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Abstract

This paper describes gft (general fine-tuning), a little language for deep nets, introduced at an ACL-2022
tutorial. gft makes deep nets accessible to a broad audience including non-programmers. It is standard
practice in many fields to use statistics packages such as R. One should not need to know how to program
in order to fit a regression or classification model and to use the model to make predictions for novel
inputs. With gft, fine-tuning and inference are similar to fit and predict in regression and classification. gft
demystifies deep nets; no one would suggest that regression-like methods are “intelligent.”
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1. Introduction

This paper introduces gft (general fine-tuning),' a little language? for deep nets, introduced at an
ACL-2022 tutorial.® There are two parts to the tutorial:

1. Glass is half-full: make deep nets accessible to a mass audience, including nonprogram-
mers, and

2. Glass is half-empty: based on the successes of the first part on so many benchmarks, one
might come to the mistaken impression that deep nets are more successful than they
are. There are always opportunities for improvement. We are advocating an interdisci-
plinary approach that combines the successes in the first part, with decades of work in Al
representation and centuries of work in linguistics and philosophy.

This paper will use gft to discuss the first part. It is amazing how much can be done with so little.
gft demystifies deep nets. No one would suggest that regression-like methods are “intelligent.”

There are two main functions in gft: fit and predict. Fit takes a pretrained model, f, as input,
and fine-tunes that on data to produce a post-trained model, fyos, as output. Predict takes x, a
novel input, and predicts, = f(x). Hopefully, the prediction, y, will be close to the gold label, y.

We discussed deep nets in two previous articles in this journal: (Church et al., 2021a, b). gft
makes it possible to do much of that in short (1-line) programs. 1-line programs are easier to read,

Uhttps://github.com/kwchurch/gft

2The term, little languages, is borrowed from Unix (Bentley, 1986). Programs in little languages such as AWK (Aho et al.,
1987) are short (often just a single line of code) and powerful.

3https://github.com/kwchurch/ACL2022_deepnets_tutorial
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write, understand, and port from one environment to another than examples on hubs (typically
hundreds of lines of Python, PyTorch,* TensorFlow,” Jax®, and/or PaddlePaddle).”

gft is designed to make much of this functionality accessible to nonprogrammers. Just as one
does not need to know Python and Machine Learning to use an off-the-shelf regression package,
so too, deep nets should not require much (if any) programming skills.

Following the advice in “Crossing the Chasm” (Moore and McKenna, 1999), the long-term
success of deep nets will depend on finding ways to cross the chasm from the current set of loyal
users (so-called early adopters) to a much larger set of users. Early adopters may be willing to
invest in machine learning and programming, but most users have other priorities.

The gft interpreter is based on examples from hubs.®* Hubs encourage users to modify hun-
dreds of lines of Python code as necessary if they want to change models, data sets, and/or tasks. gft
generalizes the examples so users can do much of that in a single line of gft code (with comparable
performance).

gft supports most of the arguments in the examples on the hubs, so it is possible to tune hyper-
parameters such as batch size, learning rate, and stopping rules. Tuning matters for (state of the
art) SOTA-chasing, though default settings are recommended for most users who prefer results
that are easy to replicate and reasonably competitive.

There is already too much SOTA-chasing in the literature (Church and Kordoni, 2022). Users
should avoid wasting time on hyper-parameter tuning unless they are about to ship a model to a
large number of users for an application where small improvements in performance are worth the
effort.

2. gft Cheatsheet
gft supports the following functions:'°

1. fit (also known as fine-tuning): fyre + data — fpost

2. predict (also known as inference): f(x) = 7, where x is an input from stdin or from a data
set

3. eval:f + data — score (produce a single score for a data set split, as opposed to a prediction,
, for each input row in the split, x)

4. summary: Search hubs for popular data sets, models, and tasks and provide snippets.
Popularity is estimated from metrics on downloads.

5. cat_data: Output data set on stdout

There are four major arguments:

1. —data: a data set on a hub, or a local file

2. -model: a model on a hub, or alocal file

3. —task: for example, classify, regress'!

“https://pytorch.org/

Shttps://www.tensorflow.org/

Shttps://github.com/google/jax

7https://www.paddlepaddle.org.cn/

8https://github.com/huggingface/transformers/blob/master/examples/pytorch/

*https://github.com/PaddlePaddle/PaddleNLP/tree/develop/examples

0https://github.com/kwchurch/gft/blob/master/doc/sections/cheatsheet.md

U Currently supported tasks are: classify (aka text-classification), classify_tokens (aka token-classification), classify_spans
(aka QA, question-answering), classify_images (aka image-classification), classify_audio (aka audio-classification), regress,
text-generation, MT (aka translation), ASR (aka ctc, automatic-speech-recognition), fill-mask. Tasks in parentheses are
aliases.
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Table 1. The standard recipe consists of three steps

Step Standard Terms Proposed Terms gft Emerging Trends

1 Pretrained fore Download from Hub

2 Fire-Funing Fit fore + data — fpost Deep Nets for Poets

3 Inference Predict fix)=y A Gentle Introduction to Fine-Tuning

4. -eqn (e.g., classify:y ~ x + x2), where a task appears before the colon, and variables refer
to columns in the data set.

3. The standard recipe

Following (Howard and Ruder, 2018; Devlin et al., 2019), it has become standard practice to use
the 3-step recipe in Table 1. We prefer the terms, fit and predict, to fine-tuning and inference. The
prop?zsed terminology has a long tradition in statistics and predates relatively recent work on deep
nets.

Fit and predict were discussed in two previous Emerging Trends articles in this journal (Church
et al. 2021a, b). This paper will unify much of that discussion into a single github (see footnote 1)
with hundreds of examples of short (1-line) programs.!?

gft makes it easy to use models and data sets on hubs: HuggingFace!* and
PaddleHub/PaddleNLP).!> The hubs are large (~40k models and ~4k data sets) and grow-
ing quickly (~3x/year). The challenge is to make these amazing resources more accessible to
as many users as possible. The target audience has diverse interests and skills. It should not be
necessary for them to know much (if any) programming to join in on the fun.

