
J. Fluid Mech. (2015), vol. 771, pp. 595–623. c© Cambridge University Press 2015
This is an Open Access article, distributed under the terms of the Creative Commons Attribution
licence (http://creativecommons.org/licenses/by/3.0/), which permits unrestricted re-use, distribution, and
reproduction in any medium, provided the original work is properly cited.
doi:10.1017/jfm.2015.202

595

An analytical solution to electromagnetically
coupled duct flow in MHD

Michael J. Bluck1,† and Michael J. Wolfendale1

1Department of Mechanical Engineering, Imperial College, London SW7 2AZ, UK

(Received 1 September 2014; revised 23 March 2015; accepted 27 March 2015;
first published online 23 April 2015)

The flow of an electrically conducting fluid in an array of square ducts, separated by
arbitrary thickness conducting walls, subject to an applied magnetic field is studied.
The analytical solution presented here is valid for thick walls and is based on the
homogeneous solution obtained by Shercliff (Math. Proc. Camb. Phil. Soc., vol. 49
(01), 1953, pp. 136–144). Arrangements of ducts arise in a number of applications,
most notably in fusion blankets, where liquid metal is used both as coolant and
for tritium generation purposes. Analytical solutions, such as those presented here,
provide insight into the physics and important benchmarking and validation data
for computational magnetohydrodynamics (MHD), as well as providing approximate
flow parameters for 1D systems codes. It is well known that arrays of such ducts
with conducting walls exhibit varying degrees of coupling, significantly affecting the
flow. An important practical example is the so-called Madarame problem (Madarame
et al., Fusion Technol., vol. 8, 1985, pp. 264–269). In this work analytical results
are derived for the relevant hydrodynamic and magnetic parameters for a single duct
with thick walls analogous to the Hunt II case. These results are then extended to an
array of such ducts stacked in the direction of the applied magnetic field. It is seen
that there is a significant coupling affect, resulting in modifications to pressure drop
and velocity profile. In certain circumstances, counter-current flow can occur as a
result of the MHD effects, even to the point where the mean flow is reversed. Such
phenomena are likely to have significant detrimental effects on both heat and mass
transfer in fusion applications. The dependence of this coupling on parameters such
as conductivities, wall thickness and Hartmann number is studied.

Key words: magnetohydrodynamics, materials processing flows, mathematical foundations,
MHD and electrohydrodynamics

1. Introduction
The flow of electrically conducting fluids is of interest in many applications.

Examples range across length scales, from microfluidics to the flow of liquid metals in
casting. Notably, liquid metals are a strong candidate for coolant applications in fusion
technology (Hong-yan, Yi-can & Xiao-xong 2002; Smolentsev, Moreau & Abdou
2008). In many of these cases, the flow is subject to strong applied magnetic fields
and the coupling between the flow field and the magnetic field can have significant
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affects on the flow itself, with concomitant affects on flow profiles, pressure drop and
heat transfer (Davidson 2001; Müller & Bühler 2001). The ability to predict such
effects is essential to the development of devices which make use of these phenomena.
For both heat and mass transfer applications, conducting fluids may be driven through
arrangements of ducts and it is important to fully understand the properties of
such flows, as they differ markedly from their non-magnetohydrodynamic (MHD)
counterparts. However, MHD presents challenges in all of these areas, over and
above that of conventional fluid dynamics: experimental studies (e.g. Xu et al. 2009;
Smolentsev et al. 2010) are difficult due to the opaque nature of most conducting
fluids and molten metals, and the environment is extremely harsh, which presents
issues in regard to instrumentation. Computational MHD (CMHD) (Smolentsev,
Morley & Abdou 2005) must include additional equations for the electromagnetic
field; the fields outside of the fluid region (fringing fields) have significant affects
and must be modelled appropriately; strong magnetic fields can cause turbulence
suppression, a breakdown in assumptions of isotropy, the generation of wall and free
shear layers and the boundary layer behaviour can be particularly difficult to resolve
at Hartmann walls. Due to the challenges inherent in CMHD and the relative paucity
of experimental results, there is considerable need for analytical solutions, not least
for the purposes of validation (Tao & Ni 2013b).

