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Abstract

We propose a simple model for interaction between gene candidates in the two strands of
bacterial DNA (deoxyribonucleic acid). Our model assumes that ‘final’ genes appear in
one of the two strands, that they do not overlap (in bacteria there is only a small percentage
of overlap), and that the final genes maximize the occupancy rate, which is defined to
be the proportion of the genome occupied by coding zones. We are more concerned
with describing the organization and distribution of genes in bacterial DNA than with
the very hard problem of identifying genes. To this end, an algorithm for selecting the
final genes according to the previously outlined maximization criterion is proposed. We
study the graphical and probabilistic properties of the model resulting from applying
the maximization procedure to a Markovian representation of the genic and intergenic
zones within the DNA strands, develop theoretical bounds on the occupancy rate (which,
in our view, is a rather intractable quantity), and use the model to compute quantities of
relevance to the Escherichia coli genome and compare these to annotation data. Although
this work focuses on genomic modelling, we point out that the proposed model is not
restricted to applications in this setting. It also serves to model other resource allocation
problems.
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1. The model and the criterion

In the two strands of bacterial DNA (deoxyribonucleic acid), one distinguishes between
‘possible’ coding zones and noncoding zones. We will call a possible coding zone a gene
candidate and any noncoding region an intergenic zone or gap. Each strand can be read
according to any one of three reading frames. Current automated systems for gene annotation
typically select gene candidates in each reading frame by using methods such as hidden Markov
models [5], [6] or interpolated Markov models [7]. Afterwards, the final candidates for genes
in bacterial DNA are selected so as to be nonoverlapping according to some criteria which
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include deletion of small gene candidates and comparison with genes that have been previously
annotated and made available in databases.

Here we propose a simple scheme for modelling the organization of genes based on a
maximization principle which, in its first incarnation, does not take into account external
information from databases or explicit knowledge of gene structure. This work is not primarily
concerned with the identification of individual genes, which is the case with the automated,
state-of-the-art gene annotation systems mentioned above. Instead, we are interested in the
overall organization and distribution of genetic information throughout the genome.

We begin by introducing some notation. Let us denote the primary and complementary
strands by 1 and −1 respectively. The three reading frames on the first strand are labelled 1,
2, and 3 and those on the second strand are labelled −1, −2, and −3. Each strand is modelled
as a continuous half-line and the six ways of reading the DNA in a sequentially linear fashion
are enumerated by i ∈ R = {1, 2, 3, −1, −2, −3}. In each reading frame i ∈ R, the line is
partitioned into gene candidates, marked as 1-zones, and gaps, marked as 0-zones. The 1- and
0-zones are formed by a countable number of disjoint intervals and we assume, for technical
reasons, that these intervals are left closed and right open, that is, of the form [a, b), with a < b.
The reversed version of the process has intervals that are left open and right closed, that is, of
the form (a, b].

For each reading frame i ∈ R, Ei = (Ei
t : t ∈ R) denotes the {0, 1}-valued random

process, and the corresponding family of gene candidates is denoted by � i . By definition,
{Ei

t = 1} = ⋃
I∈� i I . The set of all gene candidates, regardless of the strand to which they

belong, can be written � = ⋃
i∈R � i . Let I ∈ � be an arbitrary gene candidate. We denote the

start and end points of I by s(I ) and f (I), respectively, so I = [s(I ), f (I )), and we define
i(I ) to identify strand I with its reading frame: i(I ) = i if I ∈ � i . In the event that I is
contained in several � i , then i(I ) is viewed as taking all these values.

It is clear that the candidates for genes in the three reading frames on the two strands can
overlap, but the final organization of genes should be such that no overlap occurs, to the extent
that this is observed in bacterial DNA. Consequently, the final organization can also be coded
as a 0–1 process. We denote this process by (E∗

t : t ∈ R). Its family of genes, denoted by � ∗, is
the class of connected components of E∗

t = 1, so {E∗
t = 1} = ⋃

I∈�∗ I . This family of genes
satisfies the condition that every one of its elements, I ∈ � ∗, is a gene candidate in one of the
strands, that is, � ∗ ⊆ � .

However, this condition does not identify a particular organization. For instance, if two gene
candidates in different strands overlap, then a choice must be made such that at most one of
these candidates appears as a final gene. We propose a maximization criterion which requires
that the coding zone occupy as much of the DNA’s length as possible. We proceed by describing
this criterion.

Let K be a connected component of the set {t ≥ 0 : ∑
i∈R Ei

t ≥ 1}. In other words, K is
‘covered’by a series of overlapping gene candidates and contains no gaps. Any such interval K
will be called an island. Furthermore, we shall use s(K) and f (K) to denote its start and,
respectively, end points in the same way we use s(I ) and f (I) to denote the start and end points
of a gene candidate. As islands and gene candidates are both merely intervals, this apparent
abuse of notation should not cause any confusion. Now, the set of all islands is denoted by K .
From the condition � ∗ ⊆ � , we know that each gene I ∈ � ∗ is contained in some island. Fix
some island K and let � i (K) = {I ∈ � i : I ⊆ K} be the set of gene candidates on strand i ∈ R
included in K . Also define � (K) = ⋃

i∈R � i (K). We shall denote the sum of the lengths of a
family of sets �̃ ⊆ � (K) by �(�̃ ) := ∑

I∈�̃ |I |. The maximization criterion is then as follows:
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the final set of genes, � ∗ = ⋃
K∈K � ∗(K), is such that, for each island K , the class of sets

� ∗(K) solves the constrained optimization problem

�(� ∗(K)) = �∗M(� (K)),

where �∗M(� (K)) := max{�(�̃ ) : �̃ ⊆ � (K) is a disjoint family}. (1)

We will assume that the length, f (K) − s(K), of every island K is finite and that there are
only a finite number of gene candidates in each finite interval, almost everywhere. Hence, the
maximization problem reduces to a finite deterministic problem over each island.

Section 2 describes the algorithm for selecting final genes that maximize the occupancy rate
while not overlapping. The behaviour and distribution of gene candidates, assuming that their
placement is Markovian in nature, is then studied in Section 3. There we introduce a quantity
called the occupancy rate, which may be loosely defined as the proportion of the genome
area occupied by the coding zone. Properties of islands and results concerning the occupancy
rate and the disposition of final genes are also given. We have no closed-form expression for
the occupancy rate, but Section 5 provides a number of useful theoretical bounds on it. A
graphical comparison between the various upper and lower bounds discussed is also included.
In Section 7, we apply the model to the Escherichia coli K-12 genome and perform a number
of numerical experiments to study the efficacy of the model in practice. Although our focus
is on global organization of coding zones, the results of this section also serve to illustrate
the performance of the model as a gene identification tool. To conclude, we make some final
remarks in Section 8.

Although this article focuses on genomic modelling, we should point out that the proposed
model is not restricted to applications in this setting. It could also serve to model any resource
allocation problem in which there are a number of competitors demanding to use contiguous
portions of the available resource and for which the aim is to maximize resource usage.

2. Maximizing the coding zone

Before beginning, we remark that the notation and discussion in both this and the preceding
section hold for any finite set R, not only for R = {1, 2, 3, −1, −2, −3}. To work within
the most general and flexible framework, we shall take R to be an arbitrary finite set with
N := |R| ≥ 2. As R ⊂ Z, we will impose the usual ordering ‘≤’ of the integers on it.

In this section, we describe an algorithm for selecting gene candidates which maximizes the
amount of space occupied over an island. The maximization procedure is based on the dynamic
programming paradigm and is linear in both its time and space (memory) complexity.

To simplify the discussion in this section, we will restrict our attention to a single, fixed
island K . We will write Ji := � i (K), i ∈ R, and J := � (K) = ⋃

i∈R Ji , which are families
of intervals in K . The fact that K is an island can be expressed as follows: K is an interval and
K = ⋃

I∈J I .
We shall define the neighbourhood of a gene candidate I to be N (I ) := {J ∈ J : J ∩I �= ∅}.

Suppose that n := |J| is the number of gene candidates. We shall order the gene candidates in
J according to the following relation:

I 	f J if and only if f (I) < f (J ); f (I) = f (J ) and s(I ) > s(J );

or s(I ) = s(J ), f (I) = f (J ), and i(I ) ≤ i(J ).

Thus, J = {I1, I2, . . . , In}, where Ij 	f Ik, 1 ≤ j ≤ k ≤ n. The relation ‘	f ’ is a total order
which arranges the candidates primarily according to their end points, secondly according to
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their lengths, and finally according to the strands on which they appear. Next define tj := s(Ij )

and Tj := f (Ij ), for j = 1, . . . , n, whence Ij = [tj , Tj ). Observe that

Ii ∩ Ik �= ∅ 
⇒ Ij ∩ Ik �= ∅ for 1 ≤ i ≤ j ≤ k ≤ n. (2)

In fact, Tj ∈ [tk, Tk] because in the contrary case Ti ≤ Tj < tk we would be led to conclude
that Ii ∩ Ik = ∅, contradicting the assumption.

Define J̄0 = ∅ and set J̄m := {I1, I2, . . . , Im} for m = 1, 2, . . . , n.

Lemma 1. Let m ≥ 1. Then there exists an lm, 0 ≤ lm ≤ m, such that J̄m∩N (Im) = J̄m\ J̄lm .

Proof. By definition, the result is trivially true for m = 1, so fix m ≥ 2 and let l =
min{l′ : Il′ ∈ J̄m ∩ N (Im)}. First, observe that Il ∩ Im �= ∅ and J̄l−1 ∩ N (Im) = ∅. Then
set lm = l − 1, from which the result follows by fixing i = l − 1 and k = m and applying
relation (2) with j = l, l + 1, l + 2, . . . , m.

Next, let wm be the value of any solution to the problem

max{�(�̃ ) : �̃ ⊆ J̄m is a disjoint family}, (3)

for all m, 0 ≤ m ≤ n. The following algorithm solves (1).

Algorithm 1. 0. Let ŵ0 = 0 and ŵ1 = |I1|. Set Ĵ0 = ∅ and Ĵ1 = {I1}. Also, define f̂1 = 1.
1. For each m = 2, 3, . . . , n, let lm be the index such that N (Im) ∩ J̄m = J̄m \ J̄lm .
2. Recursively compute the following quantities: ŵm = max{ŵm−1, ŵlm + |Im|}.
3. Recursively compute the optimal solutions corresponding to the ŵm, according to the
following decision scheme.

(a) If ŵm−1 > ŵlm + |Im| then set Ĵm = Ĵm−1 and f̂m = 0.

