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Swirling waves frequently occur in a three-dimensional tank under a nearly resonant
excitation with oblique excitation angle. The oblique excitation produces two excitation
components and the secondary component triggers rotational waves. The detailed
mechanism of the switch in circular direction is clearly described in this study.
The evolution of the hydrodynamic forces (Fz) on the tank walls presents a beating
phenomenon and the switch direction always occurs at the peak and trough of the envelope
of the Fz history. The external excitation moment changes the circulation intensity, and
finally the swirling wave becomes a single-direction wave, but only for a short time. The
profile of the single-direction wave was determined by the dominant sloshing mode and
the instantaneous tank motion was found to be a key factor to determine the consequent
swirling flow circulating direction.

Key words: waves, free-surface flows

1. Introduction

Sloshing flows occur in liquid tanks in moving vehicles, aircraft and ships, and in
reservoirs during earthquakes. They may cause impact loads and there is a mutual
interaction between global sloshing loads and the dynamics of the structure. It is of
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significant importance in the design of such containers that the physical behaviours
of liquid sloshing, especially in terms of the kinematic and dynamic responses, are
well understood. Excitation with frequencies in the vicinity of the lowest natural
frequencies of the liquid motion is of primary practical interest.

Sloshing waves in tanks have been studied experimentally, analytically and numerically
in recent decades. A comprehensive review of early analytical and experimental studies
of liquid sloshing with application to the aerospace industry was reported by Abramson
(1966). If the interior of the tank is smooth with no breaking waves, an inviscid/irrotational
potential flow solution in combination with viscous boundary layer flow is suitable for
describing sloshing (Faltinsen & Timokha 2009) and resonant sloshing (Faltinsen &
Timokha 2021). For a comprehensive review of methods and results of asymptotic sloshing
analysis, readers are referred to Ibrahim (2005). A three-dimensional analysis of nonlinear
sloshing waves in a rectangular tank with finite water depth was reported by Faltinsen,
Rognebakke & Timokha (2005). In addition to the potential flow approaches, many
numerical studies in solving sloshing problems with primitive variables have been made,
particularly when the fully nonlinear effects of the waves on the free surface are included.
Papers that describe the modelling of two-dimensional sloshing include Frandsen (2004),
and Chen & Nokes (2005).

The analysis of sloshing in three-dimensional (3-D) tanks is relatively rare in the
literature. Liu & Lin (2008) developed a numerical model (Numerical Wave Tank) to
study 3-D nonlinear liquid sloshing with breaking waves and liquid fragmentation. The
volume of fluid (VOF) method was used, and large-eddy simulation was adopted to model
the turbulence effect. Wu & Chen (2009) extended the time-independent finite-difference
method to study sloshing in a 3-D tank, a spectral analysis identified the resonant
frequencies of each type of wave and the results show a strong correlation between
resonant modes and the occurrence of the sloshing wave types. Wu, Chen & Hung (2013)
analysed the detailed hydrodynamic force components induced by transient sloshing in a
3-D tank subjected to oblique horizontal excitation.

The angular frequencies, ωi,j, of the natural modes of a square base tank, can be given
as (given by Faltinsen & Timokha 2009) λi,j = π

√
i2 + j2, ω2

i,j = gλi,j tanh(λi,jd0), where
g is the gravitational acceleration, d0 is the liquid depth of the tank and the natural modes
are fi,j = f (1)

i f (2)
j ; f (1)

i (x) = cos(πi(x + 1/2)), i ≥ 0 and f (2)
j (z) = cos(πj(z + 1/2)), j ≥

0. Sloshing mode fi,j shows the natural mode components triggered in the surge and sway
directions; f 1,0 and f 0,1 mean pure sway (z-axis) and surge (x-axis) motions, respectively,
as depicted in figure 1. Under external forcing, the swirling mode occurs when the forcing
frequency is close to the first natural frequency of the liquid tank. Under a pure surge
or sway motion, the swirling modes, however, can be triggered by the resonant sloshing
with wave breaking and tank roof impact on the free surface (Faltinsen & Timokha 2009).
For self-excited sloshing, the complex sloshing phenomenon is caused by the nonlinear
interactions relating to the geometry of the tank, inlet–outlet flow directions, sloshing
modes at the free surface and jet fluctuations (Saeki, Madarame & Okamoto 2001; Hua
et al. 2017). Besides, once sloshing waves are triggered, the phenomenon of the complex
interaction of sloshing modes at the free surface occurs. In this scenario, if the sloshing
oscillation frequency is close to the first resonant frequency of the tank, resonant sloshing
occurs, and it might trigger swirling modes to generate swirling waves. In this work, we
only focus on the swirling waves triggered by external forcing.

In the present study, the beating swirling waves are analysed in the context of the effect
of various excitation angles. The hydrodynamic forces are correlated with momentum
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Figure 1. Sketch of sloshing modes (a) f 1,0; (b) f 0,1.
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Figure 2. (a) Definition of the sketch; (b) experimental set-up; (c) positions of the wave probes from the top
view of the tank.

flux-type integrals along the free surface. The momentum and angular momentum of
the swirling waves are explored and analysed in detail in relation to the tank motion
and types of sloshing waves. The mechanism of switching direction of swirling waves
is elucidated. Section 2 introduces the equations of motion written in a moving frame
of reference attached to the accelerating tank. Section 3 presents the detailed results and
provides a comprehensive discussion of all phenomena found in this study. Although the
governing equations incorporate excitations with six degrees of freedom, only coupled
surge and sway motions are included in the present simulations. Section 4 summarizes the
key conclusions.

