COMPOSITIO MATHEMATICA

On a classification of irreducible admissible
modulo p representations of a p-adic split
reductive group

Noriyuki Abe

Compositio Math. 149 (2013), 2139-2168.

doi:10.1112/50010437X13007379

FOUNDATION LONDON
COMPOSITIO MATHEMATICAL
MATHEMATICA SOCIETY

https://doi.org/10.1112/50010437X13007379 Published online by Cambridge University Press


http://dx.doi.org/10.1112/S0010437X13007379
https://doi.org/10.1112/S0010437X13007379

///§ Compositio Math. 149 (2013) 21392168
4
©

doi:10.1112/S0010437X13007379
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reductive group
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ABSTRACT

We give a classification of irreducible admissible modulo p representations of a split
p-adic reductive group in terms of supersingular representations. This is a generalization
of a theorem of Herzig.

1. Introduction

Let p be a prime number and F' a finite extension of Q. In this paper, we consider modulo p
representations of (the group of F-valued points of) a split connected reductive group G
over F'. The study of such representations was started by Barthel-Livné [BL94, BL95] when
G = GLy(F'). They defined the notion of supersingular representations and gave a classification
of non-supersingular irreducible representations. In particular, they proved that a representation
is supersingular if and only if it is supercuspidal. Here, a representation is called supercuspidal
if and only if it does not appear as a subquotient of a parabolic induction from an
irreducible representation of a proper parabolic subgroup. By this theorem, to classify irreducible
representations of GLo(F'), it is sufficient to classify irreducible supersingular representations.
When G = GL2(Q)), irreducible supersingular representations are classified by Breuil [Bre03].
However, when F' # Q, a classification seems more complicated [BP12].

Herzig [Herlla] gave a definition of a supersingular representation for any split G
using the modulo p Satake transform [Herllb]. He also gave a classification of irreducible
admissible representations in terms of supersingular representations when G = GL,,(F'). This
is a generalization of a theorem of Barthel-Livné. In this paper, we generalize his classification
to any split G.

Now we state our main theorem. Let % be an algebraic closure of the residue field of F'. All
representations in this paper are smooth representations over E:Fp. Fix a reductive O-form
of G and denote it by the same letter G. Let K be the group of O-valued points of G. We
also fix a Borel subgroup B and a split maximal torus T C B of G. Then we can define the
notion of supersingular representations with respect to (K, T, B). (See Herzig’s paper [Herlla,
Definition 4.7] or Definition 5.1 in this paper.) Let II be the set of simple roots. Each subset
© C1II corresponds to the standard parabolic subgroup Pg. Let Pg = MgNg be the Levi
decomposition such that T'C Mg and Ng is the unipotent radical of Pg. Consider the set P of
all A = (I1y, II3, 01) such that:

— II; and Iy are subsets of II;
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— o7 is an irreducible admissible representation of My, which is supersingular with respect
to (Ml_h N Kv T7 MH1 N B)a

— if we let w,, be the central character of o; and put II,, = {a €Il | («, f[1> =0, wy, 0=
1GL1(F)} then H2 C ]:[0'1.

Then the main theorem says that there exists a bijection between P and the set of isomorphism
classes of irreducible admissible representations of G.

To state the theorem more precisely, we define the representation I(A) for A = (II;, IIp, 01) €
P. Let Py = M Ny be the Levi decomposition of the standard parabolic subgroup corresponding
to II; UIl,,. First we construct the representation op of My. We can prove that o1 can be
extended uniquely to My such that [My, (F), My, (F)] acts on it trivially (Lemma 3.2). We
denote the extended representation by the same letter o;. Let @) be the parabolic subgroup of
M corresponding to IT; U ITs. Then @ defines the special representation of My [Gro]. We denote
it by o 2. From the definition of the special representation, the restriction of o 2 to My, is the
special representation of My, with respect to the standard parabolic subgroup corresponding
to II. Now we define op = 01 ® o 2.

In the case of GL,, the construction is as follows. The Levi subgroup M, is given by a
product GL,, X - -+ x GL,, . The extension of o1 to M, is a tensor product 7{ X --- K 7/. For
each 4, define a representation 7; of GL,, as follows. If GL,,, C My, then 7/ is a supersingular
representation and put 7; = 7/. If GL,,, ¢ My, , then 7/ is a character. In this case, the intersection
of the roots of GLy,, and Il gives a parabolic subgroup @; of GL,,. Put 7, =7/ ® Spg,; here Spy,,
is the special representation corresponding to @);. Then oy is given by op =7 K- - - X 7,.. Each 7;
is a supersingular representation or a special representation twisted by a character (cf. [Herlla,
Theorem 1.1]).

Put I(A) = Ind§, (o4). The following is the main theorem of this paper.

THEOREM 1.1 (Theorem 5.11). For A € P, I(A) is irreducible and the correspondence A +—
I(A) gives a bijection between P and the set of isomorphism classes of irreducible admissible
representations of G.

Using this theorem, we get the relation between supersingular representations and
supercuspidal representations. Recall that a representation is called supersingular if it is
supersingular with respect to any 3-tuple (K, T, B) chosen as before.

THEOREM 1.2 (Corollary 5.13). For an irreducible admissible representation m of G, the
following conditions are equivalent.

(i) The representation 7 is supersingular with respect to the fixed (K, T, B).

(ii) The representation 7 is supersingular.

(iii) The representation 7 is supercuspidal.
These theorems are proved by Barthel-Livné [BL94, BL95] (G = GL2) and Herzig [Herlla]
(G =GLy,). (In these cases, the equivalence of (i) and (ii) in Theorem 1.2 is almost clear since
there is only one hyperspecial maximal compact subgroup of G up to conjugate. See Herzig’s

argument [Herlla, §4].)
We also give a criterion of the irreducibility of a principal series representation.

THEOREM 1.3. Let v: T — E* be a character. Then Indg v is irreducible if and only if v o & #
lgr,(r) for all a € 11
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This is proved by Barthel-Livné when G = GLy [BL94, BL95] and Ollivier [Oll06] when
G = GL,,. In fact, we can describe the composition factors of Indg(a) where ¢ is an irreducible
admissible supersingular representation of the Levi subgroup of a parabolic subgroup P
(Lemma 5.8 and Remark 5.9). When G = GL,,, such description is given by Herzig [Herlla,
Theorem 8.7].

Now we give an outline of the proof. Using a z-extension, we may assume that the derived
group of G is simply connected. Let c—Indf((V) be the compact induction from an irreducible
K-representation V and Hg(V) the endomorphism ring of c-Ind% (V). Let X, be the group of
cocharacters of T and X, = {\ € X, | (\,II) C Z>¢}. Then by the Satake transform, we have
Ha(V) ~ K[ X, 4] [Herllb, Corollary 1.3]. In particular, Hg(V') is commutative. Therefore, for
each irreducible admissible representation 7 of G, there exist an irreducible representation V' of
K and a character x of Hg(V) such that 7 is a quotient of c-Ind% (V) @3 (v) X- To prove the
main theorem, we reveal the relation between c-Ind% (V) @y +(v) X and a parabolic induction.

The first comparison is given by Herzig [Herlla, Theorem 3.1]. He proved the following.
Let P=MN be a standard parabolic subgroup and its Levi decomposition and II;; the set
of simple roots of M. By the partial Satake transform, we have an injective homomorphism
Ha(V) — Hp (VV©O), Fix a character x of Hg(V). Let P=MN be a standard parabolic
subgroup such that y factors through Hg(V) — Har (V). Let v be a lowest weight of V and
put Iy = {a €1 | (v, &) = 0}. Herzig proved that if IIy, C II5; then we have

Ind% (V) @ro) x = IdG(e-Ind e (V) 0, oy ). (1.1)

(He proved this theorem for any split G.)

Unfortunately, in the above theorem, the condition IIy, C Il is needed. For example, if
V' is the trivial representation, the above theorem does not hold. However, we can prove the
following ‘changing the weight theorem’. Let V'’ be another irreducible K-representation and
V' its lowest weight. Assume that there exists a simple root a such that o & Iy, a € Iy and
V' =v — (¢ — 1)ws where w, is a fundamental weight corresponding to . Moreover, assume that
(c, Ipr) # 0 or x(&) # 1. Then we have

c-Ind (V) @21y X = ¢-Ind% (V') @1y X

(Theorem 4.1). In this theorem, Iy =IIy\{a} S Ily. Therefore, at least if x is generic, then
(1.1) holds. Herzig proved this theorem under some assumptions (which are enough for G = GL,,).
We prove it for any split G in this paper.

Finally, we must treat the case when neither theorem can be applied. An argument using a
tensor product deduces us to the case of P = B. To use such arguments, we need to express the
Satake parameters of op by those of o1 and oy 2. Such calculation is given in §3. If G = GL,,,
this calculation is almost obvious since any Levi subgroup of GL,, is a product of smaller groups
GL,,.

Assume that P = B. In this case, Herzig studied the structure of the left-hand side of
(1.1) by a (mysterious) calculation of the affine Hecke algebra when G = GL,,. Our method
is different from his, and ours gives more information on the structure of the left-hand side.
In fact, we prove that both sides of (1.1) have a finite length and the same composition
factors (Proposition 4.7). To prove it, we prove that c-Ind% (V) Q1 (V) Hp(VU©) is free as
a Hr(VU(©)-module (Proposition 4.22). By the theorem of changing the weight, for a generic
X, c—Indf((V) @ (v) X only depends on VU(©) and . Using the freeness, it follows that the

composition factors of c-Ind% (V) @y «(v) X only depend on VU(©) and X. Such an argument can
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be found in the paper of Barthel-Livné [BL95] when G = GLg. They proved the freeness (see
Remark 4.23) by the detailed study of a compact induction. We prove the freeness by embedding
c-Ind% (V) 1 (V) Hr(VU(©) to a principal series and considering the filtration coming from
the Bruhat decomposition (Lemma 4.21).

Such comparisons are given in §4. Using these comparisons, the main theorem is proved
in §5.

2. Preliminaries

2.1 Notation

In this paper, we use the following notation. Let p be a prime number, F' a finite extension of
Qp, O its ring of integers, w € O a uniformizer, kK = O/(w) the residue field and ¢ = #~x. Let G
be a connected split reductive group over O. Fix a Borel subgroup B C G and a split maximal
torus T'C B. Let U be the unipotent radical of B. Then B=TU is a Levi decomposition of
B. Let B=TU be a Levi decomposition of the opposite group of B. We also denote the group
of F-valued points of G by the same letter G. The only confusion coming from using the same
letter is the notation ‘|G, G| . In this paper, [G, G] means the derived group of G as an algebraic
group. In general, [G(F), G(F)] C [G, G](F) and it is not equal. If [G, G] is simply connected,
then [G, G|(F) =[G(F), G(F)].

We use similar notation for other groups (for example, B = B(F)). Set K =G(O). For
any algebraic group H, let Z° be the connected component of H containing the unit element
and Zp the center of H. We also use the notation Zy for the center of any group H. For
closed subgroups Hy, Hy C H, we define a closed subgroup Zp, (H2) of H; by Zg, (H2) ={h1 €
Hy | hihe = hohy for all hg € Ho}. For a group I', 1p is the trivial representation of I'. For a
representation V of I', V1 is the space of invariants and Vi is the space of coinvariants.

Let (X*, A, X, A) be the root datum of (G, T'). Then B determines the set of positive roots
AT C A and the set of simple roots II C A*. Let W be its Weyl group. Let red: K = G(O) —
G(k) be the canonical morphism. The set of dominant (respectively anti-dominant) elements in
X™ is denoted by X7 (respectively X* ). We also use notation X, ; and X, _. For A\, p € X, we
denote p <\ if A — p € Zzoll.

Let P be a standard parabolic subgroup. It has a Levi decomposition P = M N. In this paper,
we only consider the decomposition such that 7' C M. The opposite parabolic subgroup of P is
denoted by P = MN. We denote the Levi decomposition of the standard parabolic subgroup
corresponding to © C1II by Pg = MgNg. The subset of II corresponding to P is denoted by
IIp or . Put Apy=ANZIHy and A, =AT N Ay Let Wy be the Weyl group of Ayy.
For dominant v € X*, let P, = M, N, be the standard parabolic subgroup corresponding to
I, ={aell|(y,d&) =0} Put W, =Staby (v), A, ={a€A|{r,d)=0} and Af =ATNA,.
We use similar notation for dominant A\ € X,.

For a subset A C X* and A’ C X,, (A, A’) =0 means (v, \) =0 for all v€ A and A€ A"
Notice that this condition is automatically satisfied if A or A’ is empty. We write (4, \) =0
(respectively (v, A’) =0) instead of (4, {\}) =0 (respectively ({v}, A’) =0).

A z-extension of G (over F) is a surjective homomorphism (as algebraic groups) G — G x¢ F
over F' such that the derived group of G is simply connected and the kernel is a split torus which
is central in G X F'. Since the Galois cohomology of a split torus is trivial, the homomorphism
G = G(F) — G(F) = G is also surjective. It is known that a z-extension exists.
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LEMMA 2.1. Let G — G be a z-extension. Then there exists a hyperspecial maximal compact
subgroup K of G such that the following conditions hold.

