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Abstract
Generalized additive models (GAMs) are a leading model class for interpretable machine learning. GAMs
were originally defined with smooth shape functions of the predictor variables and trained using smooth-
ing splines. Recently, tree-based GAMs where shape functions are gradient-boosted ensembles of bagged
trees were proposed, leaving the door open for the estimation of a broader class of shape functions (e.g.
Explainable Boosting Machine (EBM)). In this paper, we introduce a competing three-step GAM learning
approach where we combine (i) the knowledge of the way to split the covariates space brought by an addi-
tive tree model (ATM), (ii) an ensemble of predictive linear scores derived from generalized linear models
(GLMs) using a binning strategy based on the ATM, and (iii) a final GLM to have a prediction model that
ensures auto-calibration. Numerical experiments illustrate the competitive performances of our approach
on several datasets compared to GAMwith splines, EBM, or GLMwith binarsity penalization. A case study
in trade credit insurance is also provided.

Keywords: Additive tree ensembles; auto-calibration; generalized additive models; generalized linear models; partitioning
methods; XAI

1. Introduction
Insurance companies need explainable pricing and reserving models because the decisions they
make based on these models can have significant financial and legal implications, but also because
they are crucial for building trust with all stakeholders and regulators. Explainability in the context
of this paper will refer to the ability to explain or to present in understandable terms to a human
how the models make their decisions or predictions. Generalized additive models (GAMs) with
smooth functions of the predictor variables, originally developed by Trevor Hastie and Robert
Tibshirani (Hastie & Tibshirani, 1986), have emerged as a spearhead of the actuaries’ toolbox (see
e.g. Wood, 2017 for an introduction with R). The combination of additive nature, smooth func-
tions, interpretability, and transparent variable selection in GAMs makes them highly explain-
able models that are suitable for a wide range of applications where model interpretability is
important:

• GAMs are an extension of generalized linearmodels (GLMs) that allow for nonlinear relation-
ships between predictors and the response variable. But they retain their additive structure,
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meaning that they model the relationship between the predictors and the response variable as
a sum of individual functions of the predictors. This additive nature allows for clear separation
of the effects of each predictor, making it easy to explain the contribution of each predictor
to the overall model prediction. Each function can be visualized and interpreted separately,
providing insights into how each predictor affects the response variable.

• GAMs use smooth functions, such as spline functions or other smooth basis functions, to
model the relationship between the predictors and the response variable. These smooth func-
tions are typically visually interpretable and can be plotted to understand the shape of the
relationship. This makes it easier to explain the model to non-technical stakeholders by
visualizing and describing the smooth functions in simple terms.

• GAMs typically use techniques such as cross-validation or information criteria to automat-
ically select the most important predictors to include in the model. This makes the variable
selection process transparent and allows for easy explanation of which predictors are included
and why, adding to the model’s interpretability.

Although GAMs developed by Hastie and Tibshirani are flexible and powerful statistical mod-
eling technique, there are some well-known limits to their use that should be considered when
applying this modeling approach. GAMs use smooth, continuous functions to model the relation-
ship between each feature and the response variable. If the true relationship is highly nonlinear
or involves abrupt changes, the smoothing process might oversimplify these nuances, leading to
underfitting. Moreover, the smoothing methods in GAMs can be sensitive to outliers, and the
smooth functions used in GAMs might struggle to fit the data accurately, potentially smoothing
over important signals or failing to ignore outliers appropriately. By design, GAMs model the
effects of features additively and usually do not automatically include interaction terms between
features (though interactions can bemanually added). In cases where the relationship between fea-
tures and the response is significantly influenced by interactions between variables, GAMs might
not capture these complexities adequately. Finally, GAMs can be computationally expensive to
fit, particularly when a large number of predictors are included in the model. This can make the
model difficult to use in practice or in real-time applications.

In the meantime, bagging and boosting techniques as well as neural networks have appeared
as effective machine learning methods and have given actuaries great hope for improving their
models. But their opacity and the difficulties in understanding and interpreting their results have
not led them to replace GAMs or GLMs. An alternative path was therefore to use these mod-
ern machine learning methods to improve the estimation of nonlinear relationships between
predictors and the response variable.

Explainable Boosting Machine (EBM), developed by Nori et al. (2019), is the prominent
example of GAMs with non-smooth functions of the predictor variables that uses a boosting algo-
rithm to make the model’s accuracy comparable to state-of-the-art machine learning methods
like random forest and boosted trees. An EBM is a tree-based GAM where shape functions are
gradient-boosted ensembles of bagged trees. Each tree operates on a single variable and is grown
by repeatedly cycling through features forcing the model to sequentially consider each feature as
an explanation of the current residual. The EBM-BF (EBM-BestFirst) is a sparse version of EBM
that put most weight on a few very important features, and little or no weight on features whose
signal could be learned by other stronger, correlated features.