The 40k models include both pretrained and post-trained models, fyre and fpost. gft provides
tools to make it easy to find popular models, as well as popular data sets. We recommend users
make as much use as possible of these resources and resist the temptation to pretrain their own
models from scratch, for reasons that will be discussed in Appendix A.1.

3.1. An example of fit and predict in R

As mentioned above, gft is inspired by glm (general linear models) (Guisan et al., 2002) in R.!®
Listing 1 illustrates the use of fit and predict in R. The R environment provides a number of stan-
dard data sets such as cars, a data table with two columns, speed and dist, shown as black points in
Figure 1. The model, g, fits dist as a quadratic function of speed. Predictions from this model are
shown in red in Figure 1.

121n addition to history, there are two more reasons to prefer the terms, fit and predict. First, the proposed terminology,
as mentioned above, demystifies deep nets. No one would suggest that regression-like methods are “intelligent.” Second, the
proposed terminology is intended to discourage work on foundation models, fyr. As will be discussed in Appendix A.1, the
term, foundation models, was introduced to encourage work on f,, (Bommasani et al., 2021), but we believe it is a mistake
for academics to compete with industry on tasks that require large investments, and more logistics and systems work, than
creative contributions to computational linguistics research.

Bhttps://github.com/kwchurch/gft/tree/master/examples

Yhttps://huggingface.co/

Bhttps://github.com/PaddlePaddle

16https://www.r-project.org/
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1 # Summarize the cars dataset
> summary (cars)

; # Create the black points

+ plot(cars,

xlab="Speed (mph)",

ylab="Stopping distance (ft)")

5 # Fit a model g to cars dataset,
¢ # assuming dist is a quadratic function of speed

7 g = glm(dist poly (speed,
¢ # Summarize the model g

o summary (g)

10 o = order (cars$speed)

2)3

data=cars)

11 # Show predictions as a red line

12 lines (cars$speed[o],

Listing 1. Example of fit and predictin R.

predict (g, cars) [o],

col="red", 1lwd=3)

80 100 120
| | |

Stopping distance (ft)
40 60
\

Speed (mph)

Figure 1. Results produced by Listing 1. Predictions from the model g are shown in red.

The summary function in R is applied to both the data table cars as well as the model g. The R
summary function can be applied to almost any object and provides some useful description of its

argument.

3.2. An example of fit (aka fine-tuning)

Listing 2 shows an example of gft_fit. Listing 2 is similar to Listing 1 in a number of ways. Fit
takes a pretrained model, fpm and uses a data set to output a post-trained model, ﬁ,ost. In Listing 2,
fpre is @ BERT model, and the data table is the emotion data set on HuggingFace. The model in
Listing 1, g, is analogous to fyost = $outdir in Listing 2. The variables in both equations, line 7 of

Listing 1 and line 3 of Listing 2, refer to columns in the relevant data table.

1 gft_fit --data
2 --model
3 --eqn

1 --output_dir $outdir

Listing 2. Example of gft_fit.

Many gft programs take four arguments:

H:emotion \
H:bert -base-cased \
’classify:label~text’ \

1. -data specifies the use of the emotion data set on HuggingFace.!”

7https://huggingface.co/datasets/emotion
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2. —model specifies the use of a BERT model on HuggingFace'® as fyy.

3. —eqn specifies a task (classification), plus a formula expressed in terms of columns in the
data set.

4. -task specifies a task (not necessary when task is specified by —eqn argument).

Fit takes most of these (except for -task); in addition, fit requires —output_dir to specify a
location for the output post-trained model, fyos:.

3.3. An example of predict (aka inference)

1 x="I love you."
2> echo $x | gft_predict --task H:classify

Listing 3. Example of gft_predict. The default model performs sentiment analysis.

1 f=H:bhadresh-savani/distilbert -base-uncased-emotion
> echo $x | gft_predict --task H:classify --model $f

Listing 4. Example of gft_predict with a model for emotion classification.

Listings 3 and 4 show two examples of gft_predict. Predict takes a novel input, x, and applies
x to a model, f, to produce a prediction, y = f(x). The default model (for the classification task)
performs sentiment analysis; other models output other labels. In particular, the f in Listing 4
outputs emotion classes: anger, fear, joy, love, sadness, surprise. To see the set of classes for a model,
we recommend the use of gft_summary, as illustrated in Listing 5. gft_summary outputs the set of
classes, among other things.

1 gft_summary --model $f

Listing 5. Example of gft_summary.

Some more classifications of x =I love you are shown in Tables 2 and 3 using a number of
different models from HuggingFace. Most of these models agree that x is positive, though many
of them classify x as fake news and some classify x as spam. One can use other models to classify x
in many ways such as offensive or not and hate speech or not.

Many of these classifiers were trained on corpora that may not be appropriate for this task. In
particular, we really should not apply a Spanish classifier on English inputs, but mistakes like that
are likely to happen given how easy it is to make such mistakes.

Most of the models on the hubs were created by the community. The hubs do not vet models
for quality. The best models on the hubs are very good, though maybe not state of the art (SOTA).
We rarely see results that are as good as PWC!? and leaderboards.?’ Some models produce poor
results, or no results (using standard mechanisms in gft). The most popular models (in terms of
downloads) often produce competitive results, though the most popular models rarely produce
the best results.

