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Abstract

Background: Chronic stress responses can lead to physical and behavioural health problems,
often experienced and observed in the care of people with intellectual disabilities or people with
dementia. Electrodermal activity (EDA) is a bio-signal for stress, which can be measured by
wearables and thereby support stress management. However, the how, when and to what extent
patients and healthcare providers can benefit is unclear. This study aims to create an overview of
available wearables enabling the detection of perceived stress by using EDA.Methods: Following
the PRISMA-SCR protocol for scoping reviews, four databases were included in the search of
peer-reviewed studies published between 2012 and 2022, reporting detection of EDA in relation
to self-reported stress or stress-related behaviours. Type of wearable, bodily location, research
population, context, stressor type and the reported relationship between EDA and perceived
stress were extracted. Results: Of the 74 included studies, the majority included healthy subjects
in laboratory situations. Field studies and studies using machine learning (ML) to predict stress
have increased in the last years. EDA is most often measured on the wrist, with offline data
processing. Studies predicting perceived stress or stress-related behaviour using EDA features,
reported accuracies between 42% and 100% with an average of 82.6%. Of these studies, the
majority used ML. Conclusion: Wearable EDA sensors are promising in detecting perceived
stress. Field studies with relevant populations in a health or care context are lacking. Future
studies should focus on the application of EDA-measuring wearables in real-life situations
to support stress management.

Summation
• The number of studies regarding wearable sensors measuring EDA and perceived
stress are increasing, with more field studies being conducted. It is shown that this
technology can be used to assess perceived stress.

• Studies that show a relation between EDA measured by wearables and perceived
stress sometimes use sophisticated techniques such as machine learning.
However, the fact that data processing and analyses are mainly being done offline
hampers the practical usability in the field.

• Conclusions regarding their application in a healthcare context are limited, as this
context is understudied.

Considerations
• The methodology to process the EDA signal and relate it to perceived stress varies
greatly across studies, hampering comparability between studies.

• Multiple studies include other bio-signals besides EDA features in relation to stress
with the same statistical model. It was not always possible to draw conclusions about
the independent relationship between EDA (without other bio-signals) and stress.

• No solid conclusion can be drawn regarding usability and adoption in healthcare
populations, as studies in naturalistic healthcare contexts are scarce.

Introduction

Stress plays a significant role in our society and is described by theWorld Health Organization
as the ‘Health Epidemic of the 21st Century’ (Fink, 2017). Selye described stress as ‘the dis-
turbance of the body’s homeostasis triggered by an in- or external factor’ (Selye, 1956). Stress
is seen as a broad concept, including both a physical andmental load (Van Houdenhove, 2007;
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Dhabhar, 2018). A stressful event involves a stimulus (stressor),
which triggers a response in the brain (stress perception), which
activates physiological fight or flight systems in the body (stress
response). The stressor can be external or internal, physical (e.g.
physical exertion or a painful stimulus) or psychological (e.g.
work pressure). When stress is too intense or prolonged for a per-
son, it can also have negative consequences and lead to psycho-
logical and/or physical health conditions, such as (but not limited
to) cardiovascular problems (Steptoe & Kivimäki, 2012), anxiety
disorders (Van Houdenhove, 2007) and persistent physical
symptoms (Deary et al., 2007). This leads to major healthcare
concerns in all types of populations in which stress management
plays an important role, such as people with stress-related physi-
cal problems (Deary et al., 2007). Additionally, stress manage-
ment is of utmost important in people living with dementia or
intellectual disability (Melander et al., 2017), as stress-related
behavioural problems are frequently experienced.

Up to 90% of the people with dementia present challenging
behaviours at some point (Devshi et al., 2015), whereby ‘apathy,
depression, irritability, agitation and anxiety, [ : : : ] are the most
frequent symptoms’(Cerejeira et al., 2012). Stress is considered
to be an antecedent leading to challenging behaviour, such as agi-
tation (Ballard et al., 2001; Melander et al., 2018). Agitation is
defined as the attempt of expressing unmet needs and unexpressed
emotions as a response to in- or external stimuli (Kong, 2005) and
can negatively affect the health of both patients and caregivers
(Ornstein &Gaugler, 2012). Besides dementia, other psychopatho-
logical and/or intellectual disabilities are often associated with dif-
ficulty to understand stress-induced behaviour. Children with
autism spectrum disorders (ASDs) have shown to have a preva-
lence of 56 to 94% to present challenging behaviours (Matson
et al., 2007). Such challenging behaviours seem not to decrease
with time, which is why ‘an optimized intervention’ could help
to increase their quality of life (Rattaz et al., 2017). Early detection
of stress onset using wearable sensors may be an effective way to
(self-)manage stress in order to treat or prevent health issues
(Zangróniz et al., 2017). Additionally, it facilitates themanagement
of stress before it effects behaviour and may assist caregivers to
mitigate and cope with stress-related challenging behaviour
(Melander et al., 2017). However, it is still not commonly known
how accurate wearables are inmeasuring and predicting stress, and
how they can be utilised in caregiving.