(i) The homomorphism G — G induces a surjective homomorphism K — K.

(ii) The induced homomorphism K—K induces a surjective homomorphism G(r) — G(k).
(Here, we denote the O-form of G corresponding to K by the same letter G.)

(iii) The derived group of G xo K is simply connected.

Proof. Let Guq = Gad be the adjoint group of G, B its building and x € B the hyperspecial
point corresponding to K. The point x defines the hyperspecial maximal compact subgroup
K of G. Then (i) follows from [HRO8, Proof of Proposition 3]. Since Ker(K — G(k)) is the
maximal normal pro-p subgroup of K, K — K induces G(r) — G(k). By (i), this homomorphism
is surjective. Since G x o F and G x ¢ « have the same root data, (iii) follows. O

LEMMA 2.2. The subgroup [G(F), G(F')] is closed in G(F) (with respect to the p-adic topology).

Proof. Let 1 — Z—>§—>G—>N1 be a z-extension. By the surjectivity of G (F) — G(F),

have [G(F), G(F)] = r([G(F), G(F)]). Since [G, G] is simply connected, we have [G(F), G(F)] =
[G, G](F). The map |G, G](F)— |G, G](F) is an open map [BZ76, A.3. Lemma]. Therefore
[G(F), G(F)] is open in |G, G|(F). Hence [G(F), G(F)] is closed in [G, G](F). Since |G, G|(F)
is a closed subgroup of G(F), [G(F), G(F)] is closed in G(F). O

2.2 Satake transform and irreducible representations of K

Let ® be an algebraic closure of k. Recall that all representations in this paper are smooth
representations over k. For a finite-dimensional representation V' of K, let c—Indf(V be a
representation defined by

c-IndZ V = {f:G—=V| f(zk ( )(z € G,k € K), supp f is compact}.

)=
The action of g € G is given by (9f)(x) = f(¢g~'z). For £ € G and v € V, let [z, v] € c-Ind% (V)
be the element defined by supp([z,v]) =zK and [z,v](z) =v. Then g[z,v]=[gx,v] and
[zk, v] = [z, kv] for g€ G and k€ K. For finite-dimensional representations Vi, Vo of K,
Homg (c-Ind% Vi, c-Ind$- V5) is identified with

go(kizl’k'l) = ]{3250(21))]{71 (k‘l, ko € K ze G),}

Ha(Vi, Va) = {4/3: G — Homg(V1, V2) supp ¢ is compact

The operator corresponding to ¢ € Hg(V1, Va) is given by f — ¢ * f where
(ex Hx)=D_ o) flzy).
yeG/K

We denote Hg(V,V) by Ha(V). Let ™ be a representation of G. Then by the Frobenius
reciprocity law, we have Homp (V, ) ~ Homg/(c-Ind%(V), 7). Hence Hompg (V, ) is a right
He(V)-module. We denote the action of ¢ € Hg(V) on ¢ € Homg (V, 7) by 1 * ¢.

When V is irreducible, the structure of Hg(V') is given by the Satake transform [Herllb].
Namely, the Satake transform Sg: Hg (V) — Hp(VU®) defined by

Se@= 3 elud)lyre

wel /T(0)

is injective and its image is {p € Hr(VU®) | supp ¢ C T.} where Ty ={teT |a(t)eO
(e A1)}
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Remark 2.3. The convention about positive and negative are interchanged comparing to Herzig’s
papers [Herlla, Herllb].

Herzig [Herlla] defined another homomorphism Sg: Hg(V) — Hr(Viy(.)) and, under the

identification VU () l>VU(,{), he proved Sg= 'S if the derived group of G is simply
connected [Herlla, Corollary 2.19].

LEMMA 2.4. For any G, Sg = 'Sg.

Proof. Let G—G be a z-extension and Z the kernel of G — G. Take a hyperspecial maximal
compact subgroup K CG as in Lemma 2.1. Using the surjective homomorphism K — K,
we regard V' as an irreducible representation of K. Define Hz(V) — Hg(V) by ¢ (g

ZzeZ/(me{) ©(gz)); here g € G is a lift of g € G. (Notice that Z N K acts on V trivially.) The

same formula defines a homomorphism HT(VU(“)) — Hp(VU®), here T is the inverse image
of T'. Then we have the following commutative diagram.

Sa —
He(V) =S p (VU )

| |

Hea(V) S Hp(VU®)

\SNe haz;e a similar diagram for ‘'Sz and ‘Sg. Since Hz(V') — Ha (V) is surjective, Sg = 'Sg implies
G = ©G- U

Using this lemma, we identify S with 'S¢ and we always denote it by Sg.

A homomorphism X, x T(O) — T defined by (A, ty) — A(w)tp is an isomorphism and it
induces X, 1 x T'(O) ~T,. Hence S¢ gives an isomorphism Hqg(V) ~E[X, 1]|. For A€ X, 4,
there exists T) € Hg (V') such that supp T\ = KA(w)K and T)(A(w)) is given by V — Viy, () =~
VMK < V. Then {Ty | A € X, 4} gives a basis of Hg(V). When we want to emphasize the group
G, we write Tf instead of T. For A € X,, let 7\ € K[X,] be an element corresponding to A. (As an
element of Hr(VU(*¥)), the support of 7y is T(O)A\(w) and 74 (A(w)) = id.) Then {7y | A € X, 4}
gives a basis of K[X, i]. The relation between Sg(Th) and 7 is given by Herzig [Herlla,
Proposition 5.1]. An algebra homomorphism %[X, | — % is parameterized by (M, xas) where
M is the Levi subgroup of a standard parabolic subgroup and xjs is a group homomorphism
Xm0 — R where Xp.0={A€ X, | (\ II)) =0} [Herlla, Proposition 4.1]. Therefore, an
algebra homomorphism Hg (V') — & is parameterized by the same pair.

Remark 2.5. Since the isomorphism Hr(VY(*)) ~%[X,] depends on a choice of a uniformizer
w, the above parameterization is not natural. A more natural way is given by Herzig [Herllb,
Corollary 1.5]. In this paper, we fix a uniformizer and identify Hq (V') with £[X, ]. (It is only
for a simplification of notation.)

Let P = MN be the Levi decomposition of a standard parabolic subgroup. Then the partial
Satake transform SY : Ha(V) — Ha (V™) is injective and it satisfies Sy o SY = S¢ [Herlla,
§2.3]. We also have 'SY. By Lemma 2.4, we have S} = 'S¥ under the identification V() ~
VN(x)- Assume that x: Hg(V) — F is parameterized by (M, xar). Then M is characterized by
the following property: x factors through Sé/[ "if and only if M’ D M. We also have the following:
xm(A) = x(ma) 7! for all A€ Xpr.0N Xt
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Let Vi, Vs be irreducible representations of K. For each A€ X, ., there exists €
H(V1, V2)\{0} whose support is KA(w)K if and only if (Vi)n, ()= (V2)n, ) as Mi(k)-
representations. Moreover, such ¢ is unique up to a constant multiple. The homomorphism
©(Mw@)) is given by Vi — (V1) n, (x) = VQN*(H) — V4. (See the proof of [Herlla, Proposition 6.3].)

All irreducible representations of K factor through K — G(k). If the derived group of G is
simply connected, such representation is parameterized by its lowest weight. If v € X* satisfies
—q < (v, &) <0 for all @ €1I then the restriction of the irreducible representation of G(&) with
lowest weight v to G(k) is irreducible and they give all irreducible representations of G(x). When
V is the restriction of an irreducible representation with lowest weight v, we call v a lowest weight
of V. (For vy € X* such that (v, IT) = 0, the restriction of the irreducible representations with
lowest weight v and v + (¢ — 1)1 are isomorphic to each other. Hence v is not determined by V'
uniquely.)

3. Satake parameters

3.1 Definition and some lemmas
We start with the following definition.

DEFINITION 3.1. Let 7 be a representation of G. An algebra homomorphism x: B[ X, ] =&
is called a Satake parameter of w if there exist an irreducible K-representation V and ¢ €

Hom (V, m)\{0} such that for all p € Hg(V), ¥ x o = x(Sa(p)).

Let S(m, V') be the set of Satake parameters appearing in Homg (V, 7). We denote the set
of Satake parameters of m by S(m). Then we have S(7) = Jy, S(w, V). If 7 is admissible, then
S(m) # 0. We give some propositions about Satake parameters. Before proving some properties
of Satake parameters, we give some fundamental facts about a structure of G.

LEMMA 3.2. Let I1 =1I; UIly be a partition of Il such that (II;, ﬂ2> =0 and P, = M;N; the
standard parabolic subgroup corresponding to Il;. Let Lo be the subgroup of T' C M generated
by {&(F*) | a € IIz}. Then we have G /[Ma(F), Ma(F')] ~ M;/Ls.

Notice that Lo is not the group of F-valued points of an algebraic group in general.

Proof. First we assume that the derived group of G is simply connected. Let F be a separable
closure of F'. In this proof, we write G = G(F'). (The same notation is used for other groups.) Let

L; be the subgroup of T generated by {&(F ") | a € IIp}. Namely, Ly is the image of (F )2 — T.

Since the derived group of G is simply connected, this map is injective. Therefore, Lo = LS al(F/F),

Set Iy = {v € X*| (v, II3) = 0}. Since G/[Maz, Mz] and M; /Ly have the same root data
(I3, Apr,, Xo/Z112, Ayy,), these are isomorphic. Since the derived group of G is simply
connected, so is [My, My]. Hence the Galois cohomology H!(F, My, My]) is trivial. Therefore
(G/[My, My))ClE/F) = G/([My, My)(F)). Using the fact that [Msy, My] is simply connected
again, [Ma, Ms](F) = [My(F), Ma(F)]. Since Ly is a split torus, H!(F, Ly) is trivial. Hence
(M /L) CalF/F) = Ml/LSal(F/F) = M;/Ls. The lemma follows in this case.

In general, let r: G — G be a z-extension of G. Define M (respectively Mg, Eg) in the same
way as M (respectively My, Ly). Then Ml and Mg are the inverse images of My and Ms, respec-
tively. In particular, r([MQ(F), M. (F)]) = [Ma(F), My(F)]. By the definition, r(Ly) = Lo. By the
above argument, we have é/[MQ(F), MQ(F)] o~ MI/EQ. Consider f: M; — G — G/[Ma(F),
M>(F)]. We prove f is surjective and Ker(f) = Lo.
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Let g € G and take § € G such that 7(§) = g. Then there exist 7 € M and 7y € [MQ(F),
M(F)] such that § = myiie. Hence g = r(§) = r(i)r(ig) € Mi[My(F), My(F)]. Therefore, f
is surjective.

Take m € My N [My(F), My(F)]. Take my € My and g € [Ma(F), My(F)] such that m =
r(1) = r(Msz). Then g € My Ker(r) € My Ker(r) = M. Hence g € My N [Mg( F), My(F)] C
Lo. Therefore, m—r( 9) € L2 Hence Ker(f) C Lo. Let m € Ly and take m € Ly such that
r(m) =m. Then m € [My(F), My(F)]. Hence m € r([My(F), My(F)]) = [My(F), My(F)]. Hence
Ly C Ker(f). O

ProrosSITION 3.3. There is a one-to-one correspondence between characters vg of G and
characters vy of T' such that vy o & is trivial for all a € I1. It is characterized by vy = vg|r.

Proof. Apply the previous lemma for IT; = () and I = II. O

COROLLARY 3.4. Let vg be a character of K. Then there exists a character vg of G such that
vk = vg| k. Moreover, there is a unique character vg of G such that v = vg|k and vg(A(w)) =1

for all \ € X,.

Proof. If the derived group of G is simply connected, it is known that vx has a lowest weight
v which satisfies (v o &)(O0*) =1 for all a € II. Therefore, the corollary follows from the above
proposition. In general, let 1 — Z — G — G — 1 be a z-extension of G, K as in Lemma 2.1 and

T the inverse image of T’ in G. Then there exists a character vg such that vz|z is a pull-back of

vk and vg(A(@)) =1 for all X € X, (T). Hence vglz is trivial. Therefore, it gives a character vg
of G and vg|x = vk. O

For a character v of G, ¢ — (9 — ¢u(g) = ¢(g)v(g)) gives an isomorphism He (V) ~ Ha(V @
v|k). The following lemma and propositions are essentially proved in [Herlla].

LEMMA 3.5 [Herlla, Lemma 4.6]. For a standard parabolic subgroup P = MN, the homo-
morphism ¢ +— @, is compatible with the partial Satake transform Sé/[ .

Proof. We have
(S¥e)m)= 3 vimn)p(mn).

neN/(NNK)
Since N C [G, G], we have v(n) = 1. Therefore,

Y. vlmmp(mn)=v(m) Y p(mn)=v(m)(SE)(m). =

neN/(NNK) neN/(NNK)
Now we give some properties on Satake parameters. The following proposition is obvious.
PROPOSITION 3.6. If 7’ C 7, then S(«', V) C S(m, V).
The following proposition follows from [Herlla, Lemma 2.14].

