding parameter ranges are
ρ (= ρi/ρe) ∼ O(10−2)–O(1), Re ∼ O(10−4), a/R̃0 ∼ O(10−2), μ ∼ O(10−2)–O(102),
PeT ∼ O(10−2), α (= αi/αe) ∼ O(10−1)–O(1), Pes ∼ O(10−1)–O(102), MaT ∼ O(10−2)

–O(101), MaΓ ∼ O(10−2)–O(102) and Ca ∼ O(10−4). Further, this study focuses on
droplet dynamics in situations where droplets may have a density different from the
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surrounding medium. The presence of gravity leads to a buoyancy effect, causing droplets
to undergo motion. When gravity acts perpendicular to the flow, the cross-stream velocity
of a buoyant droplet is governed primarily by the buoyancy force, and the effects of
flow and temperature field are negligible. Consequently, investigating buoyant droplets in
such systems is considered less important. However, here we explore specifically droplet
migration when gravity acts in the same direction as the imposed flow (as depicted in
figure 1). This scenario presents an intriguing area of research to understand the dynamics
and behaviour of buoyant droplets under these conditions. Thus we have the Bond
number Bo = |ρi − ρe| ga2/σ̃0, which is of O(10−4). Note that the normal stress balance
determines the droplet shape (Hetsroni & Haber 1970), and due to small Ca ∼ O(10−4),
we have assumed that the droplet is spherical.

Considering Re ∼ O(10−4), we have neglected terms with (a/R̃0) Re since they are
significantly smaller than Re itself. Similarly, in the energy equation, considering the value
of PeT ∼ O(10−2), we have disregarded terms with (a/R̃0) PeT as they are much smaller
compared to PeT . Thus the governing equations become

∇ · u j = 0, (2.5a)

−∇p j + (μ j/μe)∇2u j = 0, (2.5b)

∇2T j = 0. (2.5c)

With reference to the surfactant transport equation given in (2.2), the order of magnitude
analysis of the individual terms indicates that when the advection time scale is restricted
as R̃0/Uc 	 lc/Uc, the governing equation reaches a quasi-steady state. Accordingly, for
the choice lc = a 
 R̃0 (small droplets), we ensure that a/Uc 
 R̃0/Uc. Consequently,
we can neglect the transient terms, resulting in the simplified surfactant transport equation

Pes ∇s · (Γ us) = ∇2
s Γ. (2.6)

We have considered that the surfactant concentration satisfies the condition∫ 2π

φ=0

∫ π

θ=0 Γ (θ, φ) sin θ dθ dφ = 4π. We can solve (2.6) analytically for a few special
cases like small and large Pes. The surface diffusion dominates the transport for Pes 
 1,
and the surface convection dominates the transport for Pes 	 1.

3. Solution procedure

Irrespective of the values of Pes, the temperature field is independent of the flow field
and the surfactant concentration; thus we first solve the temperature equations with the
prescribed boundary and interface conditions. Using asymptotic perturbation for small
and large Pes, we solve the surfactant concentration and flow fields simultaneously (see
figure 2). At each order of perturbation, the Stokes flow equations are solved using the
solenoidal decomposition method known as the double-curl method, which is described
briefly in § 3.2. In the subsequent subsections, we provide the necessary details about
the solution procedure to determine the drag on the surface of the droplet and the
corresponding migration velocity.
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Surfactant-laden droplet with internal thermal singularity

Temperature

Surfactant

concentration

O(1)
O(1)

O(1)
O(1)

O(Pes) O(Pes)

O(Pe2
s ) O(Pe2

s )

Velocity

Temperature

Surfactant

concentration Velocity

O(MaΓ
–1) O(MaΓ

–1)

(b)(a)

Figure 2. Schematic of a general procedure to solve for velocity u and surfactant concentration Γ from the
temperature field T , for (a) small-Pes limit, and (b) large-Pes limit. Step-by-step progression in arrows, where
each quantity is solved before moving on to the next one. Temperature and previous quantities are utilized at
each step, and MaΓ is the surfactant-based Marangoni number.

3.1. Thermal field
Both inside and outside of the droplet satisfy the Laplace equation (2.5c) with a complete
general solution in the form

Ti =
∞∑

n=0

(
anrn + bn

rn+1

)
Sn(θ, φ) and Te =

∞∑
n=0

(
cnrn + dn

rn+1

)
Sn(θ, φ),

(3.1a,b)

where Sn(θ, φ) = ∑n
m=0 Pm

n (cos θ)(Anm cos mφ + Bnm sin mφ) is the nth spherical
harmonic, Pm

n (cos θ) is the associated Legendre polynomial, and Anm, Bnm are the known
scalars (Sneddon 2006). In (3.1a,b), an and dn are to be determined using the thermal
interface conditions at r = 1, whereas bn comes from the internal thermal singularity and
cn from the ambient far field, respectively. We consider the chosen thermal singularity and
the far-field condition to satisfy the Laplace equation such that

Ts =
∞∑

n=0

bn

rn+1 Sn(θ, φ) at r = 0, and T∞ =
∞∑

n=0

cnrn Sn(θ, φ) at r → ∞. (3.2a,b)

Further, Ts varies depending on the type of singularity chosen. For example, a monopole
of strength S located at the droplet centre (r = 0) corresponds to Ts = S/r, which is
the free-space Green’s function in R

3 of the Laplace equation. If the monopole is
off-centred by a distance d along the flow direction with 0 < d < 1, then we have
Ts = ∑∞

n=0 S(dn/rn+1) Pn(cos θ). A dipole (which is a combination of a sink and a source
of equal strength S) located at the droplet centre and oriented at an arbitrary angle in
spherical coordinates creates a thermal field,

Ts = 1
r2 [P0

1(cos θ) (S cos θ) + P1
1(cos θ) (S sin θ cos φ + S sin θ sin φ)]. (3.3)

We have estimated the required non-zero coefficients as follows: for a centred monopole,
b0A00 = S; for an off-centred monopole, bnAn0 = Sdn for all n ≥ 0; and for a dipole, we
have b1A11 = S sin θ cos φ, b1B11 = S sin θ sin φ and b1A10 = S cos θ for fixed θ and φ.
All other coefficients not explicitly mentioned here are zero.
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The far-field temperature gradient is essential in determining the particular flow
behaviour and heat transfer. A constant temperature gradient simplifies the thermal
boundary conditions at infinity. Further, it gives a more accurate solution by ensuring
that the flow field is symmetric and uniform. Following Choudhuri & Raja Sekhar (2013)
and Sharanya & Raja Sekhar (2015), we can write the temperature field corresponding to
the constant far-field temperature gradient as T∞ = Gr cos θ , where G < 0 for a decrease
in temperature along the flow direction, and G > 0 otherwise. Consequently, we find
that c1A10 = G and the remaining cn are zero, for all n /= 1. By applying the interface
conditions, we get the coefficients

an = (2n + 1)cn + (n + 1)(κ − 1)bn

(nκ + n + 1)
and dn = n(1 − κ)cn + κ(2n + 1)bn

(nκ + n + 1)
.

(3.4a,b)

This determines the thermal field interior and exterior of the droplet due to thermal
singularities.