Different bio-signals, which can be measured by wearables, are
essential for the detection of acute and/or chronic stress.
Physiological parameters that are influenced by the sympathetic
nervous system (SNS) are as follows: 1) heart activity, 2) electroder-
mal activity (EDA), 3) muscle activity, and 4) pupil diameter
(Wijsman et al., 2011). Sierra et al. (2011) claim that EDA and heart
rate (HR) are the two most important parameters enabling a high
potential detection of acute stress (Sierra et al., 2011). EDA, also
known as galvanic skin response (GSR) or Skin Conductance, is
the activity resulting from constant changes of the electrical proper-
ties of the skin. Sweating leads to a continuous change of the elec-
trical properties of the skin. These electrical changes can be
measured by placing two electrodes on the skin and give an insight
into a person’s emotional state, psychological or physiological
arousal, which indicate stress (Kurniawan et al., 2013).

Changes in EDA are considered to be one of the best indicators
for real-time stress (Healey & Picard, 2005). However, the mea-
surement of EDA still includes technological and acceptance

challenges. Electrodes are commonly placed on the fingers and
wrist, although it is still debated which technology and bodily loca-
tion is appropriate, with respect to (technical) validity (van Dooren
et al., 2012; Payne et al., 2013). Importantly, validity can be
assessed on different levels (i.e. on the ‘raw’, ‘parameter’ or ‘event’
level, see (van Lier et al., 2020). However, bodily location may also
influence the acceptance of the wearer (Peeters et al., 2021).

Different methods, protocols and systems which enable real-
time stress detection by measuring biological signals are currently
studied (Minguillon et al., 2018). Wearable sensors are of great
value due to their ability to measure non-invasively, easily and
wireless (Hanson et al., 2009) and have the potential to support
psychosocial approaches to manage challenging behaviours and
thereby reduce pharmacological treatment (Foebel et al., 2015;
Berg-Weger & Stewart, 2017). The application of wearables is
steadily increasing, and technology is constantly evolving. The
integration of devices such as wearables in the healthcare depart-
ment is crucial. Furthermore, these tools are offering great oppor-
tunities for patients and their caregivers in terms of monitoring
vital signs on a daily life basis and therapy provision (Rienzo
et al., 2005). However, today’s wearable devices still require
improvements regarding data collection, as well as increasing
usability in ambulatory settings (Posada-Quintero & Chon,
2020). As the majority of the studies are studying wearables in
the lab, there is a lack of use in real-life situations.

A review summarising scientifically studied wearable technol-
ogies measuring EDA to detect and predict stress is currently miss-
ing. In order to develop a reliable transparent real-time stress
detection system, it is important to collect fundamental knowledge
about the current application and accuracy of using EDAmeasure-
ments in daily life related to perceived stress. The goal of the cur-
rent scoping review is therefore to create an overview of existing
wearable devices used for measuring and monitoring EDA for
stress detection. Such an overview will help researchers and devel-
opers to optimise stress detection using EDA, aiming for early
stress recognition to support healthcare. To this end, the following
three research questions are formulated:

1. Which wearable devices are scientifically studied in relation
to perceived stress?

2. How are those wearables studied, regarding the research pop-
ulations, measured bio-signals, which stressors (induced or
observed) where studied, and in what kind of circumstances
(lab vs. field studies)?

3. What is reported about the relationship between the EDA
measurement of the wearable with perceived stress or
stress-related (e.g. challenging) behaviours?

Methods

As the goal of this study is broad and aims to identify what is themost
up-to-date knowledge regardingwearablesmeasuring EDA, a scoping
review was deemed as the most suitable method (Arksey & O’Malley,
2005; Levac et al., 2010; Munn et al., 2018; Tricco et al., 2018). To
assure that the most relevant studies were included, systematically
reviewed and summarised, we followed the checklist of the
Preferred Reporting Items for Systematic reviews and Meta-
Analyses extension for Scoping Reviews (PRISMA-ScR) (Tricco
et al., 2018).
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Search strategy

As the topic of this study strongly relates to healthcare as well as
technological innovation, the databases used for this scoping
review were PubMed, Medline, ACM digital and Web of Science
to assure the relevance of the search.