GAMboostLSS, developed by Hofner et al. (2014), is an R package for fitting GAMs for loca-
tion, shape, and scale (GAMLSS) to potentially high-dimensional data using boosting techniques.
GAMLSS extends traditional linear regression models for the mean by allowing to model different
parameters (e.g. variance, skewness, and kurtosis). This makes it versatile for handling data with
various distributional shapes and complexities.

EBM or GAMboostLSS have quickly gained popularity. But they may have some limitations
that should be taken into account when considering their use in a particular machine learning
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task. For example, they can be less robust to missing data than other machine learning models as
they require imputation or removal of missing data before they can be trained. But this limitation
is also shared by many other algorithms.

An alternative approach to GAMs using boosting algorithms is to consider GLMs with inno-
vative regularization technique. Binarsity (Alaya et al., 2019) is a new type of regularization
or penalization technique specifically designed to handle high-dimensional and sparse one-hot
encoded features in linear supervised learning. One-hot encoding can lead to high-dimensional
binary feature vectors, especially when dealing with categorical variables with many categories.
These high-dimensional feature vectors can pose challenges in linear models. Binarsity encour-
ages group sparsity among the binary features, making themodel more interpretable and reducing
the risk of overfitting. The strength of the binarsity penalty is controlled by a hyperparameter that
needs, however, to be tuned with care for optimal model performance.

The concept of employing a GLM with categorized features to approximate a GAM has
also been discussed in Henckaerts et al. (2022). This paper introduces the Model-Agnostic
Interpretable Data-driven suRRogate (available as the R package "maidrr"). The proposed method
extracts insights from a complex model through partial dependence effects, facilitating intelligent
feature engineering. This process involves grouping values of variables, effectively segmenting the
feature space and automating the selection of significant variables. Subsequently, a transparent
GLM is applied to these binned features, incorporating their critical interactions.

In this paper, we propose a new approach for estimating a GAM with non-smooth feature
functions. This approach is at least as competitive as the most recent approaches. It is based
on three steps and on an additive tree model (ATM) as an initial machine learning model with
high learning capacity. An ATM uses an ensemble of decision trees to make predictions. It is
also known as a gradient boosting machine with trees as base learners, or simply a gradient tree
boosting model. Our aim is to use the knowledge of the way to split the covariates space brought
by the ATM for binning the covariates. In the first step, we fit the ATM. In the second step, for
each decision tree of the ensemble, we fit a GLM with the binned covariates, collect the under-
lying stepwise functions of the GLM predictive scores, and then aggregate them. An additional
interest in our approach is that the second step may be slightly modified to derive a surrogate
model (i.e. an explanatory model) of the ATM. In the third step, we fit a final GLM to have an
auto-calibrated prediction model that corrects for possible systematic cross-financing between
different price cohorts within the insurance portfolio. The results we obtain on synthetic data
show the competitive performance of our approach compared to other methods for estimating
GAMs.

The main contribution of this paper is to show how to produce a GAM with non-smooth
feature functions using the knowledge acquired by an ATM and by distilling it appropriately in
GLMswhile performing a series of binning, aggregation, and calibration steps. Unlike recent com-
peting approaches, we moreover provide an auto-calibrated GAM model. Finally, our approach
results in an interpretable model based on the additive structure of the GAM, which enables an
"all other things being equal" analysis that is much appreciated by actuaries. The rest of this paper
is structured as follows. Section 2 introduces the additive structure of the GAM and describes
precisely the different steps of our algorithm. Section 3 validates our approach on synthetic data
with known ground-truth feature shapes and compares it with the historical GAM with splines,
EBM, and GLM with binarsity penalization. A case study in trade credit insurance is provided in
Section 4.

2. Methodology
Given a vector of covariates X= (X1, . . . , Xp), a univariate response variable Y , a link function g,
and shape smooth functions fj, j= 1, . . . , p, a GAM can be written as:
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g
(
E[Y|X= x]

) = β0 +
p∑

j=1
fj

(
xj

)
, x= (x1, . . . , xp).

