SAMELSON PRODUCTS OF SO(3) AND APPLICATIONS†

YASUHIKO KAMIYAMA

Department of Mathematics, University of the Ryukyus, Nishihara-Cho, Okinawa 903-0213, Japan e-mail: kamiyama@sci.u-ryukyu.ac.jp

DAISUKE KISHIMOTO

Department of Mathematics, Kyoto University, Kyoto 606-8502, Japan e-mail: kishi@math.kyoto-u.ac.jp

AKIRA KONO

Department of Mathematics, Kyoto University, Kyoto 606-8502, Japan e-mail: kono@math.kyoto-u.ac.jp

and SHUICHI TSUKUDA

Department of Mathematics, University of the Ryukyus, Nishihara-Cho, Okinawa 903-0213, Japan e-mail: tsukuda@math.u-ryukyu.ac.jp

(Received 7 November, 2006; revised 28 January, 2007; accepted 12 February, 2007)

Abstract. Certain generalized Samelson products of SO(3) are calculated and applications to the homotopy of gauge groups are given.

2000 Mathematics Subject Classification. Primary 55Q15, Secondary 55P15, 54C35.

1. Introduction and statement of results. Each space is assumed to have the homotopy type of a CW-complex. We often make no distinction between a continuous map and its homotopy class.

Let G be a topological group and let $\gamma: G \wedge G \to G$ denote the commutator of G. A generalized Samelson product of maps $\alpha: A \to G$ and $\beta: B \to G$ is defined as the homotopy class of the composition

$$A \wedge B \xrightarrow{\alpha \wedge \beta} G \wedge G \xrightarrow{\gamma} G$$

and denoted by $\langle \alpha, \beta \rangle$. We denote the adjoint map $\Sigma A \to BG$ of a map $\alpha : A \to G$ by ad(α). Regarding the generalized Samelson product $\langle \alpha, \beta \rangle$, Arkowitz [2] showed that

$$ad(\langle \alpha, \beta \rangle) = [ad(\alpha), ad(\beta)],$$

where [,] is the generalized Whitehead product.

The purpose of this paper is to calculate certain generalized Samelson products of SO(3) and to give applications to the homotopy of gauge groups. Let ϵ_1 and ϵ_3 be generators of $\pi_1(SO(3)) \cong \mathbb{Z}/2$ and $\pi_3(SO(3)) \cong \mathbb{Z}$ respectively, and let $\hat{\epsilon}$ and ι be the

[†] Supported by Grant-in-Aid for Scientific Research (B) 18340016.

natural inclusion $\mathbb{R}P^2 \hookrightarrow SO(3) (= \mathbb{R}P^3)$ and the identity of SO(3) respectively. Then we shall prove the following results.

THEOREM 1.1. The order of the generalized Samelson product $\langle \epsilon_3, \hat{\epsilon} \rangle$ is 4.

COROLLARY 1.1. The order of the generalized Samelson product $\langle \epsilon_3, \iota \rangle$ is 12.

Let G be a compact, connected Lie group and let P be a principal G-bundle over S^4 . The gauge group \mathcal{G}_P of P is the group of all G-equivariant automorphisms of P covering the identity of S^4 . Atiyah and Bott [4] showed that

$$B\mathscr{G}_P \simeq \operatorname{Map}_P(S^4, BG),$$

where $\operatorname{Map}_P(S^4, BG)$ denotes the component of $\operatorname{Map}(S^4, BG)$ corresponding to the classifying map of P. We shall often identify $B\mathscr{G}_P$ with the $\operatorname{Map}_P(S^4, BG)$. For simplicity, when G = SO(3) and P is classified by $k \in \mathbb{Z} \cong \pi_4(BSO(3))$, we replace \mathscr{G}_P by \mathscr{G}_k . Let (n, m) be the GCD of n and m. As applications of the above results, we shall prove the following results.

PROPOSITION 1.1. $\mathcal{G}_k \simeq \mathcal{G}_l$ if and only if (12, k) = (12, l).

Proposition 1.2.

$$\pi_0(\mathcal{G}_k) \cong \begin{cases} \mathbf{Z}/2 & k \equiv 0 \ (2) \\ 0 & k \equiv 1 \ (2) \end{cases}$$
 $\pi_1(\mathcal{G}_k) \cong \begin{cases} \mathbf{Z}/2 & k \equiv 1 \ (2) \\ \mathbf{Z}/4 & k \equiv 2 \ (4) \\ \mathbf{Z}/2 \oplus \mathbf{Z}/2 & k \equiv 0 \ (4) \end{cases}$

REMARK 1.1. Readers may refer to [8] for the relevant results of the homotopy of \mathcal{G}_P when P is a principal SU(2)-bundle over S^4 . Readers may also refer to [7] for an alternative calculation of $\pi_1(\mathcal{G}_k)$ in a different context.