The search string was composed of the main keywords
‘Electrodermal Activity’, ‘Technological tools’, ‘Measurement’
and ’Stress’. The search strategy was not case-sensitive, and key-
words were paired together with the Boolean connector ‘AND’
and their synonyms with ‘OR’ (Table 1). An asterisk (‘*’) was used
for words starting with the same letters but having a different end-
ing. Separate words, belonging together, have been searched for by
inserting quotation marks (‘ : : : ’) (Table 1).

Inclusion and exclusion criteria

This scoping review included peer-reviewed full-text articles writ-
ten in English and studies that have been conducted on humans.
To be included, articles were required to describe the measurement
of EDA measured by a wearable (i.e. wireless) sensor, related to
perceived stress. In this study, we considered perceived stress as
an affective (i.e. emotional) state with a negative valence (Posner
et al., 2005; Du et al., 2018). Studies were included when perceived
stress was measured using a subject’s self-report or by observations
of stress-related behaviour. Only original research (including origi-
nal data collection) was included. Opinion papers were excluded
from this research, because their level of scientific evidence was
considered inadequate for the purpose of this study. Literature
reviews were not included because the study performed was not
a meta-analysis of other literature reviews. Finally, as the evolution
of wearable technology has increased remarkably since 2013 (CCS
Insight, 2016; Statista, 2017), all articles published before 2012 were
excluded (Table 2).

Study selection

The final search was conducted on November 26 2022. Duplicates
were removed using EndNote X9, and Covidence, a systematic
review software (https://www.covidence.org/), was used to per-
form the study selection. Articles were first screened by title and
abstract and by full text in the second phase by at least two inde-
pendent researchers. The first author (AK) screened all papers, and
the second assessment was divided between all other co-authors
(IM, GS, EW, and MP). In case of a conflict, a third reviewer
was involved. Calibration sessions were held with all authors in
order to iteratively refine the selection process and solve
ambiguities.

Data extraction

Relevant data were extracted by at least two independent research-
ers and compared. AK extracted all the articles, and the other co-
authors (IM, GS, EW, and MP) extracted one-fourth of the total
number of the included studies. Whenever a conflict was present,
the reviewers met to discuss until agreement was reached. The data
extraction table included author(s), publication year, study’s pur-
pose, the wearable used, measured bio-signals, whether the study
was done in the lab or in practice, type of stressor (induced or
observed), population included, number of subjects, EDA features
processed, whether the data were processed real time or post-proc-
essed, perceived stress assessment, and finally the main results
regarding the relationship between EDA and perceived stress or
stress-related behaviours.

Results

In total, 2299 records were identified, of which 941 were duplicates
(see Fig. 1 for an overview). After the screening of the title and
abstract, 993 articles were excluded. The remaining 365 articles
were assessed for eligibility by reading the full text, after which
291 were excluded. Reasons for exclusion in the full-text phase
were as follows: no wearable device was used and/or EDA was
not related to perceived stress (n= 227); EDA was not measured
(n= 11); not original research (n= 31); not written in English
(n= 2); and other reasons (n= 20; such as no full-text availability).
Finally, 74 articles fulfilled the required criteria to be included in
this scoping review. The full data extraction table of all 74 studies
can be found in the appendix 1.

Study population

Table 3 presents a summary ofmain study characteristics. Themajor-
ity of studies (67.6%) measured stress exclusively on healthy subjects.
12.2% gave insufficient or unclear information about their study pop-
ulation. 9.5% reported stress measurements within children, aged
from 0 to 17 years. Two of them included children diagnosed with
ASD (Baker et al., 2018; Goodwin et al., 2019) or other neurodevelop-
mental problems (Betancourt et al., 2017). Redd et al. (2020); Shao
et al. (2020) and Weyn et al. (2022) included elementary school stu-
dents in their research. One study included neonates on mechanical
ventilation (Walas et al., 2020). 5.4% of the studies, realised by
Melander et al. (2017), Lai Kwan et al. (2019), Deutsch et al.
(2021) and Iaboni et al. (2022) studied patients diagnosed with
dementia. 32.4% of the studies reported the inclusion of students,
one of them including 62 participants with 8 having a mental illness
(Schlier et al., 2019). 2.7% of the studies included patients with psy-
chiatric problems (de Looff et al., 2019; Goodwin et al., 2019) and

Table 1. Set of keywords and related synonyms

Keyword Synonym

Electrodermal
activity

Galvanic skin response, skin conductance, EDA, GSR

Technological
tools

Wearable*, sensor*, wireless, electronic devices,
psychophysiological devices, psycho-physiological
devices

Measurement Detect*, measure*, measuring, monitor*

Stress Stress, stress*, behavioral/behavioural psychological
symptoms in dementia, BPSD, distress, challenging
behavior/behaviour, arousal, agitation, aggression,
disinhibition, apathy, dementia, Alzheimer, psychiatry,
autism, intellectual disability, anxiety, aberrant motor
behavior/behaviour