PROPOSITION 3.7. Let P = MN be a parabolic subgroup, o a representation of M and V an
irreducible representation of K. Then we have S(Ind%(c), V) = S(o, VN(“))\E[XH]. In particular,

we have S(Ind%(0)) = S(0)lrix. ,)-

Let x1, x2: RB[X« 4] — K be algebra homomorphisms. Define x; ® x2: B[ X« 4] =% by (x1 ®
x2)(T2) = x1(ma)x2(mn)-
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PROPOSITION 3.8. Assume x; is parameterized by (M, xar,). Then x1 ® x2 is parameterized by
(M, xar) where py =1y, Uy, and Xar = XM, [ X0 X0z | Xos o

Proof. If x: R[X,] — & corresponds to (M, xar), for A € X, 1, AN(w) € Zy if and only if x(7x) #
0 [Herlla, Corollary 4.2]. Hence IIj; =1IIp, UIlyg,. The formula xar = Xar | Xa . o XM | Xoro
follows from [Herlla, Corollary 4.2]. O

PROPOSITION 3.9 [Herlla, Lemma 4.6]. Let v be a character of G and m a representation of
G. Then S(t @ v) = S(7) @ X, where X, : K[ X« ] — & is given by x, (1)) = v(A(w)) L.

Proof. This follows from Lemma 3.5. a
PROPOSITION 3.10. Let v be a character of G. Then S(v) = {x.}.

Proof. We have an injective homomorphism v < Ind§(v|7). Hence we have () #S(v)C
S(nd§(vlr)) = SWlr)lsx. . = {xv}- o

3.2 Restriction and Satake parameter
Let GG1 be a connected subgroup of G which contains the derived group of G. Put K; =
G1 N K. This is a hyperspecial maximal compact subgroup of Gi. We also denote the O-form
corresponding to K; by the same letter G;.

LEMMA 3.11. The restriction of an irreducible K-representation to K1 is also irreducible.

Proof. We may replace K (respectively Kj) with G(k) (respectively Gi(k)). Let V be an
irreducible representation of G(k), Vi C V a non-zero G (k)-subrepresentation of V. Since U (k) C
G1(k), we have VU(K) C VU(), The group U(k) is a p-group, hence VIU(H) £ 0. Since dim VU =
1, we have V] Uk )— VU Let 7: G — G be an anti-involution such that 7| =1idp. Since G
is generated by U, U and T' NGy, and we have 7(TNG1)=TNGy, 7(U)=U and 7(U) =U,
T preserves G1. We have a perfect paring (-,-): V x V — & such that (gv,v') = (v, 7(g)v’) for
geG, v,v' €V and (VUK VU®) L), (See an argument in [Hum06, p. 18].) Put V/ = {v €
V| (v, V1) =0}. Then this is a G1(k)-subrepresentation. If it is not zero, then, by the above
argument, we have (V{)V(*) = VU This contradicts (VU VUK) -0, Therefore, V= 0.
Hence V =V. O

Let Xq, « be the group of cocharacters of G1 N T'. Put Xg, « + = X\ + N X¢, . Then we have
He, (V) ~E[Xqg, «+]. Since Xq, «+ C Xi 4+, we have an injective homomorphism ®[Xq, «+] —
F[ X« 4]. This induces ®: Hg, (V) — Ha(V).

LEMMA 3.12. We have Im ® ={p € Hg(V) |supp ¢ C G1K} and the isomorphism Im ® ~
Ha, (V) is given by ¢ — ¢|a,.

Proof. Put Hi={p € Ha(V) |supp ¢ C G1K}. Then H; has a basis {T{ | A € X¢, 4} To
prove the first statement of the lemma, it is sufficient to prove that if A€ Xg, 4+ then
Sc(TC) € R XG,4+] and {Sg(T) | A€ Xa, w1} is a basis of B[Xg, «+]. We have Sg(T¢) €
™ + Zu<)\ KTy. Since IIc XaG, o A€ X, and p <\ imply i € X¢, «. Therefore we get the
first statement.

Since U is the unipotent radical of the Borel subgroup BN G1 of Gy, we have Sg(T/\G) =
Sc, (T¢|a,) for X\ € Xg, .4+ by the definition of the Satake transform. We get the second
statement. a
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LEMMA 3.13. Let w be a character of Z¢g, V1 an irreducible representation of K such that Zx,
acts on it by w|Zk,. Then there exists an irreducible representation V of K such that Vg, =V;
and the center of K acts on it by w.

Proof. Using a z-extension and the argument in the proof of Lemma 3.11, we may assume
that the derived group of G is simply connected. Let 11 € X7, be a lowest weight of V4. There
exists wy € X7 such that w|ze.nKk 1s given by Zg N K YL 0% kX, (The character w; gives
a continuous character Zg — F'* and the image of Zg N K is a compact subgroup, hence it is
contained in O*.) By the assumption, v1|z, and wi|z, give the same character of Zg, N K.
Therefore V1|Zc1 —wy ’ch = (¢ — 1)wy for some wy € X}Gl. Take w3 € X7 such that wg\zcl = wy.
Set wg = wy + (¢ — 1)ws. Then wy gives the character w|z.nx of Zg N K and Vl\zcl = W4’Zc1- We
have an exact sequence 1 — Zg, — Zg x (G1NT) — T — 1 as algebraic groups. Hence we get
an exact sequence 0 — X¢, — X5 & X7 — X}Gl — 0. Therefore there exists v € X such that
V|lrng, = v1 and v|z, = wy. Then the irreducible representation V' of K with a lowest weight v
satisfies the condition of the lemma. O

PROPOSITION 3.14. Let w be a representation of G and V an irreducible representation of K.
Then we have S(7, V)lx(x,, .., C S(7lc,, Vlgink). Hence S(m)|r(x,, ., C S(7la,)-

Moreover, if m has a central character, then for each irreducible (G N K )-representation Vi,
we have S(m|g,, V1) = UVIclmK:Vl S(m, V)‘E[Xcl,*,H' Hence S(7|g,) = S(ﬂ—)‘E[XGL*Hr}.

Proof. Let V be an irreducible representation of K. We prove S(m, V)|z(x,, .., C S(7lay: Vk,)-
It is sufficient to prove that

Hompg (V, ) — Hompg, (V, 7)
is an Hg, (V)-module homomorphism. Let ¢ € Hg, (V) and ¢ € Homg (V, 7). Then for each
veV,
Wx@@))= Y (@) g )= Y gu(@(p)g "))
geG/K geG1K/K
The claim follows from G1/K; ~ G1K/K.

Assume that m has a central character. Let V] be an irreducible representation of K. By
the above lemma, there exists an irreducible representation V' of K such that V|g, =V} and a
central character of V is the same as that of 7. Set K’ = K;Zk. Since K is open in G; and
Zk is open in Zg, K’ is open in G1(F)Zg(F). Applying [BZ76, A.3. Lemma] to G1 X Zg — G,
G1(F)Zg(F) is open in G = G(F). Hence K’ is open in G. Therefore, K’ has a finite index in
K. We have

Homg, (V, 7) = Homp (V, 7) ~ Homg (Ind%, (V), 7).

Since V has a structure of a representation of K, we have Ind%, (V) ~ Ind%, (1x/) ® V. Therefore
we have

U: Homg, (V, 7) ~ Homg (Ind%, (1) @ V, 7).
Explicitly, this isomorphism is given by

V) (fev)= Y  fl@ap ().

zeK/K’
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Therefore, for ¢ € Hg, (V'), we have
VW) (fev)= Y  fl@z Y  glelg "z v)

zeK/K' g€G1 /K,

Yo Y f@) (g (@(p)((xg) ).

z€K/K’ geG1 /K,

Replacing ¢ with z71gz, we have

V) (fov)= Y, Y. f@gep@ elg )= Y, g¥@)(f @@ ).

CL’EK/K’ geGl/Kl gEGl/Kl

Since K' is a normal subgroup of K and K/K' is commutative, the representation Ind%, (1x)
has a filtration {X;} such that X;/X;_; ~v; for some character v; of K. Set X =Ind%, (1),
Y =Homg (X ® V, ) and Y; = Homg (X/X; ® V, 7). Then we see that {Y;} is a filtration of Y
and Y;_1/Y; — Homg(v; ® V, 7). By the above formula, Y; is stable under the action of
v € He, (V). Hence ¢ acts on Y;_1/Y;. Extend v; to a character of G such that v; is trivial on Gj.
Then we have Ho(V) ~ Hg(v; ® V) by ¢' +— ¢, . We have an action of ®(¢),, € Ha(v; ® V) on
Hompg (v; ® V, m). We prove that these actions are compatible with Y;_1/Y; — Homg (v; ® V, 7).

Since v; is trivial on Gy, we have a ® ¢(g71)v = ®(¢),, (97 1) (a ® v) for g € G;. The function
g g¥ () (®(p)y.(971)(a ®v)) is right K-invariant. Therefore,

> gv@)a@eg )= Y g @)@ (g N a@w))

9€G1 /K, geG1K/K

= D gV @@ (97N a®0v)) = (T(¥) * &(p)y,)(a @ v).

geG/K

This means that the actions are compatible.
Hence each element of S(7|q,, V) appears in S(m, v; ® V)|g(x,, . ) for some i. Since v; is
trivial on K, (v; @ V)|k, ~ Vi, ~ V1. We get S(7|q,, V) C UV,‘Klzlel S(m, V) lrixe,. - O

3.3 Satake parameter of tensor product

Consider the setting in Lemma 3.2. Namely, let Il =1I; UIls be a partition of II such that
(I, ﬂg> =0. Let P, = M;N; be the standard parabolic subgroup corresponding to II;. Set Hy =
Zyr, ([My, My))°. Put II{ = {\ € X, | (\,II1) = 0}. Then the group of cocharacters of Hy N T is
ITI{-. We also have [Ma, My] C Hy C My (as algebraic groups). Put Xp, . + = X, 1+ N1{. We have
N2 C [Ml, Ml] -

Fix an irreducible representation V of K and put V5 = VN2(k)  Then V5 is irreducible as a
representation of My N K. Since [My, Ma| C Hy C My (as algebraic groups), V3 is also irreducible
as a representation of Ho N K (Lemma 3.11). We have R[Xp, « ] — K[Xs +]. Hence we get
O Hy, (Vo) — Ha(V).

LEMMA 3.15. For m € My andn € No, if mn € KHyK, thenn € K.

Proof. By the Cartan decompositions, we can choose A € Xp, 4, Ao € X, « 4+ and k1 € Mo N K
such that mn € K\(w)K and m € (My N K)Ag(w)k;. Then we have \a(w)(kink; ') € KA\(w)K
Put m; = klﬁk:l_l € N,. We prove g € K.

By the assumption, we have Ny C M. Therefore, \o(cw)my is in My. Take A1 € Xy, « 4 such
that A\o(w)my € (M1 N K)A\(w)(M1 N K). Then K\ (@)K N K\(w)K # (. Therefore, Ay € WA.
The Weyl group W preserves each connected component of the root system A. Hence W
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preserves Hll. Hence A\ EH%. Therefore, \j(ww) commutes with any element of M. Hence
Xo(w)my € (M1 N K)\ (@) (M N K) =M (w)(M;NK). Therefore, \i(w) 'X2(w)n € K. We
get ny € K. O

LEMMA 3.16. If ¢ € Hg(V) satisfies supp ¢ C K Ho K, then Sé‘;fz (p)(m) = p(m)|y, for m € Ms.
Proof. By the definition, we have

SeE(@m)= Y p(mn)ly,.
ﬁENz/NzﬂK
Since supp ¢ C K Ho K, this is equal to ¢(m)|y, by the above lemma. O

LEMMA 3.17. If A\, p € X, 4 satisfies p < X and A € Xy, 4, then A — p € Z>olls. In particular,
JIAS Xsz*,-i-‘

Proof. For each a €11, take ny € Zxo such that A — p =3y na@. Then for g €Iy, we have
> e, NalB, &) = —(B, u) < 0. Since (dg(B, &))a,pem, is symmetric and positive definite for some
do > 0, we have n, =0 for all a € 11;. O

By the above two lemmas and the argument in the proof of Lemma 3.12, we get the following
lemma. (Notice that ¢(h) induces Vo — Vs for h € Hs since Hy and N commute with each other.)

LEMMA 3.18. We have Im @' = {p € Hg(V) | supp ¢ C KH32K} and the isomorphism Im @' ~
Hnp, (V2) is given by ¢ +— ¢|m,.

By Lemma 3.16, we get Sa(¢) = Sar, (¢|ar,) if supp(¢) C KHy K. This means that the map
is given by the restriction.
Let 7 be a representation of GG. Consider the following homomorphism

Hompg (V, ) — Homps,nx (Va, 7).

Since V is generated by V5 as a K-representation, this is injective. The left-hand side is Hg (V') ~
R[ X, +]-module and the right-hand side is Hay, (Va) >~ B[ Xy, «,+]-module where Xy, .+ ={\ €
Xi| (A, @) 20 (v €Ilpy,)}. Therefore, both sides are K[Xp, «+]-modules. We prove that the
above embedding is a K[Xp, « +]-modules homomorphism.

LEMMA 3.19. Let w be a representation of G. The homomorphism
Hompg (V, ) — Hompz,nx (Va, )
is a K[ X, x+|-module homomorphism.