REMARK 1.2. Regarding the homotopy of the classifying space $B\mathcal{G}_k$, we have the following result. Let P be a principal SU(2)-bundle over S^4 corresponding to $k \in \mathbb{Z} \cong \pi_4(BSU(2))$. Since the natural projection $\mathcal{G}_P \to \mathcal{G}_k$ is a double covering, the universal covering group of the identity components of \mathcal{G}_P and \mathcal{G}_k are isomorphic. Then it follows from Theorem 1.5 of [10] that $B\mathcal{G}_k \simeq B\mathcal{G}_l$ if and only if $k = \pm l$.

REMARK 1.3. Let P be as in Remark 1.2. Then it is straightforward to check that $\pi_2(\mathcal{G}_k) \cong \pi_2(\mathcal{G}_P)$. Hence, by a result of [8], one finds $\pi_2(\mathcal{G}_k) \cong \mathbf{Z}/(12, k)$.

2. Proofs of Theorem 1.1 and Corollary 1.1. Before starting the proofs, let us recall a result of Bott [5]. Denote a generator of $\pi_i(U(2))$ by $\tilde{\epsilon}_i$ for i=1,3. Then Bott [5] showed that the order of the Samelson product $\langle \tilde{\epsilon}_3, \tilde{\epsilon}_1 \rangle$ is 2 and hence $\langle \tilde{\epsilon}_3, \tilde{\epsilon}_1 \rangle$ is a generator of $\pi_4(U(2)) \cong \mathbb{Z}/2$.

Proof of Theorem 1.1. Let $\pi: U(2) \to SO(3)$ be the natural projection. It is obvious that $\pi_*(\tilde{\epsilon}_i) = \epsilon_i$ for i = 1, 3. Then one has

$$\pi_*(\langle \tilde{\epsilon}_3, \tilde{\epsilon}_1 \rangle) = \langle \epsilon_3, \epsilon_1 \rangle \in \pi_4(SO(3)).$$

Since $\pi_* : \pi_4(U(2)) \to \pi_4(SO(3))$ is an isomorphism, the order of $\langle \epsilon_3, \epsilon_1 \rangle$ is 2 and hence $\langle \epsilon_3, \epsilon_1 \rangle$ is a generator of $\pi_4(SO(3)) \cong \mathbb{Z}/2$. Let $i : S^1 \hookrightarrow \mathbb{R}P^2$ be the inclusion of the

1-skeleton. Then $i^*(\hat{\epsilon}) = \epsilon_1$ and, by the above observation, one can see that

$$\langle \epsilon_3, \hat{\epsilon} \rangle \neq 2\gamma$$
 (2.1)

for any $\gamma \in [S^3 \wedge \mathbf{R}P^2, SO(3)]$. Since $S^3 \wedge \mathbf{R}P^2$ is 3-connected we have a group isomorphism

$$[S^3 \wedge \mathbf{R}P^2, SO(3)] \cong [S^3 \wedge \mathbf{R}P^2, Sp(1)].$$

By applying $[S^3 \wedge \mathbf{R}P^2]$, 1 to the fiber sequence

$$\Omega(Sp(\infty)/Sp(1)) \to Sp(1) \to Sp(\infty) \to Sp(\infty)/Sp(1),$$

we can derive an exact sequence

$$[S^{3} \wedge \mathbf{R}P^{2}, \Omega(Sp(\infty)/Sp(1))] \rightarrow [S^{3} \wedge \mathbf{R}P^{2}, Sp(\infty)]$$
$$\rightarrow [S^{3} \wedge \mathbf{R}P^{2}, Sp(1)] \rightarrow [S^{3} \wedge \mathbf{R}P^{2}, Sp(\infty)/Sp(1)].$$

Since $S^3 \wedge \mathbb{R}P^2$ is 5-dimensional and $Sp(\infty)/Sp(1)$ is 6-connected, we obtain a group isomorphism

$$[S^3 \wedge \mathbf{R}P^2, Sp(1)] \cong [S^3 \wedge \mathbf{R}P^2, Sp(\infty)].$$

On the other hand, one has a sequence of group isomorphisms

$$[S^3 \wedge \mathbf{R}P^2, Sp(\infty)] \cong [S^4 \wedge \mathbf{R}P^2, BSp(\infty)] \cong \widetilde{KO}^0(\mathbf{R}P^2) \cong \mathbf{Z}/4,$$

where the second and the last isomorphisms are due to Bott periodicity and a result of Adams [1], respectively. Therefore we obtain

$$[S^3 \wedge \mathbf{R}P^2, SO(3)] \cong \mathbf{Z}/4$$

and, by (2.1), the proof is completed.