3.2. Double-curl strategy to obtain the velocity field
It is important to note that Lamb’s general solution (Lamb 1924) helps to solve any
arbitrary steady Stokes flow, in which velocity and pressure fields are represented as a
series of an infinite number of harmonic scalar functions. As an alternative, Palaniappan
et al. (1992), Raja Sekhar et al. (1995) and Padmavathi, Raja Sekhar & Amaranath (1998)
developed the double-curl method, which is a complete general solution framework to
solve the Stokes equations, in which the velocity and the pressure fields are represented in
terms of a scalar biharmonic function and a scalar harmonic function. Correspondingly,
the velocity and the pressure fields of the Stokes equation are represented as u =
∇ × ∇ × (rA) + ∇ × (rB) and p = p∞ + (∂/∂r)(r ∇2A). The scalars A and B satisfy
∇4A = 0 and ∇2B = 0. The general solutions for A and B are expressed in terms
of the basis vectors, {rn, rn+2, r−(n+1), r−(n−1)}Rn(θ, φ) and {rn, r−(n+1)}Tn(θ, φ) for
all n ≥ 0, respectively. Here, Rn(θ, φ) = ∑n

m=0 Pm
n (cos θ) (Cnm cos mφ + Dnm sin mφ)

and Tn(θ, φ) = ∑n
m=0 Pm

n (cos θ) (Enm cos mφ + Fnm sin mφ) are the spherical harmonics,
where Cnm, Dnm, Enm and Fnm are constants (which are determined from the
spherical harmonics at the far field). Using the superscripts e and i to denote
external and internal quantities, respectively, the interface conditions (at r = 1)
in terms of the scalars are given by Ae = 0, Ai = 0, ∂Ae/∂r = ∂Ai/∂r, Be = Bi,
∂2Ae/∂r2 − μ(∂2Ai/∂r2) = MaT Te + MaΓ Γ and (∂/∂r)(Be/r) = μ(∂/∂r)(Bi/r). We
have Ai < ∞, Bi < ∞ for r → 0, and from the far-field conditions, we infer Ae → A∞
and Be → B∞. In series form, we have

A∞ =
∞∑

n=0

(α∞
n rn + α̂∞

n rn+2)Rn(θ, φ) and B∞ =
∞∑

n=0

χ∞
n rn Tn(θ, φ), (3.5a,b)

where α∞
n , α̂∞

n and χ∞
n are known coefficients determined by the choice of a particular

Stokes flow at the far field. The resultant flow interior (r < 1) and exterior (r > 1) of the
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Surfactant-laden droplet with internal thermal singularity

drop follow:

Ai =
∞∑

n=0

(δnrn + δ̂nrn+2)Rn(θ, φ) and Bi =
∞∑

n=0

γnrn Tn(θ, φ), (3.6a,b)

Ae = A∞ +
∞∑

n=0

(
βn

rn+1 + β̂n

rn−1

)
Rn(θ, φ) and Be = B∞ +

∞∑
n=0

ζn

rn+1 Tn(θ, φ),

(3.7a,b)

where δn, δ̂n, γn, βn, β̂n and ζn are the unknown coefficients that are to be determined
using the interface conditions. Consequently, we can compute the velocity and pressure
fields. The next task is to compute the migration velocity of the droplet. Towards this, we
use the force-free condition (Happel & Brenner 1981) on the droplet, which corresponds
to the balance between the drag (DH) and the buoyancy force as∫

Ω

τ e · ñ dΩ︸ ︷︷ ︸
Hydrodynamic drag

+ 4π

3
Bo
Ca

ω︸ ︷︷ ︸
Buoyancy

= 0, (3.8)

where dΩ is the droplet surface element, ω denotes the direction of the buoyancy force,
and the denser fluid among the droplet and the surrounding phase is determined by the
magnitude ω. If ω = 1, then the drop is denser than the suspending phase (ρi > ρe), and
if ω = −1, then the surrounding fluid is dense (ρi < ρe).

3.3. A regular perturbation of the surfactant transport and droplet velocity
To compute drag and droplet velocity, we need surfactant distribution and flow field. The
surfactant transport equation (2.6) and the scalars A j and B j are coupled via the interface
conditions. A complete analytical solution for the entire range of Pes is not possible, hence
we construct an asymptotic solution for Pes 
 1 and Pes 	 1 as a regular perturbation
problem.

3.3.1. For small surface Péclet number (Pes 
 1)
In the limit Pes 
 1, the surfactant concentration and velocity can be expanded in terms
of a regular perturbation in Pes as (Pak, Feng & Stone 2014; Sharanya et al. 2019)[

Γ, u j
]

=
[
Γ0, u j

0

]
︸ ︷︷ ︸

Leading order

+Pes

[
Γ1, u j

1

]
︸ ︷︷ ︸
First order

+Pe2
s

[
Γ2, u j

2

]
︸ ︷︷ ︸

Second order

+O(Pe3
s ). (3.9)

From (2.6) and (3.9), the surfactant transport equation at various orders follows:

O(1): ∇2
s Γ0 = 0, (3.10a)

O(Pes): ∇2
s Γ1 = ∇s · (us,0Γ0), (3.10b)

O(Pe2
s ): ∇2

s Γ2 = ∇s · (us,0Γ1 + us,1Γ0), (3.10c)

where us,0 and us,1 are the surface velocities at the leading order and first order in
Pes, respectively. From the first order onwards, the surfactant concentration depends
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on the previous flow field (or the surface velocity) and the surfactant concentration
of the previous order, and appears as a non-homogeneous part to the Laplacian as in
(3.10b) and (3.10c). The leading-order surfactant transport equation (3.10a), which further
satisfies the mass balance condition, follows Γ0 = 1. The leading-order velocity and
pressure fields are computed using the double-curl strategy by applying the interface and
far-field conditions. The first-order surfactant transport equation is solved by using already
computed leading-order results. Further details in terms of spherical harmonics are shown
in Appendix A.

The leading-order drag DH
0 obtained by using (3.8), in the form of Faxen’s laws

(Subramanian & Balasubramaniam 2001) is

DH
0 = 6π

(
3μ + 2

3(μ + 1)
[u∞,0]0 + μ

6(μ + 1)
[∇2u∞,0]0 + 2MaT

3(μ + 1)(κ + 2)
[∇T∞]0

+ 2κb1 MaT

3(μ + 1)(κ + 2)
Y 0

)
, (3.11)

with zero net torque. The detailed expressions of [u∞,0]0, [∇2u∞,0]0, [∇T∞]0 and Y 0 are
given in (A2) and (A3). Note that the fourth term in the above equation signifies the role
of internal thermal singularity.

The leading-order migration velocity of the drop is found by equating the drag force to
zero, which gives

U0 = [v∞,0]0 +
(

μ

6μ + 4

)
[∇2v∞,0]0︸ ︷︷ ︸

Ambient flow contribution

+ 2MaT

(3μ + 2)(κ + 2)
[∇T∞]0︸ ︷︷ ︸

Thermal gradient contribution

+ 2κb1 MaT

(3μ + 2)(κ + 2)
Y 0︸ ︷︷ ︸

Internal thermal
singularity contribution

+ UB,0︸︷︷︸
Buoyancy

contribution

. (3.12)

Here, UB,0 is the velocity contribution due to the buoyancy, which depends on the
particular ambient flow (a detailed analysis for Poiseuille flow is provided in Appendix B).
The structure in (3.12) allows us to compute the droplet velocity for any arbitrary ambient
flow and thermal fields in the presence of thermal singularities interior to the droplet.
Hence the expression (3.12) for the migration velocity facilitates a more generalized
control of the drop migration based on the choice of various parameters involved. At the
leading order, we have Γ0 = 1, and ∇sΓ0 = 0, so the surfactant coating is uniform on the
drop surface. Hence there is no influence of surfactant-induced Marangoni stresses on the
droplet migration velocity.

Following the same approach, we find the first-order drag DH
1 and droplet migration

velocity U1 as

DH
1 = 2π

[
−
(

2 + 3μ

μ + 1

)
U1 + 2

3(μ + 1)
MaΓ Y 1

]
, (3.13a)

U1 = 2
3(3μ + 2)

MaΓ Y 1 + UB,1, (3.13b)

where the complete expression of the vector Y 1 is given in (A7).
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Surfactant-laden droplet with internal thermal singularity

The second-order drag DH
2 and the migration velocity U2 are

DH
2 = 2π

[
−
(

2 + 3μ

μ + 1

)
U2 + 2

3(μ + 1)
MaΓ Y 2

]
, (3.14a)

U2 = 2
3(3μ + 2)

MaΓ Y 2 + UB,2, (3.14b)

where the vector Y 2 is given in (A10). Further, UB,1 and UB,2 are due to buoyancy and
depend on the background flow. The impact of the non-uniform surfactant distribution is
reflected in the migration velocity of the droplet at first and second order. A closer look at
the structures of Y 1 and Y 2 (refer to Appendix A) reveals that the presence of thermal
singularities affects the migration velocity. The results given in (3.11), (3.12), (3.13a),
(3.13b), (3.14a) and (3.14b) are more generic and can be used for any arbitrary Stokes
flow.