An exponential family distribution is specified for Y (e.g. Gaussian, Binomial, or Poisson dis-
tributions). The additive structure allows for clear separation of the effects of each covariate,
making it easier to draw insights of the contribution of each covariate to the overall model pre-
diction, while using the functions fj (usually splines or other basis functions) leads to capture
the underlying nonlinearities in the data. Identifiability constraints are in general applied, for
example, E[fj

(
Xj

)
]= 0 for j= 1, . . . , p, to make the model identifiable. The GAM with pairwise

interactions (GA2M) includes pairwise shape functions:

g
(
E[Y|X= x]

) = β0 +
p∑

j=1
fj

(
xj

) +
∑

(i,j)∈S2

fi,j
(
xi, xj

)
, x= (x1, . . . , xp),

where S2 is a set of non-empty subsets of {1, . . . , p} with cardinality 2, and fi,j are shape smooth
bivariate functions. GAMs with or without pairwise interactions are highly interpretable because
the impact of each shape functions fj or fi,j on the prediction can be visualized as a graph, and it is
easily understood how a GAMworks by reading the different features from the graphs and adding
them together.

In GAM with splines approach, basis functions for the splines are first chosen (e.g. the family
of cubic splines are piecewise-defined cubic polynomials), then splines require the specification of
knot locations (knots are points along the predictor variable where the smoothness of the curve
may change), and finally the GAM model is fitted to the data using techniques like least squares
estimation or maximum likelihood estimation. It is possible to select smoothing parameters to
control the degree of smoothness of each shape functions and to determine howmuch the smooth
functions can deviate from linearity. Techniques like cross-validation are often used to choose
these smoothing parameters.

In EBM, the shape functions are fitted through a process that involves creating a set of additive
functions while boosting them to improve predictive accuracy. The process starts by initializing
the EBM model and setting the number of boosting iterations (the number of weak models to
combine). In each boosting iteration and for each covariate, the weak model (a simple decision
tree) is trained to approximate the negative gradient of the loss function with respect to the current
model’s predictions. This weakmodel aims to correct the errors made by the previous ensemble of
additive functions. The additive functions are then modified to incorporate the predictions from
the new weak model. To prevent overfitting, a shrinkage or learning rate parameter is applied to
the predictions of the weak model before adding them to the additive functions.

For the GLMwith binarsity penalization, the idea is to one-hot encode continuous features and
to encourage block sparsity in the GLM’s coefficients with an appropriate penalization. Themodel
defines one group of binary features for each raw continuous feature (these groups are naturally
ordered). The binarsity penalization then combines a group total-variation penalization, with an
extra linear constraint in each group to avoid collinearity. This penalization forces the weights of
the model to be as constant as possible within a group by selecting a minimal number of relevant
cut points.

The Model-Agnostic Interpretable Data-driven suRRogate of Henckaerts et al. (2022) begins
with a black-box model that is transformed into an easier-to-understand surrogate. Knowledge
is derived from the original model using partial dependence effects, which show how each fea-
ture influences the target. These effects guide the binning of values within each feature using
dynamic programming. The binning method varies by feature type: for continuous or ordinal
features, only neighboring values are grouped together, while for nominal features, any levels
can be clustered. This method ensures consistent grouping, fully segmenting the feature space.
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Subsequently, a GLM is applied to this organized data, considering all features in a categorical
format along with their important interactions.

We propose a newmethodology for estimating the shape functions fj of a GAMby approximat-
ing them as averages of piecewise functions. Let us assume for a moment that the shape functions
fj of the GAMmay be written as follows:

fj
(
xj

) =
nj∑
k=1

βk,jI{xj∈(sk,j,sk+1,j]
}

where nj ∈N∗, βk,j ∈R, and the support of Xj is included in
⋃nj

k=1 (sk,j, sk+1,j]. The pairwise inter-
actions fi,j of GA2Mmay also be written as stepwise functions on R

2 based on Cartesian products
of intervals. Then the GAM could be estimated as a GLM (assuming that the number of inter-
vals nj is not too large). However, there are two issues in using such an approximation. First, the
splitting in intervals is not given a priori and should be made according to the shape of the shape
functions fj which are unknown. Second, these functions, although not necessarily continuous, are
not assumed to be piecewise constant functions. Ourmethodology consists in distilling knowledge
of an ATM for binning the covariates and in estimating an ensemble of piecewise functions whose
aggregation will provide a smoother estimate with less variance of g (E[Y|X= x]).

One-hot encoding features presents a few challenges and limitations. Specifically, it fragments
the features, which disrupts the internal cohesion of each feature, ultimately reducing sometime
interpretability. Converting a continuous feature into multiple dummy categorical features may
also lead to a loss of information. However bagging and boostingmay be used to limit these effects.
The core technique in bagging involves averaging the predictions of multiple models, each trained
on different subsets of the data. This is particularly effective when the models are non-smooth
estimators, as their individual inconsistencies and abrupt changes tend to neutralize each other
through averaging. This process effectively smooths out the final estimator and minimizes the
variance part of the prediction error. Gradient boosting starts with a base estimator and itera-
tively improves upon it by adding new models that correct the previous errors (residuals). Each
new model (often a decision tree) is focused on improving the areas where the previous models
performed poorly. This stepwise refinement can smooth out the abrupt changes and disconti-
nuities typical of non-smooth models because each subsequent model is trained to correct the
exaggerated predictions or errors of the prior models. As more models are added to the ensemble,
their individual predictions are combined, usually through a weighted average where each model
contributes a small incremental improvement. This averaging process tends to smooth out noise
and fluctuations in the predictions. In the context of non-smooth base estimators, the averaging
of multiple incremental improvements over the residuals can result in a final prediction that is
smoother than any individual model’s predictions.