Proof. Let ¢ € Hp,(V2). Take ¢ € Homg (V, 7) and v € V5. We have
(W (@)0)= D g¥(®(p)g~ "))

geG/K

- ¥ S (@ () ).

mEMQ/(M2mK) ﬁENz/(szK)

Since supp ' (¢) C KH2K, ®'(p)(mn ~*m~!) =0 if n ¢ NoN K by the above lemma. Therefore,

we have
@' ())= D> m(@(p)(m M),
meM, /(MNK)
Using Lemma 3.16, we obtain the lemma. O
2150

https://doi.org/10.1112/50010437X13007379 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X13007379

ON A CLASSIFICATION OF MODULO P REPRESENTATIONS

Let 71, m2 be representations of G with the central characters such that [My(F), Ma(F)] acts
on 7 trivially and the center of M acts on m; by a character. Put # = 71 ® mo.

Remark 3.20. The group Hj is generated by H2 N T and the one-dimensional unipotent subgroup
corresponding to each a€ ANZIly. Since HyNT C Z3; and the one-dimensional unipotent
subgroup corresponding to a € AN ZIly is a subgroup of [Ma(F'), Ma(F)], Ho is generated by
[Ma(F), M2(F)] and Z3, . Therefore, Hy acts on 71 by a scalar.

PROPOSITION 3.21. We have S(7)lz(x,, . .] C S(mi|m,) ® S(m2|m,).

Proof. We have S(7)[z(x,,, . ,] C S(7[as)|r(xy,.. ) by the above lemma. By Proposition 3.14, we
have S(7|ar, ) (x4, . ,] € S(7|m,). Since Hy acts on my by a scalar, S(w|g,) = S(mi|n,) ® S(m2|n,)
by Lemma 3.9 and Proposition 3.10. O

We give some corollaries of Proposition 3.21 which we will use. We make the following
additional assumptions.

— The derived group [M;(F'), M1(F)] acts on 7o trivially and the center of My acts on 7y by
a character.

— We have #S(ﬂ'l‘Ml) = #S(ﬂ'g’MZ) =1.
Since #S(m1|nr,) = #S(m2| ) = 1, there exists a unique parabolic subgroup P = M N such
that S(m1|a,) ={x1= M N M1, xpnn, )} and S(malar) = {x2 = (M N Ma, xpnn,)} for some
XM, and X, -

COROLLARY 3.22. Any x € §(m) is parameterized by (M, xr) for some x .

Proof. Take M’ and xp; such that x is parameterized by (M’, xar). For each « €1I, take
Ao € X+ such that (II\{a}, A\q) =0 and (a, A\a) # 0. Then M’ corresponds to {a € IT | x(7),) =
0} [Herlla, Proof of Proposition 2.12]. If o €1Ily, then A\, € Xg, 4. Therefore, there exist
X1 € S(mi|m,) and x4 € S(ma|m,) such that x(7a.) = x}(7a.)x5(7r,) by Proposition 3.21. Since
71| m, is a direct sum of characters, x/ (7)) # 0 by Proposition 3.10. Hence x(7),) = 0 if and only
if x5(7»,) = 0. By Proposition 3.14, S(m2|m,) = S(m2|m, ) [r(x s, . 4] = {X2}HR(x4, . .)- Therefore, we
have x45(7x,) = x2(7a,). It is zero if and only if & € IIj; N II. By the same argument, for « € I1y,
X(7x,) =0 if and only if o € Iy NII;. Hence M’ = M. O

Moreover, we assume the following conditions.
— The representation m; is an admissible G-representation.

— The representation 7y is an admissible [Ma(F'), Ma(F')]-representation.

LEMMA 3.23. Under the above conditions, 7 is admissible as a representation of G.
Proof. Let K' be a compact open subgroup. Then we have 7% = (m; ® WQMQ(F)’MQ(F)]OK’)K/.
£M2(F),M2(F)]0K’ is finite dimensional, there exists a compact open subgroup K” C K’
[QMQ(F)’MQ(F)}OK trivially. Hence 7' C (m ® 7T£M2(F)’M2(F)]mK ' =K @

Since 7
which acts on

7T£M2(F)’M2(F)]QK/. The right-hand side is finite dimensional. O

COROLLARY 3.24. If M = Ml, then 8(77) = 3(71'1) ®S(7T2) = {(Ml, XMQMI(XMQM2|XM1.’*YO))}.

Proof. Take x € S(m) and let xar: Xarw0 — F* such that x is parameterized by (M, x).
The character X]T/[l is given by a restriction of x on X*,JrﬂHAL/I:X*#ﬂHf:XHMHF.
By Proposition 3.21, we have X’E[XHW,A :(X1®X2)|E[XH2,*‘+}. Hence, by Proposition 3.8,
we have xn|x,, . = (XM X 00X, ) (XMOM, [ X on X, L)+ Since M = My, Xp, « = X0
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Therefore, xn = Xmnm, (XMoM, | Xy, . 0)- Since 7 is admissible, S(m)# 0. So we get the
corollary. O

3.4 z-extension and Satake parameters
Let G — G be a z-extension and take a hyperspecial maximal compact subgroup K as in
Lemma 2.1. A representation 7 of G can be regarded as a representation of G. Let ™ be this

representation. Denote the inverse image of 7" by T" and let X~ be the group of cocharacters

of T. We have a surjective map Xé,* — X, which induces Xé’*7+ — Xy 4.

LEMMA 3.25. Let r: n[XG*+]

(i) We have S(m) ={xor|xeS(m)}.
(i ) If x: R X, +] — & is parameterized by (M, Y1), then x o r is parameterized by (M, X77);

— K[ X« 4] be the induced homomorphism.

here M is the inverse image of M in G and X7 18 the composition X7 o — Xar0 X',

M ,*,0

Proof. Let Z be the kernel of G — G. If an irreducible K- representation V' is a subrepresent-
ation of 7, then Z N K actson V' trivially. Therefore, V' comes from an irreducible representation
of K. Let V be an irreducible representation of K ‘coming from an irreducible representation V of K.
To prove (i), it is sufficient to prove that HomK(V, 7) ~Homg (V, 7) as K[X g, | ]-modules. (Here,
K[Xg., ] acts on Homg (V, m) through r.)

As a vector space, Hom (V 7) ~Homg (V, 7). So it is sufficient to prove that this

isomorphism is K[ X 5 __ |J-equivariant. Define r¢: Hé(f/) — H(V) as in the proof of Lemma 2.4.

Gx,+
Then it is 5 easy to see that the isomorphism Homj(V,7) >~ Homg (V, 7) is Hz(V)-equivariant;
here H~ ( ) acts on Homg (V, ) through r¢. Hence by the commutative diagram in Lemma 2.4,
it is sufficient to prove that r =rrlgx, ], where rr: K[Xg ] _Hf(VU( )) = Hp(VUR) ~
%[X.] is the homomorphism defined in the proof of Lemma 2.4. This follows from the definition
of r and rp.

Take (M, X/JT/[' ) which corresponds to yor. For acll, take Xa € Xéy such that
Ko, I\{a}) =0 and (Ag, @) £0. Put Ay = r()\ ). Then Tl =Ty ={aell|x(n\,) =0} =
{aell|xor(r; )=0} = 57 . Hence M, = M. The homomorphism X~ is characterized by
XI'J\Z ‘Xﬁ,*,oﬂXa,*,+ =(xo r\XﬁY*YOQX&H) L. The homomorphism X737 Satlsﬁes the same character-

ization. Hence X/M = X3 O
1

4. A theorem of changing the weight

In this section, we assume that the derived group of G is simply connected. For « € II, we denote
a fundamental weight corresponding to a by wg.

4.1 Changing the weight
We prove the following theorem, which is a generalization of Herzig’s theorem [Herlla,
Corollary 6.11].

THEOREM 4.1. Let Vi, Vs be irreducible representations of K with lowest weight vy, o,
respectively. Assume that (v1, &) =0 and v =1 — (¢ — 1)w, for some a € I1. Let x: B[ X 4] = R
be an algebra homomorphism parameterized by (M, xar). Assume that o ¢ I, If & & X0
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or xp (&) # 1, then
c—Indf( \%} OHe(h) X = C—Indf( V5 Qe (Va) X-

Let Vi, Va, 11, 12 be as above. Fix A € X,  such that (A, II\{a}) =0 and (A, a) # 0. Then
there exist non-zero 91 € Ha(Vi, Vo) and @12 € Hg(Va, Vi) whose support is KA(w)K. By the
proof of [Herlla, Corollary 6.11], Theorem 4.1 follows from the following lemma.

LEMMA 4.2. We have Sg(p12 * p21) € B (Tax — Tox—a)-

This lemma follows from the following two lemmas by [Herlla, Proposition 5.1]. These also
answer Herzig’s question [Herlla, Question 6.9].

LEMMA 4.3. The composition 12 * 91 is non-zero and its support is K\(w)?K.
LEMMA 4.4. For p€ X, 4, if p <2\ then =2\ or p <2\ — d.

First, we prove Lemma 4.3. For each w € W ~ N (T(0))/T(0O), we fix a representative of w
and denote it by the same letter w.

LEMMA 4.5. Let P= MN be a standard parabolic subgroup. Then we have
GO)= [ w 'TwnN(0))P(0).
wGW/WM
Proof. Since (w™'wN N(O))(w wn P(O))=w w, it is sufficient to prove G(O)=
Hwew w,, TwP(O). By the Bruhat decomposition G(k)= Hwew/w,, B(r)wP(x), for g€
G(0O), there exists w € W and p € P(O) such that (red(wp)) 'red(g) € B. Hence (wp)~lg el
Therefore, g € Twp. Hence G(O) = e TwP(0O). Assume that Twy P(O) N TwyP(O) # 0 for
w1, ws € W. Applying red, we have B(r)wiP(k) N B(k)waP (k) # 0. Therefore, by the Bruhat
decomposition of G(k), we have wy € waWyy. O

To prove Lemma 4.3, we use the following lemma. We use the argument in the proof of
[Herlla, Proposition 6.7].

LEMMA 4.6. Let V, V' be irreducible representations of K with lowest weight v, V', and lowest
weight vector v € V,v' € V', respectively. Assume that for p€ X, ., VNl o (V)NelB) a9
M, (r)-representations. Let ¢ € Hg(V, V') be such that supp ¢ = Ku(w)K and ¢(u(w))v ="'
Put I =red Y (B(k)) and t = j(w). Then we have

px[1,v]= Z Z [wat ™, v'].
weW_, /(W_,nW,.) ac(w—TwnNN(0))/t=1N(O)t
Proof. We have
(ex[Lo)(@) = > ey = > @@L, vly).
yeG/K yeKtK/K

If this is not zero, then zy € K for some y € KtK. Hence x € Kt~! K. Namely, supp(y * [1, v]) C
Kt 'K. The value at x = kt~! for k € K is

(px[Lo)(kt) = Y el of(kt'y) = p(B)[1,v](k) = p(t)k " v.
yeKtK/K

Therefore, we have

px[1,v] = S kT ekl
keK /(KNt—1Kt)
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Put P =P,. We have K Nt~'Kt> P(O) and red(K Nt~ 'Kt) = P(x). Therefore, we have
a surjective map G(O)/P(0) - K/(K Nt~'Kt). For each w € W ~ Nk (T(0))/T(0O), we fix a
representative of w and denote it by the same letter w. Then, by the above lemma, we have

GO)= [] ww 'TwnN(0))P0).
weW/W,,

Hence ¢ [1,v] is a sum of a form [wat™! ¢(t)a ™ w™tv] for a € w  TwN N(O) and w €
W/W,. We prove that ¢(t)a~lw™lv#0 implies we W_,W,. Since red(a) € w™'B(r)w N
N(x) Cw tU(k)w, we have a lw 'v =w"lv. The homomorphism ¢(t) is given by V —»
V)N, () = (V/)Nulk) V' Hence if @(t)w ' v#0, then wlve VNu(r). Since {g€G(r)]|
gverv}=P_,(k), we have P_,(k) DwN,(s)w™'. Then A~,UATDw(AT\AF). Hence,
(AT\AZ)) Nw(AT\A}F) = . Take w' € W_,wW,, such that w’ is shortest in W_,wW,, [Bou02,
ch. TV, Exercises, §1 (3)]. Then (A7\AZ,) Nw'(AT\Af)=0. By the condition of w', A~ N
w'(AT\AY) = A" Nw'AT and (A7\AZ,)) Nw'AT =A™ nw'A*. Therefore, we have A™N
w' At = (). Hence w' = 1. We have w € W_, W, /W, =W_,/(W_, N W,). Hence we may assume

w € W_,,. Therefore, p(t)w™ v = ¢(t)v = v'. Hence,

px*[1,v] = Z Z [wat™t, v'].

weW_, /(W_,nW,.) a€(w=1TwnNN(0))/(w= TwNN(O)Nt—1 Kt)

Since {(a, p) < 0 for all weights o of N, t = u(n) satisfies tN(O)t~! D N(O). Hence tN(O)t~1 N
K=N(0). Equivalently, we haveiﬁ((’)) Nt 1Kt= t:lﬁ(@t. We also have that red(t 1N (O)t)
is trivial. Hence ¢t "' N(0O)t C w™'Tw. Therefore, w™Tw N N(O) Nt 1Kt =t~ N(O)t. Hence we

have
px[1,0]= Z Z [wat™!, V'] O

weW_, /(W_.NW,.) ae(w—TwNN(O))/t-*N(O)t

Proof of Lemma 4.3. Put t = \w). Let v; € Vi, v9 € Vo be lowest weight vectors. We may
assume o1 (t)v1 = v2 and @12(t)vy = v1. By Lemma 4.6, we have

po1 * [1,01] = Z E [wat ™, va].

weW_,, /(W_,,NW1) ac(w-1TwnNN(0))/t-1N(O)t

By the assumption, W_,, N W) = W_,,. Hence we have

©p12 * [1, Ug] = Z [bt_l, Ul]
beEN(0)/t-TN(O)t
by Lemma 4.6. Therefore, we have

P12 * p21 * [1, 1] = @12 * < > > [wat ™, Uﬂ)

weW_,, /(WANW_.,) a€(w—1TwnNN(0))/t-1N(O)t

- Z Z wat ™ p1g x [1, vo]

wEW_,, /[(WANW_,,) a€(w—1TwNN(O))/t—1N(O)t

= Z Z Z [wat ™ot~ vy

WEW_,, /(WANW_,,) ae(w—TwnN(0))/t-*N(O)t beN(0) /t— N (O)t
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_ Z Z Z [wabt =2, v1]

weW_,,, /[(WaNW_.)) ae(w—TwnN(0))/t-*N(O)t bet— N (O)t/t—2N(O)t2

= Z Z [wet™2, vy].

wWEW_, /[WANW_, ) ce(w—TwNN(0))/t—2N(O)t?