3.3.2. For large surface Péclet number (Pes 	 1)
For large Pes (	 1), the surfactant transport equation (2.6) simplifies to

∇s · (usΓ ) = 0, (3.15)

with a thin mass transfer boundary layer structure very close to the drop. For large
surfactant Marangoni number (MaΓ 	 1), we can expand the surfactant concentration
and velocity fields as a regular perturbation with the form (Hanna & Vlahovska 2010;
Schwalbe et al. 2011)

[Γ, u j] = [Γ0, u j
0] + Ma−1

Γ [Γ1, u j
1] + Ma−2

Γ [Γ2, u j
2] + O(Ma−3

Γ ). (3.16)

The leading-order surfactant concentration follows Γ0 = 1 (Hanna & Vlahovska 2010;
Schwalbe et al. 2011). Substituting (3.16) in (3.15), the governing equations for surfactant
concentration at different orders are

O(1): ∇s · us,0 = 0, (3.17a)

O(Ma−1
Γ ): ∇s · (us,0Γ1 + us,1

) = 0. (3.17b)

The flow field is unaffected by the above expansion except for the tangential stress
condition at the interface. In leading and first order, the relevant tangential stress conditions
are

O(1): (τ e · ñ · t̃)0 − μ(τ i · ñ · t̃)0 = ∇s(MaT Te + Γ1) · t̃, (3.18a)

O(Ma−1
Γ ): (τ e · ñ · t̃)1 − μ(τ i · ñ · t̃)1 = ∇sΓ2 · t̃. (3.18b)

Further, the perturbation expansion does not have any impact on the thermal field. Hence
the solution of the thermal field is the same as that presented in § 3.1. The flow field
follows a procedure similar to that described for the small surface Péclet number case,
except for the tangential stress jump condition. The detailed expressions for the surfactant
distribution and the velocity field are given in § A.2.

The leading-order drag and the droplet migration velocity corresponding to (3.16) are

DH
0 = 6π([u∞,0]0 + 1

6 [∇2u∞,0]0) and U0 = [v∞,0]0 + 1
6 [∇2v∞,0]0 + UB,0.

(3.19a,b)

We can observe that in the limit as μ → ∞, (3.11) and (3.12) reduce to (3.19a,b).
In this context, we refer to Manikantan & Squires (2020), where the large MaΓ limit
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Hot endCold end

g

Uy

z

r
φ

θ

x

b

R0

v∞ ∇T∞

Figure 3. Schematic of a Poiseuille flow (as a special case of the Stokes flow) in a cylinder of radius R0 in
which a surfactant-laden droplet is released at a distance b from the axis. Thermal gradient and gravity in the
streamwise direction. Other notation is similar to figure 1.

is discussed in detail. Accordingly, in this limit, due to the resistive behaviour of the
surfactant molecules, the surface of the drop becomes completely immobilized. This is
referred as a two-dimensional incompressible surface. Stone & Masoud (2015) have shown
that this incompressible surface induces the subphase fluid to flow in planes parallel to
the interface. As a result, this creates a large velocity gradient and enhances the drag
compared to a clean interface (no surfactant). By looking into the first two terms in (3.11),
we can infer that (3μ + 2)/3(μ + 1) and μ/(μ + 1) are less than unity. Hence the drag
experienced by the droplet in the large MaΓ limit is more compared to that of a droplet
with a clean interface.

The first-order drag DH
1 and droplet velocity U1 are given by

DH
1 = −6πU1 + 2πZ1, and U1 = 1

3 Z1 + UB,1, (3.20a,b)

where the complete expression for Z1 is given in (A13).

4. Results and discussion

In the preceding section, we covered the general approach for solving an arbitrary Stokes
flow. In this section, we investigate a surfactant-laden droplet in a Poiseuille flow as a
special case (see figure 3). The Poiseuille flow v∞ = (0, 0, Vz) experienced by the droplet
is described in the form (Pak et al. 2014)

Vz = 1 −
(

r
R0

)2

sin2 θ −
(

b
R0

)2

− 2rb

R2
0

sin θ cos φ. (4.1)

Here, the parameter b represents the distance between the centre of the droplet and the
centreline of the flow, and R0 is the radius of the pipe. For the chosen velocity field (4.1),

973 A24-12

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

73
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.736


Surfactant-laden droplet with internal thermal singularity

the associated scalars that describe the far-field conditions are

A∞ =
[

r
2

(
1 − b2

R2
0

)
− r3

5R2
0

]
P0

1(cos θ) +
(

r3

30R2
0

)
P0

3(cos θ) +
(

br2

9R2
0

)
P1

2(cos θ) cos φ,

(4.2a)

B∞ =
(

br

R2
0

)
P1

1(cos θ) sin φ. (4.2b)

4.1. Temperature distribution
In figure 4, we have shown temperature isosurfaces on the droplet at r = 1. The meridional
coordinate θ is measured along the droplet surface starting from the downstream (θ = 0) to
the upstream (θ = π) location. In the absence of a far-field temperature gradient (G = 0),
we observe that a centred monopole generates a uniform temperature on the droplet surface
(see figure 4a). For the singularity strength S = 2, we observe the uniform temperature
equal to a value 2. With the presence of ambient gradient (G = 1), the surface temperature
varies, and it is different from a uniform value (see figure 4b). These variations occur
primarily due to the surrounding thermal gradient and not due to the internal thermal
singularity.

In the case of an off-centred monopole (with r = 0.5, θ = 0, φ = 0), the temperature is
maximum at θ = 0 and minimum at θ = π (see figures 4c,d). A similar behaviour is also
seen for a dipole oriented in the streamwise direction (see figures 4f,g). However, in the
case of a dipole oriented perpendicular to the flow, the maximum surface temperature
is observed at θ = π/2 for G = 0 (see figure 4h), and in a direction different from
the streamwise and transverse directions for G /= 0 (see figure 4i). We have quantified
T(r = 1, θ, φ = 0) for the presence of a monopole and a dipole in figures 4(e) and 4(j),
respectively. Note that the temperature variation on the droplet surface results in additional
thermal Marangoni stress due to singularities, and thus affects the droplet migration.

4.2. In the small-Pes limit (Pes 
 1)

For Pes 
 1, we have computed surfactant concentration (using (A4) and (A8) in
Appendix A), the drag and the droplet migration velocity (see Appendix B). Our
generalized calculations match with Pak et al. (2014) in the absence of ambient thermal
field (G = 0) and internal thermal singularities. Even in the presence of thermocapillary
effects (without any singularities), our results agree with Das et al. (2018) and Sharanya
et al. (2019). In the following two subsubsections, we discuss both surfactant distribution
and droplet velocity in the presence of thermal singularities.