Proof of Corollary 1.1. Since SO(3) is parallelizable, the result of Atiyah [3] yields that it is stably homotopy equivalent to $\mathbb{R}P^2 \vee S^3$. Then it follows from the Freudenthal suspension theorem that the cofibration $S^3 \wedge \mathbb{R}P^2 \xrightarrow{1 \wedge \hat{\epsilon}} S^3 \wedge SO(3) \to S^6$ splits as $S^3 \wedge SO(3) \simeq (S^3 \wedge \mathbb{R}P^2) \vee S^6$. Hence the Samelson product $\langle \epsilon_3, \iota \rangle$ is factored as

$$S^3 \wedge SO(3) \simeq (S^3 \wedge \mathbf{R}P^2) \vee S^6 \xrightarrow{\langle \epsilon_3, \hat{\epsilon} \rangle \vee \alpha} SO(3)$$

by a map $\alpha: S^6 \to SO(3)$. One can see that $\alpha = \pi_*(\langle \tilde{\epsilon}_3, \tilde{\epsilon}_3 \rangle)$, when localized at any primes but 2. It is well known that the Samelson product $\langle \tilde{\epsilon}_3, \tilde{\epsilon}_3 \rangle$ is a generator of $\pi_6(U(2)) \cong \mathbb{Z}/12$. Then we obtain that the order of α is a divisor of 12 and it is divisible by 3, since $\pi_*: \pi_6(U(2)) \to \pi_6(SO(3))$ is an isomorphism. Hence, by Theorem 1.1, the order of $\langle \epsilon_3, \iota \rangle = \langle \epsilon_3, \hat{\epsilon} \rangle \vee \alpha$ is found to be 12.

3. Proofs of Proposition 1.1 and Proposition 1.2.

Proof of Proposition 1.1. The idea of the proof is due to [8]. Let $e: B\mathcal{G}_k \simeq$ $\operatorname{Map}_{k}(S^{4}, BSO(3)) \to BSO(3)$ denote the evaluation at the basepoint of BSO(3). By the fibration

$$\mathscr{G}_k \simeq \Omega B\mathscr{G}_k \xrightarrow{\Omega e} SO(3) \xrightarrow{\Gamma_k} \Omega_0^3 SO(3),$$

 \mathcal{G}_k can be considered as a homotopy fiber of the above map Γ_k . Then we shall analyze the map Γ_k .

By Lang [9], it is shown that the homotopy class of Γ_k is $\operatorname{ad}^3(\langle k\epsilon_3, \iota \rangle)$. Since Samelson products are bilinear, we have $\Gamma_k \simeq k\Gamma_1$. By Corollary 1.1, the order of Γ_1 is 12. Since $\pi_*(\Omega_0^3 SO(3))$ is finite for all *, it follows from Lemma 3.2 of [6] that $\mathscr{G}_k \simeq \mathscr{G}_l$ if and only if (12, k) = (12, l). Thus Proposition 1.1 is proved.

Proof of Proposition 1.2. Consider the homotopy sequence of the evaluation fibration $\Omega_0^3 SO(3) \to B\mathcal{G}_k \stackrel{e}{\to} BSO(3)$. Then we have an exact sequence

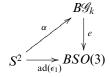
$$0 = \pi_3(BSO(3)) \to \pi_2(\Omega_0^3 SO(3)) \cong \mathbb{Z}/2 \to \pi_2(B\mathscr{G}_k)$$

$$\stackrel{e_*}{\to} \pi_2(BSO(3)) \cong \mathbb{Z}/2 \stackrel{\delta}{\to} \pi_1(\Omega_0^3 SO(3)) \cong \mathbb{Z}/2 \to \pi_1(B\mathscr{G}_k) \to \pi_1(BSO(3)) = 0.$$
(3.1)

Let $\Gamma_k : SO(3) \to \Omega_0^3 SO(3)$ be as in Proposition 1.1. Then $\Gamma_k = \operatorname{ad}^3(\langle k\epsilon_3, \iota \rangle)$ and the connecting homomorphism δ in (3.1) is the canonical isomorphism $\pi_2(BSO(3)) \cong \pi_1(SO(3))$ followed by $(\Gamma_k)_* : \pi_1(SO(3)) \to \pi_1(\Omega_0^3 SO(3))$. Hence we have

$$\delta(\operatorname{ad}(\epsilon_1)) = \operatorname{ad}^3(\langle k\epsilon_3, \epsilon_1 \rangle).$$