For fully developed flow in a single rectangular duct, a number of analytical
solutions exist, developed by Shercliff (1953) and Hunt (1965). These assume
axial, laminar flow and neglect the effects of finite length, thermal convection and
instabilities of the side-wall jets. A number of variations on these treatments have
followed (Hunt & Stewartson 1965; Hunt & Leibovich 1967; Temperley & Todd
1971; Müller & Bühler 2001). In all of these cases it is assumed that the wall is
thin in comparison with the duct width. Recent work in this area has extended these
ideas to thick-walled ducts (Tao & Ni 2013a,b).

A related problem arises in fusion blanket design where the coolant pathway
consists of arrays of parallel ducts (e.g. Madarame, Taghavi & Tillack 1985).
Conducting walls can lead to electromagnetic coupling between ducts, influencing the
hydrodynamic behaviour. Variations on this problem have been analysed numerically
(McCarthy & Abdou 1991; Gaizer & Abdou 1996; Zhang, Pan & Xu 2014) and
by singular perturbation theory (Molokov 1993). McCarthy and Abdou developed
an iterative numerical method for ducts with conducting walls (side and Hartmann)
stacked parallel to the applied magnetic field, as is the case here. Molokov developed
an asymptotic solution valid for large Ha for the case with ducts stacked perpendicular
to the applied magnetic field. The most recent work by Zhang et al. employed
a numerical solution to study both arrangements for two ducts and the parallel
arrangement for three ducts. To the best of the authors’ knowledge, analytical solutions
valid for arbitrary Ha, as proposed here, do not exist for these problems.

This work presents an analytical solution to a generalized Hunt-type problem
with ducts stacked parallel to the applied magnetic field, where the ducts have
non-conducting side walls and arbitrary thickness conducting Hartmann walls. Such
analytical solutions aid in our understanding of these flows and provide important
benchmarking and validation data for computational MHD, as well as providing
approximate flow parameters for 1D systems codes. In § 2 the quasi-static, laminar,
fully developed flow equations are derived for the case of a thick-walled duct. An
analytical result is obtained for the relevant hydrodynamic and magnetic parameters
for the single duct with thick walls using a separation of variables method in § 3, and
the limitations of the thin-wall approximation (developed by Hunt) are demonstrated.
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Electromagnetically coupled ducts in MHD 597

These results are then extended to an array of ducts stacked in the direction of the
applied magnetic field in § 4. An investigation of these solutions for two, three and
five parallel ducts in both co- and counter-flow configurations is given in § 5. The
coupling between ducts and its impact on the hydrodynamics is studied in detail, in
both co- and counter-flow configurations. It is seen that the conducting walls have
a strong influence on the Lorentz forces near the wall, giving rise to significant
enhancement of wall shear stresses in the co-flow case and strong suppression in the
counter-flow case. In certain circumstances, flow reversal of the core flow (relative to
the pressure gradient) can be obtained, resulting in counter-current flow.

2. Formulation
We begin by considering the flow of an incompressible electrically conducting fluid

of kinematic viscosity ν, density ρ, electrical conductivity σf and permeability µf . The
fluid velocity u satisfies the following momentum equation:

∂u
∂t
+ u · ∇u=− 1

ρ
∇p+ ν

ρ
∇2u+ 1

ρ
j × B (2.1)

together with
∇ · u= 0 (2.2)

where p is the pressure, j is the current density and B is the magnetic induction
(although the term magnetic field is used where no confusion with H can arise). The
magnetic (and electric) fields (H and E respectively) are governed by the Maxwell
equations (Davidson 2001). Ignoring the displacement current, Maxwell’s equations
together with Ohm’s law state that

∇× H = j = σf (E+ u× B) (2.3)

where
B=µf H. (2.4)

Taking the curl of (2.3) and using the constitutive law (2.4), together with the fact
that ∇ · B= 0 gives

− 1
µfσf
∇2 B=∇× E+∇× (u× B). (2.5)

