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THE STRICTLY EFFICIENT SUBGRADIENT OF SET-VALUED
OPTIMISATION

TAIYONG LI AND YIHONG XU

The subgradient, under strict efficiency, of a set-valued mapping is developed, and the
existence of the subgradient is proved. Optimality conditions in terms of Lagrange
multipliers for a strictly efficient point are established in the general case and in the
case with ic-cone-convexlike data.

1. INTRODUCTION

In recent years, set-valued optimisation problems have received particular attentions
from mathematics. For instance, Gong [4] has studied the connectedness of efficient
solution sets, Tanino [5] has studied sensitivity analysis, Cheng and Fu [1] have studied
density, Corley [3] established optimality conditions in terms of Lagrange, Kuhn.and
Tucker with convex data. Lin [6], Taa [7] have generalised the Moreau-Rockafeller type
theorem to set-valued maps and established some optimality conditions. In this paper,
we first establish the definition of the strict subdifferential of a set-valued mapping,
we prove the existence of strictly efficient subgradient and establish a characterisation
of this subdifferential by scalarisation. Finally, the optimality conditions of set-valued
optimisation are presented with a strictly efficient subgradient.

2. PRELIMINARIES AND DEFINITIONS

Throughout this paper, let X, Yand Z be real topological vector spaces, each with
zero element 0; X*, Y* and Z* be the dual spaces of X, Y and Z, respectively and let
D c Y and E C Z are pointed convex cones, F : X -¥ 2Y and G : X -» 2Z are set-valued
functions. The domain, the graph and epigraph of F are denoted by dom F, grF, epi(F),
respectively, in other words,

domF:= {x 6 X : F{x) # 0},
grF:={(x,y)eXxY:yeF(x)},

epi(F) := {(x, y) <E X x Y : y € F(x) + D}.
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The polar cone D* of D is

D'= {f € Y* : f{d) > 0, VdeD}.

The set of strictly positive function in D* is denoted by £>", that is

Dl = {f£D': f(y) > 0, Vj, € D\{0}}.

For a set A c Y, we write

cone.4 = {Xa : A ^ 0, o £ A}.

The closure and interior of set D are denoted by cl D and int D, respectively. A convex
subset B of a cone D is a base of D if 0£ cl B and D — cone B. It is easy to show that
int D* ^ 0 if and only if D has a bounded base. Write

Bst = {if e Y* : 3t > 0 such that (p(b) > t, V6 e S } .

Let B be a base of D, then 0 0 cl B. By the separation theorem of convex sets,
there is 0 ^ ip € Y*, such that

t = inf {<?(&): 6 € B} > 0.

Let

Then VB is an open convex circled neighbourhood of zero in Y. The notation VB will be
used through this paper. If V is a nonempty subset of X, then

F(V) = |J F(x).

DEFINITION 2.1: ([1, 2]) Let M be a nonempty subset of K, and B be a base of D.

y e M is called a strictly efficient point of M with respect to B\ y £ FE(M, B)\ if there
is a neighbourhood U of 0 such that

(2.1) cl[cone(M-p)]n(C/-J5) = 0.

REMARK 2.1. ([2]) With respect to the definition of strictly efficient points, the equality

(2.1) is equivalent to

(2.2) cone(M - y) D {U - B) = 0.

Moreover, if necessary, the neighbourhood U of zero can be chose to be open, convex or

balanced.

https://doi.org/10.1017/S0004972700039290 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700039290


[3] Set-valued optimisation 363

Let Xo be a nonempty subset of X. Now we consider the following set-valued map
optimisation problem:

(VP)rnin F(x)
X€A0

such that G(x) n (-E) ^ 0,

F : Xo —> 2Y, G : Xo -» 2Z are set-valued maps. The set of feasible solution of (VP) is
denoted by C, that is

C = {x € xo : G{x) n (~E) / 0}.