Let ¢ € Hg(V1), whose support is K\(w)?K, and ¢(A(w)?)v; = vi. By Lemma 4.6, the right-
hand side of the above equation is ¢ * [1, v1]. (Notice that W) = W5).) Since [1, v1] generates
c-Ind%(V1), we obtain the lemma. O

Finally, we prove Lemma 4.4.

Proof of Lemma 4.4. Assume that p <2\ and p € 2\ —&. Since p <2, there exists ng €
Zzo such that 2X — =3 5.1y ngB. Then for v € II\{a}, we have > _;5ng(y, B) = (v,2A — p) =
—{(7, p) <0. By the assumption, no =0. Then > 5, ng(y, 3) <0. Since (d+(7, 3))sem\ {a}
is symmetric and positive definite for some d, >0, we have ng =0 for all 5 € II\{a}. Hence
0w=2A\. O

4.2 Comparison of composition factors
We prove the following proposition in this section.

PROPOSITION 4.7. Let x: RK[X, | — & be an algebra homomorphism and V an irreducible
representation of K. Assume that x can be extended to %[X,| — . Then c-Ind% (V) D1 (V) X
has a finite length and its composition factors depend only on x and the T (k)-representation
VU,

When G = GLgy, this proposition is proved by Barthel-Livné [BL95, Theorem 20].

Before proving this proposition, we give an application. For a parabolic subgroup P C G, let
Spp be the special representation [Gro]. If we want to emphasize G, we write Spp . We have
the following corollary.

COROLLARY 4.8. Let V be an irreducible K-representation such that VU s the trivial
representation and x : K[X,] — & an algebra homomorphism parameterized by (T, 1x, ., =1x.).
Then the composition factors of c-Ind% (V') @ vy X are {Spp | P C G}.
Proof. Let Vi be the irreducible K-representation with lowest weight —> (g —1)wa.
Then we have VU() ~ VlU(H) ~ 17(,). By Proposition 4.7, we have that c-Ind% (V) 1 (V) X
and c-Ind% (V1) ®14,(v;) X have the same composition factors. By Herzig’s theorem [Herlla,
Theorem 3.1], we have
o-Ind% (V1) @4, 17) X ~ IndG (c-Indfr g (Lrnk) @1y (1005) X) = IndF(17).

Hence the corollary follows from [Herlla, Corollary 7.3]. O

This corollary implies the following proposition. This proposition is proved by Herzig when

G = GL,, [Herlla, Proposition 9.1] in a different way. Let Ordz(m) be the ordinary part of =
defined by Emerton [Emel0)].

PROPOSITION 4.9. Let m be an admissible representation of G which contains the trivial
representation of K. Assume that there exists x € S(m,1x) which is parameterized by
(I',1x,.,=1x,). Then 7 contains the trivial representation, or Ordp(m) # 0 for some proper
parabolic subgroup P.
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Proof. From the assumption, we have a non-zero homomorphism c-Ind% (1) OHe(1x) X = T

Hence 7 contains an irreducible subquotient of c-Ind% (1x) @ «(1x) X as a subrepresentation. By
Corollary 4.8, such subquotient is Spp for a parabolic subgroup P. If P =G, then 1¢ = Spg C 7.
If P # @G, then 0 # Ords(Spp) — Ordp(r). O

Remark 4.10. If 7 is irreducible, then 7~ Spp. Since 7 contains the trivial K-representation, 7
is trivial by [Herlla, Proposition 7.4].

In the rest of this section, we prove Proposition 4.7. We use the following theorem due to
Herzig [Herlla, Theorem 3.1].

THEOREM 4.11. Let V be an irreducible representation of K with lowest weight v, P=MN a
standard parabolic subgroup. Assume that Staby (v) C Wys. Then we have

-IndG (V) @300y Har(VY®) &~ Ind§ (c-Ind}f - V)
as G-representations and H M(VN(”))—modules.

Remark 4.12. In fact, the theorem of Herzig is weaker than this theorem. However, his proof
can be applicable for this theorem. See a paper of Henniart and Vigneras [HV12], in which this
theorem is proved for a more general G.

For a parabolic subgroup P= MN, let Vp be the irreducible representation of K with
lowest weight —> e, (¢ — 1)wa. Put mp = Ind% (Vp) e (vp) FIXs]. Then we have mp =~

Ind%(c-Ind¥ 1 (1asnx) Oy (1ar(ny) FlX+]) by Theorem 4.11. (Notice that (Vp)N() is the trivial

representation.) In particular, we have mp~ Ind%(%[X,]). Here, T acts on R[X,] by T —
T/T(0)~ X, — End(%[X,]). (The last map is given by the multiplication.)

LEMMA 4.13. For parabolic subgroups P C P’', there exist ®pp/: mpr — np and ®p p: mp —
wp: which have the following properties:

(i) ®pp and ®p: p are G- and K[ X.]-equivariant;
(i) ®pp=id;
)
)

(iii for P C P, C Ps, (I)pl,pz o (I)p27p3 = cI)php3 and (I)p:,”p2 o (I)PQJD1 = (I)p?”pl;

(iv) for P C P', compositions ®pp o ®p p and ®p poPpp are given by Haer,\Hp
(Td — 1)

Proof. For each o €11, fix Ay € X, 4+ such that (A, II\{a}) =0 and (A, @) #0. We also fix a

lowest weight vector vp of Vp.

Let P; C P, be parabolic subgroups such that #Ilp, = #IIp, +1 and Ilp, =1Ip, U {a}.
Take ¢p, p, € Ha(Vp,, Vp,) and ¢p, p, € Ha(Vp,, Vp,) such that their support is K\, (w)K
and their values at A\,(w) send the lowest weight vector to the lowest weight vector (as in
§4.1). The elements ¢p, p, and ¢p, p, give homomorphisms np, — 7p, and mp, — 7p,. Let
®p, p, (respectively ®p, p,) be a homomorphism given by ¢p, p, (respectively —74_2x, P, P,)-
By Lemma 4.2, these homomorphisms satisfy condition (iv). For general P’ C P, take a chain
of parabolic subgroups P’ =P, C ---C P, = P such that #l1lp,,, = #llp, + 1. Define ®p/ p =
®p, po---0o®p  p and Ppp=Pp p ,0---0Pp p. Then by [Herlla, Proposition 6.3,
condition (iv) is satisfied.

It is sufficient to prove that ®p. p and ®pp: are independent of the choice of a chain. To
prove this, we may assume that the length of the chain is 2. So let P, P’, P;, P, be parabolic
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subgroups and «, f €1l such that a# 3, o, & 1lp, lIp, =lIpU{a}, IIp, =1Ip U {F} and
IIp =pU{a, B}. Put to = \o(w) and tg = A\g(w). Then by Lemma 4.6, we have

(®pp, 0 ®p,p)([1, vp]) = > ®pp ([aty", vp,])
a€N(0)/tz"N(O)t,

= > > laty b5t vp]

aEN(0)/ta"N(O)ts bEN(0)/t; ' N(O)ts
= > [c(tats) ™", vpr].

cEN(O)/(tats) " N(O)(tats)
Hence we have (®p/ p, o ®p, p)([1,vp]) = (®p p, o Pp, p)([1, vp]). Therefore, we have ®p: p o
Qp,p=Pp,p, 0 Pp,p.

Since ®ps p, o Pp, p satisfies condition (iv),
(7’@ - 1)(7’/@ - 1)(@]37132 o q)p27p/) = (q)RP2 o ‘I)p27p/) o) ((I)P’,Pl o CI)php o) CI)P7P1 ] q>P1,P')'
By ®p/ p, o ®p, . p=®p/ p, o Pp, p, the right-hand side is equal to
(®pp, 0 Pp, pr o Pprp, 0 @p,p) o (Ppp, o Pp p).
Using condition (iv) for ®p p, o ®p, p/, this is equal to
(76 = 1)(15 = 1)(®pp, © p, p).

Since mp is a torsion-free K[X,]-module [Herlla, Corollary 6.5], we have ®pp, o ®p, ps

®pp, o Pp, p. We get the lemma. U

We fix such homomorphisms. Since 7p is a torsion-free %[ X,]-module [Her11a, Corollary 6.5],
condition (iv) implies ®p pr and ®p: p are injective.

LEMMA 4.14. We have 5 ~R[X,].

Proof. We have mp ~ Ind%_ x(c-Ind3% - (1 prn5) Oy (1anx) FIXx]) by the Iwasawa decomposi-
tion G = K P. Therefore, we have
mp = Homp (1, Ind e (e-Ind s (Lani) @y, (100000) FIX]))
~ Homrnik (Lani, -Indifn g (1mnk) ©ry (1400) BIX])
~ Endy (c-Ind g (Lani)) @y, (1000r) FIX] = X, o
K

Remark 4.15. The homomorphism Ind%(%[X.]) > f — f(1) € &[X.] gives an isomorphism 75 ~
R X4

Set fo=1[1,1] ® 1 € c-Ind% (1) o (1x) B X+] =G Then wf is generated by fo as a ®[X,]-
module. We also have that mg is generated by wg =%[X«]fo as a G-module. We can prove the

following lemma using an argument of Vigneras [Vig08]. This lemma also follows from [EmelO0,
Proposition 4.3.4, Theorem 4.4.6].

LEMMA 4.16. Let P = MN be a parabolic subgroup and o1, oy representations of M. Then we
have Homyy (01, 02) ~ Homg (Ind$% (o), Ind% (0)).

Proof. Set W(M)={weW |w(Ily) C AT}. Then this is a set of complete representatives
of W/Wys [Bou02, ch. IV, Exercises, §1 (3)]. Hence we have the Bruhat decomposition
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G/P =[1yew UwP/P. For w e W(M), set

w;:{f:UwPHcrl

f is a locally constant function, supp f is compact modulo P,}
flgp) =p~'f(g) for g€ UwP, pe P '
/

This is a representation of U and it is sufficient to prove that (m, )y =0 if w#1. We
have UwP/P ~U NwNw™!. Since we W (M), UNwNw™! =U NwUw™!. Therefore, as a
representation of U NwUw™!, 7/ ~m, 1 ® o1 where 7,1 is the representation defined in
[Vig08, Definition 1]. If w# 1, then w~! ¢ Wy,. Hence there exists o € AT\A}, such that
w~!(a) < 0. Let U, C G be the one-dimensional subgroup corresponding to a.. Then U, C N and
as a representation of Uy, we have 7, ~ m,—1 ® 01. Hence (7},)y, = (my-1)v, @ o1. By [Vig08,
Proposition 2], (my-1)y, =0. Hence (m,)y, =0. Since U, C N, we have (m,)ny =0. Now the
lemma follows from the argument in the proof of [Vig08, Théoreme 8|. O

LEMMA 4.17. The element 75 — 1 € K[ X,] is irreducible.