Table 2. In- and exclusion criteria

Inclusion criteria
Exclusion crite-
ria

• Peer-reviewed English articles
• Studies based on humans
• Including the assessment of perceived stress or
stress-related (e.g. challenging) behaviours

• Original research articles
• Describing usage of wearables, measuring
electrodermal activity

• Articles published before December 2022

• Articles
published
before 2012

Acta Neuropsychiatrica 3

https://doi.org/10.1017/neu.2023.19 Published online by Cambridge University Press

https://www.covidence.org/
https://doi.org/10.1017/neu.2023.19
https://doi.org/10.1017/neu.2023.19


another 2.7% included subjects with a substance use disorder
(Carreiro et al., 2020; Alinia et al., 2021). 8.1% of the studies included
subjects under stressful circumstances, such as post-operative pain
(Aqajari et al., 2021), work-related stress (Phitayakorn et al., 2015;
Georgiou et al., 2019; Elsadek et al., 2020; Hosseini et al., 2022)
and fear of spiders (Ihmig et al., 2020). Cella et al. (2019) included
patients with psychotic episodes for their study, and Kuijpers et al.
(2012) worked with one female schizophrenic patient in her early 20s.

Sample sizes of included studies varied between 1 and 1002. The
majority of the studies (63.5%) included 30 or less participants.
10.8% of the studies included over 100 participants, 4.1% had
one subject (Kuijpers et al., 2012; Vila et al., 2019; Hewgill et al.,
2020) and 1.4% did not indicate a number of included subjects
(Seoane et al., 2014). When looking at the gender distribution,
24.3% of all included studies included more than 60% males,
18.9% included less than 40% males and 29.7% were more or less
gender balanced with 40–60% males. 27.0% of the studies did not
report the gender of the participants.

Overall, the age of participants of the included studies varied
between 0 and 93 years. 9.5% of all studies included children
(0–17 years). Most studies (60.8%) included participants between
18 and 40 years of age on average, with most of them (50% overall)
being mainly participants in their 20s. 5.4% of reported mean age
ranges including participants over 60 years, and 8.1% of all studies
in total included people above 60 in their age range.

Wearables, bio-signals and their reported outcomes

Wearables
Sixteen different wearable devices were identified throughout the
included studies, of which the most commonly used was the
Empatica wristband in 40.1% of the articles, followed by the
Shimmer3 sensor used in 6.8% of the studies (Xu et al., 2015;
Williams et al., 2020; Wulvik et al., 2020; Giorgi et al., 2021)
and Affectiva Q senor, which was used in 5.4% of the studies
(Volonte et al., 2016; Betancourt et al., 2017; Baker et al., 2018;
Sano et al., 2018). Altogether, 67.6% of studies used a wristband
sensor, 2.7% (Seoane et al., 2014; Lee et al., 2020b) used a glove
with integrated sensors, 24.3% articles described devices with elec-
trodes placed on the fingers, often with Velcro, for example, the
Shimmer3 sensor, Biopac systems and the E243 inVivo metric sys-
tems corp. Marko (2016), Hollis et al. (2018) and Bruun et al.
(2021) choose the Neurobit Optima 4 (finger electrodes),
EmVibe (finger electrodes) andMindplace Thoughstream (palmar
electrodes), respectively, all of which were devices that needed to be
carried (i.e. not attached to the body). 8.1% of the studies measured
EDA on the palmar side of the hand, 2.7% measured on the chest
(using the RespiBAN Professional; Jambhale et al., 2022) and torso
(custom build garment; Hewgill et al., 2020). Finally, Betancourt
et al. (2017) measured EDA on the ankle using the affective Q
sensor.

Fig. 1. Flow chart diagram based upon Tricco et al. (2018).
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About half of the field studies used the Empatica E4 wristband
(56.3%). The wristbands DTI2 (Melander et al., 2017) and
Empatica E4 (Deutsch et al., 2021; Iaboni et al., 2022) were used
in clinical settings with patients with dementia. Additionally, Lai
Kwan et al. (2019) attempted to detect ’significant moments’ in
patients with dementia in a clinical field setting. De Looff et al.
(2019) studied the aggressive behaviour of inpatient forensic psy-
chiatric patients, and Goodwin et al. (2019) also analysed aggres-
sion in psychiatric ASD inpatients. Walas et al. (2020) and Aqajari
et al. (2021) conducted an observational study to pain. In children,

bodily measurement locations used were the wrist (Betancourt
et al., 2017; Baker et al., 2018; Goodwin et al., 2019; Redd et al.,
2020; Weyn et al., 2022), fingers (Shao et al., 2020), palm
(Walas et al., 2020) and ankle (Betancourt et al., 2017).