Bhttps://huggingface.co/bert-base-cased
Yhttps://paperswithcode.com/
Dhttps://gluebenchmark.com/leaderboard
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Table 2. Sentiment classification of x =/ love you

3% Score Model Classes

positive 0.999 moshew/tiny-bert-aug-sst2-distilled negative, positive

positive 0.999 AdapterHub/bert-base-uncased-pf-sst2 negative, positive

positive 0.917 SetFit/deberta-v3-large__sst2__train-32-1 negative, positive

POSITIVE 0.871 ayameRushia/roberta-base-indonesian- POSITIVE, NEUTRAL, NEGATIVE
sentiment-analysis-smsa

positive 0.807 SetFit/distilbert-base- negative, positive
uncased__sst2__train-32-2

positive 0.651 rohansingh/autonlp-Fake-news-detection- negative, positive
system-29906863

positive 0.512 SetFit/deberta-v3-large__sst2__train-16-7 negative, positive

stars 0.872 tomato/sentiment_analysis 1 star, 2 stars, 3 stars, 4 stars, 5 stars

stars 0.872 nlptown/bert-base-multilingual-uncased- 1 star, 2 stars, 3 stars, 4 stars, 5 stars
sentiment

stars 0.424 cmarkea/distilcamembert-base-sentiment 1 star, 2 stars, 3 stars, 4 stars, 5 stars

Table 3. More classifications of x =/ love you

y Score Model Classes

Fake 0.998 yaoyinnan/bert-base-chinese-covid19 Neutral, Fake, Real
Fake 0.986 yaoyinnan/roberta-fakeddit Fake, Real

FAKE 0.959 Narrativaai/fake-news-detection-spanish REAL, FAKE

fake 0.958 Qiaozhen/fake-news-detector real, fake

not spam 1.000 sureshs/distilbert-large-sms-spam not spam, spam
spam 0.826 SetFit/distilbert-base-uncased__enron_spam__all-train ham, spam

3.4. Embarrassment of riches

As mentioned at the beginning of this section, there are a huge number of models and data sets
on the hubs. There are currently 40k models and 4k data sets, and these numbers are increasing
rapidly (~3x/year). How do we find the good stuff? And how do we use it?

The hubs provide a number of useful tools to answer these questions. There are GUI interfaces
(as illustrated by footnotes!” and '8), as well as APIs. gft_summary uses the APIs to provide much
of this functionality, as illustrated in Listing 6, which finds the five most popular data sets (or
models) that contain the substring: “emotion.” Popularity is estimated from downloads.

1 gft_summary
> gft_summary

--data H:__contains__emotion
--model H:__contains__emotion

Listing 6. Example of gft_summary as a search engine.

--topn 5
--topn 5

Listing 7 finds the most popular data sets and models by searching for data sets and models
that contain the null string:

https://doi.org/10.1017/51351324922000237 Published online by Cambridge University Press
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1 gft_summary --data H:__contains__ --topmn 5
> gft_summary --model H:__contains__ --topn 5

Listing 7. Example of gft_summary with the null string as a query.

There are a few common naming conventions. Models containing the string “base” are likely to
be base models, f,r. (also known as pretrained models or foundation models). Models containing
the string “distil” are like to be distilled (compressed models). Models containing the names of
popular tasks such as “squad” and GLUE subtasks are likely to be post-trained models, fyost.

gft_summary can also be used to summarize data sets, models, tasks, etc. As mentioned in
Section 3.1, these summaries are modeled after the summary function in R, which takes many
different types of objects and produces useful descriptions.

1 f=H:bhadresh-savani/distilbert-base-uncased-emotion
> gft_summary --data H:emotion

; gft_summary --model $f

. gft_summary --task H:classify

Listing 8. Examples of gft_summary.

3.5. Portability across hubs and frameworks

3.5.1. Portability — stability over time

The code in the listings above take a dependency on HuggingFace, a small start-up company that
has done very well recently. There are also dependencies on a number of Python packages that are
constantly changing. We have seen many hardware and software platforms come and go. Many
companies do well for a while, but success rarely lasts for long (decades). Deep nets will be more
likely to survive the test of time if they are written in high-level languages such as gft that can be
ported from one environment to another, as necessary.

Consider the example of operating systems. Unix survived the test of time better than alter-
natives such as VMS?! because Unix was designed to port easily across suppliers. There was a
time when Unix was mostly running on DEC machines,?? and then there was a time when Unix
was mostly running on Sun computers.?> These days, Unix has moved on to other platforms. If
programs are written in a relatively stable higher level environment like Unix (and gft), then old
programs are more likely to continue to work for decades, despite instabilities at lower levels in
the hardware and software stacks.

Too many deep nets are taking dependencies on Python packages that are updated very fre-
quently (almost daily), often in incompatible ways. Many of these resources are supported by
companies that could go out of business, or could decide to sunset support at any time. Given
recent events, there is a risk that support could also be cutoff by sanctions and other instabilities
in international relations. Because of these realities, gft is designed to make it easy to port from
one hub to another.

3.5.2. His for HuggingFace and P is for PaddleNLF/PaddleHub

Listing 9 is similar to Listing 2, though dependencies on one company (H — HuggingFace) are
replaced by dependencies on another company (P — Baidu’s PaddleNLP/PaddleHub). gft sup-
ports mixing and matching models and data sets from different suppliers. “H:” uses resources

Hhttps://en.wikipedia.org/wiki/OpenVMS
Zhttps://digital.com/digital-equipment-corporation/
Zhttps://thenewstack.io/sun-microsystems-a-look-back-at-a-tech-company-ahead-of-its-time/
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1 gft_fit --data P:chnsenticorp \

2 --model P:ernie-tiny \

: --eqn >classify:label~text’ \
4 --output_dir $outdir

Listing 9. An example of gft_fit using P for PaddleNLP/PaddleHub.

from Huggingface, and “P:” uses resources from PaddleNLP/PaddleHub. gft also supports “C:”
for custom resources on the local file system.

Note that most of the models on HuggingFace are based on PyTorch, whereas models on
PaddleNLP and PaddleHub use a different framework called PaddlePaddle. gft hides much of
this complexity.

Listing 9 uses the chnsenticorp data set,” which is different from the emotion dataset in
Listing 2. The chnsenticorp data set specifies a sentiment analysis task in Chinese, whereas the
emotion data set specifies an emotion classification task in English.