DEFINITION 2.2: Let Q C X be a convex set. The set-valued map F is said to be
£>-convex on Q if for any xx, i 2 € <?, A € [0,1],

AF(xi) + (1 - A)F(ij) C F(Axj + (1 - A)*2) + £>.

DEFINITION 2.3: A set-valued map F from X into y is said to be D-nearly sub-
convexlike on Q C X if

is convex. It is proved in [7] that if F is Z?-convex on Q then F is D-nearly subconvexlike
on Q if D has nonempty interior.

DEFINITION 2.4: The set-valued map F : X -» 2y is called ic — £>-convexlike if
intcone(F(X) + £>) is convex and

F{X) + D C cl int cone(F(X) + 2?).

It is obvious that if F is D-nearly subconvexlike, then F is ic — Z?-convexlike on C if D
has a nonempty interior [8].

3. SUBDIFFERENTIALS OF SET-VALUED MAPPING

DEFINITION 3.1: Let F be a set-valued map from C C X into Y, x € C and
y e F(x). A linear operator T € L(-V, y) is said to be a weak subgradient for y of F at
x if

y - Tx € W min | J (F(x) - T(x)).
iec

The set of all weak subgradients for y of F at x is called the weak subdifferential for y of
F at x is denoted by dwF(x,y).

DEFINITION 3.2: Let F be a set-valued map from C C X into y, x € C and
y € F(x). A linear operator T € L(̂ V, y) is said to be a strict subgradient for y of F at
i if

y -Tx e FE(\J(F(X) -T(x)),B).
xec
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The set of all strict subgradients for y of F at x is called the strict subdifferential for y
of F at x and is denoted by dpEF(x,y).

DEFINITION 3.3: ([7]) The set-valued map F from C C X into Y is said to be
connected at x0 G C, if there exists a continuous function from C into Y such that
f(x) G F(x) for all x in some neighbourhood of x0.

LEMMA 3 . 1 . ([7]) Let Fx and F2 be two set-valued maps from the set

Xo := {x G X : Fx{x) # 0 and F2(x) ^ 0}

into y , and F\ and F2 be D-convex on Xo- If F\ is connected at some x0 G intX0, then

int(epi(Fi))nepi(F2)^0.

THEOREM 3 . 1 . Let F be a D-convex set-valued map from C into Y. Then
dFEF{x,y) ^ 0, ify € F{x),y e FE(F(x),B), F is connected at x G intC.

PROOF: Since y € FE(F(x),B), there exists some open convex circled neighbour-
hood U of zero in y such that

(3.1) cl cone(F(x) - y)) n (f/ - B) = 0.

We define
i4= { ( x , y ) € C x y :yeF(x ) - | - cone (B-C/ )} .

Since F is D-convex, then it is (cone(B - C/))-convex, since £> C cone(B — U). It
is easy to show A is convex set. Using Lemma 3.1 we know that intA ^ 0, since
epi F C A, int epi F ^ 0. We wish to show that (x, y) $• int A Suppose that (x, y) G int A,
then there exists U € iV(Oy) such that (x, y + C/) C A Since cone(B - C/) is a cone, then
there exists -d G cone(5 - U) \ {0} such that d G C7. Then

y + d G F(x) + cone(B - U).

Then there exist j/i G F(x),di G cone(B - U), such that,

y1-y = d-dl€- cone(B - t/) \ {0} C cone(C7 - B)\ {0}.

This contradicts (3.1), and shows that (x,y) g intA. Hence there exists nonzero (/,g)
eX' xY', such that

(3.2) f{x) + g(y) > f(x) + g(y), Vx G C, y G F(x) + cone(B - U).

We now show that g / 0. Suppose that g = 0; then f(x — x) ^ 0 for any x E C. Since
x G int C, this leads to a contradiction. Hence g ̂  0. On the other hand, in (3.2) taking
x = x, y = y + d, Vd G cone(B - [/), we get

g(d) ^ 0 , Vd G cone(5 - U).
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Since g ̂  0, there exists u £ U, such that g(u) = t > 0, then

g(b) > g(u) =t, V6 € B.