Since
∇× (u× B)= u(∇ · B)− B(∇ · u)+ (B · ∇)u− (u · ∇)B (2.6)

and
∇ · B=∇ · u= 0 (2.7)

it follows that
∇× (u× B)= (B · ∇)u− (u · ∇)B. (2.8)

The other Maxwell equation is given by

∇× E=−∂B
∂t
. (2.9)

Substituting (2.9) and (2.8) into (2.5) gives the well-known induction equation
(Davidson 2001) for B,

∂B
∂t
= 1
µfσf
∇2 B+ (B · ∇)u− (u · ∇)B. (2.10)
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598 M. J. Bluck and M. J. Wolfendale

Decomposing the magnetic field into a spatially uniform, time independent applied
component B0, and an induced component Bi such that B= B0 + Bi, then

∂B
∂t
= ∂Bi

∂t
, ∇2 B=∇2 Bi. (2.11)

If it is now assumed that the magnetic Reynolds number Rem = µfσf LU is small,
where L and U are the characteristic length and velocity, then the induced field is
small compared with the applied field, that is B0 + Bi ≈ B0, so one can write the
second term on the right-hand side of (2.10) as

(B · ∇)u− (u · ∇)B= (B0
· ∇)u− (u · ∇)Bi. (2.12)

The following expression for the induction equation is then obtained:

∂Bi

∂t
+ (u · ∇)Bi = 1

µfσf
∇2 Bi + (B0

· ∇)u. (2.13)

If, in addition, it is assumed that a laminar, quasi-steady state case holds (i.e. an
infinite interaction parameter), then the time derivatives and advection terms on the
left-hand side of both the momentum equation (2.1) and induction equation (2.13)
vanish. Further limiting our study to fully developed, axially directed, two-dimensional
flows in square ducts, as shown in figure 1, we define u= (0, 0, v), Bi= (0, 0,Bz) and
B0= (B0

x, 0, 0). The momentum equation in this square duct of side 2a with Hartmann
wall thickness w, insulated side walls, subject to an applied X-directed magnetic field
B0

x and driven by a pressure gradient ∂p/∂Z is then given by

ν

(
∂2v

∂X2
+ ∂

2v

∂Y2

)
− 1
ρ

∂p
∂Z
+ 1
ρ

1
µf

∂Bz

∂X
B0

x = 0. (2.14)

Note that the last term on the left-hand side of this equation is the Lorentz force.
The flow of conducting fluid generates an induced magnetic field Bz, satisfying the
following form of the induction equation, obtained from (2.13):

1
µfσf

(
∂2Bz

∂X2
+ ∂

2Bz

∂Y2

)
+ B0

x
∂v

∂X
= 0. (2.15)

The magnetic field Bw, in each wall satisfies

∂2Bw

∂X2
w

+ ∂
2Bw

∂Y2
w

= 0 (2.16)

where (Xw,Yw) denotes the coordinate system in each wall, as shown in figure 1. Non-
dimensionalizing, by setting

x= X
a
, y= Y

a
, z= Z

a
, δ = w

a
, xw = Xw

a
, yw = Yw

a
, (2.17a−f )

U = ρν

(∂p/∂Z) a2
v (2.18)

Ha= B0
xa
√
σf

ρν
(2.19)
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2a

2a

Y

X

FIGURE 1. Single thick-walled duct geometry.

and

B= 1
µf

1
(∂p/∂Z) a2

√
ρν

σf
Bz (2.20)

it follows that (
∂2U
∂x2
+ ∂

2U
∂y2

)
− 1+Ha

∂B
∂x
= 0 (2.21)

with no-slip boundary conditions at the fluid–wall interface:

U = 0. (2.22)

Note that the final term on the left-hand side of (2.21) is a non-dimensional Lorentz
force. This quantity will have an important role in the explanation of the mechanisms
involved in this problem. The fluid magnetic field B satisfies(

∂2B
∂x2
+ ∂

2B
∂y2

)
+Ha

∂U
∂x
= 0 (2.23)

in the fluid region. Note that the Shercliff solution U = Ush, B = Bsh, given in
appendix A, satisfies these equations with homogeneous Dirichlet boundary conditions
on U and B. One can then write U = u+Ush and B= b+ Bsh, and it follows that(