Listing 9 uses the ernie-tiny model (Su et al., 2021), a compressed version of an ERNIE model.
ERNIE models are similar to BERT models, though ERNIE models may be more appropriate for
Chinese applications. Distillation (Hinton et al., 2015) is a popular method to compress models.
Compressed models tend to trade-off a little bit of performance (accuracy) in order to save a
substantial amount of space and time when making predictions at inference time (Ganesh et al.,
2021). Distillation can be important for commercial applications.

t,24

4. Data sets and equations
4.1. Data sets

As mentioned in Section 3.4, there are currently more than 4000 data sets on the hubs. We have
already mentioned the emotion data set. Many data sets provide splits for training, validation, and
test, though different data sets may name these splits differently. Each split provides a data table
with columns and rows. The emotion data set, for example, contains two columns, named fext
and label. As can be seen in HuggingFace’s data set viewer,”> each row specifies a text field (e.g.,
“i didnt feel humiliated”) and a label field (e.g., “sadness”). We will refer to the label field as a gold
label. The task is to predict the gold labels.

SQuAD?%?7 (Rajpurkar et al., 2016, 2018) is a popular data set for question answering. This
data set has 5 columns: id, title, context, question, answers. The answers are substrings of the
context, which makes this task considerably easier than the general case of Q&A (question answer-
ing), where the answer could be almost anything, and need not be mentioned in any of the other
columns.

In Section 2.1 of (Church and Kordoni, 2022), there is a discussion of constructed queries
like SQUAD. The TREC QA track?® started with “constructed” questions in 1999, but quickly
moved to “real” questions from query logs for subsequent TREC QA tracks (2000-2007) because
constructed questions are too easy for systems and unrealistic (Voorhees, 2001).

Another popular data set is GLUE?*-*" (Wang et al., 2018). GLUE contains a number of subsets:
cola, sst2, wnli, mrpc, rte, qnli, qqp, sstb, mnli. Each subset contains 3 splits (train, validation, test).
Different subsets have different columns.

Zhttps://paperswithcode.com/sota/chinese-sentiment-analysis-on-chnsenticorp
Lhttps://huggingface.co/datasets/emotion/viewer/default/train
2https://huggingface.co/datasets/squad/viewer/plain_text/train

Y https://huggingface.co/datasets/squad_v2/viewer/squad_v2/train
Bhttps://trec.nist.gov/data/qamain.html
Bhttps://gluebenchmark.com/leaderboard
3Ohttps://paperswithcode.com/dataset/glue
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Table 4. Fine-tuning for downstream tasks: GLUE, SQUAD, etc.

-Data

-eqgn

H:glue,cola

H:glue,sst2

H:glue,wnli

H:glue,mrpc

H:glue,rte

H:glue,gnli
H:glue,qqp
H:glue,sstb
H:glue,mnli

H:squad

H:squad_v2
H:tweet_eval,hate
H:conll2003
H:conll2003

H:conll2003

H:timit_asr
H:librispeech_asr

C:$gft/datasets/VAD/VAD

classify: label ~ sentence

classify: label ~ sentence
classify: label ~ sentence
classify: label ~ sentencel + sentence2

classify: label ~ sentencel + sentence2

classify: label ~ question + sentence
classify: label ~ questionl1 + question2
regress: label ~ sentencel + sentence2
classify: label ~ premise + hypothesis

classify_spans: answers ~ question + context

classify_spans: answers ~ question + context
classify: label ~ text
classify_tokens: pos_tags ~ tokens

classify_tokens: ner_tags ~ tokens

classify_tokens: chunk_tags ~ tokens
ctc: text ~ audio
ctc: text ~ audio

regress: Valence + Arousal + Dominance ~ Word

527

GLUE has been updated with another task, SUPERGLUE (Wang et al., 2019). Both GLUE and
SUPERGLUE are popular on HuggingFace (in terms of downloads), though there are currently

more downloads for GLUE.3!

4.2, Examples of -data and -eqn

Short (1-line) gft programs can fit (fine-tune) many benchmarks, as illustrated in Table 4. Table 4
shows —data and —eqn arguments for a number of popular benchmarks.

- data arguments start with a supplier, for example, H, P, C. After the colon, there can be one
or two substrings, delimited by comma. For example, for the cola subtask of GLUE, the

—data argument is H:glue,cola.

- eqn arguments consist of a task, plus a formula expressed in terms of columns in the
dataset. See Table 5 for some examples of some tasks. For a more comprehensive list of

tasks, see footnote !1.

3https://huggingface.co/datasets?sort=downloads&search=glue
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Table 5. Some examples of tasks

Task Example Description

classify, Listing 3 The left-hand side (lhs) of the equation is a categorical variable
text-classification (integer or string)

QA, question-answering, Table 4 Classify the beginning and end of spans (substrings); assumes the
classify_spans answer is a substring of the right-hand side (rhs) following

conventions in the SQUAD task, as discussed in Section 4.1

token-classification Listing 10 Classify each token (as opposed to one classification per row); this

case includes NER (named entity recognition) and POS (part of
speech tagging)

fill-mask Listing 12 Replace mask token, <mask>, with fillers

translation, MT Listing 14 Translate the input to another language; use different models for

different language pairs

ASR, automatic-speech- Listing 15 Input audio and output text
recognition, ctc

image-classification Listing 16 Input images and output classes
regress Listing 20 The lhs is a float (or a vector of floats)

5. More examples and more tasks

As mentioned in footnote '3, there are hundreds of examples of gft in the github: fit,*? predict,*
summary,*® and eval.> A few examples have already been discussed in Sections 3.2 and 3.3. Many
more will be discussed in the next few subsections:

1. Predict (Section 5.1): token-classification, fill-mask, MT, ASR, etc.
2. Input from datasets (as opposed to stdin) (Section 5.2).
3. gft predict — gft_eval (Section 5.3).