That is

Taking b £ B, setting y0 = 6/(3(6)), we get g{yo) = 1- Define a linear operator

(3.3) T-.X^Y, T{x) = -f(x)y0.

Set U = [y £ Y : g(y) < t /2}, then U is a neighbourhood of zero, and

(3.4) g{u - b) < l- - t < 0, Vu € U, b £ B.

Now we prove T is a strict subgradient for y of F at i , that is

cone(U (F{x) - T{x)) - (y-T(x)))n(U - B) = 0.
xec

If not, there exist r > 0,xi £ C,y\ £ F(xi), such that

(3-5) r(y1-T(x1)-(y-T(x)))£U-B.

Using (3.4) and (3.5), we get

(3.6) rg(yx - T(Xl) - (y - T(x))) < 0.

On the other hand, using (3.3) and (3.2) we have

vg[yx - T(xx) -{y- T(x))) = r[g(yi) + f(Xl) - (f(x) + g(y))) > 0.

This is a contradiction. Thus, T € dFEF(x,y). D

THEOREM 3 . 2 . Let F be a D-convex set-valued function from X into Y and
y £ F(x). Then T £ dFEF(x,y) if and only if there exists f £ Bat such that

(3.7) f(y-y-T(x-x))2 0, Vi 6 X, y £ F(x).

PROOF: Since / e B3t, there exists t > 0 such that /(6) > t, for any be B. Set

V = {y £ Y : f(y) < t).

Then V is a neighbourhood of zero. Since / is continuous at zero, there exists an open
convex circled neighbourhood U of zero such that U C V D Vg, we have

(3.8) U - B C {y £ Y : f(y) < 0}.
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Then T € dFEF(x,y). Indeed, if there exists

y € cone( I J (F(x) - T(x)) - (y - T(x) ) ) n (1/ - B),

then, there exist r > 0, x t € X, ?/i € F(xi ) , such that

r(yi ~ T(Xl) - (y- Tfa))) eU-B.

By (3.8),

But by (3.7),

This is a contradiction. Thus, T € dFEF(x,y).
Now let T e dpEF(x,y). By the definition, there exists an open convex circled

neighbourhood U of zero with U C VB such that

(3.9) cone (\J (F(x) - T(x)) - (y - T(x))) n(U-B)=<d.
iex

It is clear that

(3.10) cone( | J (F(x) - T{x)) + D - (y - T(x))) n (£/ - B) = 0.
iex

If not, there exists A > 0, xx € X, j/i € F(i!), d e I? \ {0}, u € U, b € B, such that

- T(x:) + d - {y - r(xO)) =u-b

Since B is a base of D, there exist Ai > 0, &i € B, such that d = \\bi. Then

A ( y i - T(xx) - (y - T(xx))) = u - (b + A A ^ )

That is

6 cone( | J (F(x) - T(x)) - (y - T(x))) n(U - B).

This is a contradiction. Thus (3.10) holds. Since F is D-convex and T is a linear operator,
then F — T is a .D-convex map. It is clear that

cone(\J(F(x)-T(x))+D-(y-T(x]
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is a convex set. Applying the separation theorem of convex sets, we can get an / € V*\{0}
such that

\f(y-T(x)+d-(y-T(x))) > /(«)-/(&), VA^0,i6X,y€ F(x),d e D,u eU,beB.

From this, we have

(3.11) f(v-T(x)-(y-T(x)))2 0, Vx € X,y e F{x),

and
f(b)> /(«), VueU,b€B.

Since f ^ 0, U is a, neighbourhood of zero, then there exists Ui € ?7 such that

/(ui) = t > 0.

That is
f(b) >t, V6 € B.