∂2u
∂x2
+ ∂

2u
∂y2

)
+Ha

∂b
∂x
= 0 (2.24)

with no-slip boundary conditions at the fluid–wall interface:

u= 0 (2.25)

whilst b satisfies (
∂2b
∂x2
+ ∂

2b
∂y2

)
+Ha

∂u
∂x
= 0 (2.26)

subject to appropriate homogeneous Dirichlet conditions on the side walls (y = ±1)
and interface conditions on the Hartmann walls (x = ±1). The reason for using the
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600 M. J. Bluck and M. J. Wolfendale

decomposition of U and B above is to reduce the problem to a homogeneous case
where the separation of variables method may be more easily applied.

The non-dimensional magnetic field in each wall, bw, satisfies

∂2bw

∂x2
w

+ ∂
2bw

∂y2
w

= 0 (2.27)

subject to boundary and interface conditions described in § 2.1.
It is convenient to express the velocity and fluid magnetic fields in terms of

auxiliary variables φ and ψ (known as the Elsasser variables), which has the attractive
property of decoupling the equations:

φ = u+ b, ψ = u− b (2.28a,b)

and by adding (and subtracting) the fluid equations it is seen that φ and ψ satisfy:

∂2φ

∂x2
+ ∂

2φ

∂y2
+Ha

∂φ

∂x
= 0 (2.29)

∂2ψ

∂x2
+ ∂

2ψ

∂y2
−Ha

∂ψ

∂x
= 0. (2.30)

These equations will be solved by separation of variables and the velocity and
magnetic field obtained from (2.28a,b).

2.1. Electromagnetic boundary and interface conditions
In the previous section, the problem is reduced to one involving the Elsasser variables,
φ and ψ . In principle, boundary and interface conditions are required in terms of
these variables. In our approach, however, general solutions in terms of the Elsasser
variables are obtained (subject only to homogeneity on the side walls) which are then
subsequently reconstituted as b and u. The necessity for this is clear from the fact that
the interface conditions will involve the wall magnetic field bw. As a result boundary
and interface conditions are applied to the original variables. In the following we
explain in detail how we arrive at these conditions.

The side walls (y = ±1) are insulated and as a result the boundary condition on
these walls is simply

B= b+ Bsh = 0⇒ b= 0. (2.31)

Equations (2.24), (2.26) and (2.27) are coupled at the fluid-conducting wall interface
0 where continuity of field and flux are enforced. Hence,

n · j = n · jw (2.32)
n× (E− Ew)= 0 (2.33)

n× (H − Hw)= Js (2.34)

where jw, Ew and Hw are the current density, electric field and magnetic field in
the wall, respectively. The surface current at the interface between the fluid and wall
is denoted by Js. For the case of a conductor/conductor interface, it must hold that
Js = 0. Substituting Maxwell’s equations into these give the following interface
conditions which must apply at each interface:

n · ∇× H = n · ∇w × Hw (2.35)
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Electromagnetically coupled ducts in MHD 601

and
1
σf

n×∇× H = 1
σw

n×∇w × Hw (2.36)

on 0, where n is a unit normal to the interface, σw is the wall electrical conductivity
and ∇w indicates a gradient evaluated within the wall. It is convenient to define the
wall conductance ratio cw as

cw = σww
σf a
= σw

σf
δ. (2.37)

In the case of interest, one can assume that H = (0, 0, B/µ) so

∇× H = 1
µ

(
i
∂B
∂y
− j

∂B
∂x

)
. (2.38)

On Hartmann walls (x=±1), conditions (2.35) and (2.36) reduce to

1
µf

∂B
∂y
= 1
µw

∂bw

∂yw
(2.39)

and
1
µfσf

∂B
∂x
= 1
µwσw

∂bw

∂xw
. (2.40)

Providing (2.40) is satisfied, condition (2.39) can be enforced simply by requiring

bw = µw

µf
B= µw

µf
b (2.41)

on all walls of the duct, since Bsh vanishes on the duct wall. On the exterior of the
solid walls we apply homogeneous Dirichlet conditions.