4.2.1. Surfactant distribution
The surfactant distribution Γ (θ, φ) for a droplet released on a Poiseuille flow axis (b = 0)
is shown in figure 5 for different thermal singularities. Here, the ambient thermal field is
acting along the imposed Poiseuille flow. The surfactant distribution is relatively high
at θ = π (west) compared to θ = 0 (east), and the observed is due to the Marangoni
stress-induced flow on the droplet surface. Interestingly, the east–west located surfactant
distribution moves towards the north–south directions when a dipole is oriented in the
cross-stream directions, so we observe surfactant accumulation at the south-west region
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0
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–1

–1

–1
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–2

–2

4

2

0

D (θ = 0)
D (θ = π/2)

–2

–4
0 π/4 π/2 3π/4 π

0

M (C)
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θ

θ

π/4 π/2 3π/4 π–3

–3

–4

–4

G = 1

Transverse plane

Axial plane

y
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N

Sz

x
θ = π/2

θ = 0θ = π

(b)

(e)

( f )

(a)

(d )(c)

(g) ( j)

(h) (i)

Figure 4. Temperature (T) contours on the droplet surface for two ambient thermal gradients G = 0 and 1.
Droplets with (a–d) monopole-based, and ( f –i) dipole-based thermal singularities. On the droplet surface, the
θ direction begins at east (E) and ends at north (N) in the clockwise direction covering south (S) and west (W)
points. The droplet is subjected to ambient flow experienced as downstream at θ = 0 and upstream at θ = π.
(e,j) Temperature profiles in the θ direction for fixed φ = 0. Continuous lines for G = 0, and triangles for
G = 1. Red for centred (C) monopole, grey for off-centred (OC) monopole, orange for dipole oriented in the
streamwise direction, and blue for dipole oriented in the cross-stream direction. Parameters are S = 2, κ = 1.
Note that the temperature profiles are independent of other parameters such as droplet offset location from the
axis b, Pes, μ, MaT , MaΓ and others.

of the droplet. A similar result, but an increase in non-uniform surfactant distribution, is
found when the droplet is released at an offset from the flow centreline (b /= 0).

4.2.2. Droplet migration velocity
In figure 6(a), we have shown the migration speed |Uz| in the streamwise direction as
a function of singularity strength S. In the absence of thermal singularity (S = 0), we
found |Uz| ≈ 1.05, which agrees with the results of Das et al. (2018) for the chosen
parameters. A centred monopole does not affect the migration speed (refer to (B2)), which
matches the results of Rednikov & Ryazantsev (1989) for homogeneous internal heating of
a droplet. For S > 0, the speed increases above 1.05 for both the off-centred monopole and
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1.010

b = 0

(a)

(e) (g) (h)( f )

(b) (c) (d )

b = 1

1.005

1.000

0.995

0.990

Figure 5. Surfactant concentration Γ on the droplet surface in the presence of (a,e) a centred monopole, (b, f )
an off-centred monopole, (c,g) a dipole oriented in the streamwise direction, and (d,h) a dipole oriented in
the cross-stream direction. Droplet released on flow centreline/axis (b = 0) from (a) to (d), and released at an
offset from the flow axis (b = 1) from (e) to (h). Colour bar for Γ in a linear range from 0.99 (blue) to 1.01
(red). Parameters are S = 2, Pes = 0.1, G = 1, MaT = 1, MaΓ = 10, κ = 1, μ = 1, R0 = 5 and Bo = 0.

the dipole. In the inset of figure 6(a), we have shown Uz/|Uz(S = 0)|. The droplet with
the dipole orientation θ = 0 gives maximum speed compared to any other orientation.
In figure 6(b), droplet cross-stream speed |Ux| as a function of S is shown. Migration
velocity increases with increasing S. Interestingly, we observe that a dipole can reverse the
direction of the droplet migration when S is greater than a critical value Sc. In the inset
of figure 6(b), we have shown the droplet’s relative cross-stream velocity Ux/|Ux(S = 0)|.
For small values of S, the relative speed is negative, which indicates that the drop migrates
towards the flow centreline. With an increase in S, the droplet can migrate away from the
centreline. At critical strength Sc, we find Ux = 0. It is worth noting that Sc is a function
of the parameters μ, κ , MaT , MaΓ and dipole orientation angle θ . Figure 7 shows Sc as
a function of the dipole orientation θ . We observe that Sc decreases by nearly two orders
of magnitude when orientation changes from θ = 0 to π/2 with a small variation in MaT .
This suggests that when the dipole is oriented in the cross-stream direction (θ = π/2), a
small S is sufficient to perturb the droplet motion from the centreline to away from it. In
the insets of figure 7, we have shown Sc dependence on μ (figure 7a) and κ (figure 7b).
We observe that Sc decreases with both μ and κ; however, we find that κ dependence
corresponds to a significant change in Sc.

4.3. Small-Pes versus large-Pes limits
The migration velocity of a surfactant-laden droplet (subjected to a streamwise oriented
dipole) in the large-Pes limit is given by

U =
[

1 − 2
3R2

0
− b2

R2
0

+ 2ω

9
Bo
Ca

]
k̂ − Ma−1

Γ

[
(G + κS)b MaT

(κ + 2)R2
0

+ 2b

3R4
0

+ ωb

9R2
0

Bo
Ca

]
î + O(Ma−1

Γ ).

(4.3)
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Figure 6. Droplet velocity (in magnitude) as a function of thermal singularity strength S: (a) streamwise
direction, and (b) cross-stream direction. Thick dashed line for the absence of thermal singularity, centred
monopole (red dashes) and off-centred monopole (grey line). Dipole with different orientations in continuous
lines: θ = 0 (orange), π/6 (violet), π/4 (green), π/3 (cyan) and π/2 (blue). Insets for droplet velocity re-scaled
(or compared) by the case with no thermal singularity. Note that the droplet moves away from the centreline
(or axis) beyond critical singularity strength Sc (defined for a dipole). Parameters are Pes = 0.1, G = 1, b = 1,
MaT = 1, MaΓ = 10, κ = 1, μ = 1, R0 = 5 and Bo = 0. Here, S = 0 corresponds to no thermal singularity
(Das et al. 2018).
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Figure 7. Critical dipole strength Sc as a function of dipole orientation angle θ for MaT = 0.1 (red),
MaT = 0.3 (green), and MaT = 1 (blue). Parameters are Pes = 0.1, G = 1, MaΓ = 10, κ = 1, μ = 1, R0 = 5
and Bo = 0. Insets for different (a) viscosity and (b) thermal conductivity.

In figure 8, we have presented the results for both small- and large-Pes limits. Notably,
we can observe that the magnitude of the cross-stream migration velocity is approximately
one order higher in the large-Pes limit compared to the small-Pes limit. The behaviour
remains consistent for other thermal singularities as well.

4.4. A discussion on critical Marangoni number set by thermal singularities
for small Pes

In the earlier sections, we have constructed a generalized result on surfactant-laden droplet
motion and its control using thermal singularities. Here, we present an overview of the role
played by thermocapillary action and surfactants on droplet motion.
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Figure 8. Cross-stream velocity (in magnitude) as a function of singularity strength S under small-Pes (red)
and large-Pes (blue) limits. Parameters are Pes = 0.1, G = 1, MaT = 1, MaΓ = 10, κ = 1, μ = 1, R0 = 5 and
Bo = 0.

In the case of droplet-based microfluidics, surfactants are added to the continuous or
dispersed phase to maintain the stability of the droplet, prevent coalescence and avoid any
cross-contamination. However, such addition of surfactant leads to a reduction in droplet
speed at first order in the streamwise direction without any cross-stream migration, and a
cross-stream migration towards the Poiseuille flow centreline is seen as a second-order
effect in Pes (Pak et al. 2014). The stabilized droplet that reaches the centreline may
control the overall production rate in micro-devices. Note that this technique, with precise
control, can be highly advantageous in cell processing applications, optimizing bioreactor
efficiency, etc. Now, if we can disperse the droplets from the centreline and at the
same time maintain stability, then we can account for more droplets in the device, thus
improving the overall production rate. Similarly, an imposed thermal gradient (without
any surfactants) results in a leading-order effect in droplet streamwise motion either by
speeding up (if the thermal gradient aligns with the flow) or slowing down (if the thermal
gradient opposes the flow) without any cross-stream movement. Although manipulating
droplet speed is possible, this approach does not achieve a high droplet production rate
within a limited device width. An alternative control mechanism that manipulates droplet
migration efficiency would be advantageous. In this regard, a thermal singularity helps to
control the droplet motion with leading-, first- and second-order effects in the streamwise
and cross-streamwise directions. For example, a dipole can help the droplet to speed up or
slow down, depending on its orientation.