2. Mathematical formulation

In this work, a rigid tank with an unsteady velocity and partially filled with liquid is
considered. As illustrated in figure 2, the tank breadth is L, the tank width is B and d0
is the undisturbed liquid depth.

For a tank excited at coupled surge and sway motion with the tank-fixed coordinate, the
Navier–Stokes equations can be expressed as

∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

+ w
∂u
∂z

= − 1
ρ

∂p
∂x

− ẍC + υ∇2u, (2.1)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
= −g − 1

ρ

∂p
∂y

+ υ∇2v, (2.2)

∂w
∂t

+ u
∂w
∂x

+ v
∂w
∂y

+ w
∂w
∂z

= − 1
ρ

∂p
∂z

− z̈C + υ∇2w, (2.3)
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where u, v and w are the liquid velocity components in the x, y and z directions relative to
the tank, g is the gravitational acceleration, p is the pressure, ρ is the liquid density and
υ is the kinematic viscosity coefficient. Further, the terms ẍC and z̈C are the acceleration
components of the tank in the x- and z-directions, respectively. The continuity equation for
incompressible flow is

∂u
∂x

+ ∂v

∂y
+ ∂w

∂z
= 0. (2.4)

The kinematic boundary condition on the free surface is

∂η

∂t
+ u

∂η

∂x
+ w

∂η

∂z
= v. (2.5)

Here, η(x, z, t) = h(x, z, t) − d0 is the wave elevation measured from the liquid surface at
rest. The dynamic conditions can be expressed as follows:

niσijnj = −patm = 0, (2.6)

τiσijnj = 0, (2.7)

σij = −pδij + μ

(
∂ui

∂xj
+ ∂uj

∂xi

)
, (2.8)

where ni and τi are the normal and tangential unit vectors to the free surface, and σij is the
ith component of the stress tensor acting on the surface. Also, δij is the Kronecker delta.
The no-slip condition is applied at the boundary between the liquid and the tank surface
except at the intersection line between the free surface and the tank surface. For the initial
condition, all parameters implemented in the study are set to zero at the beginning of the
simulations.

In the present study, we employ simple mapping functions to remove the time
dependence of the free surface in the fluid domain. The irregular boundary, including
the time-varying fluid surface, non-vertical walls and non-horizontal bottom, can be
mapped onto a cubic coordinates (x∗, y∗, z∗) by the proper coordinate transformations
(Hung & Wang 1987; Chen & Nokes 2005). In this work, the coordinates (x∗, y∗, z∗)
can be further transformed such that the layers near the wall and free surface boundaries
are stretched to capture sharp local velocity gradients and free surface profile. The
above governing equations were solved in dimensionless forms. The detailed coordinate
transformation and the dimensionless equations implemented in the study are tedious and
have already been reported in Wu & Chen (2009). The Crank–Nicholson second-order
finite-difference scheme and the Gauss–Seidel point successive overrelaxation iterative
procedure are implemented to calculate fluid velocity and pressure, respectively. The
detailed finite-difference method can be found in Appendix A and also in Wu (2009).

3. Results and discussion

The convergence study of the present numerical model was extensively validated in the
reported papers (Wu & Chen 2009; Wu et al. 2013). Figure 3 compares the wave elevations
at probe 1 (HA: wave elevation at probe 1) and probe 2 (HD: wave elevation at probe
2) of swirling waves at θ = 15°. The agreements of the comparison are very good, and
more numerical validation can be found in Wu (2009) and Wu et al. (2013). The tank
size of the following simulations is fixed as B/L = 1. Based on the definition of the
excitation angle θ , the components of the excitation amplitude in surge (x-axis) and sway

954 A2-4

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

89
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.896


The mechanism of switching direction

250 100
80
60
40
20

–20
–40
–60
–80

0

200

150

100

50

–50

–100

–150

0

0 10 20 30 40 50 60 0 10 20 30 40 50 60

Time (s)

E
le

v
at

io
n
 a

t 
P 1

 (
m

m
)

E
le

v
at

io
n
 a

t 
P 2

 (
m

m
)

Time (s)

Experiment
Numerical results

(a) (b)

Figure 3. Comparison between the present results of experiment and numerical simulation. The measured
data at (a) wave probe P1; (b) wave probe P2; T = 0–60 s, B/L = 1, d0/L = 0.25, a0/L = 0.005, ωf = 0.97ω1,0,
θ = 15°.

(z-axis) directions are a0 sin(ωf t) cos(θ) and a0 sin(ωf t) sin(θ), respectively, where a0 is
the excitation amplitude of the tank and ωf is the external forcing frequency. The numerical
and experimental results show an excellent agreement. The phenomenon of switching
of the direction of swirling waves was also observed in the experiment, which will be
elucidated in this study.