Thus, / € 55 ' . Combining with (3.11), this proof is completed. D

THEOREM 3 . 3 . Let Fi and F2 be set-valued functions from the set

into 2Y, V be convex, and Fx and F2 be D-convex on V. If Fi is connected at some

x0 6 int V, then for x 6 V and yi £ Fi(x), 7/2 € F 2 ( i ) , we have

F2)(x, Vl + y2) C dFEFi{x, Vl) + dFEF2(x,y2)

PROOF: LetT e dFE(Fx+F2)(x,yx+y2) and define Hx(x) = Fx{x)-y\-T{x-x) and
H2{x) = F2(x)-y2. Since Fu F2 : V -»• 2Y are D-convex, it follows that Hx and H2 are D-
convex set- valued functions and 6 € Hi(x)(lH2(x). Because T e dFE(Fi+F2)(x,
it follows that

m + 2/2 - 7\x-) € FE^\J{F1{x) + F2(x) - Tx),B).
xev

This implies that 0 € FE( \J (H^X) + H2{X)),B). We define
Vi€V '

A = {(x,y) eVxY-.ye H^x) + cone(B - U)},

Q = {(x, -y) e V x Y : y € H2(x) + cone{B - U)}.

Since Hi and H2 are D-convex, then H\ and /f2 are cone(B — f/)-convex, it follows that
A and Q are convex subsets of V x Y. Because Fi is connected at x0 G int V, by Lemma
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3.1, it is clear that int A / 0. We wish to show that int .A n Q = 0. Suppose that
(x, y) G int A n Q; then there exists

x G V,y[ G Hi(x),di G intcone(B - U),y2 G H2(x),d2 G cone(B - £/),

such that
y = y[ + d1, -y = y'2 + d2.

Thus yi + y2 = -(di + d2) € intcone(£/ - B). That is

(Hx{x) + H2{x)) n intcone(C/ - 5) # 0.

It is clear that

cone(#i(x) + i/2(x)) n (U - B) £ 0.

This contradicts 0 G FE'f |J (i?i(x) + i/2(a;)),-S). Thus int.4 n Q = 0. Hence there

exists nonzero (/, g) G X* x V* and a G R such that

(3.12) / ( x ) + 5 ( 2 / ) ^ a ^ / ( x 1 ) + 5 ( y 1 ) , V(x,y)G>l, (x\yl)eQ.

Because (x, 0) G A f~l Q, it follows that a = / (x) . Further, we may prove that g G Bst,
this way is similar to the proof of Theorem 3.1. Let di G D \ {0} satisfying g(d\) = 1,
we define 7\ : X -+ Y by 7\(x) = / (x)di . Since

(*, 2/i -Vi- T(x - x)) G A, (x, j/2 - y2) € Q, Vx G V, yi G Fi( i ) , % € F2(x).

From (3.12) we get

/(*) + 9(y[ " 2/i - T(x - z)) > f{x) > f{x) + giy2 - y2).

Since / (x ) = <7(Ti(x)), we have

5(»i - J/i " r(z - x)) ^ gfcp - x)) > giy2 - y2).

That is

9(vi " 2/i " (T - 7\)(x - S)) ^ 0, Vx G V, y\ G ^ ( x ) ,

and

S(y2 - 2/2 - Ti(x - x)) 2 0, Vx G V, y2 G F2(x).

By Theorem 3.2, we have

T - 7\ G dFEFiix, Vl), Tx € dFEF2ix,y2).

Thus we complete the proof the theorem. D
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4. O P T I M A L I T Y CONDITIONS

In this section, we establish optimality conditions in terms of Lagrange and Fritz
John, and under some conditions, we obtain the Lagrange-Kuhn-Tucker multipliers of
the problem {VP).

DEFINITION 4 . 1 : x0 e C is called a strictly efficient solution of {VP), if

F{xo)nFE{F{C),B)jt<l);

(zo,2/o) is called a strictly efficient element of {VP), if Xo € C and y0 6 F{x0) D
FE{F{C),B).

For each 0 £ [0,1), let us consider a set-valued map Hp : X —¥ Y x Z whose domain
is the set X,

Hp{x) = (F{x) - yo) x (G(x) - 0zo), x e X.