In this context, we seek whether a critical Marangoni number (Ma∗
T,z or Ma∗

Γ,z) exists at
which a droplet halts (Uz = 0) or reverses its motion. Our focus in this subsection is solely
on the streamwise migration velocity of the droplet. The reason behind this emphasis is
that it is more feasible to maintain a thermal gradient in the streamwise direction due to
the device configurations, instead of in the cross-stream direction. Furthermore, we are
interested in exploring the interfacial tension effects, thus neglecting gravity (Bo = 0) for
the discussion. In the following, we show four cases: (1) when thermal gradient alone
is present, without surfactant or the singularities (MaT /= 0, MaΓ = 0 and S = 0); (2)
when surfactant alone is present, without thermal gradient or the singularities (MaT = 0,
MaΓ /= 0 and S = 0); (3) when both thermal gradients and surfactant are present, but
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Figure 9. Critical Marangoni number required to halt droplet released at an offset distance b in a Poiseuille
flow: (a) for case1, and (b) for case 3. Continuous lines for κ = 1 and dashed lines for κ = 2. Other parameters
are G = −1 and R0 = 5.

thermal singularity is absent (MaT /= 0, MaΓ /= 0 and S = 0); and (4) when thermal
gradients, surfactant and the singularities are present (MaT /= 0, MaΓ /= 0 and S /= 0).
Note that in all the cases, the applied thermal gradient is opposite to the flow direction (i.e.
G = −1) with a specific aim of halting a droplet’s motion.

4.4.1. Case 1: MaT /= 0, MaΓ = 0 and S = 0
We have equated Uz = 0 (refer to (B2)) and found the critical thermal Marangoni number
as

Ma∗
T,z = −(3μ + 2)(κ + 2)

2G

[
1 −

(
b

R0

)2 ]
+ μ(κ + 2)

2GR2
0

. (4.4)

In figure 9(a), we have shown Ma∗
T,z as a function of droplet offset distance b for

different values of μ. A droplet away from the centreline requires small Ma∗
T,z to cease

its motion. For highly viscous droplets, a higher thermal gradient is needed to cease the
droplet. The high thermal conductivity of the droplet corresponds to low thermocapillary
stresses on the interfaces, which results in a large Ma∗

T,z.

4.4.2. Case 2: MaT = 0, MaΓ /= 0 and S = 0
The critical surfactant Marangoni number Ma∗

Γ,z can be found from the equation

1 −
(

b
R0

)2

− 2μ

(3μ + 2)R2
0

− 4 Pes

3(3μ + 2)2R2
0

Ma∗
Γ,z + 4 Pe2

s

3(3μ + 2)3R2
0
(Ma∗

Γ,z)
2 = 0.

(4.5)

Note that this is a quadratic equation in terms of Ma∗
Γ,z. In order to obtain a real non-zero

solution, the discriminant should be positive. Consequently, simplifying the discriminant
of (4.5) yields the condition 0 < R2

0 − b2 < (6μ + 1)/(3μ + 2). Thus we can infer that
unless the droplet is released very close to the wall (i.e. b ≈ R0), surfactants can indeed
reduce the streamwise migration velocity of the droplet, but they cannot bring it to halt
completely.
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4.4.3. Case 3: MaT /= 0, MaΓ /= 0 and S = 0
We found the critical thermal Marangoni number as (using (B2))

Ma∗
T,z = (κ + 2)[3(b2 − R2

0)(3μ + 2)3 + 6μ(3μ + 2)2 + 4 MaΓ (3μ + 2) Pes − 4 Ma2
Γ Pe2

s ]

6GR2
0[(3μ + 2)2 − MaΓ (3μ + 2) Pes + Ma2

Γ Pe2
s ]

.

(4.6)

In figure 9(b), we have shown Ma∗
T,z as a function of b. As mentioned earlier, the

presence of surfactant reduces the droplet speed, and a tiny opposing thermal gradient
is enough to halt the droplet completely (compare the μ = 1 line in figures 9a,b), thereby
reducing the critical MaT required.

In figure 10, we have shown the variation of Ma∗
T,z as a function of MaΓ . For a droplet

released either on the centreline or near the walls in a Poiseuille flow, surprisingly, our
result reveals that we need larger thermal gradients (or large critical Ma∗

T,z) for MaΓ < 20.
Note that (4.6) has two asymptotic limits in terms of small and large values of MaΓ Pes.
For smaller values, we have

Ma∗
T,z
∣∣
MaΓ Pes→0 ≈

(
κ + 2
6GR2

0

)
[6μ + 3(3μ + 2)(b2 − R2

0) + {2 + 3(b2 − R2
0)} MaΓ Pes],

(4.7)

which is a linearly increasing function of MaΓ Pes. In the case of large MaΓ Pes, we find

Ma∗
T,z
∣∣
MaΓ Pes→∞ ≈ − 4(κ + 2)

6GR2
0(3μ + 2)2

[
1 − 1

(MaΓ Pes)2

(
1 + (3μ + 2)3

(
1
2

+ 3(b2 − R2
0)

4

))]
.

(4.8)

Both the asymptotic limits are shown in figure 10. Interestingly, at leading order, the small
MaΓ Pes limit depends on b, whereas at the large limit, it does not. Note that the large
limit is non-zero and has a finite positive value close to zero. The peak values observed on
critical Ma∗

T,z curves near MaΓ ≈ 20 decrease with increasing b.

4.4.4. Case 4: MaT /= 0, MaΓ /= 0 and S /= 0
In the case of thermal singularities, we have generalized Ma∗

T,z as a function of MaΓ and
S using (B6) for a dipole oriented along (θ = 0) or opposite to (θ = π) the streamwise
direction. The corresponding equations for Ma∗

T,z are given by

Ma∗
T,z = (κ + 2)[3(b2 − R2

0)(3μ + 2)3 + 6μ(3μ + 2)2 + 4 MaΓ (3μ + 2) Pes − 4 Ma2
Γ Pe2

s ]

6(G + κS)R2
0[(3μ + 2)2 − MaΓ (3μ + 2) Pes + Ma2

Γ Pe2
s ]

(4.9)

and

Ma∗
T,z = (κ + 2)[3(b2 − R2

0)(3μ + 2)3 + 6μ(3μ + 2)2 + 4 MaΓ (3μ + 2) Pes − 4 Ma2
Γ Pe2

s ]

6(G − κS)R2
0[(3μ + 2)2 − MaΓ (3μ + 2) Pes + Ma2

Γ Pe2
s ]

,

(4.10)

respectively. Note that the mentioned equations are similar to (4.6), except that the term
G in the denominator is replaced by G ± κS. For a dipole oriented in the flow direction,
the required critical value can reach infinity if G + κS → 0 (since G = −1). In contrast,
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Figure 10. Critical thermal Marangoni number Ma∗
T,z as a function of MaΓ for case 3. Low MaΓ follows (4.7)

(thin dashed lines at different b), and large MaΓ follows (4.8) (thick dashed line). Parameters are μ = 1, κ = 1,
Pes = 0.1, G = −1, R0 = 5 and Bo = 0.
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Figure 11. Critical thermal Marangoni number Ma∗
T,z as a function of MaΓ for a dipole with different strengths

S oriented opposite to the streamwise direction (case 4). Other parameters are μ = 1, κ = 1, Pes = 0.1,
G = −1, R0 = 5 and Bo = 0.

for a dipole oriented opposite to the flow, the denominator (in magnitude) increases with
an increase in S, thus the required critical Marangoni number decreases (see figure 11).
Note that the functional form and the asymptotic behaviour in case 4 remain the same, as
mentioned in case 3.