3.1. Beating phenomenon with various excitation angles
The sloshing amplitude function is a combination of an amplitude-modulated harmonic
function with a frequency equal to the difference of the forced frequency (ωf ) and the
fundamental frequency of liquid in tank (ω1) and the amplitude varying with a frequency
of sum of ωf and ω1. For a tank under harmonic excitation, the sloshing amplitude
function may have a factor of (cos(ωf t) − cos(ω0t)) or sin((ω0 − ωf )t/2) sin((ω0 +
ωf )t/2). If the natural and forced frequencies are similar, i.e. |ω0 − ωf | is small, then
the amplitude function is a low-frequency function multiplying a high-frequency function.
This phenomenon is known as beating. The ‘beating’ phenomenon of swirling waves is
well known from experimental studies on sloshing motions in circular and spherical tanks.
In particular, Abramson (1966, p. 99) noted: ‘The motion is even more complicated as a
type of “beating” also exists; the first anti-symmetric liquid-sloshing mode first begins
to transform itself into a rotational motion increasing in angular velocity in, say, the
counterclockwise direction, which reaches a maximum and then decreases essentially to
zero and then reverses and increases in the clockwise direction, and so on alternatively’.

The swirling waves only occur within a range of excitation frequencies close to the
resonant excitations, and swirling behaviour is seldom seen when the excitation angle
θ is larger than 30° or close to 0°. Figure 4 depicts the wave history of HA with
various excitation angles and shows different beating periods of sloshing waves. The
dimensionless time T is defined as T = t

√
g/d0. The first beating period of point A (HA)

increases as does the excitation angle. Besides, the distinct first beating period of swirling
waves at various excitation angles may stem from the effect of wave nonlinearity, which is
defined as the ratio of wave elevation of the maximum peak ηmax to the maximum trough
ηmin. The nonlinearity of wave elevations of θ = 5°, 10°, 15° and 30° is 2.265, 2.312, 2.464
and 3.196, respectively, which increases with the excitation angle. The nonlinearity is also
correlated deeply with water depth, excitation amplitude and excitation frequency of the
tank. For more investigations of wave nonlinearity the reader referred to Wu et al. (2013).
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Figure 4. Wave history (HA) of swirling waves with various excitation angles; d0/L = 0.25, a0/L = 0.005,
ωf = 0.97ω1,0. Solid line: θ = 5°; dash line: θ = 10°; dotted line: θ = 15°; dash-dotted line: θ = 30°.

3.2. Flow momentum and angular momentum of swirling waves
Physically, the circulatory flow motion in the tank can be correlated with the fluid
momentum in the x and z axes. The dimensionless horizontal momentum of the fluid (Mo)
in the tank can be obtained by

Mo =
(

ρ

[∫∫∫
ua dx dy dz +

∫∫∫
wa dx dy dz

])
/ρ

√
gd0d3

0 = Mox + Moz, (3.1)

where Mox and Moz are the components of the fluid momentum contributed by velocity
components ua and wa (global system), respectively. To investigate the rotation of swirling
waves, we further define the angular momentum of the circulatory flow to the x, y and z
axes in the tank, respectively, as

Mθx =
(

ρ

[∫∫∫
wa dx dy dz × ry +

∫∫∫
va dx dy dz × rz

])
/ρ

√
gd0d4

0, (3.2)

Mθy =
(

ρ

[∫∫∫
ua dx dy dz × rz +

∫∫∫
wa dx dy dz × rx

])
/ρ

√
gd0d4

0, (3.3)

Mθz =
(

ρ

[∫∫∫
ua dx dy dz × ry +

∫∫∫
va dx dy dz × rx

])
/ρ

√
gd0d4

0, (3.4)

where r is the horizontal distance from the tank centre to the position of the liquid element
and the subscript of r is the direction to the designated axis. The swirling direction of
the sloshing waves is presented by Mθy. The rate of change of angular momentum at a
fixed reference point is equal to the external forces (moments) acting on the body. In other
words, the external forces acting on the tank are transferred to the rate of change of angular
momentum of fluid particles in the tank. The rate of change of angular momentum of
sloshing waves (MT ) about the tank centre, therefore, is equal to the external moments
acting on the tank

MT = dMθy

dt
=

(
ρ

[∫∫∫
dua

dt
dx dy dz × rz +

∫∫∫
dwa

dt
dx dy dz × rx

])
/ρgd4

0

=
∑

r × Fext. (3.5)

Angular moment Mθy tells the direction and strength of the swirling waves. We, therefore,
only consider the rate of change of angular momentum in the y-axis. In this study, we
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Figure 5. Momentum of the waves in the x-direction (Mox: solid line) and in the z-direction (Moz: dash line)
and the dimensionless elevation (HA): dotted line; d0/L = 0.25, a0/L = 0.005, ωf = 0.97ω1,0, θ = 15°.

define the positive and negative MT as indicating, respectively, the counterclockwise and
clockwise moments acting on the fluid by the external forcing. Figure 5 shows the time
histories of the momentum of the flow and the wave elevation at point A. The total energy
of sloshing waves is a combination of kinetic energy and potential energy. The maximum
kinetic energy of the waves appears when the free surface is nearly flat. The peaks of Mox
and Moz occur at HA close to 0. Oppositely, as Mox and Moz are almost zero and, therefore,
the peaks of HA are presented.