(b) If ŵm−1 < ŵlm + |Im| then set Ĵm = Ĵlm ∪ {Im} and f̂m = 1.

(c) If ŵm−1 = ŵlm + |Im| then arbitrarily choose Ĵm to be Ĵm−1 or Ĵlm ∪ {Im}, respectively
setting f̂m = 0 or f̂m = 1.

4. Take the final gene selection to be Ĵ := Ĵn. The area occupied by this choice of genes is
ŵ := ŵn.

Proposition 1. For all m ≥ 1, Ĵm is an optimal solution over the subset J̄m and ŵm is the area
occupied by this solution. In other words, ŵm = �(Ĵm) = �∗M(J̄m) = wm. Thus, Algorithm 1
produces an overall optimal solution Ĵ = Ĵn and the amount of space it occupies in the DNA
sequence is given by ŵ = ŵn.

Proof. We proceed by induction.
Basis step: Clearly, ŵ0 = �(Ĵ0) = �(∅) = 0 = �∗M(J̄0) = w0 and ŵ1 = �(Ĵ1) =

σ({I1}) = |I1| = �∗M(J̄1) = w1.

Inductive step: To verify the correctness of Algorithm 1, we need only realize that steps 2
and 3 deal with two mutually exclusive cases, namely

• Im does not belong to a disjoint family yielding the solution to (3) and

• Im belongs to a disjoint family yielding the solution to (3).
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In the first case, the algorithm arrives at a solution to (3) for J̄m by solving the same problem
for J̄m−1. In the second case, the optimal solution is obtained by ruling out the gene candidates
that overlap Im and combining Im with an optimal solution up to the last gene candidate that has
index smaller than m and does not overlap Im. Thus, given ŵk = wk for all k = 0, 1, . . . , m−1,
steps 2 and 3 are guaranteed to produce a Ĵm satisfying �(Ĵm) = ŵm = wm.

Remark 1. The sequence f̂m, m = 1, 2, . . . , n, is neither needed nor used by Algorithm 1.
We have defined it in order to facilitate subsequent discussion of the algorithm. Points m at
which f̂m = 1 are important because they indicate when it is necessary to combine the current
candidate Im with a previous solution Ĵlm in order to obtain an optimal solution over J̄m.

Now let [a, b) be a finite interval. We define � i ([a, b)) = {I ∩ [a, b) : I ∈ � i}, i = 1, −1,
and � ([a, b)) = � 1([a, b)) ∪ � 2([a, b)). Observe that only pieces of genes can appear at the
extremes a and b. Now denote by � ∗([a, b)) any solution to problem (1) over the interval [a, b);
that is, � ∗([a, b)) is a subset of nonoverlapping elements of � ([a, b)) such that �(� ∗([a, b))) =
�∗M(� ([a, b))).

Proposition 2. Optimal solutions to (1) over the interval [a, c), a < c, possess the following
subadditive property: �∗M(� ([a, c))) ≤ �∗M(� ([a, b))) + �∗M(� ([b, c))) for a ≤ b ≤ c.

Proof. The inequality follows easily from the fact that, when considering the basis set [a, c),
the maximization problem (1) for the class of sets � ([a, c)) contains at least all the constraints
of the same problem over [a, c), but for the class of sets � ([a, b)) ∪ � ([b, c)).

3. The Markovian hypothesis

In this section, we shall examine the probabilistic properties of the process obtained by
applying the maximization algorithm described in the preceding section to two strands of DNA
modelled as independent telegraph processes. So, we fix R = {1, −1} and N = 2.

3.1. The continuous processes

Consider the product process (Et = (E1
t , E−1

t ) : t ≥ 0) taking values in {0, 1}2. Let
(�, B, P) be a probability space. The points ω ∈ � are identified with the trajectories of the
product process (Et (ω) : t ≥ 0) := ((E1

t (ω), E−1
t (ω)) : t ≥ 0) that are right continuous with

left limits (in the reversed version they are left continuous with right limits). We shall use
Wt = ∫ t

0 1{E∗
s =1} ds to denote the amount of bacterial DNA occupied by final genes in the

region [0, t).
Then we define the occupancy rate, M∗, to be the asymptotic proportion of the total genome

length that is occupied by coding regions, that is, M∗ := limt→∞ Wt/t .

Lemma 2. Assume that the process (Et ) is stationary and ergodic. Then the limiting proportion
of the space occupied is the well-defined quantity M∗ = limt→∞ E(Wt )/t , P-almost everywhere
(P -a.e.).

Proof. The result follows from Proposition 2 and the subadditive ergodic theorem (see [3,
pp. 40–42]) applied to Wt .

We will assume that (Et ) is a Markov process and that the marginals Ei(t), i = 1, −1, are
independent and equally distributed. In this case, there is a unique final configuration of genes
satisfying the maximization criterion a.e. We encode the states of (Et ) in {0, 1}2 as 0 = (0, 0),
1 = (1, 0), −1 = (0, 1), and 2 = (1, 1), and order them as written.
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The generator, Qi = (qi
j l : j, l ∈ {0, 1}), of each of the marginal processes Ei is given by

qi
01 = ν = −qi

00 and qi
10 = µ = −qi

11 for some ν and µ, 0 < ν, µ < ∞. The lengths of the
gene candidates and gaps in either of the strands are thus exponentially distributed with means
1/µ and 1/ν, respectively (we denote their distributions by Exp(µ) and Exp(ν), respectively).
We set ρ := ν/µ. The stationary distribution, π = (π0, π1), of each marginal is given by
π0 = 1 − θ∗ and π1 = θ∗, where θ∗ ≡ θ∗(ρ) := ρ/(1 + ρ).

Next, the generator, QE = (qE
ij : i, j ∈ {0, 1, −1, 2}), of the process Et is

QE =

⎛
⎜⎜⎝

−2ν ν ν 0
µ −(µ + ν) 0 ν

µ 0 −(µ + ν) ν

0 µ µ −2µ

⎞
⎟⎟⎠ .

We can construct a version of the process (Et = (E1
t , E−1

t )) with t ∈ R. To this end, take
(N

i,e
t : i ∈ {1, −1}, e ∈ {0, 1}) to be four independent Poisson processes in R, with rates given

by ν if e = 0 and by µ if e = 1. We denote the marks (renewal times) of these processes in R by
(Xi,e

l : l ∈ Z). A trajectory of the process (Et = (E1
t , E−1

t )) with initial state E0 = (e1
0, e

−1
0 )

is given by the following construction. First, we define sequences of random times as

xi
0 = 0,

xi
k+1 = inf{X(k+ei

0)[2],i
l > xi

k : l ∈ Z}, k ≥ 0,

xi
k−1 = sup{X(k+ei

0)[2],i
l < xi

k : l ∈ Z}, k ≤ 0,

where we set n[2] = 0 if n is even and n[2] = 1 if n is odd (in other words, n[2] =
n (mod 2). Then, for t ≥ 0, we define Ei

t = (k + ei
0)[2], where k is the unique value such

that t ∈ [xi
k, x

i
k+1). For t < 0, we define Ei

t = (k + ei
0)[2] if t ∈ [xi

k−1, x
i
k), where k ≤ 0 is

the unique value such that t ∈ [xi
k−1, x

i
k). This produces the desired construction. Observe that

Ei
t = ei

0 for t ∈ [xi−1, x
i
1).

Remark 2. The previous construction can be interpreted in the genomic model as follows. As
observed, there are many initial codons for potential genes (corresponding to the marks {Xi,1

l }
where a 1-zone could potentially start) and final codons (corresponding to the marks {Xi,0

l }
where a 0-zone could potentially start). This is further elaborated upon in Section 7.1.

The above construction has a number of inherent symmetries.

Reversibility. The law of (Et : t ≥ 0) is the same as that of (E−t : t ≥ 0). Therefore, the
reversed process, (rEt := E−t : t ∈ R), is distributed in the same way as (Et : t ∈ R) (but
using the reversed version, which is left continuous with right limits).

Lumping. States 1 and −1 may be exchanged with each other; that is, (eEt : t ∈ R) is
distributed in the same way as (Et : t ∈ R), where eEt = Et if Et ∈ {0, 2} and eEt = −Et if
Et ∈ {1, −1}.

The stationary distribution, 	E , of Et is

	E
0 = 1

(1 + ρ)2 , 	E
1 = ρ

(1 + ρ)2 = 	E−1, 	E
2 = ρ2

(1 + ρ)2 .

As expected from reversibility, the generator Q
rE = (q

rE
ij := qE

ji	
E
j /	E

i : i, j ∈ {0, 1, −1, 2})
of the reversed Markov process, rEt , is the same as QE .
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Lemma 3. The occupancy rate M∗ ≡ M∗(ρ) depends only on ρ and is given by

M∗(ρ) := lim
t→∞

1

t
E(Wt ) = lim

t→∞
1

t
Wt P -a.e. (4)

Proof. Since M∗(ν, µ) = M∗(cν, cµ) for all c > 0, we immediately see that M∗ depends
only on ρ. Now let us show (4). If E0 is distributed in the same way as 	E , then (Et ) is
a stationary ergodic process and from Lemma 2 we obtain the result. A coupling argument
shows that this quantity is independent of the starting point, that is, if (Et ) starts from a point
E0 ∈ {0, 1, −1, 2} (or any distribution on this set), then (4) also holds.

The process (Ẽt := E1
t + E−1

t ), t ≥ 0, is a Markov process with state space {0, 1, 2}. This
process is the ‘lumped’ process associated with (Et ), that is, where the states 1 and −1 are
grouped together into a single state labelled 1. Note that, according to the state space encoding
for (Et ) we have chosen to use, we have Ẽt = |Et |. Let QẼ = (qẼ

ij : i, j ∈ {0, 1, 2}) be its
generator and 	Ẽ = (	Ẽ

i : i ∈ {0, 1, 2}) its stationary distribution. By the lumping property,
we have

qẼ
ij = qE

ij if j ∈ {0, 2}, qẼ
i1 = qE

i1 + qE
i,−1 if i ∈ {0, 2}, qẼ

11 = qE
11,

	Ẽ
i = 	E

i if i ∈ {0, 2}, 	Ẽ
1 = 	E

1 + 	E−1.