5.1. Predict

A few examples of predict were shown in Listing 3. The gft documentation has many more
examples of predict.>®

5.1.1. Token classification
Some examples of token classification with PaddleNLP are shown in Listing 11.

Many of these tasks have been in the literature for a long time. Fill-mask is similar to the cloze
task (Taylor, 1953), as illustrated in Listing 12.

Text generation is one of the more popular use cases for GPT-3, though Listing 13 uses a
different model.

3Zhttps://github.com/kwchurch/gft/tree/master/examples/fit_examples
Fhttps://github.com/kwchurch/gft/tree/master/examples/predict_examples
34https://github.com/kwchurch/gft/tree/master/examples/summary_examples
3https://github.com/kwchurch/gft/tree/master/examples/eval_examples
3https://github.com/kwchurch/gft/blob/master/doc/sections/functions/gft_predict.md
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1 # token-classification: NER (Named Entity Recognition)
> t=H:token-classification

echo ’I love New York.’ | gft_predict --task $t

5 # part of speech (P0S) tagging

¢ f=H:vblagoje/bert-english-uncased-finetuned-pos

7 echo ’I love you’ | gft_predict --model $f --task $t

o # insert punctuation

10 f=H:Qishuai/distilbert_punctuator_en
11 echo I love you’ | gft_predict --model $f --task $t

Listing 10. Example of token classification.

1 # NER with PaddleNLP
> echo ’I love you.’ | gft_predict --task P:ner

+ # Part of speech tagging with PaddleNLP
5 echo ’I love you.’ | gft_predict --task P:pos_tagging

Listing 11. Example of token classification with PaddleNLP.

1 # Mask filling (also known as cloze task)
2 echo I <mask> you.’ | gft_predict --task H:fill-mask

Listing 12. Example of fill-mask (also known as cloze task).

1 # Text Generation
> echo I love ’ | gft_predict --task H:text-generation

Listing 13. Example of text generation.

5.1.2. MT, ASR and more
There are translation models for many language pairs, as illustrated in Listing 14.3

1 f=H:Helsinki-NLP/opus-mt-en-fr
> echo ’I love you.’ | gft_predict --task H:MT --model $f

. f=H:Helsinki-NLP/opus-mt-en-zh
5 echo ’I love you.’ | gft_predict --task H:MT --model $f

Listing 14. Example of machine translation (MT).

1 find $gft/doc -name ’*.WAV’ | gft_predict --task ASR

Listing 15. Example of automatic speech recognition (ASR).

. f=H:nateraw/vit-base-cats-vs-dogs
> find $gft/doc -name ’*.jpg’ | egrep PetImages |
s gft_predict --task H:image-classification --model $f

Listing 16. Example of image classification.

37 https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes
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5.2. Input from data sets (as opposed to stdin)
Listing 17 shows an example of input from a data set.

1 f=H:bhadresh-savani/distilbert-base-uncased-emotion
> gft_predict --eqn ’classify:label”text’ --model $f \
3 --data H:emotion --split test

Listing 17. Example of input from data set (as opposed to stdin).

5.3. gft_predict — gft_eval
Listing 18 illustrates gft_eval.

1 gft eval --eqn ’classify:label”text’ --model $f \
2 --data H:emotion --split test

Listing 18. gft_eval outputs a single score for a data set, as opposed to gft_predict, which outputs a prediction for each row.

5.4. Debugging, confusion matrices, and error analysis

In addition to producing a score with gft_eval, suppose we want to do some deep dives to look
at particular errors. The code in Listing 19 will create a confusion matrix based on the validation
split.

. f=H:bhadresh-savani/distilbert-base-uncased-emotion
> gft_predict --eqn ’classify:label”text’ --model $f \

3 --data H:emotion --split val > /tmp/pred

. cut -f2,3 < /tmp/pred | sort | uniq -c | sort -nr > /tmp/conf

Listing 19. Code to create confusion matrix.

gft_predict outputs TSV (tab separated values) with 4 columns:

1. Input, x
2. Gold label, y
3. Predicted label, ¥
4. Score
The cut statement on line 4 in Listing 19 selects y and y. The sort and uniq statements count

the number of confusions, producing the confusion matrix shown in Table 6. Standard Unix tools
such as grep (or AWK) can be used to find more details for particular confusions.

5.5. Vectors on the left hand side (LHS)

With regression and classification, the left-hand side (lhs) of the equation is typically a scalar, but
gft has been generalized so the lhs can also be a point in a vector space, as shown in Listing 20. This
example fine-tunes BERT with the NRC-VAD lexicon*® (Mohammad, 2018). Words are assigned
to points in R?, Valance, Arousal, and Dominance, based on VAD norms in psychology (Osgood
et al., 1957).

3Bhttps://saifmohammad.com/WebPages/nrc-vad.html
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Table 6. Confusion matrix from Listing 19

Predicted Labels, y

Gold Labels y sadness joy love anger fear surprise
sadness 530 1 1 7 11 0
joy 1 670 26 0 3 4
love 4 21 153 0 0 0
anger 10 4 1 254 6 0
fear 5 2 0 3 194 8
surprise 1 3 0 0 10 67
Table 7. Some gold labels and predictions from model, fyost, from Listing 20
Predictions, y Gold,y

Input, x v A b 4 A D
love 0.976 0.530 0.675 1.000 0.519 0.673
she loves me 0.931 0.452 0.648 NA NA NA
lovable 0.920 0.318 0.608 0.948 0.335 0.565
she loves me not 0.382 0.375 0.349 NA NA NA
ugly duckling 0.300 0.517 0.242 NA NA NA
unlovable 0.203 0.502 0.399 NA NA NA
she does not love me 0.189 0.433 0.262 NA NA NA
she hates me 0.135 0.685 0.363 NA NA NA
loath 0.094 0.790 0.413 0.135 0.714 0.445
hate 0.017 0.780 0.451 0.031 0.802 0.430

1 gft_fit --model H:bert-base-cased \

2 --data C:$gft/datasets/VAD/VAD \

3 --eqn ’regress: Valence + Arousal + Dominance Word’

1 --output_dir $outdir

Listing 20. An equation with a vector on the left-hand side (lhs).