The momentum of the liquid in the tank is deeply correlated with the tank motion.
As illustrated in figure 6, the motion of the tank (dotted line) will cause the liquid to
move in the opposite direction to the tank motion due to the inertial effect. In other
words, the forward tank motion (figure 6a, see time interval from point A to point B)
results in the tendency of the backward movement of the liquid and, therefore, the original
forward movement of the fluid (Mox and Moz > 0) is gradually influenced by the tank
motion and then turns into the backward motion at T = 17.5 (Mox and Moz < 0). The
inverse phenomenon is shown when the tank motion becomes backward (see the time
interval from point B to point C). Since an inclined excitation (θ = 15°) was applied, Mox
is initially larger than Moz. This indicates that the flow in the tank moves faster in the
North–South direction than in the East–West direction. The phenomenon of flow motion
is opposite when Mox < Moz. Besides, the travel direction of the flow in the tank can
be estimated by the phase difference between Mox and Moz. As depicted in figure 6(b),
the phases of Mox and Moz are almost identical during T = 0 ∼ 40. This means the flow
motion in the tank is travelling in a constant back-and-forth direction, referred to as
‘single-directional’ waves (Chen & Wu 2011). It is known that swirling motion occurs
due to the simultaneous appearance of the f (1,0) and f (0,1) modes and their phase angles
have some differences. That is, as the phase lag between Mox and Moz occurs, the direction
of flow motion is no longer fixed, it is varied with time instead and then the circulatory
flow (swirling waves) appears. The envelope of the liquid momentum increases with time
(T = 0 ∼ 100) as well as the strength of the flow motion inside the tank. After T > 100,
the peaks of Mox decrease with time, whereas the peaks of Moz continually increase. As
T = 155 ∼ 165, the phase lag between Mox and Moz nearly disappears and the magnitudes
of Mox and Moz are almost equal. In other words, a nearly diagonal wave appears during
this period (T = 155–165). The reason the strength of the swirling waves is reduced and
replaced by the diagonal-like waves can be associated with the tank motion and the fluid
momentum Mox. The swirling waves occur when T > 40, the circulatory flow motion
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Figure 6. Momentum of the waves in the x direction (Mox: solid line) and in the z-direction (Moz: dash
line) and the dimensionless excitation displacement of the tank (a0/d0): dotted line; d0/L = 0.25, a0/L = 0.005,
ωf = 0.97ω1,0, θ = 15°.

in the tank has its own oscillating period and the flow motion in the tank is no longer
dominated by the tank motion. The phase difference between Mox and the tank motion
gradually becomes apparent. When the phase lag of Mox is approximately 1/4 period
later than that of the tank motion (see point D to point E), the forward tank motion
encounters the instantaneous backward flow movement in the surge direction (Mox < 0).
The strength of swirling waves gradually reduces to zero and the sloshing wave turns into
a single-directional wave. In short, the evolution of sloshing waves during the first beating
period includes single-directional waves (T = 0 ∼ 40) → counterclockwise swirling waves
(T = 40 ∼ 155) → nearly single-directional waves (T = 155 ∼ 165)→ clockwise swirling
waves (T > 170).

3.3. The switch of swirling directions
Faltinsen et al. (2005) indicated ‘The switching of the rotational direction of swirling
waves was most probably affected by random perturbations occurring due to the local
phenomena including the steepness of the wave pattern and local breaking phenomena’.
However, the detailed physical mechanism by which the switching direction of swirling
waves is still not clear.
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Figure 7. Angular momentum Mθ of swirling waves: (a) Mθx and Mθy; (b) swirling wave switch from
counterclockwise to clockwise when Mθx and Mθz are out of phase; switch from clockwise to counter-clockwise
when Mθx and Mθz are in phase; (c,d) zoom in of the circular parts of (b); d0/L = 0.25, a0/L = 0.005,
ωf = 0.97ω1,0, θ = 15°.

Figure 7 portrays the time histories of the components of angular momentum (Mθ )
of the liquid in the tank; Mθy presents the swirling direction of the waves, and positive
and negative Mθy indicate counterclockwise and clockwise flow motions, respectively. As
depicted in figure 7(a), Mθy apparently increases after T = 40, and so does the strength of
counterclockwise swirling waves. At T = 170, Mθy decreases to become negative and the
swirling wave switches from counterclockwise to clockwise. From T = 0 to 1380, there are
five switches. As illustrated in figure 7(b), we found that the swirling direction switches
from counterclockwise to clockwise when Mθx and Mθz are out of phase (mode (1,0), f (1,0),
is dominant) and it switches from clockwise to counterclockwise when Mθx and Mθz are
in phase (mode (0,1), f (0,1), is dominant). Besides, at the moment of switching direction,
Mθx, Mθy and Mθz are all close to 0. In other words, the sloshing waves become nearly
single-directional waves at the time of switch.

Based on the momentum balance (Wu et al. 2013), the velocity component ‘w’ is
mainly generated by external forcing components in the z-axis and can be represented
by sloshing-induced force in the z direction (Fz)

Fz =
[∫ L/2

−L/2

∫ h

0
PW dy dx +

∫ L/2

−L/2

∫ h

0
PE dy dx

]
/ρgd3

0, (3.6)
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switch direction from clockwise to counterclockwise always occurs at Fz−trough.
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Figure 9. Angular momentum components, Mθy, of swirling waves: (a) ωf = 1.05ω1,0, θ = 10°;
(b) ωf = 0.95ω1,0, θ = 30°; d0/L = 0.25, a0/L = 0.005.

in which the subscripts E and W represent the pressure integrations on the east and west
walls of the tank. The beating phenomenon can be found in the time history of Fz shown
in figure 8 and we can connect each peak and trough of Fz for generating Fz−envelope. As
depicted in figure 8, the counterclockwise swirling wave occurs as Fz increases, whereas
the clockwise swirling wave appears as Fz decreases during each swirling period. At the
peak and trough of Fz−envelope, the single-directional waves and the switch occur. Similar
behaviours were found (figure 9) in the varied cases with different excitation angles and
frequencies.