Bio-signals and processing of EDA
Besides the detection of EDA, the majority of studies (82.4%)
simultaneously analysed other bio-signals such as HR, skin tem-
perature (ST), respiration rate (RR), accelerometry, cortisol level,
blood volume (BV), inter-beat interval (II) or other.

Table 3. Summary of study characteristics of the included studies (n= 74)

Population characteristics

% of included stud-
ies

(n= 74) Wearable and stress characteristics

% of included stud-
ies

(n= 74)

Sample size Context of stress evalulation

10 or less 20.3% Challenging Behaviour 13.5%

11–30 43.2% Healthcare 14.9%

31–100 24.3% General stress detection (e.g. driving, job or task stress) 71.6%

More than 100 10.8%

NA 1.4% Locations of EDA wearable*

Gender (male) of study population Wrist 67.6%

Less than 40% 18.9% Fingers 24.3%

40%–60% 29.8% Palmar side of the hand 8.1%

More than 60% 24.3% Other 5.4%

NA 27.0% Processing of EDA

Study population Real time 5.4%

Healthy subjects 67.6% Post-processing 94.6%

Children with ASD or neurodevelopmental
disorder

4.1% Field or lab study

Lab 56.7%

People with dementia 5.4% Field 39.2%

Other (sub)clinical populations 10.7% Combination 4.1%

Population not clearly defined 12.2% Stressor

Range of mean age Induced 64.9%

0–17 9.5% Observed 33.7%

18–40 60.8% Combination 1.4%

41–59 5.4% Type of stress assessment

60þ 5.4% Self-report 79.7%

NA 18.9% Observation of stress-related behaviour 12.2%

NA= Not available, EDA= Electrodermal Activity,
ML=Machine Learning.
*not multually exclusive (i.e. several bodily locations can be used within
one study)

Combination 8.1%

Reported relation between stress and EDA

Used EDA features to predict stress with ML 46.0%

Direct correlation EDA – stress with other statistics than
ML

27.0%

Shown an indirect EDA – stress correlation 13.5%

No correlation between EDA and stress found 8.1%

No statistical analysis done 5.4%
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When analysing EDA, most included studies processed both
the slow-changing component, the so-called skin conductance
level (SCL), and the fast-changing component, the so-called skin
conductance response (SCR). The SCL is related to a general
arousal level, whereas SCR is a peak in EDA representing phasic
activity, linked to for example novel or unexpected stimuli
(Boucsein, 2012). However, no gold standard exists for the decom-
position of the EDA signal. Included studies showed variation in
EDA components used for analysis in terms of features extracted
from SCR, SCL or EDA. Additionally, the method of decomposi-
tion of the EDA signal varies. Finally, algorithmic specifications or
software licences used to process EDA and extract features were
scarcely mentioned. Most studies (94.6%) processed the EDA sig-
nal offline, and 5.4% studies processed their data in real time (Vila
et al., 2019; Anusha et al., 2020; Dissanayake et al., 2022; Hosseini
et al., 2022).

Stressors studied
The majority of studies (71.6%) were conducted in the context of
general stress detection, such as job stress (e.g. Hosseini et al.,
2022), drivers stress (e.g. Oh et al., 2021) or the development of
a general stress detection algorithm (e.g. Jambhale et al., 2022).
Furthermore, 14.9% of the studies were conducted in the context
of healthcare, such as predicting pain intensity in post-operative
patients (e.g. Aqajari et al., 2021). Finally, 13.5% of all studies were
conducted in the context of challenging behaviour such as
detecting ‘combat behaviour’ in people with dementia (Deutsch
et al., 2021) or psychotic behaviour (Schlier et al., 2019). Studies
were categorised on whether the stressor was induced (i.e. manip-
ulated) or observed. 66.3% of the studies induced their stressor, for
example, a surgical simulation (Georgiou et al., 2019) or watching
film clips inducing emotions (Wang et al., 2020). 35.1% of the

studies examined EDA in the context of observed (i.e. non-manip-
ulated) stressors, such as agitated behaviours on a psychiatric ward
of a nursing home (Iaboni et al., 2022). 56.7% of included studies
were performed in a laboratory setting, 39.2% were field studies
and 4.1% combined the laboratory setting with a field study (de
Arriba Pérez et al., 2018; Kyriakou et al., 2019; Can et al., 2020).
When considering the year of publication, a rapid increase of field
studies is seen, especially over the last 5 years (see Fig. 2).