2.1 Step 1: knowledge distillation
Knowledge distillation is a technique used to transfer the knowledge learned by a complex, high-
performing machine learning model, known as the teacher model, to one or several simpler,
smaller models, known as the student models.

In our fitting procedure, an ATM plays the role of the teacher. An ATM is an ensemble
model of decision trees such as random forests (Breiman, 2001) and boosted trees (Friedman,
2001). Because of their high prediction performance, ATMs are one of the must-try methods
when dealing with real problems. By combining decision trees, ATMs can then capture nonlinear
relationships between the input features and the target variable.

Let D = {(xi, yi), i= 1, . . . , n} be an observed i.i.d sample. The first step of our approach con-
sists in fitting an ATM on D using the log-likelihood loss function associated with Y and the
link function g of the GAM. The output space of the ATM is a collection of predictions from
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individual trees, combined according to a chosen ensemble method (random forests or boosted
trees). For classification tasks, the output space consists of class probabilities or class labels, while
for regression tasks, it contains continuous prediction values. In a random forest, predictions from
individual trees are combined by taking a majority vote for classification or an average for regres-
sion. In boosting, the predictions of each tree are weighted based on their accuracy and used to
update the model in the next iteration. The final prediction is the sum of the predictions from
all trees in the ensemble. The input covariate space is therefore splitted by the ATM into regions
(rectangles) with an assigned prediction value to each region. We denote by s(l)k,j the ordered k-th
split for the j-th variable and the l-th tree (derived from the leaf nodes of the tree). We denote by
n(l)j the number of splits for the j-th variable and the l-th tree.

2.2 Step 2: building ensemble of GLMs
For each tree l, we fit the following GLM to data:

g
(
E[Y|X= x]

) = β
(l)
0 +

p∑
j=1

n(l)j −1∑
k=1

β
(l)
k,jI

{
xj∈(s(l)k,j,s(l)k+1,j]

}

and consider it as a student model for the knowledge distillation. Pairwise interactions may be
added. Let us denote by β̂

(l)
k,j the estimates of the coefficients β

(l)
k,j . Each GLM is only a rough

approximation of the GAM. By combining the GLM linear scores, we get a more accurate estimate
of fj given by:

f̂ (0)j
(
xj

) =
L∑
l=1

ωl

n(l)j∑
k=1

β̂
(l)
k,jI

{
xj∈(s(l)k,j,s(l)k+1,j]

}

where L is the number of tree partitions in the ensemble of the ATM and ωl is the weight given
to the l-th tree. Weights can be uniform in the case of the bagging approach or can be derived
from the weights of the incremental models in the case of the boosting approach. This ensemble
approach improves model generalization and helps reduce overfitting of the final GLM.

Remark 2.1. In machine learning, a surrogate model is a simplified model that approximates the
behavior of a more complex and computationally expensive model. Surrogate models are used when
the original model is too complex to analyze directly or when it requires significant computational
resources to run, making it impractical for iterative tasks like optimization, sensitivity analysis, or
real-time prediction. To build a surrogate model of the ATM, instead of fitting the GLM to data, we
advice to fit it to ATM predictions. We have noted that this alternative approach also provides an
extremely powerful predictive GAMmodel.

The link function g is not in general a linear function, and the proposed linear aggregation
method may induce biased predictions for the target Y (after taking into account the transfor-
mation of the average score by g−1). The third step of our methodology aims at debiasing these
predictions.

2.3 Step 3: auto-calibration
Auto-calibration refers to the process of calibrating the outputs of a machine learning model
to better match the true probabilities of the output classes in case of classifications or to have
a better balance between sums of prediction and sums of observations in case of regressions.
Many machine learning models, such as random forests, gradient boosting, and neural networks,
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Figure 1. Schematic overview of the estimation procedure.

output scores or probabilities that are not calibrated. Auto-calibration is important in insurance
pricing where candidate premiums have to reveal the risk at individual policy level but also enable
the global price level to reproduce the experience within the portfolio. In Denuit et al. (2021), the
authors propose to correct for bias by adding an extra local GLM step to the analysis with the
output of the first step estimate. In Wüthrich & Ziegel (2023), an isotonic recalibration is applied
to a given regression model to ensure auto-calibration. In Lindholm et al. (2023), the covariate
space is first partitionned using two different approaches: (i) duration-weighted equal-probability
binning, and (ii) binning by duration-weighted regression trees, and then a local bias adjustment
is implemented.