Proof. Take d € Z~o and X\ € X, such that (a, X,) = dZ and (o, A) = d. Then we have X, =Z\ &
Ker a. Let a, b € K[ X,] such that 75 — 1 = ab. Put ¢t =7,. Then we have a =) a,t" and b, =
>, bnt"™ where ay,, b, € K[Ker a]. Put k, = max{n | a, # 0}, [ = min{n | a, # 0}, ky, = max{n |
bn, # 0}, I, = min{n | b, # 0}. We may assume k, — I, < kp — lp. Take ¢ € Z and )¢ € Ker « such
that & =cA 4+ A\g. Then ¢=1 or 2 and we have ab =15 — 1 =1t°T\, — 1. Therefore, k, + ky = ¢
and ay, by, = T, € B[Ker a]*. Replacing (a,b) with (au™!, bu) for u=tF"la; € R[X.]X, we
may assume k, =1 and ag, =1. Hence ky=c—1. We prove a € 5[X,|*. If k,=1,, then
a=t¢€ R[X,]*. Hence we may assume kq # l,. By ab= 1714 — 1 =17y, — 1, we have I, + 1, =0.
Therefore, (c, kq, lq, kb, lp) satisfies the following conditions:

c=lor2, ko=1, ky=c—1, l,<ky, ko—1Ilo<ky—1, Ilo+1=0.

From k, =1, ky=c—1 and k, — o, < kp — Iy, we have 1 — [, <c¢—1—1p. Since I, + 1, =0, we
have 1 — I, <c¢—1+1,. Therefore, I, >1— ¢/2. We also have 1=k, > [,. Hence [, <0. From
this, 0 > 1 — ¢/2. Hence ¢ = 2. Therefore 0 <, <1—¢/2=0. Hence l, =0 and I, = -, = 0. We
get (¢, kg, la, ko, Ip) = (2,1,0, 1, 0).

Now we have a =t + ag and b= byt + by. Since ab = 7,t> — 1, we have

bi=7y, aob1+bp=0 and agbp=—1.

By the last equation, by € K[X,]*. Hence by € K*7, for some pe X,. We have 7\, =b =
—boag ' = b3. Therefore, g = 2u. Hence & =2(\ + ) € 2X,. This is a contradiction since we

assume that the derived group of G is simply connected. O
LEMMA 4.18. The image of fy under ®p ¢ is a basis of Wg.

Proof. 1t is sufficient to prove that ®p ¢(75) = 7K. We prove &5 (r5) O [sem (o} (75 — )k
for all a €II. Then for each a €1, there exists aq € K[X] such that aa®p,c(fo) =[Igem (o)
(t5 — 1) fo where f; is a basis of 7E. Since (75 — 1) are distinct irreducible elements and &[X.]
is a unique factorization domain, we have ®p (fo) € K[ X.]* f). Hence the lemma is proved.

So it is sufficient to prove ®pg(r5) D [sem (o} (75 — )k for all a €Il. Fix a €Il and
let P be the parabolic subgroup corresponding to {a}. Since ®pa(nE) D ®pa(Pa p(nh)) =
Hﬁen\{a}(TB — 1)mK, it is sufficient to prove ®p p(75) = 5. By Lemma 4.16, ®5 p is given by a

certain homomorphism ®: c-Ind{? - (1a7nx) O 0 ( R[X.] — Ind¥ 5 (1rnB). We also have

1yvnk)

that ®pp is induced by some ®: Tnd} 5 (1rnp) — c-Ind}f - x (1arnr) Oty (Larrc) FIX] Tt is
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sufficient to prove that ® induces surjective homomorphism between the spaces of K-invariants.
Since ®pg o P p = (75 — 1) (respectively g poPpa = (74 — 1)), D’ 0 @ (respectively @ o P’)
is induced by (75 — 1). Hence &' o ® = (75 — 1) and ® 0 &’ = (74 — 1) by Lemma 4.16. Namely,
®’ and @ satisfy the conditions of Lemma 4.13 for M. Therefore, it is sufficient to prove the
lemma for G = M. We assume that the semisimple rank of G is one.

Now we assume that the semisimple rank of G is one. Let II={a}. Take a, b€ R[X,]
such that (I)B,G(ﬂ'g) = cmg, (I)G7B(7T§) = bﬂ'g and ab= 715 — 1. Assume CI)B7G'(7Tg) # ﬂg. It is
equivalent to a € K[X,]*. By the above lemma, b€ K[X,]*. Hence ®¢ p(r5)=7E. Since ¢
is generated by WIG(, ®¢ p is surjective. Therefore, ®¢ p is isomorphic. Let x: £[X,] — & be a
homomorphism defined by x(7x) = 1 for all A € X,.. Then we have 75 ®z[x,] X = Ind$(17). Hence
we have Ind%(17) ~ ng ®g(x,] X- Consider a homomorphism c-Ind% (1) — 1¢ defined by f —
> 9EG/K f(g). This gives a homomorphism 7g ®rx.) X — 1la and the induced homomorphism
(76 ®x[x,] )& = (1)K =1¢ is surjective since an image of [1,1] € (c-Ind%(1x))X is non-
zero. Consider the following maps: 1g — Indg(lT) ~ G ®gx,) X — lg. Take K-invariants.
Then we have that 15 = (15)% < (Ind%(17))¥ is isomorphic (by the Iwasawa decomposition)
and (7rg®E[X*})KX — (1@)K =1 is surjective. Hence the composition 15 — 1 is surjective.
Since both sides are one-dimensional, it is isomorphic. Hence 1¢ is a direct summand of
Ind$(17). Therefore, Endg(Ind%(17)) has a non-trivial idempotent. However, by Lemma 3.19,
Endg(Ind%(17)) ~ Endp(17) ~ %. This is a contradiction. O

By this lemma, Im ®p ¢ is a subrepresentation of mp generated by ’/Tg . For each we
W ~ Ng(T(0))/T(O), we fix a representative of w and denote it by the same letter w.
For a subset ACW of W, let Xga Cnp=Ind%%[X.] be a B-stable subspace defined
by Xga={f€np|supp f CUyeq Bw'B/B}. For we W, put Xg >w = X¢ fwew|w>w} and
XGsw= XG,{w’eW\w’}w}- Set X4 =Xg 4, Xow=Xg>wand Xsyy=Xg sy for ACW, weW.
Set Y =®p ¢(rg), Ya=Y N X4. For a parabolic subgroup P=MN, put W(M)={we W |
w(Ily;) C At} Then W(M) x Wy — W is bijective [Bou02, ch. IV, Exercises, §1 (3)].

Let A C W be a subset such that | J,,c 4 BwB is open. (In other words, if w € A and w' > w
then w’ € A.) Let w € A be a minimal element and set A’ = A\{w}.

LEMMA 4.19. Let I C R[X.] be a principal ideal. For fe€np, f€ X4+ Inp if and only if
f(z) €I for all x € BuB and v € W\A. In particular, if I, I C K[ X,] are principal ideals then
(Xa+Lhrmp)N(Xa+ Iorg) =Xa+ (L1 N 1o)7p.
Proof. 1t is obvious that if f € X4 + Inp then f(z) € I for all x € BuB and v € W\ A. Assume
that f(z) €I for all z € BuB and v € W\A. Let a € I be a generator of I. Since K[X,] is an
integral domain, there exists a locally constant function fo: U,epn 4 BvB — E[X,] such that
f(z) = afo(x). Since J,cyn 4 BuB is closed, there exists fi € 7p such that f1|UvEW\A BvB = fo-
Then f=(f —afi)+afi and f —afi € Xa, af € ITp.

Since K[ X,] is a unique factorization domain, if Iy, Iy are principal ideals, then I1 N I5 is also
a principal ideal. Hence the second statement follows from the first statement. O

LEMMA 4.20. Let P= MN be a parabolic subgroup, w, vog € W (M) and vy € Wy. Then vovy >
w if and only if vy > w.

Proof. Put v =1wvgv;. Let ¢ be the length function of W. Then ¢(v) = £(vg) + £(v1) [Bou02, ch. IV,
Exercises, §1 (3)]. Hence v > vg. Therefore, vg > w implies v > w.

We prove v > w implies vy = w by induction on ¢(vy). If £(v1) =0, then v; = 1. Hence there
is nothing to prove. Assume that ¢(v;) > 0 and take « € II; such that vis, < v1 where s, € Wiy
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is the reflection corresponding to . Put s = s,. Then £(vgv1s) = £(vg) + £(v18) = £(vg) + £(v1) —
1 =/{(vov1) — 1. Hence vs <wv. By the definition of W (M), we have ws > w. Hence we get
vs > w [Deo77, Theorem 1.1 (IL, ii)]. Therefore, vo(v1$) = w. Since £(vys) < £(v1), we have vy > w
by inductive hypothesis. O

LEMMA 4.21. We have YA/YA/ = HaeH,wsa<w(7—d — 1)<XA/XA/>.

Proof. Set © ={a€ll|ws, <w} and put I =[], .q(7a — 1)R[X,]. First we prove Y4/Ya C
I(Xa/Xa); namely, we prove Y4 C Inp + Xa/. Let I, = (75 — 1)R[X,]. By Lemma 4.19, it is
sufficient to prove Y4 C Iymg + X 4 for all a € ©. Let P, = M,N, be the parabolic subgroup
corresponding to {a}. Recall that T acts on %[X,] and 73 = Ind$(%[X,]). This action induces
the action of T' on K[X.]/I,. The image of & acts on K[X,]/I, trivially. Therefore, the action of
T on K[X,]/I, is extended to the action of M such that [M,(F), M, (F)] acts on it trivially by
Lemma 3.2. We have Ind$_(R[X.]/I,) C Ind%(R[X.]/Io) = 75/Ia7p.

Let f € (np/I,mp)K = (Ind$(R[X.]/I.)). We prove f € IndIG;a (R[X«]/I); namely, f(gp) =
p~Lf(g) for g€ G and p € P,. Let go € G and pg € P,. By the Iwasawa decomposition G = K P,,
there exist ko € K and p{, € P, such that go = kopj,. Since Py = My Ny = [My(F), My (F)|TN, =
([Mo(F), Mo (F)] N K)([Ma(F), Mo(F)] N B)T Ny, = ([Mo(F), Mo (F)] N K)B, there exist k{ €
[Mo(F), Mo(F)]NK and bype B such that p{po=kybo. Hence f(gopo) = f(kopppo) =
f(kokhbo) = by *f(1). Since kj) € [My(F), My (F)], we have (kh)~*f(1) = f(1). Hence f(gopo) =
(khbo) L £(1) = (pppo) "1 f(1). Let g € G and p € P,. Take k € K and p’ € P, such that g = kp'.
Then applying the above formula for gy =g, ko =k, py=p and py=p, we have f(gp)=
(p'p)~1f(1). Applying the above formula for go =1, ko =1, pj =1 and py = p', we get f(p') =
(p')"'f(1). Hence f(gp)=p~"f(/) =p ' f(kp') =p "' f(g). So f € IndE, (R[X.]/Ia). Hence the
image of @ p(fo) under 75 — 75/Iomp is in Ind§ (F[X.]/1.). (Recall that fo=[1,1]® 1 € 75.)
Since g is generated by fo, the image of Y is contained in Indga (R[X«]/1a)-

For f€np, let f be the image of f under the canonical projection 7p — 7g/I,mp =
Ind%(R[X.]/1.). Let f€Ya. Then supp f C U, Bw'B/B. Since fe€Indf (R[X.]/1a), its
support is right P,-invariant. Hence if supp f N BwB/B # (), supp f N Bws,B/B # (). By the
definition of ©, ws, < w. This contradicts supp f C Uwea Bw'B/B and the minimality of w.
So we have supp f C U,y ca Bw'B/B. Hence f € Xp + Io7p.

We prove Y4/Ya D I(Xa/Xa/). Let P = MN be a parabolic subgroup corresponding to IT\©.
First we prove that ®p p(mp) N X4 — Xa/Xa is surjective. Since X4/ X4 ~ X5/ X5y and
X4 D Xoy, we may assume A = {w’' € W |w' > w}. For each parabolic subgroup P, = M1 Ny C
P, put mp, =Indifp (C‘Ind%}w 1M0K @y, (Lar, ) FIX]). Then mp, = nd%(mas.p,). By
Lemma 4.16, for each P, C P, C P, ®p, p, and ®p, p, are induced by some @%’g: TM,P, —
mm,p, and @% P TM,Py = TM,P,- Such homomorphisms satisfy the conditions of Lemma 4.13.
Therefore, ®Y p, induces a bijection ﬂ%%{ 27?%9{{ by Lemma 4.18. Put @z@% p- Then
(I)B,P(WP) = IndIGg(<I>(7rM7p))

Let f € ®p p(mp). By the definition of X>,, f € X5, if and only if supp f € U,,, BvB. For
v €W, take vg € W(M) and v1 € W)y such that v =wvgv;. Since w € W (M), v > w if and only if
vo 2 w by the above lemma. Hence U,~,, BB =U,>y vew ) BYWMB = U,z vew (ar) BUP-

Therefore, ®5 p(7p) N Xy = {f € IndG(®(mar.p)) | supp f C Uvswwewary BvP/P}. Let Zsy

be this space. Put Zs, = {f € Ind%(®(marp))|supp f C Uvsw.vew ) BvP/P}. Then the
homomorphism  Z>,, = @ p(mar,p) N Xow — Xow/Xsw  induces  Zxy/Zsyy — Xow/Xsw.
By the Bruhat decomposition G/P = ey ) BvP/P, the space Z>yw/Zsy is isomorphic
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to the space of locally constant compact support ®(masp)-valued functions on BwP/P ~
BwB/B. The space Xs,, /X<, is isomorphic to the space of locally constant compact support
R[X«]-valued functions on BwB/B. The homomorphism Z,,/Z~ — X5/ X is induced by
<I)(7TM’p) — TM,B — WM,B/XM,>1 ZE[X*]. By Remark 4.15, W%,%K — TM,B — TI‘M,B/XM,>1 ~
%[X.] is isomorphic. Since ® induces 7\ ~ 7MOK (7 p) — 7ar 5 — Tarp/ Xa>1 ~ K[ X
is surjective. Therefore ®p p(7p) N X5y ’—> X>w/X>w is surjective.