Relationship between EDA and perceived stress or stress-
related behaviours
In 8.1% of the studies, no relationship between EDA and perceived
stress was found. 5.4% of the studies described the relationship
between EDA and perceived stress qualitatively. The remaining
86.5% of the included studies showed a (positive) association
between EDA and perceived stress. Of those studies, 40.6%
reported the accuracy (i.e. percentage of correct classifications
regarding stress), which ranges between 42 and 100%, with an
average of 82.6%. All studies conducted in the context of challeng-
ing behaviour reported a relationship between features of EDA and
perceived stress, such as an increase in EDA features 20 min before
the onset of aggression in people with dementia (de Looff et al.,
2019) and EDA features combined with other bio-signals (such
as heart activity, movement and ST) were successful in prediction
agitation in people with dementia (Iaboni et al., 2022). In most
studies using machine learning (ML), EDA features were com-
bined with other features, making it not possible to draw conclu-
sions about the independent ability of EDA features to predict
perceived stress. 32.4% of studies using ML showed that stress
can be predicted by using EDA features alone. Reported accuracies
of classification models using other features next to EDA ranged
from 74.2 to 100% with an average of 87.7%, whereas reported

Fig. 2. Lab and field studies over time relating electrodermal activity measured with a wearable and perceived stress.
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accuracies of classification models using solely EDA features
ranged from 42 to 94% with an average of 71.2%. 13.5% of all stud-
ies only studied the relationship between EDA and perceived stress
indirectly, by showing that features of EDA and perceived stress
were increasing simultaneously, but not relating them directly.

Stress assessment, in the form of self-report of perceived stress
or the observation of stress-related behaviour (such as challenging
behaviour), differed across studies. Additionally, the way of syn-
chronising EDA features with perceived stress or stress-related
behaviours differed between studies. 12.2% of the studies
synchronised the perceived stress with the measured EDA signals
continuously, others measured perceived stress before, during,
after and/or in intervals during the performance of different tasks,
experiments or the observation. In every study, either a self-
reported stress questionnaire (e.g. State Trait Anxiety Inventory
(STAI)), a behavioural analysis or a survey was performed.
46.0% of all included studies used ML to predict stress using
EDA features next to other bio-signals, the majority (>50%) of
them were conducted after 2020 (see Fig. 3). All of the algorithms
used implemented EDA features in their classification model.
61.7% of all studies using ML were conducted in research popula-
tions aged 18–40 years, and 8.8% in 40–60 year old research pop-
ulations, 8.8% in 60þ years of age research populations, 2.9% in
children, and finally 17.6% of the studies using ML did not report
the age of their research population.

Melander et al. (2017) showed a correlation between SCL and
the prediction of agitation (73%), and also Iaboni et al. (2022)
showed that agitation could be predicted with a high accuracy
when ML was used, combining EDA features with other physio-
logical variables (measured by the Empatica E4). To assess

perceived stress, most studies used a measure of self-report
(87.8%), of which the STAI was frequently used (21.5%), as were
single items using Likert Scale (16.9%) and Self-Assessment
Manikin and Profile of Mood States (6.2%). Of all studies using
observations to assess stress, 42.8% studies analysed their findings
via video analysis, looking at stress-related behaviour such as agi-
tation (Lee & Chung, 2016; Betancourt et al., 2017; Kyriakou et al.,
2019; Lai Kwan et al., 2019; Lee et al., 2020a; Iaboni et al., 2022).

Georgiou et al. (2019) and Hosseini et al. (2022) stated that the
wristband could be accepted to provide accurate information about
stress. An increase of EDA could be observed during increased
anxiety (e.g. Georgiou et al., 2019; Tao et al., 2022), and ML algo-
rithms are capable of predicting stress in real-life settings (e.g.
Hosseini et al., 2022). Melander et al. (2017) suggested that the
Philips DTI-2 wristband sensor can correctly predict 73.5% of agi-
tation, before the caregivers’ behavioural observation. It was also
found that data collected by the sensor were good for the visual-
isation of the perceived signals, supporting the nursing staffs’
observations and helping for a better understanding of the results.
As for the studies conducted with children, Baker et al. (2018)
stated that low EDA is related to externalising behaviour problems.
Kuijpers et al. (2012) found an increased SCL before the onset of
aggressive behaviour in their study. In contrast, Betancourt et al.
(2017) faced many challenges to be addressed when measuring
EDA in the field. Also in the lab, data were lost due to sensor fail-
ure. For example Bruun et al. (2021) had to discard data from 16
out of 61 participants due to sensor failure using the Mindplace
ThoughtStream. Finally, it is shown that EDA features can be used
not only to predict momentary stress but also daily or even
monthly stress (Can et al., 2020).