The question remains: Why is the swirling period of the sloshing wave related to the
sloshing-induced force Fz? This can be found from the effect of the secondary mode.
As the excitation angle is close to 0, the swirling wave is hard to generate unless by the
influence of some other disturbances, such as breaking waves. As the excitation angle
increases, the tank motion has two components which can be divided into primary and
secondary components. For θ = 15°, the primary and secondary components are in the
x (surge) and z (sway) directions, respectively. The primary component of tank motion
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Figure 10. Comparison of dimensionless swirling period of waves between the analytic result and the present
simulations; d0/L = 0.25, a0/L = 0.005.

excites fluid sloshing, while the secondary component of tank motion is to trigger swirling
flow. As a result, the swirling period of the wave is almost identical to that of the
z-component of induced force Fz, which is attributed to the secondary component of tank
excitation.

In addition, the beating period of Fz can be used to estimate the swirling period of
the waves. Since Fz is related to the secondary tank motion, its beating period can be
approximately calculated by the 2-D beating wave period from an analytic solution

Ta = 2π/(|ωf − ω1|) ×
√

g/d0, (3.7)

where ωf and ω1 are, respectively, the excitation frequency and the first natural frequency
of liquid in tank. The mean value of the swirling period (up to T = 1500) was compared
with the analytic solution, as shown in figure 10. The difference between our simulated
results and the analytical solution is less than 10 % and the empirical swirling period of
sloshing wave (Ts) may be expressed as

Ts = (1 ± 0.1) × 2π/(|ωf − ω1|) ×
√

g/d0. (3.8)

As excitation angle θ increases, the difference between Ta and Ts increases as well, which
is related to sloshing nonlinearity due to various excitation angles (Chen & Wu 2011).

As mentioned earlier, tank displacement plays an important role in increasing or
decreasing the liquid momentum (MO) and liquid angular momentum (Mθ ). The rate
change of angular momentum (MT ) is equal to the sum of the external force moments
acting on the fluid in the tank, as shown in (3.5). According to the definition direction
of angular momentum Mθy in this study, MT > 0 means that the external forcing moment
triggers counterclockwise moments to the fluid inside the tank. On the other hand, the
clockwise moment of the fluid was triggered by the external forcing moment when MT < 0.
Figure 11 depicts the time history of MT of the swirling waves and the associated variation
of Mθy. As T < 120, MT is positive, the external forcing generates a counterclockwise
moment to the fluid, which results in the increase of Mθy; Mθy gradually diminishes as
T > 120 and the strength of counterclockwise flow is reduced because the external forcing
induces clockwise moments (MT < 0) to the fluid. As the counterclockwise flow strength
decreases to almost 0 (Mθy ∼ 0), there is no circulatory flow in the tank. As a result,
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Figure 11. The rate of change of angular momentum (MT ), and we can see how MT (dark line) affects
the increase and decrease of Mθy (orange line) and switches swirling direction; d0/L = 0.25, a0/L = 0.005,
ωf = 0.97ω1,0, θ = 15°.

single-directional waves occur. The external forcing moment varies the flow circulation
strength and direction, and the switch between swirling and single-directional waves
occurs. At T = 170, Mθy becomes negative and swirling flow changes to clockwise flow.
As T > 200, the dominant moment induced by external forcing becomes counterclockwise
(MT > 0), which reduces the strength of the clockwise flow. Afterwards, the clockwise
swirling wave shifts its direction to the counterclockwise direction (Mθy > 0) at T ∼ 270.
We clearly found that the external excitation forcing affects the strength of the swirling
motion of the fluid in the tank.

Figure 12 demonstrates one of the switch point occurring at the peak of Fz−envelope
at which Mθx and Mθz are out of phase (figure 7b). At the time, Mθx−envelope is at its
peak, which implies the single-direction wave is primarily attributed to f (1,0) and the
trajectory of the mass centre is biased towards the surge direction (see snapshots). The
other switch point occurs at the trough of Fz−envelope at which Mθx−envelope is at its trough
and f (0,1) has more effect than f (1,0) on the single-direction wave and the trajectory of the
mass centre is biased more towards the sway direction. As an example, at T = 395.9 to
401.63, the trajectory of the flow mass centre is in a South–Westerly direction and, at the
same time, the tank is moving in the South–East direction and the inertia (gravitational)
effect results in switching of the swirling direction to a clockwise direction. Oppositely, at
T = 521.16 to 526.62, the trajectory of the flow mass centre is moving North–Easterly
and the instantaneous tank motion results in switching of the swirling direction to a
counterclockwise direction. The movie of the phenomena mentioned above for swirling
waves is provided as supplementary material (available at https://doi.org/10.1017/jfm.
2022.896).