The process (Ẽt ) is also reversible in time; that is, the law of (rẼt := Ẽ−t : t ∈ R) is the
same as the law of (Et : t ∈ R) (but using the reversed version, because intervals [a, b) are
transformed into intervals (−b, −a]). From reversibility (or direct computation), the generator
of the reversed process, Q

rẼ , is the same as QẼ .
Next let (Bn : n ∈ Z) be a sequence of independent, identically distributed Bernoulli( 1

2 , 1
2 )

random variables taking values in {1, −1}. The trajectories of the process (Et ) can be recovered
from those of (Ẽt ) and (Bn), in the manner described below. First, Et = 2 if Ẽt = 2 and Et = 0
if Ẽt = 0. In the complementary region, we set {t ∈ R : Ẽt = 1} = ⋃

l∈Z
Jl , where (Jl : l ∈ Z)

is an ordered sequence of disjoint intervals. Then the remainder of the process is constructed
as follows: Et = 1 if t ∈ Jl and Bl = 1 and Et = −1 if t ∈ Jl and Bl = −1. We notice that
when (Et ) is time invariant, the marginals (Ei

t ) and (Ẽt ) are also time invariant.

4. Simulation using a jump chain

4.1. Simulation of the process

In this subsection, we shall see how the process (Et : t ∈ R) can be simulated using a
single discrete-time renewal process together with a collection of mutually independent random
processes which are themselves sequences of independent random variables.

A point process T = (Tj : j ∈ Z) in Z is a (doubly) infinite and strictly increasing sequence,
and we fix T1 = inf{Ti ≥ 0 : i ∈ Z}. Let p = (pn : n ≥ 1) be a probability vector. The
process T is a stationary renewal process with interarrival distribution p if Tj+1 − Tj , j ∈ Z,
are independent, Tj+1 −Tj ∼ p for j �= 0, the mean m(p) = ∑

j≥1 jpj is finite, P{T1 −T0 =
n} = npn/m(p) for n ≥ 1, and P{T1 = n} = ∑

j>n pj/m(p) for n ≥ 0. This process is
stationary, that is, T − a = (Tj − a : j ∈ Z) ∼ T for all a ∈ Z, where ‘∼’ denotes equality in
distribution.

For θ ∈ (0, 1) we shall use Geom(θ) to denote a geometric distribution with parameter θ ;
e.g. S ∼ Geom(θ) if P{S = n} = (1 − θ)θn−1 for n ≥ 1. A stationary renewal process T

with interarrival distribution Geom(θ) is called a geometric(θ) stationary renewal process. In
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this case, P{T1 = n} = (1 − θ)θn for n ≥ 0 and P{T0 = −n} = (1 − θ)θn−1 for n ≥ 1.
Let B = (Bn : n ∈ Z) be a Bernoulli(θ, 1 − θ) sequence taking values in {0, 1}, that is, such
that P{Bn = 0} = θ = 1 − P{Bn = 1}. Then T = (Tj : j ∈ Z) = {n ∈ Z : Bn = 1} is a
geometric(θ) renewal process. Conversely, if T is a geometric(θ) stationary renewal process,
then (Bn : n ∈ Z) defined by Bn = 1{n∈T } is a Bernoulli(θ, 1 − θ) sequence on {0, 1}. Thus,
T1 and T0 are independent.

Definition 1. Let T = (Tj : j ∈ Z) be a point process on Z. We define the following pair of
point processes on Z:

T̂ = (T̂j : j ∈ Z), where T̂j =
{

Tj + 1 if j > 0,

Tj if j ≤ 0,

T ∗ = (T ∗
j : j ∈ Z), where T ∗

j =
{

Tj − T1 if j > 0,

Tj−1 − T0 if j ≤ 0.

Therefore, in the trajectories of T̂ we add an extra nonrenewal point (0) at time 0 and shift
the trajectory over the positive integers one step to the right, and in the trajectories of T ∗ we
delete the interval [T0, T1), shifting the trajectory on the right of T1 so as to start at the origin
while shifting the trajectory on the left of T0 to start at −1. In particular, note that T ∗

0 = 1.
Next let T be a geometric(θ) stationary renewal process, and let 
 be a Bernoulli(α, 1 − α)

random variable with values in {0, 1}, independent of T . Then the point process T α =
(T α

j : j ∈ Z) defined by T α = (1 − 
)T̂ + 
T ∗ is characterized as follows: T α has inde-
pendent increments, T α

j+1 − T α
j ∼ Geom(θ) for j �= 0, T α

0 is independent of T α
1 , T α

1 ∼
(1 − α)δ0 + α Geom(θ), and −T α

0 ∼ Geom(θ). In fact, in this geometric case, it suffices
to observe that T α = {n ∈ Z : Bn = 1}, where (Bn : n ∈ Z) is a sequence of independent
Bernoulli random variables with values in {0, 1} such that P{Bn = 1} = 1 − θ for n �= 0 and
P{B0 = 1} = 1 − α. Observe that if α = θ then T α ∼ T is a geometric(θ) stationary renewal
process. This is the only case where T α is a stationary renewal process.

Proposition 3. The process E = (E1, E−1) starting from a distribution

κ = (κi : i ∈ {0, 1, −1, 2})

that is symmetric in {1, −1} (that is, κ1 = κ−1) can be reconstructed from the following mutually
independent random elements:

• T = (Tj : j ∈ Z), a geometric(θ∗) stationary renewal process;

• B = (Bj : j ∈ Z), a Bernoulli( 1
2 , 1

2 ) sequence on {1, −1};
• �, a Bernoulli(2κ1/(2κ1 + κ2), κ2/(2κ1 + κ2)) random variable on {1, 2};
• 
, a Bernoulli(κ0, 1 − κ0) random variable on {0, 1}; and

• Z = (Zj = (Z
j
n : n ∈ Z) : j ∈ {0, 1, 2}), a family of three independent random

sequences exponentially distributed such that Z0
n ∼ Exp(2ν), Z1

n ∼ Exp(µ + ν), and
Z2

n ∼ Exp(2µ), n ∈ Z.

Remark 3. In the case where κ0 = 1 − θ∗, the random variable 
 is not necessary in the
construction.
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Proof of Proposition 3. The set of jump times, S = {Sn : n ∈ Z}, of the process (Et ) is
given by Sn := inf{t > Sn−1 : Et �= Et−}, n ≥ 1, where we fix S1 = infn{Sn ≥ 0}.
The jump chain (Xn := ESn : n ∈ Z) is a discrete Markov chain whose transition matrix,
P X = (pX

ij : i, j ∈ {0, 1, −1, 2}), is

P X =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
1

2

1

2
0

1

1 + ρ
0 0

ρ

1 + ρ

1

1 + ρ
0 0

ρ

1 + ρ

0
1

2

1

2
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Its stationary distribution, πX, is given by πX
0 = 1/(2(1 + ρ)), πX

1 = 1
4 = πX−1, and πX

2 =
ρ/(2(1 + ρ)). The chain (Xn) is endowed with symmetries analogous to those of (Et ). Thus,
it is reversible in time: the laws of (rXn : n ≥ 0) and (Xn : n ≥ 0) are the same, where
rXn := X−n, n ∈ Z. Also, the lumping property holds; that is, we can exchange state 1 with
state −1.

The jump times of the process (Ẽt ) are the Sn, the same as those of (Et ), and the jump chain
(X̃n := ẼSn : n ≥ 0) is a discrete Markov chain whose transition matrix, P X̃ = (pX̃

ij : i, j ∈
{0, 1, 2}), is the lumped chain of P X. Trajectories of (Xn) can be retrieved from those of (X̃n)

and the Bernoulli sequence B = (Bn) by setting Xn = 2 if X̃n = 2, Xn = 0 if X̃n = 0, Xn = 1
if X̃n = 1 and Bn = 1, and Xn = −1 if X̃n = 1 and Bn = −1. We note that the process (X̃n)

is reversible in time in the same sense as (Xn). The Markov chain X = (Xn : n ∈ Z) starts
from X0 ∼ E0 ∼ κ and the lumped chain, X̃ = (X̃n := ẼSn : n ∈ Z), starts from X̃0 ∼ κ ′,
with κ ′

i = κi for i = 0, 2 and κ ′
1 = κ1 + κ−1 = 2κ1.

Now let Zj = (Z
j
n : n ∈ Z), j ∈ {0, 1, 2}, be sequences as described in the statement of the

proposition. Then Z
j
n is distributed in the same way as the sojourn time of the process Ẽ in

state j ∈ {0, 1, 2}. From the chain X and the family of sequences Z, we can retrieve E

as follows. For t ∈ [0, Z
|X0|
0 ), we set Et = X0. For general nonnegative times, we set

Et = Xn for t ∈ [∑n
k=0 Z

|Xk |
k ,

∑n+1
k=0 Z

|Xk |
k ). The construction is similar for negative

times: for t ∈ [−Z
|X0|
−1 , 0), we set Et = X0 and, for all other t < 0, we set Et = Xn for

t ∈ [∑−1
k=−n−1 Z

|Xk+1|
k ,

∑−1
k=−n Z

|Xk+1|
k ).

Hence, E can be reconstructed from X̃, B, and Z. It thus suffices to show that X̃ can be
reconstructed using T and 
. To this end, we define an intermediate process, X̂. Its trajectories
are defined by deleting all the 0s from the trajectories of X̃, as follows. Fix X̂0 = X̃a , where
a = 0 if X̃0 �= 0 and a = −1 otherwise (in the latter case, X̂0 = 1 necessarily). Then copy
(X̃j : j > a) to the right of 0 and (X̃j : j < a) to the left of 0 and delete all the 0s. This gives
a well-defined process X̂ = (X̂n : n ∈ Z). Note that X̂ is a 2-memory homogeneous Markov
chain, taking values in {1, 2}, such that the 2s are isolated, its sample paths contain no more
than two consecutive 1s, and its transition probabilities are given by

P{X̂n+1 = 2 | X̂n = 1, X̂n−1 = 2} = θ∗ = 1 − P{X̂n+1 = 1 | X̂n = 1, X̂n−1 = 2},
P{X̂n+1 = 2 | X̂n = 1, X̂n−1 = 1} = 1 = P{X̂n+1 = 1 | X̂n = 2}.

The starting distribution of X̂ is given by

P{X̂0 = 1, X̂1 = 1} = κ0, P{X̂0 = 2, X̂1 = 1} = κ2, P{X̂0 = 1, X̂1 = 2} = 2κ1.
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X̃ can be reconstructed from X̂ by reversing the method used to construct X̂. Indeed, it
suffices to insert a 0 between any two consecutive 1s in each trajectory of X̂, as follows. If
(X̂0, X̂1) = (1, 1) then we set (X̃−1, X̃0, X̃1) = (1, 0, 1) and if (X̂0, X̂1) �= (1, 1) then we
set (X̃0, X̃1) = (X̂0, X̂1). Then, moving to the right starting from X̂1 and moving to the left
starting from X̂0, we insert a 0 between every pair of consecutive 1s. This procedure recovers X̃.