4.5. Dependency on viscosity ratio in the small-Pes limit
Analysing droplet migration in terms of viscosity ratio in microfluidics is crucial for
understanding and optimizing microfluidic systems (Baumgartner, Brenn & Planchette
2020). In this context, we have shown Uz and Ux as functions of μ (refer to (B6) in
Appendix B) in figure 12. For a fixed μ, Uz for a centred monopole and dipole (oriented
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Figure 12. Droplet migration velocity (a) streamwise (Uz) and (b) cross-stream (Ux) versus viscosity ratio
μ for S = 0 (dashed line), centred monopole (dotted line), off-centred monopole (grey), dipole oriented
streamwise (orange) and dipole oriented transversely (blue). The ambient thermal field acts along the imposed
Poiseuille flow, i.e. G = 1. Other parameters are S = 2, MaT = 1, MaΓ = 10, Pes = 0.1, κ = 1, b = 1, R0 = 5
and Bo = 0.

perpendicular to the flow) coincides with the case without any thermal singularity, and
matches the results of Das et al. (2018) for the chosen parameter values. Both the
off-centred monopole and streamwise oriented dipole increase the migration velocity. For
a small viscosity ratio (μ = 0.01), Uz is increased by approximately 10 % for an off-centred
monopole, and by 25 % for a streamwise oriented dipole when compared to no thermal
singularity (Das et al. 2018). However, a cross-stream oriented dipole does not affect Uz.
For large μ, the droplet behaves as a rigid sphere, and the corresponding influence of the
Marangoni stress becomes insignificant, resulting in a decrease in Uz. In figure 12(b), we
have shown Ux as a function of μ. We can observe that the cross-stream migration velocity
is influenced significantly by a transversely oriented (θ = π/2) dipole in comparison to
other singularities.

It is worth mentioning that when considering a centred/off-centred monopole and
a streamwise oriented dipole, the cross-stream migration velocity appears at O(Pe2

s ).
However, in the case of a transversely oriented dipole, the cross-stream migration velocity
can be observed from O(1) onwards. Further, in this particular configuration (droplet with
transversely oriented dipole), the leading-order cross-stream migration is due mainly to the
thermocapillary effect (refer to (B6)). From O(Pes) onwards, the effect of surfactant can
be seen (refer to figure 13a), which is different from the earlier O(Pe2

s ) corrections (Das
et al. 2018). This is due to the coupling between the thermal and the surfactant-induced
Marangoni stresses. Even for a very small singularity strength (S = 2 × 10−4), the
leading-order effect can be observed very clearly. In figure 13(b), we classify the regimes
with reference to the migration of the droplet. Accordingly, for a specific (MaΓ , MaT) pair,
one can identify whether the droplet migrates away from or towards the centreline when
the other parameters are fixed.

5. Summary and conclusions

In this paper, we have analysed the migration of a droplet in an arbitrary Stokes flow under
the influence of thermocapillary and surfactant-induced Marangoni stress for different
types of internal thermal singularities. Neglecting the effects of thermal convection, fluid
inertia and shape deformation, we have obtained analytical expressions for the temperature
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Figure 13. (a) Droplet’s cross-stream migration velocity Ux versus viscosity ratio μ for a transversely oriented
dipole. Migration velocity for different orders: leading order (triangles), first order (diamonds), second order
(circles) and combined (continuous line). Here, MaT = 1 and MaΓ = 10. (b) Regime diagram showing two
different patterns of droplet cross-stream motion for μ = 1. Other parameters are S = 2 × 10−4, G = 1,
Pes = 0.1, κ = 1, b = 1, R0 = 5 and Bo = 0.

field, surfactant concentration and migration velocity using perturbation analysis for the
two limiting cases: (i) Pes 
 1, in which surface diffusion dominates the surfactant
transport; and (ii) Pes 	 1, in which surface convection dominates the surfactant transport.
The migration velocity of a surfactant-laden droplet in an ambient Poiseuille flow (as a
particular case of an arbitrary Stokes flow) depends strongly upon the type of internal
thermal singularity considered. The migration velocity is unaffected by a localized centred
monopole heat source, similar to the findings for a droplet subjected to homogeneous
internal heating by Rednikov & Ryazantsev (1989). However, an off-centred monopole or
a dipole heat source influences the overall migration of the droplet.

Our analytical results show that in the small-Pes limit, a drop with an off-centred
monopole or a streamwise oriented (θ = 0) dipole experiences cross-stream migration
at O(Pe2

s ). The effect becomes prominent in the case of an oriented dipole (θ /= 0). In
this scenario, we observe the cross-stream migration at the leading order, which is due
purely to the thermocapillary effects generated by the asymmetric temperature distribution
on the droplet surface. Due to the coupling between thermocapillary-induced Marangoni
stress and surfactant-induced Marangoni stress, the combined effect is observed at O(Pes)
onwards, which is different from the classical O(Pe2

s ) findings by Das et al. (2018).
Furthermore, when the droplet is positioned at the flow centreline, it can also move across
the stream with this configuration. As we increase the strength of thermal singularity, the
migration velocity of the droplet gets enhanced. Remarkably, in the presence of an oriented
dipole, a critical strength Sc exists that determines whether the droplet migrates towards or
away from the flow centreline. Further, in the absence of a thermal gradient (due to both
ambient temperature as well as thermal singularity), surfactants can reduce the droplet
migration velocity, but they are unable to halt it completely unless the droplet is close
enough to the wall. However, when both the thermal gradient and surfactants are present,
we can easily bring the droplet to a complete halt by applying a dipole oriented opposite to
the flow. In comparison to the small-Pes limit, the magnitude of the cross-stream migration
velocity is approximately one order higher for large Pes.

In summary, we have developed a general methodology for addressing thermal
singularities in droplet dynamics, and provided Faxen’s laws for drag and
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migration velocity. Our research findings indicate that thermal singularities have the
potential to control both the streamwise and cross-stream migration velocities of
surfactant-laden droplets. The analytical results obtained in this study serve as valuable
benchmarks for future computational methods pertaining to droplet dynamics. For future
scope, our findings provide essential insights for estimating drag and energy requirements
in microbe-encapsulated droplet technologies, thus opening up promising avenues for
further exploration in this field.
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Appendix A. Drag and migration velocity in the small- and large-Pes limits

We have considered a Cartesian coordinate system (x, y, z) having its origin at the droplet
centre, as shown in figure 1. We are interested in calculating the axial and cross-stream
migration velocity in this frame of reference (Subramanian & Balasubramaniam 2001).

A.1. For Pes 
 1
The leading-order drag, as given in (3.11), is

DH
0 = 6π

(
3μ + 2

3(μ + 1)
[u∞,0]0 + μ

6(μ + 1)
[∇2u∞,0]0 + 2 MaT

3(μ + 1)(κ + 2)
[∇T∞]0

+ 2κb1 MaT

3(μ + 1)(κ + 2)
Y 0

)
. (A1)

The aforementioned compact forms are due to the relationships

[u∞,0]0 = 2α
∞(0)
1 (C(0)

11 î + D(0)
11 ĵ + C(0)

10 k̂),

[∇2u∞,0]0 = 20α̂
∞(0)
1 (C(0)

11 î + D(0)
11 ĵ + C(0)

10 k̂),

[∇T∞]0 = c1(A11 î + B11 ĵ + A10k̂).

⎫⎪⎪⎬
⎪⎪⎭ (A2)

Note that the vector

Y 0 = A11 î + B11 ĵ + A10k̂ (A3)

is related to the spherical harmonic Sn(θ, φ) = ∑n
m=0 Pm

n (cos θ) (Anm cos mφ + Bnm
sin mφ).
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Now, using leading-order solutions, we solve the first-order surfactant transport equation
given by (3.10b). We express the surfactant concentration Γ1 in terms of surface spherical
harmonics as

Γ1 =
∞∑

n=1

n∑
m=0

(
I(1)
nm cos mφ + J(1)

nm sin mφ
)

Pm
n (cos θ), (A4)

where I(1)
nm and J(1)

nm are

I(1)
nm = −(2n + 1)(n − m)!