However, the previous procedures would lead to the destruction of the additive structure of the
model derived from Step 2. We therefore favor a global auto-calibration by adding an extra global
GLM step with the following model:

g
(
E[Y|X= x]

) = β0 +
p∑

j=1
αjf̂ (0)j

(
xj

)
.

Our final estimates of the shape functions fj are then given by:

f̂j
(
xj

) = α̂jf̂ (0)j
(
xj

)
, j= 1, . . . , p.

This third step is not mandatory in our GAM learning approach. It may lead sometimes to
a deterioration in the performance of the results if the model obtained in Step 2 significantly
transforms the estimated probabilities or conditional expectations compared with the empirical
ones. The user can decide to keep the results obtained at the end of Step 2 or to perform Step 3
to obtain results closer to the experience of his/her insurance portfolio. In the simulated examples
and the case study considered below, we have not observed any significant drop in performance.

Fig. 1 schematizes the several steps of our competing GAM approach.
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Table 1. Shape functions fj

f1 (x1) = 3x1 f2 (x2) = x32 f3 (x3) = π x3
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

f4 (x4) = exp
(−2x24

)
f5 (x5) = (1+ |x5|)−1 f6 (x6) = x6 log (|x6|)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

f7 (x7) = √
2|x7| +max (0, x7) f8 (x8) = x48 + 2 cos (πx8)

Figure 2. Plots of the shape functions fj.

3. Validation using synthetic data with known ground truth
We simulate data from both regression and classification models with known ground-truth fea-
ture shapes to see if our new methodology can recover these feature shapes. The functions fj
considered are given in Table 1 and are represented graphically in Fig. 2. These linear and highly
nonlinear functions have been proposed in Hooker (2004) and also used in Friedman & Popescu
(2008), Tsang et al. (2017), and Tan et al. (2018).

We now compare our approach with the GAM with splines, EBM, and GLM with binarsity
penalization, for two types of prediction tasks: regression and classification.

3.1 Regression task
Wefirst consider the regression task for which g

(
y
) = y, y ∈R, andY (givenX= x) has a Gaussian

distribution with mean equal to
∑8

j=1 fj
(
xj

)
and standard deviation equal to 0.5. As in Friedman

& Popescu (2008), we assume that X is a random vector whose components are independent and
distributed according to the uniform distribution on (−1, 1). As in Tsang et al. (2017), we add to
the list of covariates two noise covariates that have no effect on E[Y|X= x], X9 and X10, which
have been assumed to be independent on X and to have uniform distribution on (−1, 1). We
simulate samples of size 50,000.
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Table 2. Choice of the hyperparameters for the regression task (based on a 5-fold cross-validation)

Model Package Model parameters not set to their default values

GBM H2O R ntrees = 200, max_depth = 9, learning_rate = 0.1,
sample_rate = 1, col_sample_rate = 1

.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

GAM mgcv R basis function = cubic regression splines
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

EBM InterpretML learning_rate = 0.01, interactions = 0,
validation_size = 0.15

.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Binarsity github binarsity ncuts = 30, C = 1e4

Table 3. Comparison results based on R2

Train R2 Test R2

GBM 95.70% 95.56%
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

GAM 95.60% 95.65%
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

EBM 95.68% 95.62%
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Binarsity 95.45% 95.46%
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Distilltrees 95.61% 95.67%

For the ATM, we used GBM of the H2O R package. For the GAM, we used gam of the mgcv
R package. For the EBM, we use ebm from the python package InterpretML. For the GLM with
binarsity penalization, we used the github repository /SimonBussy/binarsity. For each model, the
choice of the hyperparameters are given in Table 2.

The performances of the various models measured by the R2 metric are shown in Table 3.
They are very close to each other. It is not surprising that GAM performs as well as the other
competitors, because it was used to generate the data.

The estimated feature shapes are plotted in Fig. 3. The four learning approaches provide esti-
mated functions that are very close to each other. The functions given by EBM, however, tend
to be less smooth than the others. For f3, f4, f5, and f7, there are level discrepancies between the
true functions and the estimated functions. This is a consequence of the identifiability constraints
imposed on the various estimation methods, for which the integrals of the estimated shape func-
tions must be equal to 0. The free-signal covariates X9 and X10 are each estimated close to 0 for
the four learning approaches.