To finish, it suffices to show that X̂ can be reconstructed from T , 
, and �. Let α = 1 − κ0.
First we use T and 
 to construct T α and then we construct X̂ from T α and �. If α = θ∗ then we
do not need the random variable 
, because T α ∼ T . We proceed as follows. If T α

j and T α
j+1 are

consecutive elements in T , we create a ‘j -block’ 121 · · · 21 of length Lj = 2(T α
j+1 − T α

j ) − 1.
Then we sequentially order these j -blocks according to j . The only thing left to consider
is the starting point. If T α

1 = 0 (that is, if 0 ∈ T α), then we position the 1-block in such
a way that it finishes at time 0. For T α

1 > 0, if � = 2 then we place the 1-block so as to
finish at 2T α

1 − 1, and if � = 1 then we place the 1-block so as to finish at 2T α
1 . Therefore,

P{(X̂0, X̂1) = (1, 1)} = 1 − α = κ0 and

P{(X̂0, X̂1) = (1, 2)}
P{(X̂0, X̂1) = (2, 1)} = 2κ1

κ2
.

This completes the proof.

We have noted that the unique initial value, κ0 = 1 − α, for which T α is stationary is
κ0 = π0 = 1 − θ∗, the value of the stationary distribution of Ei in state 0, which differs
from 	0, the value of the stationary distribution of E in state 0. In the sequel, we assume that
κ0 = π0; therefore, T α can be supposed to be equal to T , a geometric(θ∗) stationary renewal
process.

In the next section, we shall use the ideas introduced in Proposition 3 to stochastically
simulate an island and to calculate a lower bound based on renewal arguments.

4.2. Simulation of the islands and genes

Recall that islands are the connected zones where Ẽt ≥ 1, that is, where there is a gene
candidate present on one or both strands. For each I ∈ � , we shall use K(I ) to denote the
island K containing I . Let L be the length of some arbitrary island K . From the discussion in
Sections 3.1 and 4, it should be clear that L can be decomposed as follows:

L =
S∑

i=1

Z1
i +

S−1∑
i=1

Z2
i ,

where S, (Z1
i : i ≥ 1), and (Z2

i : i ≥ 1) are independent random variables. Here Z1
i and Z2

i

respectively represent the times spent in states 1 and 2 by (Ẽt ) during a visit. Thus,

Z1
i ∼ Exp(µ + ν), Z2

i ∼ Exp(2µ).

By considering P Ẽ , the generator of (X̃t ), we can see that S ∼ Geom(θ∗) with θ∗ = ρ/(1+ρ),
so P{S = k} = (1 − θ∗)θ∗k−1 for k = 1, 2, . . . .

The moment generating function of L is mL(t) = m1(t)gS(m2(t)m1(t)), where m1(t) =
(µ+ ν)/(µ+ ν − t) and m2(t) = 2µ/(2µ− t) are the moment generating functions of the Z1

i s
and the Z2

i s, respectively, and gS(t) = 1/(1 + ρ − ρt) is the probability generating function
of S. Hence,

mL(t) = 2µ2 − µt

2µ2 − 3µt − νt + t2

https://doi.org/10.1017/S0001867800001452 Published online by Cambridge University Press

https://doi.org/10.1017/S0001867800001452


A simple maximization model 1081

and from this we may calculate the mean and variance of L:

E(L) = m′(0) = 1

µ

(
1 + ρ

2

)
, var(L) = m′′(0) − m′(0)2 = E(L)2 + ρ

2µ2 .

Next, let R be a random variable independent of S, (Z1
i : i ≥ 1), and (Z2

i : i ≥ 1) and
satisfying R ∼ Geom( 1

2 ), whence P{R = k} = ( 1
2 )k for k ≥ 1. We shall write S ∧ R :=

min{S, R}. It can be shown that S ∧ R ∼ Geom(θ∗/2). We have the following elementary
result.

Lemma 4. (i) The event {S ∧ R = S} is independent of S.

(ii) The random variable S − S ∧ R is independent of S ∧ R, and S − S ∧ R conditioned on
the event {S > S ∧ R} is Geom(θ∗)-distributed.

(iii) The random variable S ∧ R is independent of the event {S > S ∧ R}.
Observe that ξ := P{S ∧ R < S} can be explicitly evaluated:

ξ = θ∗

2 − θ∗ = ρ

2 + ρ
. (5)

Define C = 1{S>S∧R}. This is independent of S ∧ R and distributed as a Bernoulli(ξ) random
variable (C ∼ Ber(ξ)), that is, P{C = 1} = ξ = 1 − P{C = 0}.

It is easy to verify the following decomposition result.

Lemma 5. The random variable Y = ∑S∧R
i=1 Z1

i + ∑(S∧R)−1
i=1 Z2

i + CZ2
S∧R satisfies Y ∼

Exp(µ).

5. Bounds on the occupancy rate

5.1. Bounds

As obtaining an analytic expression for the quantity M∗(ρ) has proven to be exceedingly
difficult, we shall discuss upper and lower bounds on it in this section. However, before doing
so, we shall digress for a moment to establish a relationship between the (general) occupancy
rate and the occupancy rate of an island. Let us suppose that E0 = 0, that is, both DNA strands
start with a gap. We denote the islands starting after the point 0 by K(i), i ≥ 0.

Let L be the occupancy of an arbitrary island K after having applied the maximization
algorithm. That is,

L ∼
∫ f (K)

s(K)

1{E∗
s =1} ds.

Now, the mean area occupied by the final genes in an island K is

L∗(ρ) = E

(∫ f (K)

s(K)

1{E∗
s =1} ds

)
. (6)

Notice that since
∫ f (K(i))

s(K(i)) 1{E∗
s =1} ds, i ≥ 1, are independent and identically distributed random

variables, from the law of large numbers we obtain

L∗(ρ) = lim
n→∞

1

n

n∑
i=0

∫ f (K(i))

s(K(i))

1{E∗
s =1} ds P -a.e. (7)
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Proposition 4. The following relation holds:

M∗(ρ) = 2L∗(ρ)µρ

(1 + ρ)2 .

Proof. We start from E0 = 0. For each t > 0, let us define two random variables Ut and
Vt , where

Ut =
{

sup{0 ≤ s ≤ t : Es �= 0}, Et = 0,

sup{0 ≤ s ≤ t : Es = 0}, Et �= 0,
Vt =

{
inf{s ≥ t : Es �= 0}, Et = 0,

inf{s ≥ t : Es = 0}, Et �= 0.

Since limt→∞ Ut/t = 1 = limt→∞ Vt/t , we find that

lim
t→∞

1

t

∫ Ut

0
1{E∗

s =1} ds) = M∗(ρ) = lim
t→∞

1

t

∫ Vt

0
1{E∗

s =1} ds P -a.e. (8)

For each t > 0, let Dt denote the number of islands that are completely contained inside [0, t).
From (8), we have

M∗(ρ) = lim
t→∞

1

t

Dt−1∑
i=0

∫ f (K(i))

s(K(i))

1{E∗
s =1} ds

= lim
t→∞

Dt

t

1

Dt

Dt−1∑
i=0

∫ f (K(i))

s(K(i))

1{E∗
s =1} ds P -a.e.

As limt→∞ Dt = ∞ P-a.e., we obtain

M∗(ρ) = lim
t→∞

Dt

t
lim

n→∞
1

n

n−1∑
i=0

∫ f (K(i))

s(K(i))

1{E∗
s =1} ds P -a.e.

From (7), we obtain

L∗(ρ) = M∗(ρ) lim
t→∞

t

Dt

. (9)

It remains to compute limt→∞ t/Dt . The quantity (Dt ) is an alternating renewal process which
counts the number of islands entirely enclosed in [0, t], where each renewal is made according
to the law of R = R1 + R2, the sum of two independent random variables: R1 is the sojourn
time at 0 and R2 is the sojourn time at an island. From renewal theory, we have

lim
t→∞

t

Dt

= E(R1) + E(R2).

Now, R1 ∼ Exp(2ν), so E(R1) = 1/(2ν). Furthermore, from above we have E(R2) =
(1/µ)(1 + ρ/2). Thus,

lim
t→∞

t

Dt

= 1

2ν
+ 1

µ

(
1 + ρ

2

)
= 1

2µρ
(1 + ρ)2. (10)

Finally, substituting (10) into (9) yields the desired result.

Next we shall investigate bounds on M∗(ρ). We begin by providing a simple upper bound.

https://doi.org/10.1017/S0001867800001452 Published online by Cambridge University Press

https://doi.org/10.1017/S0001867800001452


A simple maximization model 1083

Proposition 5. We have the upper bound

M∗(ρ) ≤ M̃(ρ) := ρ(2 + ρ)

(1 + ρ)2 .

Proof. Define W̃ t = ∫ t

0 1{Ẽs>0} ds. Clearly W̃t ≥ Wt , so M̃(ρ) ≥ M∗(ρ). By ergodicity,

M̃(ρ) := lim
t→∞

1

t
W̃t =

∫ t

0
E(1{Ẽs>0}) ds = 	Ẽ

1 + 	Ẽ
2 = ρ(2 + ρ)

(1 + ρ)2 P -a.e.

The question of finding a good lower bound is more difficult. Trivially, we have

M∗(ρ) ≥ max

{
ρ

1 + ρ
,

2ρ

(1 + ρ)2

}
,

because θ∗ = ρ/(1 + ρ) is the equilibrium proportion of space occupied by gene candidates
on a single DNA strand and 	E

1 + 	E−1 = 2ρ/(1 + ρ)2 is the equilibrium proportion of DNA
where only one of the strands is occupied by gene candidates. Note that θ∗ ≥ 	E

1 + 	E−1 if
and only if ρ ≥ 1.

Let us define

M̂(ρ) = 32ρ + 80ρ2 + 84ρ3 + 42ρ4 + 8ρ5

16 + 72ρ + 130ρ2 + 118ρ3 + 54ρ4 + 10ρ5
. (11)

Note that M̂(ρ) ≥ 2ρ/(1 + ρ)2 for every ρ ∈ [0, ∞).

Proposition 6. We have the lower bound

M∗(ρ) ≥ max

{
ρ

1 + ρ
, M̂(ρ)

}
.