3.4. Frequency domain of swirling waves
The frequency domain of swirling waves would be good information to estimate the
occurrence of the swirling phenomenon. We simulated more cases at various excitation
angles, excitation amplitudes and water depths to find the frequency range of swirling
waves and the result is depicted in figure 13. The results of Faltinsen & Timokha (2009)
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Figure 12. (a) Single-directional waves always occur at the peak and trough of Fz−envelope (snapshots: arrow
sign in blue colour indicates the tank motion direction, arrow sign in green colour indicates the trajectory
of mass volume centre); (b) snapshots of clockwise swirling waves (upper subplot in sequential order
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Figure 13. The frequency domain of swirling waves under various water depths, excitation angles and
excitation amplitudes.

are also shown in the figure, their results are, however, limited to a fixed excitation direction
(i.e. in the surge direction). As the tank has a shallow liquid depth, the frequency domain
of swirling waves becomes wider, especially for a tank exited with a larger excitation
amplitude (a0/L = 0.0078). On the contrary, the frequency domain of swirling waves is
limited to a small range for the tank with finite liquid depths. The corresponding maximum
sloshing amplitudes (ηmax) of the cases of θ = 10◦ and 30° in figure 13 are depicted in
figure 14, and the wave nonlinearity (ηmax/ηmin) at θ = 30◦ is illustrated in figure 15.
According to the assumption of the proposed numerical model, we cannot consider the
phenomena of wave breaking, wave run-up and tank roof impact in the simulations. In
other words, ηmax is captured before the simulation diverges at nearly resonant sloshing.
In figure 14, the soft-spring and hard-spring responses of ηmax are presented near the
first resonant excitation frequency (ω1,0) in a shallow liquid (d0/L ≤ 0.25) and at finite
liquid depths (d0/L ≥ 0.4), respectively. In addition, the effect of excitation angle on ηmax
is more significant as the liquid depth decreases, especially for the shallow liquid depth.
Increasing the excitation amplitude (a0/L = 0.0078) of the tank results in larger ηmax and
sloshing nonlinearity (figure 15). As the liquid depth decreases from the finite to shallow
depths, the nonlinearity of sloshing waves increases significantly. As we know, the wave
travel speed decreases with the liquid depth. The increased nonlinearity of sloshing waves
diminishes the travel speed of sloshing waves resulting in the hysteresis phenomenon on
the resonant frequency (ω1,0) in shallow liquid depths. Thus, the soft-spring phenomenon
is presented for shallow water depths.

The effect of excitation angle on the shift of the frequency domain of swirling waves
is clearly seen by comparing with the results of Faltinsen & Timokha (2009) for a tank
under 0-degree excitation (surge motion). Although different beat periods and sloshing
displacements of swirling waves are presented due to the effect of excitation angle, the
corresponding frequency domains are nearly the same when the excitation angle is in
the range of 5° ≤ θ < 30°. The frequency domain of swirling waves slightly reduces as
θ = 30°, which might be caused by the effect of the nonlinearity of sloshing waves.
In short, the evolutions of swirling waves are very sensitive to physical conditions,
including liquid depth, excitation angle, excitation amplitude and frequency of external
forcing.
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Figure 15. Nonlinearity of sloshing waves under different water depths and excitation amplitudes; θ = 30°.

4. Conclusion

The sloshing displacement of liquid in a tank is a combination of the standing wave and
forced (progressive) wave. When a 3-D tank is under a near-resonant excitation, the beat
phenomenon occurs, and a secondary excitation force creates swirling flow. In our study,
the following concluding remarks can be given:

(i) The period of a swirling wave in a tank is closely related to the beat period,
while the swirling behaviour is seldom seen when θ is larger than 30° or close to
0°. The oblique excitation produces two excitation components and the secondary
component triggers rotational waves.

(ii) The excitation moment enhances or reduces the circulation strength, and the
instantaneous tank motion finally switches the circulation direction. The magnitude
of the components of liquid angular momentum, Mθx and Mθz, and their phase
difference are the key factors in determining the quantity of fluid movement and
the direction of the circulatory flow.

(iii) Further, the phase difference between the tank motion and the fluid momentum
is significant in influencing the strength of the circulatory flow. The angular
momentum of the liquid Mθy represents the strength and the rotational direction of
the circulatory flow in the tank. The sum of the moment made by an external force
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acting on the fluid is equal to the rate of change of angular momentum of the fluid,
and plays an important role in affecting the strength of rotation of swirling waves.

(iv) The evolutions of swirling waves are very sensitive to physical conditions, including
liquid depth, excitation angle, excitation amplitude and frequency of external
forcing.

(v) The switch of the swirling direction always occurs at the peak or trough of
Fz−envelope. The external excitation moment varies the circulation strength, and
the swirling wave becomes a single-directional wave, but it is only sustained for
a short period of time. The instantaneous tank motion at the time finally switches
the consequent circulation direction.

Supplementary movie. Supplementary movie is available at https://doi.org/10.1017/jfm.2022.896.
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Appendix A. Numerical method used in this study

A.1. Coordinate transformation
Accurate free surface tracking of sloshing in tanks is an important factor for many
numerical methods, especially when sloshing nonlinearity is significant. Among these
methods, σ -transformation (Frandsen 2004), marker and cell, VOF, smoothed-particle
hydrodynamics (SPH) and the level set method (LSM) are frequently used in treating
time-varying free surface flow. For violent sloshing, wave breaking might be captured by
VOF, LSM and SPH. However, the prediction of energy dissipation due to wave breaking
and conservation of fluid mass among these methods still needs to be improved. In the
present study, we employ simple mapping functions to remove the time dependence of the
free surface in the fluid domain. The irregular boundary, including the time-varying fluid
surface, non-vertical walls and non-horizontal bottom, can be mapped onto a cube by the
proper coordinate transformations (Hung & Wang 1987; Chen & Nokes 2005; Wu et al.
2013)

x∗ = x − b1( y, z)
b2( y, z) − b1( y, z)