Listing 20 is our first example of a custom data set. There are three CSV files on the local
filesystem:

1. train split: $gft/datasets/ VAD/VAD.train
2. validation split: $gft/datasets/ VAD/VAD.val
3. test split: $gft/datasets/ VAD/VAD.test

The three CSV files start with a header row that specifies the names of the columns. The
variables in the equation refer to these columns in the CSV files.
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In addition to illustrating the use of custom data sets, Listing 20 introduces two new features.
First, we normally train models on corpora, but Listing 20 trains a model on a lexicon, the NRC-
VAD lexicon. Second, regression usually takes scalar values on the left-hand side (lhs), but in this
case, the lhs is a point in R>.

Listing 20 produces a post-trained model f,ost. A few results with f,o5: are shown in Table 7.

A

This table shows some predictions, , for some inputs, x, using fyos- These predictions, h, can be
compared with gold labels, y, VAD scores from NRC-VAD (last three columns).

Although the model was trained on words (lemmas in the NRC Lexicon), the inputs, x, in
Table 7 include a number of words, phrases, and texts, many of which are not in the NRC-VAD
Lexicon (by construction). That is, fyos can be applied to any input text (up to 512 subword units).

Table 7 shows predictions, V, A, and D, as well as gold values, V, A, and D. When the input, x,
is not in the NRC-Lexicon, the gold value, y, is NA (not available). Since NRC-VAD is based on
lemmas, NAs are to be expected for inflected forms, OOVs (out-of-vocabulary) words such as
unlovable, MWEs (multiword expressions) such as ugly duckling, sentences, documents.

6. Conclusions

This paper proposed gft, a little language for fine-tuning pretrained base (foundation) models.
Little languages make it easier for a broader audience (including non-programmers) to join in
on the fun. Just as most users of regression do not need to know how to solve the regression
optimization, so too users of deep nets should not need to understand hundreds of lines of Python
and PyTorch. Higher level environments offer a number of advantages: ease of use, transparency,
portability. gft removes much of the complexity, and much of the magic (and the alchemy) in
deep nets, reducing fine-tuning to an optimization similar to regression. No one would suggest
that regression-like methods are “intelligent.”

References

Aho A.V., Kernighan B.W. and Weinberger P.J. (1987). The AWK Programming Language. Addison-Wesley Longman
Publishing Co., Inc.

Baevski A., Zhou H., Mohamed A. and Auli M. (2020). wav2vec 2.0: A framework for self-supervised learning of speech
representations. arXiv preprint arXiv:2006.11477.

Bentley J.L. (1986). Little languages. Communications of the ACM 29(8), 711-721.

Bommasani R., Hudson D.A., Adeli E., Altman R., Arora S., von Arx S., Bernstein M.S., Bohg J., Bosselut A., Brunskill E.,
Brynjolfsson E., Buch S., Card D., Castellon R., Chatterji N., Chen A., Creel K., Davis J.Q., Demszky D., Donahue C.,
Doumbouya M., Durmus E., Ermon S., Etchemendy J., Ethayarajh K., Fei-Fei L., Finn C., Gale T., Gillespie L.,
Goel K., Goodman N., Grossman S., Guha N., Hashimoto T., Henderson P., Hewitt J., Ho D.E., Hong J., Hsu K.,
Huang J., Icard T., Jain S., Jurafsky D., Kalluri P., Karamcheti S., Keeling G., Khani F., Khattab O., Kohd P.W.,
Krass M., Krishna R., Kuditipudi R., Kumar A., Ladhak F., Lee M., Lee T., Leskovec J., Levent I., Li X.L., Li X.,
Ma T., Malik A., Manning C.D., Mirchandani S., Mitchell E., Munyikwa Z., Nair S., Narayan A., Narayanan D.,
Newman B., Nie A., Niebles J.C., Nilforoshan H., Nyarko J., Ogut G., Orr L., Papadimitriou I., Park ].S., Piech C.,
Portelance E., Potts C., Raghunathan A., Reich R., Ren H., Rong F., Roohani Y., Ruiz C., Ryan J., Ré C,, Sadigh D.,
Sagawa S., Santhanam K., Shih A., Srinivasan K., Tamkin A., Taori R., Thomas A.W., Tramér F., Wang R.E., Wang W,
Wu B., Wu J., Wu Y, Xie S.M., Yasunaga M., You J., Zaharia M., Zhang M., Zhang T., Zhang X., Zhang Y., Zheng L.,
Zhou K. and Liang P. (2021). On the opportunities and risks of foundation models.

Brown T.B., Mann B., Ryder N., Subbiah M., Kaplan J., Dhariwal P., Neelakantan A., Shyam P., Sastry G., Askell A.,
Agarwal S., Herbert-Voss A., Krueger G., Henighan T., Child R., Ramesh A., Ziegler D.M., Wu J., Winter C.,
Hesse C., Chen M., Sigler E., Litwin M., Gray S., Chess B., Clark J., Berner C., McCandlish S., Radford A., Sutskever I.
and Amodei D. (2020). Language models are few-shot learners. NeurIPS.

Buck C., Heafield K. and van Ooyen B. (2014). N-gram counts and language models from the common crawl. In Proceedings
of the Ninth International Conference on Language Resources and Evaluation (LREC-2014), Reykjavik, Iceland: European
Languages Resources Association (ELRA), pp. 3579-3584.

https://doi.org/10.1017/51351324922000237 Published online by Cambridge University Press


https://doi.org/10.1017/S1351324922000237

Natural Language Engineering 533

Chelba C., Mikolov T., Schuster M., Ge Q., Brants T., Koehn P. and Robinson T. (2013). One billion word benchmark for
measuring progress in statistical language modeling. arXiv preprint arXiv:1312.3005.