Proof. Since M∗(ρ) ≥ ρ/(1 + ρ), it suffices to show that M∗(ρ) ≥ M̂(ρ).
Let Y be the length of the first gene candidate, I , of a certain island. Let us consider the

representation given by Lemma 5. If C = 0 then this gene candidate terminates at the end of
the island. On the other hand, if C = 1 then, at the point where the gene candidate I ends,
there will already be another gene candidate, I ′, present on the opposite strand; we shall denote
its length by Y ′. By V and V ′ we denote the sum of the lengths of gene candidates in the
same strand as I that are strictly contained in the region covered by gene candidate I ′ and,
respectively, the sum of the lengths of the gene candidates in the same strand as I ′ that are
strictly contained in the region demarcated by gene candidate I .

Let S, S′, S′′, R, R′, and R′′ be mutually independent random variables also indepen-
dent of the families of independent random variables (Z1

i : i ≥ 1), (Z2
i : i ≥ 1), (Z′1

i : i ≥ 1),
and (Z′2

i : i ≥ 1). Here S ∼ S′ ∼ S′′ ∼ Geom(θ∗), R ∼ R′ ∼ R′′ ∼ Geom( 1
2 ), Z1

i ∼ Z′1
i ∼

Exp(µ + ν), and Z2
i ∼ Z′2

i ∼ Exp(2µ). Define C = 1{S>S∧R}, C′ = 1{S′>S′∧R′}, and C′′ =
1{S′′>S′′∧R′′}, which are independent Ber(ξ)-distributed random variables.

Let N = S ∧ R and N ′ = S′ ∧ R′. From Lemma 4, N ∼ N ′ ∼ Geom(θ∗/2). From
Lemma 5, we have

Y =
N∑

i=1

Z1
i + V ′, where V ′ =

N−1∑
i=1

Z2
i + CZ2

N,

Y ′ =
N ′∑
i=1

Z′1
i C + V, where V =

(N ′−1∑
i=1

Z′2
i + C′Z′2

N ′

)
C.
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Hence, on {C = 1},

Y + V > Y ′ + V ′ ⇐⇒
N∑

i=1

Z1
i >

N ′∑
i=1

Z′1
i ,

Y ′ + V ′ > Y + V ⇐⇒
N ′∑
i=1

Z′1
i >

N∑
i=1

Z1
i .

From this relation and from the independence between (N, N ′) and (C, C′, C′′), (Z1
i : i ≥ 1),

(Z2
i : i ≥ 1), (Z′1

i : i ≥ 1), and (Z′2
i : i ≥ 1), we obtain

P{{Y + V > Y ′ + V ′} ∩ {C = 1, C′ = 1}} = ξ2

2
,

P{{Y ′ + V ′ > Y + V } ∩ {C = 1, C′ = 1, C′′ = 1}} = ξ3

2
. (12)

On the other hand, we also find that

(Y + V ) 1{Y+V >Y ′+V ′} 1{C=1}

=
( N∑

i=1

Z1
i +

N∑
i=1

Z2
i +

N ′−1∑
i=1

Z′2
i + B ′Z′2

N ′

)
1{∑N

i=1 Z1
i >

∑N ′
i=1 Z′1

i } 1{C=1}, (13)

(Y ′ + V ′) 1{Y ′+V ′>Y+V } 1{C=1}

=
( N ′∑

i=1

Z′1
i +

N ′−1∑
i=1

Z′2
i + B ′Z′2

N ′ +
N∑

i=1

Z2
i

)
1{∑N

i=1 Z1
i >

∑N ′
i=1 Z′1

i } 1{C=1} . (14)

Hence,
(Y + V ) 1{Y+V >Y ′+V ′} 1{C=1} ∼ (Y ′ + V ′) 1{Y ′+V ′>Y+V } 1{C=1} . (15)

Recall that L was defined to be the occupancy of an arbitrary island after having applied the
maximization algorithm. Let L′ and L′′ be two independent copies of L also independent
of S, S′, S′′, R, R′, R′′, (Z1

i : i ≥ 1), (Z2
i : i ≥ 1), (Z′1

i : i ≥ 1), and (Z′2
i : i ≥ 1). The

renewal equation gives us the following stochastic domination relation (where ‘≥st’ means
‘stochastically larger than’):

L ≥st Y 1{C=0}
+ ((Y + V ) 1{Y+V >Y ′+V ′} +(Y ′ + V ′) 1{Y ′+V ′>Y+V }) 1{C=1, C′=0}
+ (Y + V + L′) 1{Y+V >Y ′+V ′} 1{C=1, C′=1}
+ (Y ′ + V ′) 1{Y ′+V ′>Y+V } 1{C=1, C′=1, C′′=0}
+ (Y ′ + V ′ + L′′) 1{Y ′+V ′>Y+V } 1{C=1, C′=1, C′′=1} .

Therefore, by using (12) and following the definition of L∗(ρ) in (6), we obtain

L∗(ρ)(1 − 1
2ξ2(1 + ξ)) ≥ E(Y 1{C=0})

+ E([(Y + V ) 1{Y+V >Y ′+V ′} +(Y + V ) 1{Y ′+V ′>Y+V }] 1{C=1}).
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Using (15), we conclude that

L∗(ρ)(1 − 1
2ξ2(1 + ξ)) ≥ E(Y 1{C=0}) + 2 E((Y + V ) 1{Y+V >Y ′+V ′} 1{C=1}). (16)

Let us compute the first term on the right-hand side. We have

E(Y 1{C=0}) = E

(( N∑
i=1

Z1
i +

N−1∑
i=1

Z2
i + BZ2

N

)
1{C=0}

)

= (1 − ξ)(E(Z1
1) E(N) + E(Z2

1) E(N − 1)).

From the relations E(N) = ∑
k≥1 P{S ∧ R ≥ k} = 2/(2 − θ∗), θ∗ = ρ/(1 + ρ), and

ξ = ρ/(2 + ρ), we obtain

E(Y 1{C=0}) = (1 − ξ)

(
2

(2 − θ∗)(µ + ν)
+ θ∗

2µ(2 − θ∗)

)
= 4 + ρ

µ(2 + ρ)2 . (17)

Note that

E(Y 1{C=0}) > E(Z1
1 1{Z2

1>Z1
1}) = pX

1,0 E(Z1
1) = 1

µ(1 + ρ)2 ,

the right-most expression being the length of a gene candidate which finishes before any gene
candidate appears in the opposite strand.

To compute the second term on the right-hand side of (16), we need the following well-known
relation, in which a ≥ 0 and λ > 0 are parameters:

∫
∑n

i=1 xi>a, xi≥0, i=1,...,n

( n∑
i=1

xi

)r

λn exp

(
−λ

n∑
i=1

xi

)
dx1 · · · dxn

= (n + r − 1)!
(n − 1)! λ−r

n+r−1∑
l=0

λlal

l! e−λa. (18)

For a = 0, this reduces to∫
xi≥0, i=1,...,n

( n∑
i=1

xi

)r

λn exp

(
−λ

n∑
i=1

xi

)
dx1 · · · dxn = (n + r − 1)!

(n − 1)! λ−r . (19)

Now we can compute the second term on the right-hand side of (16). In (13) we sum over
the variables N = n, N ′ = m, Z1

i ∈ (xi, xi + dxi], Z2
i ∈ (yi, yi + dyi], Z′1

i ∈ (x′
i , x

′
i + dx′

i],
and Z′2

i ∈ (y′
i , y

′
i + dy′

i]. Thus, we obtain the following expression, where

Ln,m =
∫

(µ + ν)m exp

(
−(µ + ν)

m∑
i=1

x′
i

)

×
(

ξA

( m∑
i=1

x′
i , m, n

)
+ (1 − ξ)A

( m∑
i=1

x′
i , m − 1, n

))
dx′

1 · · · dx′
m

and the variables xi , x′
i , yi , and y′

i always take positive values:

E((Y + V ) 1{Y+V >Y ′+V ′} 1{C=1}) = ξ

(
1 − θ∗

2

)2 ∞∑
n=1

∞∑
m=1

(
θ∗

2

)n+m−2

Ln,m.
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In Ln,m,

A(a, l, n) =
∫

∑n
i=1 xi>a

(µ + ν)n exp

(
−(µ + ν)

n∑
i=1

xi

)
G

( n∑
i=1

xi, l, n

)
dx1 · · · dxn,

and here

G

( n∑
i=1

xi, l, n

)
=

∫
(2µ)n+l exp

(
−2µ

( l∑
i=1

y′
i +

n∑
i=1

yi

))

×
( n∑

i=1

xi +
n∑

i=1

yi +
l∑

i=1

y′
i

)
dy′

1 · · · dy′
l dy1 · · · dyn

=
n∑

i=1

xi + n + l

2µ
.

Hence,

A

( m∑
i=1

x′
i , l, n

)
=

∫
∑n

i=1 xi>
∑m

i=1 x′
i

( n∑
i=1

xi

)
(µ + ν)n exp

(
−(µ + ν)

( n∑
i=1

xi

))
dx1 · · · dxn

+ n + l

2µ

∫
∑n

i=1 xi>
∑m

i=1 x′
i

(µ + ν)n exp

(
−(µ + ν)

( n∑
i=1

xi

))
dx1 · · · dxn.

From (18), we find that

A

( m∑
i=1

x′
i , l, n

)
=

(
n

µ + ν

n∑
r=0

(
∑m

i=1 x′
i )

r (µ + ν)r

r! + n + l

2µ

n−1∑
r=0

(
∑m

i=1 x′
i )

r (µ + ν)r

r!
)

× exp

(
−(µ + ν)

m∑
i=1

x′
i

)
.

From the above expression, and by using (19), we obtain Ln,m = Cn,m + Dn,m + En,m, where

Cn,m = n2−m

µ + ν

n∑
r=0

(m + r − 1)!
(m − 1)! r! 2−r , Dn,m = n2−m

2µ

n−1∑
r=0

(m + r − 1)!
(m − 1)! r! 2−r ,

En,m = (m − 1 + ξ)2−m

2µ

n−1∑
r=0

(m + r − 1)!
(m − 1)! r! 2−r .

By using

∞∑
n=r

n

(
θ∗

2

)n−1

= 2r

2 − θ∗

(
θ∗

2

)r−1

+ 4

(2 − θ∗)2

(
θ∗

2

)r

,

∞∑
n=r+1

(
θ∗

2

)n−1

= 2

2 − θ∗

(
θ∗

2

)r

,
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we obtain

E((Y + V ) 1{Y+V >Y ′+V ′} 1{C=1})

= ξ(2 − θ∗)2

8(µ + ν)

∞∑
m=1

(
θ∗

4

)m−1(
J (m, θ∗)
2 − θ∗ + 4K(m, θ∗)

(2 − θ∗)2

)

+ ξ(2 − θ∗)2

16µ

∞∑
m=1

(
θ∗

4

)m−1(
θ∗J (m, θ∗)
2(2 − θ∗)

+ 2K(m, θ∗)
2 − θ∗ + 2θ∗K(m, θ∗)

(2 − θ∗)2

)

+ ξ(2 − θ∗)2

16µ

∞∑
m=1

(m − 1 + ξ)

(
θ∗

4

)m−1 2K(m, θ∗)
2 − θ∗ ,

where

J (m, θ∗) =
∞∑

r=0

(
m + r − 1

r

)
r

(
θ∗

4

)r−1

, K(m, θ∗) =
∞∑

r=0

(
m + r − 1

r

)(
θ∗

4

)r

.