, y∗ = y + d(x, z)
h(x, z, t)

, z∗ = z − b3(x, y)
b4(x, y) − b3(x, y)

, (A1a–c)

where the instantaneous water depth, h(x, z, t), is a single-valued function measured from
the tank bottom, d (x,z) represents the vertical distance between the still water surface and
the tank bottom, b1 and b2 are horizontal distances from the z-axis to the south and north
walls, respectively, and b3 and b4 are horizontal distances from the x-axis to the west and
east walls, respectively (see figure 2). Through (A1), one can map the north wall to x∗ = 0
and south wall to x∗ = 1, the west wall to z∗ = 0 and east wall to z∗ = 1, the tank bottom
to y∗ = 0 and the free surface to y∗ = 1. The main advantage of these transformations
is to map a wavy and time-dependent fluid domain onto a time-independent unit cubic
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domain, which makes the program coding more efficient. In addition, re-meshing due to
the wavy free surface is unnecessary and the mapping implicitly deals with the free surface
motion and avoids the need to calculate the free surface velocity components explicitly.
Extrapolations are unnecessary and free surface smoothing by means of a spatial filter is
not required. All calculations can be done under a time-independent computational domain
due to the consequence of coordinate transformation. However, the phenomena of wave
breaking, run-up and tank roof impacts are not considered in the present study based on the
assumption of h(x, z, t). Unlike VOF and LSM, which solve two phase flow (air and water),
the present numerical model only considers one phase (water). Thus, the computational
time can be reduced.

For resonant sloshing, before wave breaking, very steep waves might occur at rigid
walls of the container. The coordinate system becomes far from orthogonal, resulting
in inaccuracy of discretization. In this work, the coordinates (x∗, y∗, z∗) can be further
transformed such that the layers near the wall and free surface boundaries are stretched
to capture sharp local velocity gradients and the free surface profile. The following
exponential functions provide these stretching transformations:

X = λ1 + (x∗ − λ1) ek1x∗(x∗−1), Y = λ2 + (y∗ − λ2) ek2y∗(y∗−1),

Z = λ3 + (z∗ − λ3) ek3z∗(z∗−1). (A2a–c)

The constants ki and λi(i = 1, 2, 3) control the mesh size and stretching in the X-, Y-
and Z- directions, respectively. The parametric study of constants ki and λi has been
performed by Wu & Chen (2009) to accurately capture the free surface profile near the
tank walls for resonant sloshing. As a result, the same constants (λ1 = λ2 = λ3 = 0.5 and
k1 = k2 = k3 = 2) are used in the present study as well, and the stretching grid is depicted
in Wu & Chen (2009). However, the assumption of a single-valued free surface still has
limitations in predicting sloshing, particularly when a shallow water depth with highly
nonlinear sloshing is considered. Based on the authors’ experiences, the approximate
limitation of the present scheme under near-resonant excitations (0.97ω1, ω1: the first
natural frequency mode) is determined when a0 (excitation amplitude)/d0 is close to 0.1
in the shallow liquid depth (d0/L = 0.1) case. For non-resonant excitations, it seems to be
able to tolerate much larger excitation amplitudes (a0/d0 > 2.5) for the present numerical
approach.

The dimensional parameters are normalized as follows:

U = u√
gd0

, V = v√
gd0

, W = w√
gd0

, P = p
ρgd0

, T = t
√

g
d0

,

H = η

d0
, Ẍc = ẍc/g, Zc = z̈c/g.

⎫⎪⎬
⎪⎭ (A3)

The detailed dimensionless equations implemented in the study are tedious and have
already been reported by Wu et al. (2013) and, therefore, are omitted in the text.

A.2. Computational algorithm

A.2.1. Finite-difference method
In the present 3-D analysis, the finite-difference method is used to discretize the
dimensionless equations in the transformed X-Y-Z coordinate system. Central difference
approximation is used for the space derivatives in the fluid domain, except at the
boundary, where forward or backward differences are employed. By employing a staggered
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grid system, the pressure P is defined at the centre of a finite-difference grid cell (of
dimensions(�X, �Y, �Z)), whereas the velocity components U, V and W are calculated
0.5�X, 0.5�Y and 0.5�Z behind, above or backward of the cell centre. The free surface
elevation H is at the same location as that of vertical velocity V.

The Crank–Nicholson second-order finite-difference scheme and the Gauss–Seidel
point successive overrelaxation iterative procedure are implemented to calculate fluid
velocity and pressure, respectively. When the dimensionless equations (Chen & Wu 2011)
are set to be balanced at time T = (n + 1/2)�T , the finite-difference forms of them are

Un+1
i,j,k = Un

i,j,k − �T(℘i,j,k + PX
i,j,k), (A4)

Vn+1
i,j,k = Vn

i,j,k − �T(Rei,j,k + PY
i,j,k), (A5)

Wn+1
i,j,k = Wn

i,j,k − �T(ℵi,j,k + PZ
i,j,k), (A6)

Hn+1
i,j,k = Hn

i,j,k − �T(Imi,j,k + Vi,j,k). (A7)