Table 4 presents the mean absolute deviations for each function being estimated and for each
learning method used. Generally, GAM with splines outperforms others as it inherently pro-
vides default smooth functions for estimating such functions, giving it a natural advantage. The
results of other methods are fairly similar, though EBM performs marginally better than GLM
with Binaristy. Notably, Distilltrees is better in detecting the absence of variables better than its
competitors (X9 and X10).

All four learning approaches provide auto-calibrated predictions (or nearly so), see Fig. 4. To
obtain this figure, the dataset is sorted based on the values of the predictions of E[Y|X= x]. The
data are then bucketed into 50 equally populated classes based on quantiles. Within each bucket,
the average of the predictions is calculated as well as the average of the observations Y . Both
averages are then graphed for each class. For all four learning approaches, the points are almost
identical and aligned on the y= x line. Distilltrees provides slightly larger deviations from this line
than its competitors for the most extreme quantile classes, without these deviations being really
significant.

In the Appendix, we have proposed an additional study where the covariates X1 and X2, X3
and X4 respectively, are almost collinear. This study makes it possible to identify the algorithms
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Figure 3. Feature shapes learned using GAMwith splines, EBM, Distilltrees, and GLM with binarsity penalization.

that are most robust to the collinearity problems encountered in practice. It is a study that con-
siders one of the worst cases in terms of dependence between covariates. Weaker dependence
between covariates produces results that are better in terms of estimating shape functions. We
have also studied the sensitivity of the results to sample size by considering a sample 50 times
smaller.

3.2 Classification task
We now consider the classification task where g−1 (

p
) = log (p/(1− p)), p ∈ (0, 1), and Y (given

X= x) has a Binomial distribution with parameter g(
∑8

j=1 fj
(
xj

)
). As for the regression task, we

assume that X is a random vector whose components are independent and distributed according
to the uniform distribution on (−1, 1). We also add to the list of covariates two noise covariates
that have no effect on E[Y|X= x], X9 and X10, which have been assumed to be independent of X
and to have uniform distribution on (−1, 1). We simulate samples of size 50,000.

For each model, we used the same packages as those presented in Section 3.1. The choice of the
hyperparameters are given in Table 5.
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Table 4. Mean absolute deviation per variable and learning model

Variable Binarsity Distilltrees EBM GAM

X1 0.0491 0.0348 0.0224 0.0029
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

X2 0.0191 0.0133 0.0131 0.0037
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

X3 1.2325 1.4794 1.2320 1.2321
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

X4 0.5984 0.6132 0.5987 0.5988
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

X5 0.6932 0.7143 0.6939 0.6939
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

X6 0.0167 0.0324 0.0113 0.0093
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

X7 1.1923 1.1163 1.1926 1.1931
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

X8 0.2007 0.2575 0.1972 0.1975
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

X9 0.0073 0.0010 0.0075 0.0006
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

X10 0.0082 0.0014 0.0091 0.0049

Table 5. Choice of the hyperparameters for the classification task (based on a 5-fold cross-validation)

Model Package Model parameters not set to their default value

GBM H2O R ntrees = 200, max_depth = 9, learning_rate = 0.1,
sample_rate = 1, col_sample_rate = 1

.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

GAM mgcv R basis function = cubic regression splines
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

EBM InterpretML learning_rate = 0.01, interactions = 0,
validation_size = 0.15

.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Binarsity github binarsity ncuts = 30, C = 1e4

Figure 4. Predicted probabilities vs observed probabilities for the different learning models.

The performances of the various models measured by the AUC metric are shown in Table 6.
They are still very close to each other as for the regression task.

The estimated feature shapes are plotted in Fig. 5. Compared with the regression task, the
functions are a little bit less well estimated. GAM fares best, while providing inherently smooth
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Table 6. Comparison results based on AUC

Train AUC Test AUC

GBM 89.47% 89.28%
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

GAM 89.31% 89.41%
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

EBM 89.56% 89.29%
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Binarsity 89.38% 89.25%
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Distilltrees 89.50% 89.23%

Figure 5. Feature shapes learned using GAMwith splines, EBM, Distilltrees, and GLM with binarsity penalization.

estimates. Distilltrees tends to provide smoother estimates than these two other competitors.
As for the regression task, for f3, f4, f5, and f7, there are level discrepancies between the true
functions and the estimated functions beacause of the identifiability constraints.

