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Abstract. Certain generalized Samelson products of SO(3) are calculated and
applications to the homotopy of gauge groups are given.
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1. Introduction and statement of results. Each space is assumed to have the
homotopy type of a CW-complex. We often make no distinction between a continuous
map and its homotopy class.

Let G be a topological group and let γ : G ∧ G → G denote the commutator of
G. A generalized Samelson product of maps α : A → G and β : B → G is defined as the
homotopy class of the composition

A ∧ B
α∧β−→ G ∧ G

γ→ G

and denoted by 〈α, β〉. We denote the adjoint map �A → BG of a map α : A → G by
ad(α). Regarding the generalized Samelson product 〈α, β〉, Arkowitz [2] showed that

ad(〈α, β〉) = [ad(α), ad(β)],

where [ , ] is the generalized Whitehead product.
The purpose of this paper is to calculate certain generalized Samelson products

of SO(3) and to give applications to the homotopy of gauge groups. Let ε1 and ε3 be
generators of π1(SO(3)) ∼= Z/2 and π3(SO(3)) ∼= Z respectively, and let ε̂ and ι be the
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natural inclusion RP2 ↪→ SO(3) (= RP3) and the identity of SO(3) respectively. Then
we shall prove the following results.

THEOREM 1.1. The order of the generalized Samelson product 〈ε3, ε̂〉 is 4.

COROLLARY 1.1. The order of the generalized Samelson product 〈ε3, ι〉 is 12.

Let G be a compact, connected Lie group and let P be a principal G-bundle over
S4. The gauge group GP of P is the group of all G-equivariant automorphisms of P
covering the identity of S4. Atiyah and Bott [4] showed that

BGP � MapP(S4, BG),

where MapP(S4, BG) denotes the component of Map(S4, BG) corresponding to the
classifying map of P. We shall often identify BGP with the MapP(S4, BG). For
simplicity, when G = SO(3) and P is classified by k ∈ Z ∼= π4(BSO(3)), we replace
GP by Gk. Let (n, m) be the GCD of n and m. As applications of the above results, we
shall prove the following results.

PROPOSITION 1.1. Gk � Gl if and only if (12, k) = (12, l).

PROPOSITION 1.2.

π0(Gk) ∼=
{

Z/2 k ≡ 0 (2)

0 k ≡ 1 (2)
π1(Gk) ∼=

⎧⎪⎨⎪⎩
Z/2 k ≡ 1 (2)

Z/4 k ≡ 2 (4)

Z/2 ⊕ Z/2 k ≡ 0 (4)

REMARK 1.1. Readers may refer to [8] for the relevant results of the homotopy of
GP when P is a principal SU(2)-bundle over S4. Readers may also refer to [7] for an
alternative calculation of π1(Gk) in a different context.

REMARK 1.2. Regarding the homotopy of the classifying space BGk, we have
the following result. Let P be a principal SU(2)-bundle over S4 corresponding to
k ∈ Z ∼= π4(BSU(2)). Since the natural projection GP → Gk is a double covering, the
universal covering group of the identity components of GP and Gk are isomorphic.
Then it follows from Theorem 1.5 of [10] that BGk � BGl if and only if k = ±l.

REMARK 1.3. Let P be as in Remark 1.2. Then it is straightforward to check that
π2(Gk) ∼= π2(GP). Hence, by a result of [8], one finds π2(Gk) ∼= Z/(12, k).

2. Proofs of Theorem 1.1 and Corollary 1.1. Before starting the proofs, let us
recall a result of Bott [5]. Denote a generator of πi(U(2)) by ε̃i for i = 1, 3. Then Bott
[5] showed that the order of the Samelson product 〈ε̃3, ε̃1〉 is 2 and hence 〈ε̃3, ε̃1〉 is a
generator of π4(U(2)) ∼= Z/2.

Proof of Theorem 1.1. Let π : U(2) → SO(3) be the natural projection. It is
obvious that π∗(ε̃i) = εi for i = 1, 3. Then one has

π∗(〈ε̃3, ε̃1〉) = 〈ε3, ε1〉 ∈ π4(SO(3)).

Since π∗ : π4(U(2)) → π4(SO(3)) is an isomorphism, the order of 〈ε3, ε1〉 is 2 and hence
〈ε3, ε1〉 is a generator of π4(SO(3)) ∼= Z/2. Let i : S1 ↪→ RP2 be the inclusion of the
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1-skeleton. Then i∗(ε̂) = ε1 and, by the above observation, one can see that

〈ε3, ε̂〉 �= 2γ (2.1)

for any γ ∈ [S3 ∧ RP2, SO(3)].
Since S3 ∧ RP2 is 3-connected we have a group isomorphism

[S3 ∧ RP2, SO(3)] ∼= [S3 ∧ RP2, Sp(1)].

By applying [S3 ∧ RP2, ] to the fiber sequence

	(Sp(∞)/Sp(1)) → Sp(1) → Sp(∞) → Sp(∞)/Sp(1),

we can derive an exact sequence

[S3 ∧ RP2,	(Sp(∞)/Sp(1))] → [S3 ∧ RP2, Sp(∞)]

→ [S3 ∧ RP2, Sp(1)] → [S3 ∧ RP2, Sp(∞)/Sp(1)].

Since S3 ∧ RP2 is 5-dimensional and Sp(∞)/Sp(1) is 6-connected, we obtain a group
isomorphism

[S3 ∧ RP2, Sp(1)] ∼= [S3 ∧ RP2, Sp(∞)].