Now, it is known that, for every m ≥ 1,

∞∑
r=0

(
m + r − 1

r

)(
1 − θ∗

4

)m(
θ∗

4

)r

= 1,

because it is the total mass of a Pascal distribution with parameter pair (m, 1 − θ∗/4). Thus,
K(m, θ) = (1 − θ∗/4)−m. On the other hand,

∞∑
r=0

(
m + r − 1

r

)
r

(
θ∗

4

)r−1

=
∞∑

r=1

(m + r − 1)!
(r − 1)! m! m +

(
θ∗

4

)r−1

= m

∞∑
r=0

(
m + 1 + r − 1

r

)(
θ∗

4

)r

,

so J (m, θ∗) = mK(m + 1, θ∗) = m(1 − θ∗/4)−(m+1). Putting all these elements together, we
obtain

E((Y + V ) 1{Y+V >Y ′+V ′} 1{C=1}) = ξ

2(µ + ν)(2 − θ∗)
+ ξ

(µ + ν)(2 − θ∗)
+ ξθ∗

8µ(2 − θ∗)

+ ξθ∗

4µ
+ ξθ∗

4µ(2 − θ∗)
+ ξ(4 − θ∗)

8µ(2 − θ∗)
− ξ(1 − ξ)

4µ
.

Applying (5), we obtain

E((Y +V ) 1{Y+V >Y ′+V ′} 1{C=1}) = 1

µ(2 + ρ)2

(
3ρ

2
+ 3ρ2

8
+ ρ2(2 + ρ)

4(1 + ρ)
+ ρ(4 + 3ρ)

8
− ρ

2

)
.

Therefore, from (16) and (17), and since

(1 − 1
2ξ2(1 + ξ))−1 = (2 + ρ)3

8 + 12ρ + 5ρ2 ,
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we obtain

L∗(ρ) ≥ 2 + ρ

µ(8 + 12ρ + 5ρ2)

(
4 + 3ρ + 3ρ2

4
+ ρ2(2 + ρ)

2(1 + ρ)
+ ρ(4 + 3ρ)

4

)
.

On the other hand, we know from (6) that M∗(ρ) = L∗(ρ)2µρ/(1 + ρ)2. Hence,

M∗(ρ)

≥ ρ(2 + ρ)(16(1 + ρ) + 12ρ(1 + ρ) + 3ρ2(1 + ρ) + 2ρ2(2 + ρ) + ρ(4 + 3ρ)(1 + ρ))

2(1 + ρ)3(8 + 12ρ + 5ρ2)

= M̂(ρ).

This completes the proof.

This lower bound has an asymptote at 4
5 as ρ → ∞, and M̂(1) = 0.615. It can be checked

that there exists a ρ̄ ∈ (2, 3) such that

M̂(ρ)

⎧⎪⎪⎨
⎪⎪⎩

≥ ρ

1 + ρ
if ρ ≤ ρ̄,

≤ ρ

1 + ρ
if ρ ≥ ρ̄.

5.2. Discussion concerning loss networks

We note that the bound M̂(ρ) in (11) satisfies

M̂(ρ) ≤ M(ρ) := 2ρ

1 + 2ρ
.

The quantity on the right-hand side comes from a loss network model which we briefly discuss.
Consider the process (Et : t ∈ R) with state space {0, 1, −1} and generator QE given by

QE =
⎛
⎝−2ν ν ν

µ −µ 0
µ 0 −µ

⎞
⎠ .

The stationary distribution of (Et ) is given by π
E

0 = 1/(1 + 2ρ) and π
E

1 = ρ/(1 + 2ρ) = π
E

−1.
Hence, π

E

1 + π
E

−1 = 2ρ/(1 + 2ρ) is the proportion of time that E spends away from state 0.
The process (Et ) may be viewed as a loss network in which there are two routes (1 and −1)
sharing a single link of unit capacity. See [2] for more information about loss networks. Calls
(that is, gene candidates) ‘arrive’ according to the Poisson streams N1,i , i ∈ {1, −1}, and are
accepted or rejected according to whether the link is free (no gene candidates currently present
on either strand) or busy (a gene candidate is present on one of the strands).

It might be thought that the process (Et ) is equivalent to scanning through each island K

from s(K) to f (K) and culling those gene candidates which overlap any previously accepted
gene candidates. However, this is not the case. In the loss network setting, the length of a call
(gene candidate) remains exponential with mean 1/µ, but in our setting the time between calls
is not exponentially distributed. Since there may or may not be another gene candidate present
on the opposite strand at the point where the most recently accepted gene candidate terminates,
the time (gap) between calls has the same law as BY + (1 − B)(X + Y ), where B ∼ Ber(ξ) (a
Bernoulli random variable with parameter ξ = ρ/(2 + ρ)), Y ∼ Exp(ν), and X ∼ Exp(µ) are
independent random variables. Moreover, as simulations show, the quantity M(ρ) is neither
a lower nor an upper bound, but does seem to closely approximate the empirical estimate
of M∗(ρ).
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Figure 1: Bound on the final gene selection made under the maximization criterion. See the text.

5.3. Simulations of bounds

In order to more easily visualize the occupancy rate and the bounds derived above, we
performed a series of simulation experiments. Fixing µ = 1 and a strand length of T = 1000,
we considered values of ρ = ν/µ = ν in the range [0, 3.5]. For each ρ, we generated
multiple pairs of DNA strands. The maximality criterion was then applied to each such pair
and the average of the empirical occupancy rates, (1/T )Wt , was calculated. The results of
these experiments appear in Figure 1.

The solid line in Figure 1 illustrates the theoretical upper bound M̃(ρ) obtained in Proposi-
tion 5 by considering the proportion of the strand length covered by islands. The dotted line is
the occupancy rate, M∗(ρ), estimated from the numerical simulations.

In contrast, the dash–dot line corresponds to the theoretical lower bound, M̂(ρ), while the
double line plots the single-strand occupancy rate, θ∗(ρ) = ρ/(1 + ρ). The lower bound
posited in Proposition 6 appears as the combination of the dash–dot line and the double line.
In the figure it can be seen that M̂(ρ) provides a tighter lower bound than θ∗(ρ) for values of ρ

less than 2.75, while the converse is true for values of ρ greater than 2.8. Naturally, M̂(ρ) and
θ∗(ρ) cross at some point in the interval (2.75, 2.8).

We also plot the quantity, M(ρ), derived from a loss network as the dashed line. It is evident
from the graph that M(ρ) yields a ‘relatively’ tight approximation for the empirical estimate of
M∗(ρ), always falling within 3.15% of M∗(ρ). More precisely, |M∗(ρ)/M(ρ) − 1| ≤ 0.0315
for all ρ ≥ 0. It can be seen that M(ρ) underestimates M∗(ρ) for small ρ (ρ ≤ 1.7) and
overestimates M∗(ρ) for large ρ (ρ ≥ 1.75).

6. Properties of optimal selection

Now we shall study the stochastic properties arising from the application of Algorithm 1 to
a realization of E. For a (continuous-time or discrete-time) process C = (Ct : t ∈ R), we write
BC

s := σ({Cr : r ≤ s}) for the σ -algebra of the process C up to time s. If D is an event and A
is a σ -algebra, we shall use A ∨ D to mean the σ -algebra generated by A and D.

Recall that the process E = (E1, E−1), as well as all continuous-time processes derived from
it, is defined for all times in R. Let t ∈ R. We denote by I i

(t) the first gene candidate appearing in
strand i among those finishing after time t , so s(I i

(t)) = inf{s(I ) : f (I) > t, I ∈ � i}. Hence,
if Ei

t = 1 then t ∈ I i
(t), and if Ei

t = 0 then I i
(t) is the first gene candidate on strand i starting
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after time t . For Ẽt = 0, we define I(t) by I(t) = I i
(t) if s(I i

(t)) < s(I−i
(t) ). Analogously, we

denote by I ∗
(t) the first gene appearing in � ∗ among those that finish after t , so if E∗

t = 1 then
t ∈ I ∗

(t), and if E∗
t = 0 then I ∗

(t) is the first gene in � ∗ appearing after t .
Let (I ∗

n : n ∈ Z) be the family of final genes � ∗ arranged in increasing order according to
their starting positions, and fix I ∗

0 = I ∗
(0).

Remark 4. Following a gap (a (0, 0)-zone), one of the first gene candidates appearing on each
strand must belong to the final configuration, that is, Ẽt = 0 implies that I 1

(t) ∈ � ∗ or I−1
(t) ∈ � ∗.

Obviously, in the case I 1
(t) ∩ I−1

(t) �= ∅, only one of the two genes can belong to � ∗.

Symmetry conditions imply that, following a gap, the next gene candidate to appear in the
final configuration is equally likely to belong to either one of the two strands. Similarly, we see
that if we consider any point near the end of a gene candidate I after which (point) there is no
overlapping gene candidate on the other strand, then a gap must immediately follow I and the
next gene candidate will belong to either one of the two strands with equal likelihood. Thus,
we have the following result.

Lemma 6. P{I(t) ∈ � i | BE
t ∨ {Ẽt = 0}} = P{Xn+1 = i | BX̃

n ∨ {X̃n = 0}} = 1
2 , i = 1, −1.

The situation is radically different if, at the point where a gene candidate ends, there is a
gene candidate present on the other strand. In this case, we introduce the crucial parameter

χ := P{I(t) ∈ � ∗ | Ẽt = 0},

which is the probability that the first gene candidate that appears following a gap region is a
gene. This probability satisfies the following bound.

Proposition 7. χ > 1
2 + 1/(2(1 + ρ)).

Proof. Let i = i(I(t)) be the strand containing I(t), and let η = s(I−i
(t) ). Then

P{I(t) ∈ � ∗, Ẽt = 0} = P{η ≥ f (I(t)), Ẽt = 0} + P{I(t) ∈ � ∗, η < f (I(t)), Ẽt = 0}.