2(n + m)!
1

πn(n + 1)

∫ 2π

φ=0

∫ π

θ=0
(∇s · us,0) Pm

n (cos θ) cos mφ sin θ dθ dφ,

(A5a)

J(1)
nm = −(2n + 1)(n − m)!

2(n + m)!
1

πn(n + 1)

∫ 2π

φ=0

∫ π

θ=0
(∇s · us,0) Pm

n (cos θ) sin mφ sin θ dθ dφ,

(A5b)

which implies

I(1)
nm =

(
2n − 1
μ + 1

α∞(0)
n + 2n + 3

μ + 1
α̂∞(0)

n

)
C(0)

nm − (cn + κbn) MaT

(μ + 1)(nκ + n + 1)
Anm, (A6a)

J(1)
nm =

(
2n − 1
μ + 1

α∞(0)
n + 2n + 3

μ + 1
α̂∞(0)

n

)
D(0)

nm − (cn + κbn) MaT

(μ + 1)(nκ + n + 1)
Bnm. (A6b)

Similarly, the first-order hydrodynamic drag and corresponding migration velocity are
given by (3.13a) and (3.13b), where

Y 1 = I(1)
11 î + J(1)

11 ĵ + I(1)
10 k̂. (A7)

Now, let us consider Γ2 as

Γ2 =
∞∑

n=1

n∑
m=0

(I(2)
nm cos mφ + J(2)

nm sin mφ)Pm
n (cos θ). (A8)

Correspondingly, I(2)
nm and J(2)

nm are given by

I(2)
nm = −(2n + 1)(n − m)!

2(n + m)!
1

πn(n + 1)

×
∫ 2π

φ=0

∫ π

θ=0
(∇s · (us,0Γ1 + us,1Γ0))Pm

n (cos θ) cos mφ sin θ dθ dφ, (A9a)

J(2)
nm = −(2n + 1)(n − m)!

2(n + m)!
1

πn(n + 1)

×
∫ 2π

φ=0

∫ π

θ=0
(∇s · (us,0Γ1 + us,1Γ0))Pm

n (cos θ) sin mφ sin θ dθ dφ. (A9b)

The second-order hydrodynamic drag and migration velocity are given by (3.14a) and
(3.14b). The corresponding compact form is

Y 2 = I(2)
11 î + J(2)

11 ĵ + I(2)
10 k̂. (A10)
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A.2. For Pes 	 1
For large Pes, the first-order surfactant concentration is given by

Γ1 =
∞∑

n=1

n∑
m=0

Λn(C(0)
nm cos mφ + D(0)

nm sin mφ)Pm
n (cos θ), (A11)

where

Λn = (2n − 1)(2n + 1)α∞(0)
n + (2n + 3)(2n + 1)α̂∞(0)

n − (2n + 1)(cn + κbn) MaT

(nκ + n + 1)
.

(A12)

Thus the first-order hydrodynamic drag and droplet migration velocity are given by
(3.20a,b), where

Z1 = L111 î + L112 ĵ + L101k̂, (A13)

and the terms Lnm1, Lnm2 are

Lnm1 = −(2n + 1)(n − m)!
2π(n + m)!

∫ 2π

φ=0

∫ π

θ=0
(∇s · us,0)Pm

n (cos θ) cos mφ sin θ dθ dφ, (A14a)

Lnm2 = −(2n + 1)(n − m)!
2π(n + m)!

∫ 2π

φ=0

∫ π

θ=0
(∇s · us,0)Pm

n (cos θ) sin mφ sin θ dθ dφ. (A14b)

Appendix B. Drag and migration velocity in Poiseuille flow for Pes � 1

Using the mentioned Poiseuille flow field (refer to (4.1)) and thermal conditions, we have
computed the surfactant concentration Γ for different thermal singularities using (A4) and
(A8). For a centred monopole, the surfactant concentration is given by

Γ = 1 + Pes

[
I(1)
10 cos θ + I(1)

21 cos φ P1
2(cos θ) + I(1)

30 P0
3(cos θ)

]
+ Pe2

s

[
I(2)
10 cos θ + I(2)

21 cos φ P1
2(cos θ) + I(2)

30 P0
3(cos θ) + I(2)

11 cos φ P1
1(cos θ)

+ I(2)
20 P0

2(cos θ) + I(2)
22 cos(2φ) P2

2(cos θ) + I(2)
31 cos φ P1

3(cos θ)
]

+ O(Pe3
s ), (B1)

where the quantities I(1)
10 , I(1)

21 , etc. are provided below. After evaluating (3.12), (3.13a),
(3.13b), (3.14a) and (3.14b), we obtain the droplet migration velocity as

U =
[

1 −
(

b
R0

)2

− 2μ

(3μ + 2)R2
0

+ 2G MaT

(κ + 2)(3μ + 2)
+ 2ω

3

(
1 + μ

3μ + 2

)
Bo
Ca

]
k̂ + Pes

[
2

3(3μ + 2)

×
(

MaΓ I(1)
10 − ω

3
MaΓ

3μ + 2
Bo
Ca

)
k̂
]

+ Pe2
s

[
2

3(3μ + 2)

(
MaΓ I(2)

10 + 2ω Ma2
Γ

9(3μ + 2)3
Bo
Ca

)
k̂

+ 2
3(3μ + 2)

(
MaΓ I(2)

11 − ωb(5μ + 3) MaΓ

45(3μ + 2)2(μ + 1)R2
0

Bo
Ca

)
î
]

+ O(Pe3
s ). (B2)

Since a centred monopole does not affect the migration velocity, (B2) is the same as the
migration velocity obtained by Das et al. (2018).
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For an off-centred monopole, the surfactant concentration is

Γ = 1 + Pes

[(
I(1)
10 − 3κSd MaT

(κ + 2)(3μ + 2)

)
cos θ + I(1)

21 cos φ P1
2(cos θ) + I(1)

30 P0
3(cos θ)

]

+ Pe2
s

[(
I(2)
10 + 3κSd MaT MaΓ

(κ + 2)(3μ + 2)2

)
cos θ + I(2)

21 cos φ P1
2(cos θ) + I(2)

30 P0
3(cos θ)

+
(

I(2)
11 − 21κSdb(5μ + 3) MaT

70(κ + 2)(1 + μ)(3μ + 2)R2
0

)
cos φ P1

1(cos θ)

+
(

I(2)
20 − πκSd MaT

7(κ + 2)(3μ + 2)

)
P0

2(cos θ) + I(2)
22 cos(2φ) P2

2(cos θ)

+
(

I(2)
31 + 432κSdb MaT

1080R2
0(κ + 2)(3μ + 2)(μ + 1)

)
cos φ P1

3(cos θ)

]
+ O(Pe3

s ), (B3)

and the migration velocity follows:

U =
[

1 −
(

b
R0

)2

− 2μ

(3μ + 2)R2
0

+ 2(G + κSd) MaT

(κ + 2)(3μ + 2)
+ 2ω

3

(
1 + μ

3μ + 2

)
Bo
Ca

]
k̂

+ Pes

[
2

3(3μ + 2)
MaΓ

(
I(1)
10 − 3κSd MaT

(κ + 2)(3μ + 2)
− ω

3
MaΓ

3μ + 2
Bo
Ca

)]
k̂

+ Pe2
s

[
2

3(3μ + 2)
MaΓ

(
I(2)
20 − πκSd MaT

7(κ + 2)(3μ + 2)
+ 2ω Ma2

Γ

9(3μ + 2)3
Bo
Ca

)
k̂

+ 2
3(3μ + 2)

MaΓ

(
I(2)
11 − 21κSdb(5μ + 3) MaT

70(κ + 2)(1 + μ)(3μ + 2)R2
0

− ωb(5μ + 3) MaΓ

45(3μ + 2)2(μ + 1)R2
0

Bo
Ca

)
î
]

+ O(Pe3
s ). (B4)

For a dipole, the surfactant concentration is

Γ = 1 + Pes

[(
I(1)
10 − 3κS cos θ MaT

(κ + 2)(3μ + 2)