On the other hand, one has a sequence of group isomorphisms

[S3 ∧ RP2, Sp(∞)] ∼= [S4 ∧ RP2, BSp(∞)] ∼= K̃O0(RP2) ∼= Z/4,

where the second and the last isomorphisms are due to Bott periodicity and a result of
Adams [1], respectively. Therefore we obtain

[S3 ∧ RP2, SO(3)] ∼= Z/4

and, by (2.1), the proof is completed. �
Proof of Corollary 1.1. Since SO(3) is parallelizable, the result of Atiyah [3]

yields that it is stably homotopy equivalent to RP2 ∨ S3. Then it follows from the
Freudenthal suspension theorem that the cofibration S3 ∧ RP2 1∧ε̂−→ S3 ∧ SO(3) → S6

splits as S3 ∧ SO(3) � (S3 ∧ RP2) ∨ S6. Hence the Samelson product 〈ε3, ι〉 is factored
as

S3 ∧ SO(3) � (S3 ∧ RP2) ∨ S6 〈ε3,ε̂〉∨α−−−−→ SO(3)

by a map α : S6 → SO(3). One can see that α = π∗(〈ε̃3, ε̃3〉), when localized at any
primes but 2. It is well known that the Samelson product 〈ε̃3, ε̃3〉 is a generator of
π6(U(2)) ∼= Z/12. Then we obtain that the order of α is a divisor of 12 and it is divisible
by 3, since π∗ : π6(U(2)) → π6(SO(3)) is an isomorphism. Hence, by Theorem 1.1, the
order of 〈ε3, ι〉 = 〈ε3, ε̂〉 ∨ α is found to be 12. �

3. Proofs of Proposition 1.1 and Proposition 1.2.

Proof of Proposition 1.1. The idea of the proof is due to [8]. Let e : BGk �
Mapk(S4, BSO(3)) → BSO(3) denote the evaluation at the basepoint of BSO(3). By
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the fibration

Gk � 	BGk
	e−→ SO(3)


k→ 	3
0SO(3),

Gk can be considered as a homotopy fiber of the above map 
k. Then we shall analyze
the map 
k.

By Lang [9], it is shown that the homotopy class of 
k is ad3(〈kε3, ι〉). Since
Samelson products are bilinear, we have 
k � k
1. By Corollary 1.1, the order of 
1 is
12. Since π∗(	3

0SO(3)) is finite for all ∗, it follows from Lemma 3.2 of [6] that Gk � Gl

if and only if (12, k) = (12, l). Thus Proposition 1.1 is proved. �
Proof of Proposition 1.2. Consider the homotopy sequence of the evaluation

fibration 	3
0SO(3) → BGk

e→ BSO(3). Then we have an exact sequence

0 = π3(BSO(3)) → π2(	3
0SO(3)) ∼= Z/2 → π2(BGk)

e∗→ π2(BSO(3)) ∼= Z/2
δ→ π1(	3

0SO(3)) ∼= Z/2 → π1(BGk) → π1(BSO(3)) = 0.

(3.1)

Let 
k : SO(3) → 	3
0SO(3) be as in Proposition 1.1. Then 
k = ad3(〈kε3, ι〉) and the

connecting homomorphism δ in (3.1) is the canonical isomorphism π2(BSO(3)) ∼=
π1(SO(3)) followed by (
k)∗ : π1(SO(3)) → π1(	3

0SO(3)). Hence we have

δ(ad(ε1)) = ad3(〈kε3, ε1〉).

Since the order of the Samelson product 〈ε3, ε1〉 is 2, the order of its 3-fold adjoint
ad3(〈ε3, ε1〉) is 2 as well. Then there exists a map α : S2 → BGk satisfying the homotopy
commutative diagram

BGk

e
��

S2

α

�����������

ad(ε1)
�� BSO(3)

if and only if k ≡ 0 (2). Since ad(ε1) is the inclusion of the 2-skeleton of BSO(3),
π0(Gk) ∼= π1(BGk) is obtained, as in the statement, by the exact sequence (3.1).

By the above argument, we have obtained π1(Gk) ∼= π2(BGk) ∼= Z/2 if k ≡ 1 (2).
Then we shall consider the case that k ≡ 0 (2) and have an exact sequence

0 → Z/2 → π2(BGk)
e∗→ π2(BSO(3)) ∼= Z/2 → 0. (3.2)

By Theorem 1.1, we see that the order of ad3(〈ε3, ε̂〉) is 4. Then, quite similarly to
the above, there exists a map α̂ : �RP2 → BGk satisfying the homotopy commutative
diagram

BGk

e
��

�RP2

α̂

�����������

ad(ε̂)
�� BSO(3)
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if and only if k ≡ 0 (4). Since ad(ε̂) is the inclusion of the 3-skeleton of BSO(3), we
obtain, by (3.2), that π1(Gk) ∼= π2(BGk) ∼= Z/2 ⊕ Z/2 when k ≡ 0 (4).

In the case that k ≡ 2 (4), we suppose that π2(BGk) ∼= Z/2 ⊕ Z/2. Since k ≡ 0 (2),
we have the above lift α : S2 → BGk of ad(ε1) and it is of order 2, by hypothesis. Note
that �RP2 is the Moore space S2 ∪2 e3 and the restriction of ad(ε̂) to S2 is ad(ε1). Then
there exists the above lift α̂ : �RP2 → BGk. Hence k ≡ 0 (4) and this is a contradiction.
Therefore we have obtained that π1(Gk) ∼= π2(BGk) ∼= Z/4 when k ≡ 2 (4). �
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