3. Thick walled 2nd kind Hunt problem
We begin by considering the flow in a single duct, before extending the analysis to

the multiple duct case. General solutions to (2.29), (2.30) and as a result (2.24), (2.26)
are obtained in terms of left and right solutions involving unknown coefficients. It is
worthwhile clarifying this terminology: a left solution is a solution which vanishes on
the right-hand wall of the duct and conversely, a right solution is a solution which
vanishes on the left-hand wall of the duct. Any solution within the duct is a linear
combination of these left and right solutions. Corresponding general solutions for the
magnetic field in the walls are also obtained. These solutions are subsequently mode-
matched at interfaces, leading to a determination of the unknown coefficients. The
resulting solutions are compared with those obtained by Hunt for the thin-walled case.

3.1. General solutions
In order to solve this problem for a thick-walled duct, we proceed by the application
of separation of variables to (2.29) and (2.30). One can deduce the following general
solutions which satisfy homogeneous Dirichlet boundary conditions on all walls except
for on x=−1 (φL, ψL) or on x= 1 (φR, ψR).

φL = e−λx
∞∑

n=0

φL
n

sinh η(x− 1)
cosh 2η

cos λny (3.1)
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φR =−e−λx
∞∑

n=0

φR
n

sinh η(x+ 1)
cosh 2η

cos λny (3.2)

ψL = eλx
∞∑

n=0

ψL
n

sinh η(x− 1)
cosh 2η

cos λny (3.3)

ψR =−eλx
∞∑

n=0

ψR
n

sinh η(x+ 1)
cosh 2η

cos λny (3.4)

where

η=
√
(λ2

n + λ2), λ= Ha
2
, λn =

(
n− 1

2

)
π. (3.5)

We can then write

φ = φL + φR (3.6)
ψ =ψL +ψR. (3.7)

From (2.28a,b) it is clear that b= 0 and u= 0 on y=±1. We must now enforce the
no-slip conditions on x=±1, which demands that

u(−1, y)= 1
2(φ

L(−1, y)+ψL(−1, y))= 0 (3.8)

u(1, y)= 1
2(φ

R(1, y)+ψR(1, y))= 0. (3.9)

It follows that ψL
n =−e2λφL

n and ψR
n =−e−2λφR

n . We can then eliminate ψL
n and ψR

n in
the general solutions giving

φL =
∞∑

n=0

e−λxφL
n

sinh η(x− 1)
cosh 2η

cos λny (3.10)

ψL =−
∞∑

n=0

e2λeλxφL
n

sinh η(x− 1)
cosh 2η

cos λny (3.11)

φR =
∞∑

n=0

e−λxφR
n

sinh η(x+ 1)
cosh 2η

cos λny (3.12)

ψR =−
∞∑

n=0

e2λeλxφR
n

sinh η(x+ 1)
cosh 2η

cos λny. (3.13)

We can then decompose the velocity and magnetic field solutions into left and right
components:

u(x, y)= uL(x, y)+ uR(x, y) (3.14)

where

uL = 1
2(φ

L +ψL) (3.15)

uR = 1
2(φ

R +ψR) (3.16)

and
b(x, y)= bL(x, y)+ bR(x, y) (3.17)
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Electromagnetically coupled ducts in MHD 603

where

bL = 1
2(φ

L −ψL) (3.18)

bR = 1
2(φ

R −ψR). (3.19)

After some rearrangement and setting pL
n = eλφL

n and pR
n = e−λφR

n (this leads to
expressions which have better conditioning with respect to finite precision arithmetic),
then the left and right velocity fields are given by

uL(x, y)= sinh λ(1+ x)
∞∑

n=1

pL
n

sinh η(1− x)
cosh 2η

cos λny (3.20)

uR(x, y)=− sinh λ(1− x)
∞∑

n=1

pR
n

sinh η(x+ 1)
cosh 2η

cos λny. (3.21)

Similarly the left and right magnetic fields are given by

bL(x, y)= cosh λ(1+ x)
∞∑

n=1

pL
n

sinh η(1− x)
cosh 2η

cos λny (3.22)

bR(x, y)= cosh λ(1− x)
∞∑

n=1

pR
n

sinh η(x+ 1)
cosh 2η

cos λny. (3.23)