Chowdhery A., Narang S., Devlin J., Bosma M., Mishra G., Roberts A., Barham P., Chung H.W., Sutton C,,
Gehrmann S., et al. (2022). PaLM: Scaling language modeling with pathways. arXiv preprint arXiv:2204.02311.

Church K., Chen Z. and Ma Y. (2021a). Emerging trends: A gentle introduction to fine-tuning. Natural Language Engineering
27(6), 763-778.

Church K.W. and Kordoni V. (2022). Emerging trends: Sota-chasing. Natural Language Engineering 28(2), 249-269.

Church K.W., Yuan X,, Guo S., Wu Z., Yang Y. and Chen Z. (2021b). Emerging trends: Deep nets for poets. Natural
Language Engineering 27(5), 631-645.

Conneau A., Khandelwal K., Goyal N., Chaudhary V., Wenzek G., Guzman F., Grave E., Ott M., Zettlemoyer L. and
Stoyanov V. (2019). Unsupervised cross-lingual representation learning at scale. CoRR, abs/1911.02116.

Dale R. (2021). GPT-3: What’s it good for? Natural Language Engineering 27(1), 113-118.

Deng J., Dong W., Socher R., Li L.-J., Li K. and Fei-Fei L. (2009). Imagenet: A large-scale hierarchical image database. In
2009 IEEE Conference on Computer Vision and Pattern Recognition. IEEE, pp. 248-255.

Devlin J., Chang M.-W., Lee K. and Toutanova K. (2019). BERT: Pre-training of deep bidirectional transformers for
language understanding. In Proceedings of the 2019 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), Minneapolis, Minnesota:
Association for Computational Linguistics, pp. 4171-4186.

Du J., Na X,, Liu X. and Bu H. (2018). Aishell-2: Transforming mandarin asr research into industrial scale. arXiv preprint
arXiv:1808.10583.

Ganesh P., Chen Y., Lou X,, Khan M.A,, Yang Y., Sajjad H., Nakov P., Chen D. and Winslett M. (2021). Compressing
large-scale transformer-based models: A case study on BERT. Transactions of the Association for Computational Linguistics
9, 1061-1080.

Guisan A., Edwards Jr, T.C. and Hastie T. (2002). Generalized linear and generalized additive models in studies of species
distributions: Setting the scene. Ecological Modelling 157(2-3), 89-100.

He K., Zhang X., Ren S. and Sun J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 770-778.

Hinton G., Vinyals O. and Dean J. (2015). Distilling the knowledge in a neural network. arXiv preprint arXiv:1503.02531.

Howard J. and Ruder S. (2018). Universal language model fine-tuning for text classification. In Proceedings of the 56th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), Melbourne, Australia: Association for
Computational Linguistics, pp. 328-339.

Ito K. and Johnson L. (2017). The L] speech dataset. https://keithito.com/LJ-Speech-Dataset/

Liu Y., Ott M., Goyal N., Du J., Joshi M., Chen D., Levy O., Lewis M., Zettlemoyer L. and Stoyanov V. (2019). Roberta: A
robustly optimized bert pretraining approach.

Mohammad S. (2018). Obtaining reliable human ratings of valence, arousal, and dominance for 20,000 English words.
In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
Melbourne, Australia: Association for Computational Linguistics, pp. 174-184.

Moore G.A. and McKenna R. (1999). Crossing the Chasm. Capstone Oxford.

Osgood C.E., Suci G.J. and Tannenbaum P.H. (1957). The Measurement of Meaning. vol. 47. University of Illinois press.

Panayotov V., Chen G., Povey D. and Khudanpur S. (2015). Librispeech: An ASR corpus based on public domain audio
books. In 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, pp. 5206-5210.

Radford A., Wu J., Child R., Luan D., Amodei D. and Sutskever I. (2019). Language models are unsupervised multitask
learners. OpenAl Blog.

Rajpurkar P, Jia R. and Liang P. (2018). Know what you don’t know: Unanswerable questions for SQuAD. In Proceedings of
the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), Melbourne, Australia:
Association for Computational Linguistics, pp. 784-789.

Rajpurkar P., Zhang J., Lopyrev K. and Liang P. (2016). SQuAD: 100,000+ questions for machine comprehension of text.
In Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, Austin, Texas: Association for
Computational Linguistics, pp. 2383-2392.

Su W., Chen X., Feng S., Liu J., Liu W., Sun Y., Tian H., Wu H. and Wang H. (2021). Ernie-tiny: A progressive distillation
framework for pretrained transformer compression. arXiv preprint arXiv:2106.02241.

Sun Y., Wang S., Feng S., Ding S., Pang C., Shang J., Liu J., Chen X., Zhao Y., Lu Y, et al. (2021). Ernie 3.0: Large-scale
knowledge enhanced pre-training for language understanding and generation. arXiv preprint arXiv:2107.02137.

Sun Y., Wang S., Li Y., Feng S., Tian H., Wu H. and Wang H. (2020). Ernie 2.0: A continual pre-training framework for
language understanding. AAAI.

Taylor W.L. (1953). “Cloze procedure”: A new tool for measuring readability. Journalism Quarterly 30(4), 415-433.

Voorhees E.M. (2001). The TREC question answering track. Natural Language Engineering 7(4), 361-378.

Wang A., Pruksachatkun Y., Nangia N., Singh A., Michael J., Hill F., Levy O. and Bowman S. (2019). Superglue: A stickier
benchmark for general-purpose language understanding systems. Advances in Neural Information Processing Systems 32.

https://doi.org/10.1017/51351324922000237 Published online by Cambridge University Press


https://keithito.com/LJ-Speech-Dataset/
https://doi.org/10.1017/S1351324922000237

534 K. Ward Church et al.

Wang A., Singh A., Michael J., Hill F., Levy O. and Bowman S. (2018). GLUE: A multi-task benchmark and analysis plat-
form for natural language understanding. In Proceedings of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and
Interpreting Neural Networks for NLP, Brussels, Belgium: Association for Computational Linguistics, pp. 353-355.