By the above argument, we get (®p p(mp) N X4)+ X4 = X4. Hence we get I®p p(mp) =
(I)B’p(fﬂ'p) :‘I>37p(q)p7g(q>g,p(ﬂ'p))) :(I)B7g(‘1>g’p(ﬂ'p)) C @B’G(ﬂ'g) =Y., IXaCYNXpga+1IXa
C Y4 + X 4. This gives us the lemma. O

From this lemma, we obtain the following proposition.

PROPOSITION 4.22. Let V be an irreducible representation of K. The module c—Indf((V) QHea (V)
k[ X.] Is free as a R[X,]-module.

Remark 4.23. Barthel-Livné proved that, as an Endg(c—lndg’;ZG(V))—module, c—Ind%Zc(V) is
free if G = GLg [BL94, Theorem 19].

Proof. Let v be a lowest weight of V. By Theorem 4.11, we have c-Ind% (V) Do (v) FIXa] =~
Indgw(C—Ind%::mK(VN*”(”)) ®

eIndy e (V) @,

V is a character of K. By Corollary 3.4, there exists a character vg of G such that vg|x ~ V.
Then ¢ — ¢, -1 gives an isomorphism He(V) ~ Hg (1) (see §3.1). By this isomorphism, we can
identify H¢(V) and He (1 ). Under this identification, we have c-Ind% (V) ® vg' ~ c-Ind% (1x).
Hence we may assume V = 1x. Therefore, c-Ind% (V') vy RXs| =7 =Y. Since Xa/Xa is
free [Vig08, Lemma 3], Y4/Ya is free by Lemma 4.21. Hence Y is free. 0

HM,,/(VJ\TAM)E[X*])- Therefore, it is sufficient to prove that

Raere) R[X.] is free. Hence we may assume P_, = G. Therefore,

Proof of Proposition 4.7. We prove the proposition by induction on #II_,. Namely, we prove
the following by induction on n: if v satisfies #II_, <7 then the module c-Ind% (V') R (V) X
has a finite length and its composition factors depend only on y and the T'(k)-representation
VU(K).

If I_, =0, then c-Ind%(V)®y «(v) X s isomorphic to a principal series representa-
tion [Herlla, Theorem 3.1]. Hence the proposition follows.

Assume TI_, # () and take o« € II_,. Put v/ =v — (¢ — 1)w, and let V' be the irreducible
K-representation with lowest weight v/. By inductive hypothesis, c—Ind%(V’) Qe vy X has
a finite length. Define x': ®[X.] = &[t,t7'] by x'(mn) = x(m\)t&=N for \e X,. (Here, t
is an indeterminant.) Then x factors through y/. Put 7= c-Ind% (V) Onovy X and 7' =
c-Ind$ (V') @16 (vy X'- These are free &[t, t~']-modules by Proposition 4.22. Take A € X, such
that (A, II\{a}) =0 and (\, @) # 0. Put a = x(74). As in §4.1, X gives ®: 7 — 7’ and ®': 7’ —
7 such that ®o®' = (at —1). Therefore, ® is injective and Im &' C (at — 1)w. By [CGI7,
Lemma 2.3.4], 7/(t — 1)m has a finite length and 7/(t — 1) and 7’/(t — 1)7’ have the same
composition factors. O

5. Classification theorem

Using results in §§3 and 4, we prove the main theorem. Almost all the proof of the theorem is
a copy of Herzig’s proof.
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5.1 Construction of representations

We recall the definition of supersingular representations. Recall that a character KX, ] — & is
parameterized by a pair (M, xas) where M is the Levi subgroup of a standard parabolic subgroup
of G and xar: Xar0 — F* is a character of Xy, o where Xy, 0={A € X, | (A, Ha) =0}. (See
§2.2.)

DEFINITION 5.1 (Herzig [Herlla, Definition 4.7]). Let 7 be an irreducible admissible represen-
tation of G.

(i) The representation 7 is supersingular with respect to (K,T,B) if each x € S(m)
corresponds to (G, x¢) for some x¢: Xg 0 — K.

(ii) The representation 7 is supersingular if it is supersingular with respect to all (K, T, B).

It will be proved that 7 is supersingular if and only if 7 is supersingular with respect to
(K, T, B) for a fixed (K, T, B) (Corollary 5.13).

Now we introduce the set of parameters P = Pg. It will parameterize the isomorphism classes
of irreducible admissible representations. Before giving P, we give one notation. Let M be
the Levi subgroup of a standard parabolic subgroup and o its representation with the central
character w,. Then set I, = {a € IT | (Tly, &) =0, wy 0 & =1gr,(F)}-

Let P =P be the set of A = (Ily, I, 01) such that:

— II; and IIy are subsets of II;

— 03 is an irreducible admissible representation of M, with central character w,,, which is
supersingular with respect to (M, N K, T, My, N B);

— Il CHUI.

We consider A = (I, II, 01) and A’ = (IT}, IT5, 0} ) to be equal to each other if II; = II}, IIy = IT},
and oy ~ o}.

For A = (I1y, I, 01) € P, we attach the representation I(A) of G in the following way. Let
Py = MAN, be the standard parabolic subgroup corresponding to II; Ull,,. By Lemma 3.2,
there exists the unique extension of o1 to My such that [My, (F), M, (F)] acts on it trivially.
We denote this representation by the same letter o1. By the definition, II; U Ils is a subset of
II; UIl,,. Hence this set defines a standard parabolic subgroup of My. Let o 2 be the special
representation of My corresponding to this parabolic subgroup. By the construction, oy s Mn,,
is a special representation of My, . By the following general lemma, the restriction of o2 to
[Mn, (F'), M, (F)] is irreducible and admissible [Her1la, Theorem 7.2].

LEMMA 5.2. Let 7 be a special representation of G. Then the restriction of w to [G(F'), G(F)]
is irreducible and admissible.

Proof. By the definition of a special representation, the restriction of 7 to [G, G](F) is a special
representation of [G, G](F'). Hence it is irreducible and admissible [Herlla, Theorem 7.2]. If the
derived group of G is simply connected, [G, G](F') = [G(F'), G(F')]. Hence the lemma follows. In
general, let G — G be a z-extension of G. Then the pull-back 7 of 7 to G is a special representation
of G and by the above argument, the restriction of 7 to [G(F"), G(F)] is irreducible and admissible.
Since the image of [G(F), G(F)] in G is [G(F), G(F)], 7 is irreducible and admissible as a

representation of [G(F), G(F)]. O

Put op =01 ®o0p2 and I(A) =Ig(A) = Ind% (op). Tt is easy to check that the tuple
(My, My, 01, 02) = (Mn,, M1, 01, 0a 2) satisfies the conditions of §3.3. By Lemma 3.23, o, is
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admissible. Hence I(A) is admissible. By the following lemma, o, is irreducible. (Apply for
H =My and H = [Mnﬁ1 (F), Mn,, (F)].)

LEMMA 5.3. Let H be a group, H' a normal subgroup of H and oo a representation of H
which is irreducible as a representation of H' and Endp.(02) =K. For a representation o of H,
Homp (02, o) has a structure of a representation of H/H' defined by (hi)(v) = hip(h~'v) for
he H, ¢ € Homp (02, 0) and v € o3.

(i) The natural homomorphism Hompg (02, 0) ® 09 — o is injective.
(ii) If o is irreducible, then Homp (09, o) is zero or irreducible.

(iii) For an irreducible representation oy of H/H', 01 ® 09 is an irreducible H-representation.

Proof. (i) Assume that the kernel of the homomorphism is non-zero. Take a non-zero finite-
dimensional subspace V C Homp (o2, 0) such that V ® 03 — ¢ is not injective. This is an
H’-homomorphism. Therefore, there exists a non-zero subspace Vi of V such that the kernel
is V1 ® oy. This means V; =0 in Homp (09, o). This is a contradiction.

(ii) Assume that o is irreducible and Hompg (02, 0) # 0. Then by (i), we have an injective
homomorphism Homg (02, 0) ® o9 < 0. Since o is irreducible, we have Homp (02, 0) ® 02 ~ 0.
Therefore, Homp (02, 0) is irreducible.

(iii) Let 0 C 01 ® 02 be a non-zero subrepresentation. As a representation of H', o1 ® o9 is
a direct sum of oy. Hence Homp (02, 0) # 0. Since Endy (02) =&, we have Hompy (02, 01 @
09) ~0y. This is an isomorphism between H/H'-representations. Therefore, we have
Homyy (09, 0) C 01. Since o7 is irreducible, we have Homp (09, o) = 01. Therefore, 0 = 01 ® 0o. O

We have the following calculations of Satake parameters.
— If 7 is a special representation, then S(m) = {(T, xtriv)} where xuiv: X740 =Xy = F* is
given by A+ 1 [Herlla, Proposition 7.4].
— If 7 is supersingular with the central character wr, then S(7)={(G, xw,)}; here, the
homomorphism . : Xg .0 — £~ is defined by x., (A) = wz(A(w)) [Herlla, Definition 4.7].
)=

Applying Proposition 3.7 and Corollary 3.24 for (M, Mz, 71, m2) = (Mn,, Mn,, , 01, 0a2), we

have the following lemma.

LEMMA 5.4. We have S(I(A))={(Mm,, Xw,,)}; here, Xw, : Xnp, «0— K" is defined by
Xewo, (A) = wo, (A(@)).

5.2 Irreducibility of the representation
In this subsection, we assume that the derived group of G is simply connected. We prove the
irreducibility of I(A). We need a lemma.

LEMMA 5.5. Let A= (111, IIs, 0q) € P, V an irreducible representation of K and v its lowest
weight. Assume that Hompg (V, I(A)) #0 and « €11 satisfies (Il;, &) = 0. Then we have w,, o
alox =vod.

Before the proof, we give a remark on a result of [Gro]. Let T; =red *(U(k)) and Spp the
special representation for the finite group G(k). Then we have a K-homomorphism Spp < Spp

and under this embedding, we have @E(@ = Sp? = SpT1 [Herlla, (7.5)]. (See also the proof of
T -

—1, -
) —Spn c Sph

=Spp B In other words, T'(x) acts trivially on %g(ﬁ).

[Gro, Corollary 4.3].) Since Spp — Spp is a K-homomorphism, we have Spp

B(r) U () U ()

Obviously, ﬁp CSpp . Hence Spp
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Proof. Set Vi =VNa(®) Then V; is an irreducible representation of My N K with a lowest
weight v. Moreover, we have Homy, nx (V1, op) # 0.

Let @@ be the parabolic subgroup of My corresponding to II; UIl,. Then we have op 2 =
Sp.m, - Put L = [Mn, , Mn, ]. This is an algebraic group and, since we assumed that the derived
group of G (hence, also of My, ) is simply connected, we have L(F') = [My, (F), Mn,, (F)]. Then
or2lL = SPonL.L- Put og = op2 and My = My, .

Fix ¢ € Homps,nx (V1,04)\{0} and consider V] as a subspace of op. Let v € V; be a lowest

weight vector. Then we have UEUf\NIA’I where Iy, 1 is the inverse image of (MxNU)(k)

. . .. I I NL I NL
in My NK. Since L acts on oy trivially, we have v € 0,"*" Co,\"*" " =01 @0, 7. Let

a3 be the special representation of M (k) with respect to the parabolic subgroup Q(x).

Then, by the remark before the proof, we have 3 — oo and we have a3(UND*) = aéM"‘lmL.

Since (IT,,,II;) =0, we have UN My ~ (UNL) x (U N [My, M) as algebraic groups. By the
construction, [My, Mi|(k) acts on 73 trivially. Hence we have T3 UNL)(8) — 55 (UNMA)(%) - By

the remark before the proof, T(k) acts on a3(U"M)(®) trivially. Hence T(O) acts on aéMA’mL

trivially.

Take « as in the lemma. Then Im & C Zyy,. Hence for t € O*, a(t) acts on oy by the scalar

Wg, ((t)). By the above argument, ¢(t) acts on JéMA’mL trivially. Hence it acts on U/I\M"’l by the

scalar wey, (@&(t)). On the other hand, ¢(t) acts on v by the scalar t®% = v (a(t)). This gives
the lemma. O

Remark 5.6. If we treat the Satake transform in a natural way (see Remark 2.5), Lemma 5.4
should be S(I(A)) ={(Mm,,ws,)}. (We use a notation of Herzig [Herlla, Proposition 4.1].)
Hence the above lemma should be a consequence of Lemma 5.4.

PROPOSITION 5.7. For A € P, I(A) is irreducible.