Since [η, f (I(t))) is strictly contained in I(t), we have

P{I(t) ∈ � ∗, η < f (I(t)), Ẽt = 0} > P{[η, f (I(t))) ∈ � ∗([η, ∞)), η < f (I(t)), Ẽt = 0}.

Therefore, by conditioning on η and observing that {η < f (I(t)), Ẽt = 0} ∈ BE
η , we can use

the strong Markov property to obtain

P{I(t) ∈ � ∗, η < f (I(t)), Ẽt = 0}
> P{η < f (I(t)), Ẽt = 0) P{[η, f (I(t))) ∈ � ∗([η, ∞)) | η < f (I(t)), Ẽt = 0}
= P{η < f (I(t)), Ẽt = 0} E(P{[η, f (I(t))) ∈ � ∗([η, ∞)) | BE

η } | η < f (I(t)), Ẽt = 0)

= P{η < f (I(t)), Ẽt = 0} E(PEη {I(0) ∈ � ∗} | η < f (I(t)), Ẽt = 0)

= P{η < f (I(t)), Ẽt = 0} P{I(0) ∈ � ∗ | s(I i
(0)) = 0 for all i},

where we use Pe{·} to denote P{ · | E0 = e}. Since the first gene candidate in each strand starts
at 0 and the lengths of both candidates are independent, identically distributed exponential
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random variables with parameter µ, one of them must be in the final configuration and P{I(0) ∈
� ∗ | s(I i

(0)) = 0 for all i} = 1
2 . Hence,

P{I(t) ∈ � ∗ | Ẽt = 0} > P{η ≥ f (I(t)) | Ẽt = 0} + 1
2 P{η < f (I(t)) | Ẽt = 0}

= 1
2 (1 + P{η ≥ f (I(t)) | Ẽt = 0}).

Now P{η ≥ f (I(t)) | Ẽt = 0} = pX̃
10 = 1/(1 + ρ), and the proof is complete.

Lemma 7. P{I(t) ∈ � ∗ | BE
t ∨ {Ẽt = 0}} = χ .

Proof. Set I = I(t) and let�1 ⊆ {Ẽt = 0}belong toBE
t . Since I(t) ∈ � ∗ isσ(Et : t ≥ s(I ))

-measurable, from the Markov property we find that I(t) ∈ � ∗ and �1 are conditionally
independent with respect to the event {Ẽt = 0}, and the result follows.

Lemma 8. Defining ‖K‖ to be the number of gene candidates contained within an island K ,
we find that P{I(t) ∈ � ∗ | ‖K(I(t))‖ ≥ 2, Ẽt = 0} > 1

2 .

Proof. We have

P{I(t) ∈ � ∗ | Ẽt = 0}
= P{I(t) ∈ � ∗ | Ẽt = 0, ‖K(I(t))‖ = 1} P{‖K(I(t))‖ = 1 | Ẽt = 0}

+ P{I(t) ∈ � ∗ | Ẽt = 0, ‖K(I(t))‖ ≥ 2} P{‖K(I(t))‖ ≥ 2 | Ẽt = 0}.

Since P{‖K(I(t))‖ = 1 | Ẽt = 0} = 1/(1 + ρ), the first term on the right-hand side of this
equation becomes

P{I(t) ∈ � ∗ | Ẽt = 0, ‖K(I(t))‖ = 1} P{‖K(I(t))‖ = 1 | Ẽt = 0} = 1

1 + ρ
.

This is because any island formed by a single gene candidate necessarily belongs to the optimal
solution.

On the other hand, P{‖K(I(t))‖ ≥ 2 | Ẽt = 0} = ρ/(1 + ρ) and, so, the second term may
be written as qρ/(1 + ρ), with q := P{I(t) ∈ � ∗ | ‖K(I(t))‖ ≥ 2, Ẽt = 0}. The result then
follows by applying Proposition 7 and solving for q.

Before proceeding to the next result, let us pause for a moment to define some necessary
notation. We shall use K to denote the island containing I ∈ � ∗ and we shall use I+ to stand
for the successor to I in � ∗.

From Algorithm 1, recall that Ĵm is a solution to (3) with �(Ĵm) = ŵm for all m =
1, 2, . . . , n, n being the number of gene candidates contained in the island K . By convention,
we shall set f̂n+1 = 0. Then we define

F+(K) := {f (Im) : f̂m = 1 and f̂m+1 = 0, m = 1, 2, . . . , n}
and f ∗(K) := max F+(K).

Each point in F+(K) corresponds to the end point of some gene candidate; that is, if t ∈
F+(K) then there exists an m ∈ {1, 2, . . . , n} such that t = f (Im). If t = f ∗(K) then
Algorithm 1 ensures that Ĵm′ = Ĵm for all m′ > m. So, we will suppose that t �= f ∗(K).
Since there are only two strands and Im belongs to an island, each Im possesses some important
characteristics. First, according to the ordering ‘	f ’, the interval Im terminates no later than
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Im+1, that is, t ≤ f (Im+1). Second, Im+2 must lie after Im on the same strand and cannot finish
at any point prior to f (Im+1). Hence, Ĵm+2 will comprise the candidates from Ĵm plus Im+2.
In a similar way, provided that m + 3 ≤ n, we can see that Ĵm+3 must contain all the members
of Jm plus Im+2 and/or Im+3. Thus, Ĵm is also a subset of Ĵm+3. Now, for m′ > m + 3,
Algorithm 1 ensures that Ĵm′ will include either all the candidates in Ĵm+2 or all those in Ĵm+3.
Therefore, any solution Ĵm to (3) such that f (Im) ∈ F+(K) is a subset of the solutions of all
problems of size larger than m. In other words, Ĵm ⊆ Ĵm′ for all m′ = m + 1, m + 2, . . . , n.
On the other hand, it is not always true that Ĵm′ ⊆ Ĵm for all m′ = 1, 2, . . . , m− 1. To see this,
it suffices to consider Ĵm and Ĵm−1 and note that Im ∩ Im−1 �= ∅ since f (Im) ∈ F+(K).

This means that, given a point t ∈ F+(K) corresponding to the end point of Im, decisions
made in order to obtain the optimal selection of genes over the interval [s(K), t) do not in
any way influence or affect the optimal choice of genes within the interval [t, f (K)). In the
Markovian model we have proposed, the optimal solutions � ∗([s(K), t)) and � ∗([t, f (K)))

are in fact conditionally independent given any such point t . Thus, we have � ∗(K) =
� ∗([s(K), t)) ∪ � ∗([t, f (K))), and equality holds in Proposition 2 with a = s(K), b = t ,
and c = f (K).

In fact, we can elucidate the structure of solutions to the maximization problem (1) even
further. Let t and t ′, with t ≤ t ′, be two ‘consecutive’ elements of F+(K) corresponding to the
end points of Ik and Ik′ , respectively. The stipulation that t and t ′ be consecutive means that
F+(K) ∩ (t, t ′) = ∅. Then i(I ) = i(J ) for all I, J ∈ � ∗([t, t ′)). Alternatively, we can say
that � ∗([t, t ′)) = � i ([t, t ′)) for some i ∈ {1, −1}. To see this, first note that f̂k = 1, f̂k+1 = 0,
and f̂m = 1 for all m = k + 2, . . . , k′. Now let m = k′ and note that Ik′ ∈ Ĵk′ . Since f̂m = 1,
we have Ĵm = Ĵlm ∪ {Im}, so Ilm immediately precedes Im in Ĵm. However, by definition of lm,
Ilm must belong to the same strand as Im. By replacing m with lm, we can recursively repeat
this argument and show that all gene candidates contained in the interval [t, t ′) lie on the same
strand.

The next results make use of the equivalence {Ẽf (I ) = 0} ⇐⇒ s{E−i(I )
f (I ) = 0}, which holds

for every I ∈ � .

Lemma 9. Let I ∈ � ∗. Then
P{i(I+) = i(I ) | BE

f (I) ∨ {Ẽf (I ) = 0}} = 1
2 , (20)

P{i(I+) = i(I ) | BE
f (I) ∨ {Ẽf (I ) = 1, f (I ) = f ∗(K(I))}} = 1

2 , (21)

P{i(I+) = i(I ) | BE
f (I) ∨ {Ẽf (I ) = 1, f (I ) /∈ F+(K(I))}} = 1, (22)

P{i(I+) = i(I ) | BE
f (I) ∨ {Ẽf (I ) = 1, f (I ) ∈ F+(K(I)), f (I ) �= f ∗(K(I))}} = χ. (23)

Proof. Relation (20) is straightforward to verify and implies (21) since the condition that
Ẽf (I ) = 1 and f (I) = f ∗(K) means that there is an empty region (gap) appearing after I and
immediately preceding I+.

Next, suppose that I is such that f (I) /∈ F+(K(I)). Also, let t and t ′ be consecutive
elements of F+(K(I)) such that I ∈ [t, t ′]. From the discussion following Lemma 7, we
know that if t and T ′ are two successive elements in F+(K(I)), then all the gene candidates
in � ∗([t, t ′)) lie on the same strand. As a result, I+ ∈ [t, t ′), i(I ) = i(I+), and we see that
(22) holds.

Finally, let us show that the last relation, (23), holds. Set i := i(I ). Since E−i
f (I ) = 1,

there is a gene candidate L on strand −i containing the point f (I). Thus, L cannot appear
in the final configuration � ∗, because L intersects I and I ∈ � ∗. Now set J = I i

(f (I )) and
let �1 ⊆ {Ẽt = 1, f (I ) ∈ F+(K(I)), f (I ) �= f ∗(K(I))} and �1 ∈ BE

f (I). Since J ∈ � ∗
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is σ(Et : t ≥ s(J ))-measurable, from the Markov property we find that J ∈ � ∗ and �1 are
conditionally independent with respect to the event {Ẽt = 1, f (I ) ∈ F+(K(I)), f (I ) �=
f ∗(K(I))}. Therefore,

P{i(I+) = i | BE
f (I) ∨ {Ẽf (I ) = 1, f (I ) ∈ F+(K(I)), f (I ) �= f ∗(K(I))}}
= P{i(I+) = i | Ẽf (I ) = 1, f (I ) ∈ F+(K(I)), f (I ) �= f ∗(K(I))}.

Since L /∈ � ∗, we have

P{i(I+) = i | Ẽf (I ) = 1, f (I ) ∈ F+(K(I)), f (I ) �= f ∗(K(I))}
= P{I(f (I )) ∈ � ∗ | Ẽf (I ) = 0} = χ,

and the result follows.

Using Lemma 9 and Proposition 7, we obtain the following result.