All four learning approaches provide auto-calibrated predictions (see Fig. 6).
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Table 7. Choice of the hyperparameters for the credit insurance case study (based on a 5-fold cross-
validation)

Model Package Model parameters not set to their default value

XGB H2O R ntrees = 4000, max_depth = 5, learning_rate = 0.05,
min_rows = 10

.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

GAM mgcv R basis function = cubic regression splines
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

EBM InterpretML learning_rate = 0.01, interactions = 0,
validation_size = 0.15

.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Binarsity github binarsity ncuts = 30, C = 1e5).

Table 8. Variable importance of the XGB used for the ATM

Name of the % of scaled
Covariate Importance of the XGB Meaning of the covariate

V2 23.29 Automatic acceptance processing system variable
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

V12 20.08 Risk exposure variable
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

V17 13.90 Risk assessment variable
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

V15 10.96 Ratio V3/V2
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

V3 9.68 Variable relating to the amount of the request

Figure 6. Predicted probabilities vs observed probabilities for the different learning models.

4. A case study
In this section, we provide a case study in trade credit insurance where we compare our new
learning approach with GAM with splines, EBM, and GLM with binarsity penalization.

Allianz Trade is an international insurance company specialized in trade credit insurance.
Credit insurers provide a range of financial services to businesses to help protect them against the
risk of non-payment by their customers. They have to assess the creditworthiness of businesses’
customers or clients. Based on their own risk assessment, credit insurers provide businesses with
recommendations regarding the credit limits they should extend to their customers.

Allianz Trade provided us with a database of businesses’ customers default events. This
database also contains information on the financial stability, payment history, and credit ratings
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Table 9. Comparison results based on AUC

Train AUC Test AUC

XGB 90.28% 89.38%
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

GAM 81.67% 81.37%
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

EBM 88.15% 87.73%
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Binarsity 87.68% 86.41%
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Distilltrees without auto-calibration 87.86% 87.00%
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Distilltrees 87.78% 86.91%

Figure 7. Predicted probabilities vs oberved probabilities for the different learning models.

of its customers to determine the level of risk associated with each businesses’ customer. For confi-
dentiality reasons, we cannot give the exact definition of each variable. But we explain themeaning
of the most important variables for the models.

For each model (except the ATM), we used the same packages as those presented in Section 3.1.
For the ATM, we used XGB of the H2O R package. The choice of the hyperparameters are given
in Table 7.

The five most important variables based on the feature importance of the XGB are given in
Table 8.

The performances of the various models measured by the AUC metric are shown in Table 9.
XGB naturally performs best, since it takes into account interactions between covariates and is
not constrained by the linear structure of the additive model. However, the performances of EBM,
GLM with binarsity, and Distilltrees are not far apart (the difference in performance between the
auto-calibrated version of Distilltrees and its non-auto-calibrated version (i.e. stopped at Step 2)
is very small and not significant). The performance of GAM is significantly lower than that of its
competitors for this case study. XGB performs better, but it is poorly calibrated, unlike the other
four learning models (see Fig. 7).

In Fig. 8, we observe that the estimatedmost important functions are close for the four learning
additive models for the variables V2, V12, V17, and V3. But for V15, GAM’s estimation is quite
different from the other methods. GAM proposes higher values for the support of the variable and
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Figure 8. Feature shapes learned using GAMwith splines, EBM, Distilltrees, and GLM with binarsity penalization.

much lower values near the end of the support. We also note that Distilltrees provides smoother
trajectories than EBM and the GLM with binarsity.

These functions were passed on to Allianz Trade’s experts, who were able to compare their
business experience with the shapes of the estimated functions. They were fairly convinced of the
form provided by Distilltrees for these most important variables. Interpretable credit insurance
models are essential for risk management experts because they enhance transparency, facilitate
understanding, enable model validation, support regulatory compliance, guide risk mitigation
strategies, and improve overall risk management practices.

Distilltrees provides a competitive alternative to EBM and GLM with binarsity. The response
functions obtained by the three approaches are not necessarily exactly the same. The inter-
vals where the differences between Distilltrees and EBM or GLM with binarsity are most
noticeable need to be studied in more detail by the user and crossed with other variables to
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understand why the ATM used in Step 1 has led to these differences. It is a possibility of our
approach to potentially identify interaction effects that might be overlooked with a simple additive
form.

5. Conclusion
In this paper, we propose a new learning model for (not necessarily smooth) shape functions of a
GAMmodel, named Distilltrees. It is based on the idea that it is possible to exploit the knowledge
provided by an ATM to tailor the covariates of GLMs. By then using aggregation and an auto-
calibration procedure, we obtain a learning model as efficient as an EBM or as a regression model
with a binarsity penalty. The advantage of our Distilltrees approach is that it does not require
any additional hyperparameters, since its predictions are entirely deduced from the results of the
ATMmodel. The purpose of Distilltrees is to capture some of the knowledge from an ATMmodel
and represent it using additive, piecewise constant functions. While there is a clear relationship
between the performance of the ATM and the model generated by Distilltrees, the objective is not
to refine both simultaneously but rather to leverage the already optimized ATM model. In this
context, the ATM serves as a starting point, and Distilltrees builds upon it to create a new model
without needing further adjustments or fine-tuning of hyperparameters. This method meets a
specific interest from Allianz Trade, the credit insurance company that supplied the data, which
had an existing XGB model and was looking for a model that was almost as good but much easier
to interpret.