)
cos θ +

(
− 3κS sin θ MaT

(3μ + 2)(κ + 2)

)
cos φ P1

1(cos θ)

+ I(1)
21 cos φ P1

2(cos θ) + I(1)
30 P0

3(cos θ)

]
+ Pe2

s

[(
I(2)
10 + 3κS cos θ MaT MaΓ

(κ + 2)(3μ + 2)2

)
cos θ

+ I(2)
21 cos φ P1

2(cos θ) + I(2)
30 P0

3(cos θ) +
(

I(2)
11 − 21κS cos θ b(5μ + 3) MaT

70(κ + 2)(1 + μ)(3μ + 2)R2
0

)
cos φ

× P1
1(cos θ) +

(
I(2)
20 − πκS cos θ MaT

7(κ + 2)(3μ + 2)

)
P0

2(cos θ) + I(2)
22 cos(2φ) P2

2(cos θ)

+
(

I(2)
31 + 432κS cos θ b MaT

1080R2
0(κ + 2)(3μ + 2)(μ + 1)

)
cos φ P1

3(cos θ)

]
+ O(Pe3

s ), (B5)
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and the migration velocity is

U =
[(

1 −
(

b
R0

)2

− 2μ

(3μ + 2)R2
0

+ 2(G + κS cos θ) MaT

(κ + 2)(3μ + 2)
+ 2ω

3

(
1 + μ

3μ + 2

)
Bo
Ca

)
k̂

+ 2κS sin θ MaT

(κ + 2)(3μ + 2)
î
]

+ Pes

[
2

3(3μ + 2)
MaΓ

(
I(1)
10 − 3κS cos θ MaT

(κ + 2)(3μ + 2)
− ω

3
MaΓ

3μ + 2

× Bo
Ca

)
k̂ − 6κS sin θ MaT MaΓ

3(3μ + 2)2(κ + 2)
î
]

+ Pe2
s

[
2

3(3μ + 2)
MaΓ

(
I(2)
20 − πκS cos θ MaT

7(κ + 2)(3μ + 2)

+ 2ω Ma2
Γ

9(3μ + 2)3

Bo
Ca

)
k̂ + 2

3(3μ + 2)
MaΓ

(
I(2)
11 − 21κS cos θ b(5μ + 3) MaT

70(κ + 2)(1 + μ)(3μ + 2)R2
0

− ωb(5μ + 3) MaΓ

45(3μ + 2)2(μ + 1)R2
0

Bo
Ca

)
î
]

+ O(Pe3
s ). (B6)

Here,

I(1)
10 = −3R2

0G MaT − 2(κ + 2)

(κ + 2)(3μ + 2)R2
0

− ω

3(3μ + 2)

Bo
Ca

, (B7)

I(1)
21 = − b

3R2
0(1 + μ)

, (B8)

I(1)
30 = 1

6R2
0(1 + μ)

, (B9)

I(2)
10 = ω

3
MaΓ

(3μ + 2)2
Bo
Ca

+ [3R2
0G MaT + 2(κ + 2)]MaΓ

(3μ + 2)2(κ + 2)R2
0

, (B10)

I(2)
21 = − b MaΓ

15R2
0(1 + μ)2

, (B11)

I(2)
30 = − MaΓ

42R2
0(1 + μ)2

, (B12)

I(2)
11 = −V − b [21R2

0(1 + μ)(5μ + 3)G MaT + (κ + 2)(70μ2 + 109μ + 40)]

70(κ + 2)(1 + μ)2(3μ + 2)R4
0

, (B13)

I(2)
20 = ω2

27(3μ + 2)2

(
Bo
Ca

)2

+ π

21
[14XI(1)

10 − 6XI(1)
30 + 9(I(1)

21 )2 + 24I(1)
30 I(1)

10

+ 4(I(1)
30 )2 − 21WI(1)

21 ], (B14)

I(2)
22 = − 1

252
(7μ + 4)b2

(1 + μ)2R4
0
, (B15)

I(2)
31 = 2ω

45
b

R2
0(3μ2 + 5μ + 2)

Bo
Ca

+ b

R4
0

[
432(1 + μ)R2

0G MaT + (45μ2 + 351μ + 310)(κ + 2)

1080(3μ + 2)(μ + 1)2(κ + 2)

]
, (B16)
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Figure 14. For both small- and large-Pes droplets, cross-stream migration velocity versus the thermal
conductivity ratio κ is shown for the case of a streamwise oriented dipole. Other parameters are S = 2, G = 1,
MaΓ = 10, MaT = 1, b = 1, R0 = 5 and Bo = 0.

and

X = −3R2
0G MaT + 2(κ + 2)

(κ + 2)(3μ + 2)R2
0

, W = b

R2
0
, V = ωb

30R2
0

5μ + 3
3μ2 + 5μ + 2

Bo
Ca

. (B17a–c)

Appendix C. Comparative analysis of Ux with κ : small-Pes versus large-Pes limits

In figure 14, we have shown the variation of cross-stream migration velocity Ux with
thermal conductivity ratio κ for both small- and large-Pes limits when the droplet is
subjected to a streamwise oriented dipole. In the presence of an ambient thermal field
along the Poiseuille flow (G = 1), Ux is negligibly small for small Pes, so the droplet is
dominated by the streamwise migration. However, for large Pes, Ux varies significantly,
so |Ux| increases rapidly with increasing thermal conductivity ratio κ . In the latter
case, due to the mass transfer boundary layer around the droplet, the impact of κ is
significant, enhancing the temperature gradient between the droplet and the surrounding
medium. Consequently, the stronger thermal gradient increases the Marangoni stress,
which enhances the cross-stream migration velocity. Similar behaviour is observed for
other thermal singularities also.

Appendix D. Small Pes analysis for a buoyant droplet (Bo/Ca /= 0)

From (B2), (B4) and (B6), we note that though the buoyancy acts in the direction of
Poiseuille flow (i.e. along z axis), it also affects the cross-stream migration velocity of the
droplet, which is further enhanced due to the thermal singularities. We analyse the effect of
buoyancy for the following cases: (i) ω = 1, G = 1, which signifies that the buoyancy and
the ambient thermal field act in the flow direction; (ii) ω = 1, G = −1, which signifies
that the buoyancy acts along the flow, but the temperature field direction is reversed;
(iii) ω = −1, G = 1, which means that the buoyancy force acts opposite to the flow, and
the ambient temperature field is along the flow; and (iv) ω = −1, G = −1, which indicates
that the buoyancy and thermal field act opposite to the flow.

Figure 15(a) shows the variation of the cross-stream migration velocity Ux with the
viscosity ratio μ when Bo/Ca /= 0. The magnitude of the cross-stream migration velocity
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Figure 15. Droplet cross-stream migration velocity Ux versus viscosity ratio μ for S = 0 (dashed line), centred
monopole (dotted line), off-centred monopole (grey), dipole oriented streamwise (orange) and dipole oriented
transversely (blue), for (a) G = 1, ω = 1, and (b) G = −1, ω = 1. Other parameters are S = 2, MaT = 1,
MaΓ = 10, Pes = 0.1, κ = 1, b = 1, R0 = 5 and Bo/Ca = 1.

(|Ux|) is observed to increase significantly compared to the case when Bo/Ca = 0 (as
shown in figure 12b). This enhancement is due to the buoyancy force acting in the same
direction as the applied temperature gradient and ambient flow. As a result, the Marangoni
stress is amplified, causing the droplet to migrate faster towards the flow centreline. Now,
when G = −1 and ω = 1, from figure 15(b), we can observe that in the absence of a
thermal singularity or in the case of a centred monopole (which has no impact on the
migration velocity), the droplet moves away from the flow centreline. However, in the
presence of an off-centred monopole or a dipole, the combined effect exerted on the
droplet becomes stronger, resulting in its movement towards the centreline. Similar effects
can also be observed in cases (iii) and (iv).
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