In these equations, the superscript n represents the time index (i.e. T = n�T) and �T is
the dimensionless time step. The terms without a superscript are at T = (n + 1/2)�T .
The velocity components at T = (n + 1/2)�T can be approximated as the averages of the
values at n�T and (n + 1)�T . All of the terms on the right-hand side of (A4)–(A6) are
applied at the same nodes as Ui,j,k, Vi,j,k and Wi,j,k. The terms PX

i,j,k, PY
i,j,k and PZ

i,j,k are
the corresponding pressure gradients in the X, Y and Z directions, respectively. The terms
℘i,j,k, Rei,j,k and ℵi,j,k contain all of the remaining terms in the dimensionless equations
(Wu 2009) grouped together, including the finite-difference expressions for the convective
acceleration, diffusive terms and the terms related to tank motion. In (A7), Imi,j,k is
the nonlinear term of pressure wave equation. The pressure is evaluated by solving the
Poisson equation. For T = (n + 1/2)�T , one can express the finite-difference equation in
the following form:

Pi,j,k = Ψ

[
1

ai,j,k
(Πi,j,k + Ωi,j,k) + P∗

i,j,k

]
+ (1 − Ψ )P∗

i,j,k, (A8)

in which ai,j,k is the sum of the coefficients of pressure Pi,j,k, Ψ is the relaxation parameter
and P∗

i,j,k is the previously iterated pressure. The relaxation parameter Ψ is chosen to be 0.7
in the present study based on previous works (Wu et al. 2012). The terms Πi,j,k represent
the finite-difference expressions of the pressure gradient and Ωi,j,k the finite-difference
expressions of the nonlinear convective accelerations and the term related to tank motion.
The superscript (n + 1/2), for Pi,j,k, Πi,j,k and Ωi,j,k is also omitted here. The detailed
finite-difference expressions for Pi,j,k, Πi,j,k and Ωi,j,k are tedious, and are, therefore,
omitted from the text. Once the pressure field has been solved by iteration, the velocity
components Un+1

i,j,k , Vn+1
i,j,k and Wn+1

i,j,k can be calculated from equations, (A4)–(A6). The

instantaneous water surface profile Hn+1
i,j,k can be calculated from (A7). Furthermore, we

employed a second-order upwind scheme (Hirt, Nicholas & Romero 1975) in the present
numerical scheme to deal with the convective terms.

In general, the errors in the solution of finite-difference equations may be caused
by round-off error, which is a property of the computer, or by the application of a
particular numerical method, i.e. a discretization error. If the errors introduced into the
finite-difference equation (FDE) are not controlled, the growth of errors with the solution
of the FDE will result in an unstable solution. The accuracy of the numerical results
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The mechanism of switching direction

significantly depends on the spatial grid resolution and the selected time step. The present
simulation time step and grid size are restricted by the condition given in (A9)

�t < min
{

�xmin

|ui,j,k| ,
�ymin

|vi,j,k| ,
�zmin

|wi,j,k|
}

v�t <
1
2

�x2
min�y2

min�z2
min

�x2
min + �y2

min + �z2
min

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

. (A9)

Equation (A9) implies that a liquid particle cannot move more than one cell in a single
time step and the diffusion of momentum is not significant over more than one cell in one
time step.

A.2.2. Iterative procedures
The finite-difference equations mentioned above can be used to solve for the wave field
and internal flow field as the tank is subject to external forcing. The most difficult part
of the present study is to calculate the coefficients of pressure, ai,j,k. A new iterative
procedure similar to the SIMPLEC algorithm is developed and the computational time
reduces at least 5 times faster than that by implementing the original iterative procedure
reported by Chen & Nokes (2005). The numerical residual error from solving the Poisson
equation is restricted by the proposed iterative procedure with a convergence criterion.
The detailed implicit iterative solution procedure employed here is given below. The
convergence criterion for the iterations of U, V, W and P is 10−5, while for H it is set
to 10−7.

Implicit iterative processes:

(i) Specify the initial condition.
(ii) Update forcing condition (tank motion).

(iii) Calculate coefficients C1–C15 due to coordinate transformation (Wu 2009) and
calculate the coefficient of pressure, ai,j,k.

(iv) Calculate ℘i,j,k, Rei,j,k and ℵi,j,k.
(v) Substitute the results of step 4 into dimensionless Poisson equation in order to

calculate Ωi,j,k.
(vi) Using the boundary conditions on pressure, calculate the terms PX

i,j,k, PY
i,j,k and PZ

i,j,k
in order to calculate Πi,j,k.

(vii) Calculate Ui,j,k, Vi,j,kand Wi,j,kfrom (A4), (A5) and (A6), respectively.
(viii) Calculate Pi,j,k from (A8) and then recalculate the terms PX

i,j,k, PY
i,j,k and PZ

i,j,k.
(ix) Recalculate new Ui,j,k, Vi,j,k and Wi,j,k from (A4), (A5) and (A6), respectively.
(x) Average the velocities calculated from steps 7 and 9 and then get new Ui,j,k, Vi,j,k

and Wi,j,k.
(xi) Repeat steps 6 and 9 at least 2 times, then check for convergence; that is, check

if |Pk+1 − Pk| < 10−5, |Uk+1 − Uk| < 10−5, |Vk+1 − Vk| < 10−5 and |Wk+1 −
Wk| < 10−5 in which k represents the iteration number. If convergence is not
reached, repeat steps 4–10.

(xii) Calculate Hi,j,k from (A7) and check that |Hk+1 − Hk| < 10−7. If the convergence
has not been reached, go to step 3 and update the coefficients relating to H.

If H has converged, then go to step 2 and begin the next time step.
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