Proof. Take A = (Il;, I3, 01) € P and put My = My, and Ms = My,. Let x be the algebra
homomorphism ®[X, ] — & corresponding to (M1, Xu,, ). Then S(I(A)) = {x}. Let # C I(A) be
a subrepresentation of I(A). Take an irreducible K-subrepresentation V of 7. Then () £ S(m, V') C
S(I(A)) = {x}. Therefore, we have a non-zero homomorphism c-Ind% (V') @ne(v) X — T

Let v be a lowest weight of V. We take V' such that the set {a € II\II;, | (v, &) =0} is
minimal. We claim that this set is empty. Assume that there exists « € II\II;, such that
(&, v) =0. Put v/ =v — (¢ — 1)w, and let V' be the irreducible K-representation with lowest
weight v/. Since « & Iy, , we have o € I1,,,. By the definition of II,,, we have:

— (&, pg,) #0; or

— Wy, ((w)) # 1 or wy, o &|ex is not trivial.
The above lemma shows that if (&, ITpz,) =0 then wy, o &|px is trivial. Therefore we have that
(&, Ipr,) #0 or xu,, (&) # 1. Hence we have c-Ind% (V) 1 (V) X = c-Ind% (V') vy X DY
Theorem 4.1. Therefore, we get a non-zero homomorphism C—Ind%(V’ ) Qe (vry X — 7. Namely,
V' is an irreducible K-subrepresentation of 7. This contradicts the minimality of {« € II\II,y, |
(v, v) =0}.

Therefore, we have (v, &) # 0 for a € II\IIps,. Put V; = VNa(®) | Since y is parameterized by
(M1, Xw,,) and My C My, x factors through Sé“. By [Herlla, Theorem 3.1], c-Ind% (V) ®He(V)
X =~ Ind%\ (c—Ind%ﬁm (V1) e, (Vi) X). Therefore, we have IndIGgA (C-Ind%’;m (V1) O, (V1) X) —
m— IndgA opr. By Lemma 4.16, the composition is given by a certain homomorphism
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c—Ind%ﬁn (V1) @My, (Vi) X — 0A- Since oy is irreducible, this homomorphism is surjective.
Therefore, c-Ind% (V) @y (V) X — IndgA (op) is surjective. In particular, 7 <— Ind%(a,\) is
surjective. Hence m = Ind]GgA (op). O

5.3 Classification theorem
We will use the following lemma.

LEMMA 5.8. Let P = MN be a parabolic subgroup, o an irreducible admissible representation
of M which is supersingular with respect to (M N K,T, M N B) and w, the central character
of o. Then Ind% () has a filtration whose graded pieces are {I(Ilys, Iy, o) | Ty C I1, }.

Proof. Let P'= M’'N’ be the standard parabolic subgroup corresponding to II;; UII,. Then
by Lemma 3.2, we can extend o to M’ such that [My (F), My (F)] acts on it trivially. We
have Ind}’ /(o) = (Ind},; 127) @ 0. So we have Ind% (o) = Ind%, ((Ind¥,,, 11r) @ o). The
definition of the special representations implies that Ind%; a 1ar has a filtration whose graded
pieces are {Spg, 5/} Where Q2 is a parabolic subgroup of M’ which contains P N M’. Hence
Ind% (o) has a filtration whose graded pieces are {Ind%, (Spg,.r ® 0)}. Let Iy C Ipy be a subset
corresponding to 2. Then we have IndIG;/(SpQ%M/ ® o) = I, T5\IIpy, o). O

Remark 5.9. If the derived group of G is simply connected, then I(A) is irreducible by
Proposition 5.7. Hence the above lemma gives the composition factors of Ind%(c). In particular,
it has a finite length. The irreducibility of I(A) will be proved in §5.4. Hence the above lemma
gives the composition factors of IndIGp(J) for any G.

PROPOSITION 5.10. Assume that the derived group of G is simply connected. The
correspondence A+ I(A) gives a bijection between P and the set of isomorphism classes of
irreducible admissible representations.

Proof. First, we prove that the map is surjective by induction on #II. Let m be an irreducible
admissible representation. Let x be an element of S(7) and assume that it is parameterized by
(My, xnr,). We assume that M; is minimal. If M; = G, then 7 is supersingular. Therefore, we
assume that M; # G. Take an irreducible K-representation V' such that xy € S(w, V). Let v be a
lowest weight of V. We assume that II_, is minimal with respect to the condition y € S(m, V).

Assume that there exists « € II_,\IIj;, such that (Ipz, &) #0 or xar (&) #1. Set v/ =
v—(¢—1)ws and let V' be the irreducible K-representation with lowest weight v/. Then
I, =1I_,\{a} CII_,. By Theorem 4.1, we have c-Ind% (V) O (V) X c-Ind% (V') Qe (V1) X-
Hence x € S(m, V'). This contradicts the minimality of II_,. Therefore, for all o € II_,\IIy,,
(Ips,, &) = 0 and xaz, (&) = 1. From the first condition, (IT_,\ITas,, Iy, ) = 0.

Let P = M N be a parabolic subgroup corresponding to I1_,, U ITj;, . First assume that M # G.
Put V; = VV®), Then we have c-Ind% (V) 1 (V) X = Ind%(c-Ind¥ - (V1) @1, (vi) X) [Herlla,
Theorem 3.1]. Recall that we have a surjective homomorphism c-Ind% (V') @1 (vy X — . Hence
there exist an irreducible admissible representation o of M and a surjective homomorphism
Ind% (o) — m [Herlla, Lemma 9.9]. By inductive hypothesis, ¢ = Ip;(A’) for some A’ € Py;. Hence
there exists a parabolic subgroup Py = MyNy C P and an irreducible admissible representation og
of My which is supersingular with respect to (Mo N K, T, My N B) such that ¢ is a subquotient of
Ind% A 0o by Lemma 5.8. Hence 7 is a subquotient of IndJGDO (00). By Lemma 5.8, all composition
factors of Indg0 (00) are I(A) for some A € P. Hence m = I(A) for some A € P.

Therefore, we may assume that II_, U Il =II. Let P = M’N’ be the standard parabolic
subgroup corresponding to II\ITj;,. Then for all a €Iy, (v,&) =0, {(a,,)=0 and
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X, (@) = 1. Set L' =[M’, M']. Then the group of coweights X1, of L' NT is ZIIy; which
is a subgroup of X, N H]J\Zl. Put Xp/ 4+ = X4 4+ NZI). By Lemma 3.19 and Proposition 3.14,

we have S(m, V)lxpx,. ., € S(lar, VN O)fgx,, ) € S|, VI )
VNV (x)

LnK). Since (v, ﬁM/) =0,

ok is trivial. Therefore, x|gix,, .. € S(7|r, 1rnk). Set X' = xlgx,, ... We have
a non-zero homomorphism c—Indng 100K @4, X' — m. Since y is parameterized by
(M1, xr,), X' is parameterized by (L' NT, xar,|x,,.). Since we have xaz (&) =1 for all a €
My, we have xa,|x,, . = 1x,, .. Hence x’ is parameterized by (L' N T, 1x,, ). Therefore, by
Proposition 4.7, the set of composition factors of c—Indng 1onk 1, (1,00) X' is {SpQ,,L, |
Q' C L' is a parabolic subgroup}. Hence there exists a unique parabolic subgroup P, = M3Ns
such that Iy, CIlpz, and Spp,np, 1 < 7. Let o2 be the special representation Spp,. Then the
restriction of o to L' is Spp /1. Put o1 = Homp, (o2, w). This is non-zero. By Lemma 5.3, o
is an irreducible representation of G and o1 ® o9 — 7.

We prove that o; is admissible. Let K’ be an open compact subgroup and take an open
compact subgroup K” such that off ;éO Let K" be an open compact subgroup which is
contained in K’ and K”. Then we have of’ ® 0" C 0" @ of" C (01 ® 09)%" = 7K. Since
is admissible, 7" is finite dimensional. Hence the dimension of ot is finite.

We prove o7 is supersingular with respect to (M; N K, T, M; N B) as a representation of
M. Since L' acts on o7 trivially, o1 is regarded as a representation of G/L'. By Lemma 3.2,
M; — G/ L' is surjective. Therefore, 01|y, is irreducible and admissible. By inductive hypothesis,
o1lm, = Iy, (A') for some A’ € Pyy,. In particular, #S8(o1|p,) =1. Since x € S(o1 ® 02) is
parameterized by (M1, xar,), the element of S(o1]as,) is parameterized by (M, X, ) for some
X/Ml by Corollary 3.22. Hence o1 is supersingular.

We prove that the map is injective. Let A’ = (II}, II}, 0]) and assume that I(A)~I(A).
Then we have S(I(A),V)=8(I(A'),V)#0 for some irreducible representation V of K. By
Lemma 5.4, (Mn,, Xw,,) = (M, Xwafl)' Hence II; =1II}. Let v be a lowest weight of V. Then
by Lemma 5.5, for o € IT such that (I}, &) =0, ws, 0 &lox =V 0 & = wy 0 &|px. On the other
hand, we have wy, 0 &(@) = Xw,, (@) =Wy © &(w). Hence wy, 0 & = w,; o &. Therefore, we have
II,, = Ily;. Hence Py = Py.

Now we have Ind%  (oA) ~ Ind% B, (0ar). By Lemma 4.16, we have a non-zero homomorphism
opx — opr. Since oy and o are irreducible, op ~op. Set L= [Mp, (F), My, (F)]. As a
representation of L, o is a direct sum of special representations Spg, ;, where Q2 is the parabolic
subgroup of L corresponding to IIy. Hence we have Il = ITf,. Therefore, oy 2 ~ o 2. Hence we
have o1 ~ Homp (02, 0a) ~ Homp (0241, 0a/) > 0}. We get A=A, O

5.4 General case and corollaries

THEOREM 5.11. Let G be a connected split reductive algebraic group. Then I(A) is irreducible
for all A € P and A — I(A) gives a bijection between P and the set of isomorphism classes of
irreducible admissible representations.

Proof. Take a z-extension 1 — Z — G — G —1 of G. For each parabolic subgroup P = MN,
let M be the Levi subgroup of the parabolic subgroup of G corresponding to Ilp;. Then
1—-27Z—M— M —1is a z-extension of M. For each representation 7 of G, let 7 be the pull-
back of 7 to G. Then we have I (IIq, Iy, 01) = I5(I1y, I3, 01) . In general, the representation
7 of GG is supersingular with respect to (K B T ) if and only if its pull-back to G is supersingular
with respect to (K, B, T) by Lemma 3.25; here, K is as in Lemma 2.1 and B, T are the inverse
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images of B, T, respectively. By Proposition 5.7, this is irreducible. Hence I (A) is irreducible
for A e P.

Obviously, we also have that Ig(IIy, Ig, 01) ~ I(IT}, IT5, 01) if and only if I5(ITy, 1Tz, 07) =~
I5(117, 115, o). Hence we have II; =T}, Iz =I5 and o1 ~ 0 by Proposition 5.10. Hence we
have o1 ~ of.

Let 7 be an irreducible admissible representation of G. Then there exists Ag = (II1, Iz, 010) €
P such that @ = I=(Ag). Since Z is contained in the center of My, , it acts on 079 by a character.
By the construction of I(Ag), Z acts on [5(Ag) =~ 7 by the same scalar. It is trivial since Z
acts on 7 trivially. Hence Z acts on oy trivially; namely, oy g ~ o7 for some representation of G.
Hence m = I(I1;, 112, 01). This gives us the theorem. O

We give corollaries of this theorem.
COROLLARY 5.12. For any irreducible admissible representation w of G, #8(mw) = 1.
Proof. Obvious from Lemma 5.4 and Theorem 5.11. O
COROLLARY 5.13. Let m be an irreducible admissible representation of G. Then the following
conditions are equivalent.

(i) The representation 7 is supersingular.

(ii) The representation 7 is supersingular with respect to (K, T, B).

(iii) The representation m is supercuspidal.
Proof. Take A = (113, II3, 01) € P such that m# = I(A). Then by Lemma 5.4, 7 is supersingular
with respect to (K, T, B) if and only if II; =II. By Lemma 5.8, 7 is a subquotient of Indlci1 (01).
Hence, if 7 is not supersingular with respect to (K, T, B), then 7 is not supercuspidal.

Assume that 7 is a subquotient of Imdg0 oy for a proper parabolic subgroup Py = MyNy and

an irreducible admissible representation og. By Lemma 5.8, we may assume o is supersingular
with respect to (K, T, B). By Lemma 5.8, P, = Py. Hence 7 is not supersingular with respect

to (K, T, B).
Hence (ii) and (iii) are equivalent. Since the property (iii) is independent of a choice of
(K, T, B), (i) and (ii) are equivalent. O

COROLLARY 5.14. Let P=MN be a parabolic subgroup and ¢ a finite length admissible
representation of M. Then Ind% o has a finite length.

Proof. We may assume o is irreducible. This follows from Lemma 5.8 and Remark 5.9. a

COROLLARY 5.15. Let v: T — &% be a character. Then Ind%(v) has a length 2€ where C =
#{acll|voda=1gy,}. In particular, Ind%(v) is irreducible if and only if v o & # 1gy, for all

aell

Proof. Notice that any character of T is supersingular. Hence this follows from Lemma 5.8 and
Remark 5.9. O
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