Let K = D x E. From now on, we make the following assumption.

ASSUMPTION (A). There exists 0 e [0,1) such that Hp is ic-if-convexlike.

Observe that in Assumption (A) no topological property is imposed on D and E, so
the assumption can be used in studying proper efficiency in (VP) without requiring that

DEFINITION 4.2: We say that condition {CQ) holds if

clcone(imG + £) = Z.

Observe that, for any 0 ^ 0,

im(G - fizo) + E C imG + 0E + E C imG + E.

Thus, {CQ) holds if

clcone[im(G - 0ZQ) + E] = Z, for some @ ^ 0.

REMARK 4.1. It is easy to see, if the generalised Slater condition imG n (— inti?) ^ 0
is satisfied, then condition {CQ) holds.

THEOREM 4 . 1 . If F : X —¥ 2Y is a set-valued map, then {xo,yo) is a strictly

efficient element of {VP) if and only if0L € dpEF{2a,yo)-

PROOF: Obvious from the definition of the strict subgradient. 0

LEMMA 4 . 1 . ([9]) Suppose D has a base, xo € C, let Assumption {A) be satisfied,
condition {CQ) hold. Then (x0, yo) is a strictly efficient element of problem {VP) if and

only if there exist s' € B3t, k' e E' such that

(4.1) s'{y) + k'{z)^s'{yQ), V{y,z) 6 im(F x G).

(4.2) * '<*S)=0 , Vzo1
 € G{x0) D (-E).
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THEOREM 4 . 2 . Suppose D has a base, x0 6 C. Let Assumption (A) be satisfied,
and condition (CQ) hold. Then (x0, yo) is a strictly efficient element of problem (VP) if
and only if there exist a* € B3t, k* € E* such that

*'(*o) = 0, Vz\ e G(x0) D ( -£ ) .

and
O€dw(s-(F)+k'(G))(xo,s'(yo));

that is (xo, s*(yo)) is a weak efficient point of the following problem with respect to R+

mins*(F(x)) + k'(G(x)),

where R+ = [0, +oo).

PROOF: Necessity. From Lemma 4.1, we get

r (z*) = o, VzJ e G{x0) n (-E).

Hence

a'ivo) = 8'{yo) + k'(4) € U [a*(F{x))+k'(G(x)j\.
ec

It follows from (4.1) that (xo,s*(yo) + k'izl)) is a minimal element of the following
problem with respect to R+

mins'(F(x))+k'(G{x)),

which is equivalent to

thus the proof of necessity of the theorem is completed.

SUFFICIENCY. Since

and

hence (4.2) holds and (x0, s"(y0) + A;*(^)) is a minimal element of the following problem
with respect to R+

mins'(F{x)) + k'(

which implies

s'(y) + k*(z) > s'{yo) + *'(*$) = **(»,), V(»,«) € vm(F x G).

From Lemma 4.1 it follows that (xo,J/o) is a strictly efficient element of problem (VP).
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LEMMA 4 . 2 . ([9]) Suppose D has a base, x0 6 C. Let Assumption (A) be satisfied,
and condition (CQ) hold. Then {xo,yo) is a strictly efficient element of problem (VP) if

and only if there exists T € L+(Z, Y) such that T(G{x0) D ( - £ ) ) = {Oy} and (x0, y0) is

a strictly efficient element of the following unconstrained optimisation problem.

(UVP) min ip(x) = F{x) + T(G(x)).

THEOREM 4 . 3 . Suppose D has a base, Assumption (A) is satisfied and condition
{CQ) holds. Then (x0, y0) is a strictly efficient element of(VP) if and only if there exists
T € L+{Z, Y) such that T(G(x0) n ( -£)) = {Oy} and

that is (xo, yo) is a strictly efficient point of the following problem

i

PROOF: By Theorem 4.1 and Lemma 4.2, we can easily complete the proof of the
theorem. D
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