Fig. 3. Machine Learning (ML) studies over time relating electrodermal activity measured with a wearable and perceived stress.
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Discussion

Stress management plays an important role in health and care of
people with stress-related physical (Deary et al., 2007) and/or
behavioural problems (Matson et al., 2007; Melander et al.,
2017). As insight into stress levels may facilitate stress manage-
ment, the aim of this scoping review was to collect and summarise
knowledge about currently existing wearable technologies measur-
ing EDA designed to detect perceived stress. Seventy-four articles,
published between 2012 and 2022, were identified in this study.
The majority of the studies were performed in a laboratory setting
with an induced, that is, manipulated, stressor, in a research pop-
ulation that was mostly young and healthy. In most studies, sample
sizes were small (<30). The technologies used were predominantly
wristbands, which, next to EDA, measured other physiological
parameters. Most studies processed EDA offline (i.e. post-process-
ing) and included slow changing (SCL) and rapid changing (SCR)
features. The exact (i.e. mathematical) way of extracting EDA fea-
tures varied across studies. Finally, the exact method of assessing
perceived stress (i.e. questionnaires and behavioural observation
schemes used) varied considerably across studies.

In included studies, the exact software used to process and
extract EDA features was barely mentioned, and only a minority
of studies were conducted outside of the lab, although field studies
are increasing over the years. Using wearables in daily life is rela-
tively new and influences the way of measuring and processing
data. In natural environments, data processing should account
for different types of measurement artefacts compared to clean
and standardised laboratory settings. Therefore, lab data and out-
comes cannot be translated directly to daily life situations. To
ensure ecological validity, it is of utmost importance to validate
the stress measurements of wearables in natural environments
(Smets et al., 2019).

Moreover, as the ultimate goal is to integrate wearable technol-
ogies in a healthcare context, it is important to include a diversity of
target populations in research. This means that people with neuro-
cognitive (e.g. dementia) and developmental disorders (e.g.
autism) as well as people with stress-related physical complaints
(e.g. medically unexplained physical symptoms; MUPS) should
be included in research populations. In this scoping review, only
20% of the studies included (sub)clinical populations and only
28% was conducted in the context of health or challenging behav-
iour. Around half of the studies included ML to predict stress.
However, only 8% included older persons and a similar number
of studies explored younger persons with disabilities. Critically,
older persons (Mannheim et al., 2019) and people with disabilities
(Shew, 2020) are too often excluded from research and design of
digital technology and are significantly underrepresented in data-
sets used to train ML algorithms (Park et al., 2021). A main con-
sequence is that such newly developed technologies may not fit
their needs (Mannheim et al., 2022), or even that ML algorithms
may be biased in their assessment of populations that are not
young and healthy (Mehrabi et al., 2019; Joyce et al., 2021).

An adequate detection of EDA would lead to a better stress
identification, offering a variety of possibilities for its implementa-
tion in the healthcare department. In the study of Dias & Cunha
(2018), wearable health devices were reviewed on their current
state and likely progression in the following years. They concluded
that these technologies can support healthcare but are currently
still limited in many ways: existing wearables are not available
everywhere, are too expensive and are not yet suitable for ambu-
latory usage. Nevertheless, the integration of these technologies has

the potential to lower healthcare costs. It could, amongst other,
facilitate a non-pharmaceutical approach in stress management,
support caregivers in monitoring patients, facilitate an optimised
therapy provision and overall improve the patient’s quality of life
(Cahill et al., 2007). Furthermore, caregivers are acknowledged to
‘play an important role in monitoring patient acceptance of the
device’ (Mahoney & Mahoney, 2010). If wearables are to fulfil this
potential, we need more research including the perspectives of
patients and their caregivers.

A limitation found in this scoping review is that the assessment
of perceived stress was performed in many different manners: the
exact proceeding method, such as a questionnaire and/or the
behavioural observation, the exact time point, when perceived
stress was actually measured, and synchronisation with the con-
tinuous EDA measurements highly varied between studies. In
addition, there is no gold standard for measuring stress, as various
perceived stress scales were used. This hampers the comparability
of the studies. As reported, stress was mostly assessed, before, after
or in intervals during the performed study, an exact (i.e. real time)
synchronisation and immediate comparison with the measured
EDA signals was rare. Furthermore, not all studies directly com-
pared perceived stress and EDA. Mostly, an offline analysis was
done, while stress detection in daily life should be (pseudo)real-
time to be relevant. The latter is influencing the possibilities of data
processing, that is, offline data processing will be different from
real-time data processing. This means that, in order to get an exact
insight into the perceived stress of an individual in relation to their
EDA levels during a so called ‘stressful’ task or situation, further
investigation is needed considering real-time processing of mea-
surements, also regarding the ML pipeline (Vos et al., 2022).