Wu B, Xu C., Dai X., Wan A,, Zhang P., Yan Z., Tomizuka M., Gonzalez J., Keutzer K. and Vajda P. (2020). Visual
transformers: Token-based image representation and processing for computer vision.

Zhu Y., Kiros R., Zemel R., Salakhutdinov R., Urtasun R., Torralba A. and Fidler S. (2015). Aligning books and movies:
Towards story-like visual explanations by watching movies and reading books. In Proceedings of the IEEE International
Conference on Computer Vision, pp. 19-27.

A Appendix
A.1 Pretraining (f,.): Don’t do it (yourself)

Recent work on foundation models*® (Bommasani et al., 2021) attempts to compete with industry
on what industry does best. We think this is a mistake. Industry has “unfair” advantages*’ on tasks
like pretraining fyre, which require large investments in people and machines, as shown in Table 8.

We recommend that academics focus on fit and predict, which are much more affordable
than pretraining fyr.. The last two columns in Table 8, time and hardware, obviously depend on
many factors such as the size of the model. One of the motivations behind distillation (Hinton
et al., 2015; Ganesh et al., 2021) is to reduce the size of the model. Smaller models tend to run
faster at inference time. While inference times are relatively faster than training times, inference
time is often a bottleneck for commercial applications since training is a one-time investment,
whereas inference is a recurring cost. For successful applications with millions or billions of users,
recurring costs can easily dominate one-time training costs.

As for training costs, pretraining is much more expensive than fine-tuning, especially for large
models. Pretraining is already very expensive and will become even more expensive in the future as
models become larger and larger. Pretraining large models will be beyond the means of academics
(and governments).

Consider the pretrained models in Table 9, and especially the largest model, PaLM (Chowdhery
et al., 2022). PaLM produces impressive results, using a huge model (540B parameters). That
said, the size of the investment is even more impressive: the paper has dozens of authors using
thousands of TPUs (distributed over multiple data centers).

When the investments are this large, projects become risk adverse. Projects of this size cannot
afford to fail. Academics should focus on projects that reward creativity and avoid projects that
are too big to fail.

We like to think of f,. like Intel CPU chips. Universities can afford to program CPUs, but
universities cannot afford to compete with Intel and fabricate their own CPUs. So too, we argue
that universities can afford to fit and predict deep nets, but they cannot afford to compete with
industry on fyre. When the first author was a student at MIT, his thesis advisor, Jon Allen, urged the
university to make large investments in VLSI fabrication. In retrospect, it was probably a mistake
for a university to invest in VLSI fabrication, though others may disagree with that assessment.*!

In short, we recommend users start by downloading f,. from hubs and focus on steps 2 (fit)
and 3 (predict) of the standard recipe. Some examples of f,, are shown in Table 9. Many of these
models can be downloaded from hubs, with a few exceptions, especially for larger models such as
ERNIE 3.0, GPT-3, PaLM. Most models are trained on corpora, as shown in Table 10.

https://crfm.stanford.edu/workshop.html

40“Unfair advantages” is management jargon, common in industry, especially when discussing strategy. Obviously, there is
nothing “unfair” about taking advantage of one’s strengths.

“Thttp://www.eecs.mit.edu/docs/newsletter/ VLSL.pdf

https://doi.org/10.1017/51351324922000237 Published online by Cambridge University Press


https://crfm.stanford.edu/workshop.html
http://www.eecs.mit.edu/docs/newsletter/VLSI.pdf
https://doi.org/10.1017/S1351324922000237

Natural Language Engineering 535

Table 8. Most fyre models are trained in industry because pretraining requires large
capital investments in large teams and GPU clusters

Step Description Time Hardware

1 fore (Table 9) Days/Weeks Large GPU Cluster
2 Fit (Section 3.2) Hours/Days 1+ GPUs

3 Predict (Section 3.3) Seconds/Minutes 0+ GPUs

Table 9. gft starts with large pre-trained base models, fyre, typically trained on large corpora in Table 10, using
expensive GPU clusters

Base Model (fyre) Params Training Data

ResNet-50 (He et al., 2016) 23M 14M images from ImageNet

VT (Wu et al., 2020) 11.7M-21.9M 14M images from ImageNet

Wav2vec (Baevski et al., 2020) 95M-317M 960 hours from LibriSpeech

BERT (Devlin et al., 2019) 110M-340M 3.3B words from Books and Wikipedia
ERNIE 2.0 (Sun et al., 2020) 110M-340M 7.9B en + 15B zh tokens

RoBERTa (Liu et al., 2019) 110M 160GBs of text

GPT-2 (Radford et al., 2019) 1.5B 40GBs of text

ERNIE 3.0 (Sun et al., 2021) 10B 375B tokens of text and knowledge graph
GPT-3 (Brown et al., 2020; Dale, 2021) 125M-175B 1TB from Common Crawl, Books and Wikipedia
XLM-RoBERTa (Conneau et al., 2019) 12B-16B 2.5TBs multlingual

PaLM (Chowdhery et al., 2022) 5408 740B tokens (multilingual)

Table 10. Some popular corpora for training pre-trained models, fyre

Dataset Description

Billion Word (Chelba et al., 2013) a billion words of English
Common Crawl (Buck et al., 2014) https://github.com/commoncrawl

Book Corpus (Zhu et al., 2015) speech with text

ImageNet (Deng et al., 2009) 14M images, annotated with 21k classes
LibriSpeech (Panayotov et al., 2015) 960 hours of speech with text

LJ Speech (Ito and Johnson, 2017) https://keithito.com/LJ-Speech-Dataset/
AISHELL (Du et al., 2018) 1000 Hours of Mandarin speech with text

Cite this article: Ward Church K, Cai X, Ying Y, Chen Z, Xun G and Bian Y (2022). Emerging trends: General fine-tuning
(gft). Natural Language Engineering 28, 519-535. https://doi.org/10.1017/S1351324922000237
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