Distilltrees is an interpretable model with excellent performance for tasks such as regression
and classification. Users can choose their model for the ATM (random forest, gradient boost-
ing, and variants), or even combine several models with stacking strategies and then use the
Distilltrees procedure to obtain shape functions that they can then interpret with their own
experience.
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A. Appendix
In this section, we propose to continue the study begun in Section 3.1 using synthetic data to
understand whether the assumption of independence between covariates is important for esti-
mating shape functions, and more particularly when some covariates may be almost collinear. In
Section 3.1, we assumed that X is a random vector whose components are independent and dis-
tributed according to the uniform distribution on (−1, 1). Now we assume that X= (X1, . . . , X8)
with Xi = 2� (Yi) − 1, i= 1, . . . , 8, where � is the cumulative distribution function of the stan-
dard Gaussian distribution and Y= (Y1, . . . , Y8) is a random centered Gaussian vector with
covariance matrix given by:

Table A.1 Comparison results based on R2. Sample size : 50, 000

Train R2 Test R2

GBM 96.33% 96.19%
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

GAM 96.55% 96.33%
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

EBM 96.21% 96.13%
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Binarsity 96.12% 96.16%
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Distilltrees 96.28% 96.28%

Table A.2 Comparison results based on R2. Sample size : 1, 000

Train R2 Test R2

GBM 97.54% 95.62%
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

GAM 96.55% 95.62%
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

EBM 97.44% 95.40%
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Binarsity 96.83% 94.46%
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Distilltrees 95.61% 95.67%
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Figure A.1. Feature shapes learned using GAM with splines, EBM, Distilltrees, and GLM with binarsity penalization, with the
presence of multicollinearity. Sample size : 50, 000.

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0.99 0 0 0 0 0 0
0.99 1 0 0 0 0 0 0
0 0 1 0.99 0 0 0 0
0 0 0.99 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The covariates X1 and X2 on the one hand and X3 and X4 on the other hand are therefore highly
correlated and almost collinear. All the components of X have still uniform distributions on
(−1, 1).

We consider two sample sizes: first, 50, 000 as in Section 3.1 and second 1, 000 to study the
robustness of the proposed algorithms for small sample sizes. For each model, we use the same
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Figure A.2. Feature shapes learned using GAM with splines, EBM, Distilltrees, and GLM with binarsity penalization, with the
presence of multicollinearity. Sample size : 1, 000.

packages as those presented in Section 3.1 and keep the same choices for the values of the hyper-
parameters (see Table 2). The performances of the various models measured by the R2 metric are
given, respectively, in Table A.1 for the first sample size and in Table A.2 for the second sample
size, while the estimated feature shapes are plotted, respectively, in Fig. A.1 for the first sample
size and in Fig. A.2 for the second sample size.

For the sample size 50, 000, the performances are close to each other as in the independent case.
However, for the sample size 1, 000, performances may differ depending on whether the train set
or the test set is considered. We can see that all the algorithms except Distilltrees tend to overfit.
The best performances on the test set are obtained for GAM with splines, GBM, and Distilltrees.

Unlike the independent case, the estimated shape functions can now include biases for the
covariates X1, X2, X3, and X4 except for GAMwith splines. For the sample size 50, 000, the largest
biases are observed for EBM, while GLMwith binarsity andDistilltrees have relatively small biases.
For the sample size 1, 000, the shape functions are of course less well estimated and the biases are
greater than for the sample size 50, 000. We can observe that Distilltrees has significantly smaller
biases than EBM and GLM with binarsity.
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The presence of multicollinearity is a well-known issue for regression models. The most robust
approach for limiting potential bias in additive models seems to be GAM with splines in the case
where the response functions are assumed to be smooth. However, the most recent approaches
based on machine learning algorithms can lead to significant biases. In our method, multi-
collinearity seems to be more effectively managed for small sample sizes because in the initial step
the ATM constructs partitions in the space of explanatory variables that are more robust against
multicollinearity.

Cite this article: Maillart A and Robert C (2024). Distill knowledge of additive tree models into generalized lin-
ear models: a new learning approach for non-smooth generalized additive models, Annals of Actuarial Science, 1–20.
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