Corollary 1. Let I ∈ � ∗ and let I+ be its successor in � ∗. Then P{i(I+) = i(I )} > 1
2 .

7. An application to Escherichia coli

In this section, we consider the optimization procedure in the context of a complete, annotated
DNA sequence. We shall see that the optimization paradigm proposed is able to capture
various statistical properties we observe in bacterial DNA. Our empirical studies have been done
using the well-documented Escherichia coli K-12 organism. The genome of this prokaryote
comprises n = 4639 221 nucleotide base pairs. The raw DNA sequence was sourced from the
E. coli Genome Project at the Laboratory of Genetics, University of Wisconsin-Madison. The
annotation was taken from GenBank, updated as of 7 March 2003.

7.1. Basic statistics

In preparation for seeing how the maximization model performs with E. coli data, we applied
a rather naive procedure to the raw DNA sequence of the E. coli genome in order to generate
gene candidates for each of the six reading frames. Note that what we have been calling gene
candidates are commonly referred to as open reading frames by biologists. Each strand of
DNA is a chain of nucleotides and is represented as a sequence of letters from the alphabet
α = {A, C, G, T}. Let START and STOP be subsets of α3 containing the start codons and
stop codons, respectively. The genetic code possesses three immutable stop codons: STOP =
{TAA, TAG, TGA}. In addition, the genome of the E. coli organism makes use of five start
codons: START = {ATG,ATT, CTG, GTG, TTG}. We note that the primary strand, S1, and
the complementary strand, S−1, are read in opposite directions, so S1

j pairs with S−1
n−j+1 for

j = 1, 2, . . . , n under the pairing rules A ⇔ T and C ⇔ G.
To find candidate genes in the ith reading frame on the primary strand, we examine the

strand in reading order at points {i, i + 3, i + 6, . . . } until we find a triplet (codon) belonging
to START. Having found a potential start codon, we record its position, t , and then continue
searching, for a member of STOP. Upon finding a stop codon, we note the position, T , of the last
letter composing it. The first candidate is then [t, T ]. The next candidate is found by repeating
this procedure from position T + 1 on the strand, and so on. This procedure generates � 1,
� 2, and � 3. When finding gene candidates on the complementary strand, a little care must be
taken to represent them using the same frame of reference used on the primary strand. Thus,
positions are labelled n, n − 1, n − 2, . . . , 1 when the strand is viewed according to its 5′–3′
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Table 1: Some statistics concerning the genome of the E. coli K-12 bacteria.

Empirical Empirical
average average Candidate Candidate Gap

candidate gap occupancy K–S K–S
Strand Frame nc length (bp) length (bp) rate (%) statistic statistic

1 1 30 842 96.66 55.75 64.26 0.12 0.11
1 2 30 658 97.12 56.19 64.18 0.13 0.11
1 3 30 718 97.63 55.38 64.64 0.12 0.11

−1 −1 30 338 97.53 57.38 63.78 0.13 0.11
−1 −2 30 950 96.52 55.36 64.39 0.13 0.11
−1 −3 30 505 98.55 55.19 64.80 0.13 0.10

reading order, and offsets from position n to the starting point of each reading frame must be
taken into account. With these changes in mind, the procedure outlined above also produces
�−1, �−2, and �−3.

Table 1 summarizes various statistics for each of the six reading frames. It shows the number
of gene candidates found, nc, the mean lengths (expressed in base pairs (bp)) of the candidates
and the gaps separating them, and the proportion of the reading frame occupied by candidates.
In addition, the last two columns of the table show Kolmogorov–Smirnov (K–S) statistics which
test the gene candidate and gap length distributions against exponential hypotheses.

It is clear from the Kolmogorov–Smirnov statistics in Table 1 that neither the gene candidates
nor the gap lengths are exponentially distributed. Burge and Karlin [1], as well as Lukashin
and Borodovsky [4], have made the same observations in eukaryotic genome sequences.

7.2. Comparison between gene annotation and final genes

As noted earlier, we have used a complete annotation of E. coli K-12 sourced from GenBank
and dated 7 March 2003. According to the annotation, the genome of this organism has 4266
annotated genes or coding sequences which occupy 87.48% of its base pairs. Henceforth, we
will purposefully abuse the correct genetics terminology and use ‘CDS’ to refer to a gene which
is recognized as a coding sequence in the E. coli K-12 annotation. We are partly justified in
doing so because CDSs correspond to genes in prokaryotic organisms like bacteria. We shall
continue to use ‘final gene’ to mean any gene candidate our model accepts as a valid gene under
the maximization criterion. In a very small percentage of the E. coli genome (0.32% of the base
pairs), the CDSs in the annotation do, in fact, overlap. Although this contradicts the primary
requirement of the maximization criterion, it is nevertheless a very small proportion of the total
genome. We recognize that this small portion of the genome will be inaccessible to our model
in its current form, and we shall not consider it for the time being.

It is important to note that the set of gene candidates � excludes many of the coding sequences
recognized as genes in the E. coli K-12 annotation. We shall use C to denote the set of those
annotated genes that also belong to � . After applying the candidate extraction process to the
E. coli data, we found that C only contains 2848 (66.76%) of the 4266 annotated genes. Clearly
this imposes a limit on the number of annotated genes that will appear in the optimal solution
found by the maximization procedure. The scheme we have used to construct � from the raw
DNA sequence is simplistic and, in line with the concept of maximizing the proportion of the
genome devoted to genic zones, is biased towards finding larger gene candidates. There are
two classes of potential genes that the selection scheme entirely overlooks. The first of these
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are those potential genes whose start codon is contained in a member of � . The second class
is those genes which undergo a frame shift such that their start codons appear in one reading
frame while their end codons appear in another. The initial candidate selection process is far
from ideal, but it nevertheless serves to illustrate an application of the maximization model to
real-world data. Suffice it to say that the automatic identification of potential genes remains
one of the difficult problems in gene annotation.

Having implemented the maximization algorithm from Section 2, we proceeded to apply it
to the whole set of gene candidates. In our experiment, each of the six reading frames in the
E. coli DNA sequence corresponds to a so-called ‘strand’ in the description of the maximization
algorithm. Using the maximization criterion we obtained 15 336 final genes, occupying 95.49%
of the total genome. The percentage of final genes that were found to be CDSs (the positive
predictive value of the model) was 13.43%. In other words, 86.57% of the genes identified by
the model were false positives. On the other hand, the proportion of CDSs which were counted
among the final genes selected was 48.27%.

The sensitivity and specificity of the maximization procedure as a method for identifying
annotated genes can be calculated. The model’s sensitivity, expressed as a percentage, is
72.30%, while its specificity is 92.67%. It is worth noting that, while the mean length of a
coding sequence in the genome annotation data is 954.95 nucleotides, the mean length of a
final gene as determined by the model is only 288.86 base pairs. Also, as was mentioned above,
annotated CDSs account for 87.48% of the genome, but final genes occupy 95.49%. The model
tends to include too many final genes, which results in the overestimation of the occupancy
rate. Also, given the small mean length of final genes, it would appear that the final genes are
generally too small. It is known that bacterial genomes contain very few CDSs which are less
than 100 base pairs in length. E. coli has 13 such CDSs. In light of this, it seems natural to
consider only those gene candidates containing 100 or more base pairs in order to understand
where the model is not performing satisfactorily. We performed a series of experiments in which
gene candidates whose lengths were less than a certain threshold value were eliminated from
all the reading frames before applying the maximization algorithm. We considered threshold
values in the range from 100 to 250 in steps of size 1. Figures 2 and 3 summarize our findings.

The solid line in Figure 2 shows the proportion of the genome length covered by final genes
in the model’s maximal solution, M∗(ρ). Observe that the model overestimates the occupancy
rate for smaller threshold values and underestimates it for larger ones. The dashed line in the
graph shows that the percentage of final genes that are annotated in the GenBank data (i.e. that
are CDSs) steadily increases as the threshold value increases. This is as expected. On the other
hand, the proportion of annotated genes that are also final genes (the dotted line) confines itself
to a narrow band between 48.59% and 50.23%, peaking at a threshold value of 206–208 base
pairs. This suggests that the proportion of CDSs that constitute final genes in the model appears
to be fairly insensitive to changes in the threshold value.

Figure 3 plots the sensitivity (the percentage of candidates in C classified as final genes
(dashed line)) and specificity (the percentage of candidates in � \C not classified as final genes
(dotted line)) over the range of threshold values, in addition to the proportion, 100|C|/|� |
(solid line), of annotated genes contained in the gene candidates submitted to the maximization
procedure. The sensitivity increases due to the fact that smaller gene candidates overlapping a
CDS which cause that CDS to be rejected as a final gene are themselves removed as candidates
by the threshold criterion. The observed decrease in specificity occurs because eliminating
candidates below a threshold length causes the number of true negatives to diminish quickly
relative to the number of false positives.
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Figure 2: Comparison of actual genes (CDSs obtained from annotation data) and final genes (as predicted
by the model) when genes smaller than a specified threshold value are excluded. See the text.
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Figure 3: Sensitivity and specificity of the model when genes smaller than a specified threshold are
excluded. See the text.

Removing gene candidates whose lengths are below a certain threshold value has illustrated
that the model is reasonably good at identifying large genes but is fairly poor at identifying
small genes.

8. Concluding remarks

In this work, we have proposed a global scheme for modelling the placement of genes in
bacterial genomes. Efficient algorithms for implementing the suggested maximization criterion
have been devised. We have studied the probabilistic properties of the simplified two-strand
case (ignoring reading frames altogether). Even in this restricted case, the model succeeds
in capturing some of the statistical properties of the genome. For example, the lower bound
established in Lemma 8 holds in the case of E. coli. Consider islands containing at least two
gene candidates. Let k2 be the number of such islands. Next let k1

2 be the number of these
islands whose first gene candidate is a CDS. Then k1

2/k2 = 0.6337 > 0.5, as predicted.
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We have implemented some simple variations of this model. In one of these, we eliminated
all the gene candidates that were contained within gene candidates on other strands. We have
not included this study here because the addition of this constraint does not alter the theoretical
analysis and, moreover, does not result in a significant improvement to the fit of the data.

In future, the authors plan to remove as many of the independence assumptions as possible
and expand the probabilistic results to encompass six reading frames. Also, we have yet to
consider the maximization criterion as a useful adjunct to assist existing gene identification
techniques such as the hidden Markov model scheme at the core of R’HOM [5], [6] or the
interpolated Markov model employed by the GLIMMER system [7]. Finally, it will be necessary
to apply the model to a range of bacterial genomes other than E. coli K-12 in order to more
fully assess the utility of the model we have presented.
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