The solutions are fully determined once we know the coefficients pL
n and pR

n .
The magnetic field in the wall bw is similarly decomposed into left and right general

solutions

bL
w =

∞∑
n=0

bL
n sinh λnxw cos λnyw (3.24)

and

bR
w =

∞∑
n=0

bR
n sinh λn(xw − δ) cos λnyw. (3.25)

Note that in these equations, xw ∈ [0, δ] refers to a position in the local coordinate
system fixed in each wall such that the fluid–wall interface corresponds to xw = δ in
(3.24) and xw = 0 in (3.25). These solutions vanish on the exterior walls, satisfying
the homogeneous Dirichlet condition specified on the these walls.

3.2. Interface conditions
At the Hartmann walls, we can identify y= yw and apply the interface conditions at
the left and right hand walls for the magnetic field (and flux) using (2.40) and (2.41):

bL
w(δ, y)= µw

µf
bL(−1, y), bR

w(0, y)= µw

µf
bR(1, y) (3.26a,b)

1
µfσf

(
∂bL

∂x
(−1, y)+ ∂bR

∂x
(−1, y)

)
+ 1
µfσf

∂Bsh

∂x
(−1, y)= 1

µwσw

∂bL
w

∂xw
(δ, y) (3.27)

and
1
µfσf

(
∂bL

∂x
(1, y)+ ∂bR

∂x
(1, y)

)
+ 1
µfσf

∂Bsh

∂x
(1, y)= 1

µwσw

∂bR
w

∂xw
(0, y). (3.28)

We assume that the magnetic field vanishes on the side walls (y=±1).
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3.3. Mode matching solution
Using the interface conditions in § 3.2 we can solve for the coefficients in the general
solutions. Note that the coefficients in uL and uR (and bL and bR) are obtained by
applying the continuity of magnetic field and magnetic flux at the left and right walls
of the duct respectively, and matching appropriate modes. After some algebra, we
obtain the following expressions for the coefficients:

pL
n =

dsh
n

an − bn
, pR

n =−
dsh

n

an − bn
, (3.29a,b)

wherein

an = η+ σf

σw
λn tanh 2η coth λnδ (3.30)

bn =−η cosh 2λ
cosh 2η

(3.31)

dsh
n =

kn

λ2
n

(
pn2 sinh pn1 cosh pn2 − pn1 sinh pn2 cosh pn1

sinh 2η

)
. (3.32)

This analysis also shows that in the left and right hand walls, magnetic fields are
given by

bL
w(xw, yw)=

∞∑
n=1

pL
n

tanh 2η
sinh λnδ

sinh λnxw cos λnyw (3.33)

bR
w(xw, yw)=−

∞∑
n=1

pR
n

tanh 2η
sinh λnδ

sinh λn(xw − δ) cos λnyw (3.34)

respectively.
It is customary to characterize such problems in terms of the wall conductance ratio,

cw defined in (2.37). Indeed, for thin walls, where δ� 1 we see that coshλnδ→ 1 and
sinh λnδ→ λnδ, so

an→ η+ σf

σw

1
δ

tanh 2η=→ η+ 1
cw

tanh 2η. (3.35)

However, in the case of thick walls, cw fails to appropriately characterize the flow and
as a concept it becomes invalid.

For some purposes, it is important to know the mean velocity (Um) of the flow in
the duct. This can be obtained by analytic integration of the solutions obtained above,
giving

Um = 1
4

∫ 1

−1

∫ 1

−1
(Ush + u) dx dy=Ush

m + um (3.36)

where

Ush
m =

∞∑
n=1

2
λ4

n

(
1+ sinh pn1 sinh pn2

sinh(pn2 − pn1)

(
1

pn2

− 1
pn1

))
(3.37)

and

um =
∞∑

n=1

kn

4

(
η sinh 2λ− λ sinh 2η
(λ2 − η2) cosh 2η

)
(pL

n − pR
n ). (3.38)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

20
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2015.202


Electromagnetically coupled ducts in MHD 605

x

0

0.5

1.0

–1.0 –0.5 0.5 1.00

1.5

2.0

2.5

Hunt

FIGURE 2. Velocity profile for Ha= 500, thin and thick-walled comparison.