Since the order of the Samelson product $\langle \epsilon_3, \epsilon_1 \rangle$ is 2, the order of its 3-fold adjoint $\operatorname{ad}^3(\langle \epsilon_3, \epsilon_1 \rangle)$ is 2 as well. Then there exists a map $\alpha: S^2 \to B\mathscr{G}_k$ satisfying the homotopy commutative diagram

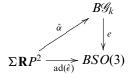


if and only if $k \equiv 0$ (2). Since $ad(\epsilon_1)$ is the inclusion of the 2-skeleton of BSO(3), $\pi_0(\mathcal{G}_k) \cong \pi_1(B\mathcal{G}_k)$ is obtained, as in the statement, by the exact sequence (3.1).

By the above argument, we have obtained $\pi_1(\mathcal{G}_k) \cong \pi_2(B\mathcal{G}_k) \cong \mathbb{Z}/2$ if $k \equiv 1$ (2). Then we shall consider the case that $k \equiv 0$ (2) and have an exact sequence

$$0 \to \mathbf{Z}/2 \to \pi_2(B\mathcal{G}_k) \stackrel{e_*}{\to} \pi_2(BSO(3)) \cong \mathbf{Z}/2 \to 0. \tag{3.2}$$

By Theorem 1.1, we see that the order of $\operatorname{ad}^3(\langle \epsilon_3, \hat{\epsilon} \rangle)$ is 4. Then, quite similarly to the above, there exists a map $\hat{\alpha}: \Sigma \mathbf{R} P^2 \to B \mathcal{G}_k$ satisfying the homotopy commutative diagram



if and only if $k \equiv 0$ (4). Since $ad(\hat{\epsilon})$ is the inclusion of the 3-skeleton of BSO(3), we obtain, by (3.2), that $\pi_1(\mathcal{G}_k) \cong \pi_2(B\mathcal{G}_k) \cong \mathbf{Z}/2 \oplus \mathbf{Z}/2$ when $k \equiv 0$ (4).

In the case that $k \equiv 2$ (4), we suppose that $\pi_2(B\mathcal{G}_k) \cong \mathbb{Z}/2 \oplus \mathbb{Z}/2$. Since $k \equiv 0$ (2), we have the above lift $\alpha : S^2 \to B\mathcal{G}_k$ of $\mathrm{ad}(\epsilon_1)$ and it is of order 2, by hypothesis. Note that $\Sigma \mathbb{R}P^2$ is the Moore space $S^2 \cup_2 e^3$ and the restriction of $\mathrm{ad}(\hat{\epsilon})$ to S^2 is $\mathrm{ad}(\epsilon_1)$. Then there exists the above lift $\hat{\alpha} : \Sigma \mathbb{R}P^2 \to B\mathcal{G}_k$. Hence $k \equiv 0$ (4) and this is a contradiction. Therefore we have obtained that $\pi_1(\mathcal{G}_k) \cong \pi_2(B\mathcal{G}_k) \cong \mathbb{Z}/4$ when $k \equiv 2$ (4).

REFERENCES

- 1. J. F. Adams, Vector fields on spheres, Ann. of Math. 75 (1962), 603–632.
- 2. M. Arkowitz, The generalized Whitehead product, Pacific J. Math. 12 (1962), 7–23.
- 3. M. F. Atiyah, Thom complexes, *Proc. London Math. Soc.* (3) 11 (1961), 291–310.
- **4.** M. F. Atiyah and R. Bott, The Yang-Mills equations over Riemann surfaces, *Philos. Trans. Roy. Soc. London Ser. A* **308** (1983), 523–615.
- **5.** R. Bott, A note on the Samelson product in the classical groups, *Comment. Math. Helv.* **34** (1960), 249–256.
- **6.** H. Hamanaka and A. Kono, Unstable K^1 -group and homotopy type of certain gauge groups, *Proc. Royal Soc. Edinburgh Sect. A* **136** (2006), 149–155.
 - 7. Y. Kamiyama and D. Kishimoto, Spin structures on instanton moduli spaces, preprint.
- **8.** A. Kono, A note on the homotopy types of certain gauge groups, *Proc. Royal Soc. Edinburgh Sect. A* **117** (1991), 295–297.
- 9. G. E. Lang, The evaluation map and EHP sequences, *Pacific J. Math.* 44 (1973), 201–210.
- 10. S. Tsukuda, Comparing the homotopy types of the components of Map(S^4 , BSU(2)), J. Pure. Appl. Algebra 161 (2001), 235–243.