Interpreting skin conductance and thus detecting stress in real
time on a personal level would have a high impact on healthcare.
The development within the field of artificial intelligence (AI) can
contribute greatly to this fact (see Vos et al. (2022) for a review).
The use of ML has increased in the last years to detect stress using
bio-signals, including EDA features, appreciating interpersonal
variation. Studies like Anusha et al. (2020) and Iaboni et al.
(2022) show that ML algorithms are very valuable when providing
feedback regarding stress levels in a real-life setting, and stress
could be detected before the caregivers observe it. Importantly,
the ‘human in the loop’ remains crucial for annotating data
(Melander et al., 2018; Iaboni et al., 2022) and interpretation of
the measurement (Kikhia et al., 2016). During the development
of AI applications, it is crucial that common biases such as sam-
pling bias, aggregation bias or longitudinal data fallacy are miti-
gated (see Mehrabi et al. (2019) for an overview). Furthermore,
the acceptance by healthcare professionals is of great importance
for their use in practice. To ensure acceptance of AI-enabled sol-
utions, ‘explainable’ AI (XAI) is paramount. Whereas traditional
AI deals with the prediction or decision support by using ‘smart’
algorithms, XAI on top of that addresses the question ‘why is the AI
predicting a certain outcome?’ XAI includes the application of
unbiased, fair and transparent algorithms (Adadi & Berrada,
2018). Although future research is shifting towards this aim, this
scoping review identified no articles focusing on XAI in the context
of predicting perceived stress.

Another important factor in the acceptance and ultimate usage
of wearables is the placement on the body. Studies included in this
review used wearables mainly on the wrist, the hand or different
fingers. Several studies have been performed to determine on
which part of the body EDA can be detected in the best possible
and most effective manner. A study from 2013 compared
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measuring EDA on the foot and fingers (Payne et al., 2013) and van
Dooren et al. (2012) analysed 16 different bodily locations to mea-
sure EDA while provoking an emotional reaction. Both studies
concluded that the fingers showed the best results when it comes
to measuring EDA. However, finger sensors are used most often
under laboratory conditions and not in daily life settings, limiting
them in their application. Importantly, while jewellery-like rings
have been introduced in the recent years (e.g. the Moodmetric
smart ring (Vigofere Ltd, Finland), as described in Pakarinen
et al., 2019), no studies using rings were found during the search
of this scoping review, suggesting that despite their availability they
are scarcely studied in relation to perceived stress. In addition, the
level of evidence is only moderate for the fingers or the wrist to be
the best placement option, suggesting focusing eventually more on
other body parts such as the forehead, feet, shoulders, neck and
chest. These bodily locations have shown good EDA responsive-
ness, with shoulders being the best solution (van Dooren et al.,
2012). Subsequently, wearable technologies can be developed for
these bodily locations, making them more suitable for ambulatory
usage.

In addition to the placement on the body, also considering the
exact context and especially the target group that is measured is
important when selecting a sensor. For example, a wristband sen-
sor in the form of a simple black watch might be a good solution
when measuring in patients outside the lab. However, when work-
ing with people experiencing mental disorders such as dementia,
there are some obstacles: the look of the watch-like wristband
might confuse the patients and they would be able to either switch
or take it off on their own. Furthermore, in case of a wrong place-
ment of the device, signal processing might be disturbed and dis-
torted. In the current review, the Empatica E4 wristband is the
most often used tool in the included studies. Peeters et al.
(2021) have shown that the use of this exact wearable is limited
in real-life situations such as with people with dementia. This
applies not only to the suitability of the wearable but also for
the results regarding stress-related parameters, as well as the imple-
mentation of the wristband in daily life settings. Other technolo-
gies, such as ring sensors, could present similar issues in terms
of causing confusion and interfering with daily life actions, making
them not always suitable for use in practice. Less obtrusive tools,
such as socks or patches, should therefore be further developed and
analysed in future studies. However, the purpose of most of the
studies included in this review was not to analyse the usability
of the device, which made it difficult to assess their usability in
real-life settings.

Conclusion

Using wearables to measure features of EDA to predict perceived
stress is promising as an assistive technique to support stress man-
agement. Nevertheless, research with people with health or care
conditions and real-life settings is still limited. Additionally, stud-
ies conducting real-time stress prediction are scarce. Advances in
ML are offering opportunities to account for interpersonal
differences and apply real-time stress detection algorithms, using
EDA features measured by wearables, under daily life conditions.
However, to avoid biased applications, future research should
include daily life situations, samples from diverse populations,
as well as usability testing.

Supplementary material. To view supplementary material for this article,
please visit https://doi.org/10.1017/neu.2023.19
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