3.4. Results
To demonstrate these results we make comparison with the corresponding thin-walled
Hunt case. In this case we have µf = µw = 1 and σw/σf = 0.01. Figure 2 shows the
velocity profile through a section of the duct for Ha= 500, for three different values
of δ. There is clearly good agreement for δ= 0.01, as would be expected. For larger
values of δ the profile differs significantly from the thin wall case. The relative error
incurred by the thin-wall assumption is shown in figure 5(a,b) for Ha= 100 and Ha=
500 respectively, for certain values of cw. The error is measured in terms of both the
peak values and the mean velocity. The deterioration of the thin-wall approximation,
for increasing δ is clear and becomes increasingly so as Ha increases. Notably it is
seen that as the wall thickness increases, there is a tendency for peak velocities to
be under-estimated and the mean velocities to be over-estimated. It is also clear, that
cw fails to characterize the flow for thick walls. In particular, the same value of cw

gives differing velocity profiles for different combinations of wall thickness and ratio
of electrical conductivities.

For future reference, it is worth pointing out the features of the flow in relation
to the non-MHD case. In the non-MHD case, the velocity profile adjusts so that
the wall shear stress balances the pressure gradient. This leads to an approximately
parabolic velocity profile. In the MHD case, the velocity profile adjusts so that wall
shear stresses balance the sum of pressure gradient and Lorentz forces induced by
the magnetic field. The magnetic field, and in particular the current density plays a
fundamental role in the hydrodynamics. Figures 3 and 4, for the case Ha = 5 and
50 respectively, show the direction of current flow as vectors and the magnitude of
these vectors as contours. Conventionally, one would represent vector fields as arrows
whose length indicated the magnitude. However, the fact that important details of the
flow become confined to thin wall layers (as Ha increases), means that significant
numbers of large arrows are required in thin wall regions with very small arrows in
the core region, impairing legibility. Conversely, a coarse representation of the current
vector fails to convey the variation in current density near the walls. As a result,
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FIGURE 3. (Colour online) Electric current distribution for Ha= 5. Arrows represent the
current flow, contours represent the magnitude of current density.
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FIGURE 4. (Colour online) Electric current distribution for Ha= 50. Arrows represent the
current flow, contours represent the magnitude of current density.

we have shown unit current density vectors on a coarse grid and the magnitude of
the current density as contours on a fine grid. In both cases two opposing current
loops form, each of which have components parallel to the Hartmann walls and
a return path through the central core, resulting in Lorentz forces acting on the
fluid. Necessarily, the current adjacent to the Hartmann wall has a component in
the opposite direction to the current in the return path. The Lorentz force near the
wall acts in the same direction as the pressure gradient, while that in the core acts
to oppose the pressure gradient. As the Hartmann number increases, the current
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FIGURE 5. Thin-wall assumption error in velocity profile for (a) Ha= 100 and
(b) Ha= 500.

perpendicular to the applied field becomes increasingly confined to a progressively
thinner layer (called the Hartmann layer). As stated above, these near-wall Lorentz
forces act in the same direction as, and can greatly exceed, the pressure gradient. The
velocity profile adjusts to give increased wall shear stresses (over the non-MHD case)
which balance this combination of pressure gradient and Lorentz force. Beyond this
layer the current is flowing in the opposite direction with a reduced density, giving
rise to Lorentz forces which oppose the pressure gradient. For large Ha, a core region
is formed where the core Lorentz forces balance the pressure gradient, resulting in a
flat velocity profile.

4. The multiple duct problem
Having considered the single duct case in § 3, we now apply the same techniques to

the case of an array of identical parallel ducts stacked in the direction of the applied
magnetic field B0

x . As in the single duct case, it is assumed that the exterior faces of
the end walls adjoin a perfect insulator, and that the magnetic field vanishes thereon,
as a result. Left and right general solutions for the velocities and magnetic fields are
defined for each duct. As in the single duct case, these solutions are mode-matched at
interfaces, leading to a determination of the unknown coefficients and inter alia, the
fields in each duct.

4.1. General solutions
The flow problem consists of an array of parallel magnetically coupled ducts, two of
which are shown in figure 6. Each duct is subject to a pressure drop ∂pi/∂Z. In this
case, the ducts are stacked in the direction of the applied magnetic field B0

x . The fluid
flow in each duct, i, satisfies

ν

(
∂2vi

∂X2
+ ∂

2vi

∂Y2

)
− 1
ρ

∂pi

∂Z
+ 1
ρ

1
µf

∂Bi,z

∂X
B0

x = 0 (4.1)

and the magnetic fields satisfy

1
µfσf

(
∂2Bi,z

∂X2
+ ∂

2Bi,z

∂Y2

)
+ B0

x
∂vi

∂X
= 0. (4.2)
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Duct i

2

2

FIGURE 6. Multiple duct geometry.

Choosing the first duct as the reference pressure, and defining a non-dimensional
pressure gradient for each duct as

1Pi = ∂pi/∂Z
∂p1/∂Z

(4.3)

allows us to non-dimensionalize as in § 2, giving(
∂2Ui

∂x2
+ ∂

2Ui

∂y2

)
−1Pi +Ha

∂Bi

∂x
= 0 (4.4)

and (
∂2Bi

∂x2
+ ∂

2Bi

∂y2

)
+Ha

∂Ui

∂x
= 0. (4.5)

Due to linearity, we note that the solutions 1PiUsh and 1PiBsh, satisfy (4.4) and (4.5)
with homogeneous Dirichlet boundary conditions. We can then write Ui= ui+1PiUsh
and Bi = bi +1PiBsh, and we obtain(

∂2ui

∂x2
+ ∂

2ui

∂y2

)
+Ha

∂bi

∂x
= 0 (4.6)

with no-slip boundary conditions at the fluid–wall interface and(
∂2bi

∂x2
+ ∂

2bi

∂y2

)
+Ha

∂ui

∂x
= 0 (4.7)

subject to appropriate homogeneous conditions on the side walls (y = ±1) and
interface conditions on the Hartmann walls (x=±1). The magnetic field in each wall
satisfies (2.27) as before, however, at the exterior face of the end walls, we enforce
bw = 0, appropriate for a wall adjoining an insulating medium. These equations are
identical in form to those solved in § 3 and their solution follows a straightforward
generalization of that process.

Generalizing the approach in § 3, we see that the velocity field in each duct may
be written as

ui(x, y)= ui,L(x, y)+ ui,R(x, y) (4.8)
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and
bi(x, y)= bi,L(x, y)+ bi,R(x, y). (4.9)

Following a similar argument to that in § 3 we can deduce that the left and right
velocity fields are given by

ui,L(x, y)= sinh λ(1+ x)
∞∑

n=1

pi,L
n

sinh η(1− x)
cosh 2η

cos λny (4.10)

ui,R(x, y)=− sinh λ(1− x)
∞∑

n=1

pi,R
n

sinh η(x+ 1)
cosh 2η

cos λny (4.11)

and the left and right fluid magnetic fields are given by

bi,L(x, y)= cosh λ(1+ x)
∞∑

n=1

pi,L
n

sinh η(1− x)
cosh 2η

cos λny (4.12)

bi,R(x, y)= cosh λ(1− x)
∞∑

n=1

pi,R
n

sinh η(x+ 1)
cosh 2η

cos λny. (4.13)

The wall magnetic fields are given by

bi,L
w (xw, yw)=

∞∑
n=1

pi,L
n

tanh 2η
sinh λnδ

sinh λnxw cos λnyw (4.14)

bi,R
w (xw, yw)=−

∞∑
n=1

pi,R
n

tanh 2η
sinh λnδ

sinh λn(xw − δ) cos λnyw. (4.15)

4.2. Interface conditions
We now match the magnetic fields at the Hartmann walls (again noting that y= yw).
That is, for each duct

bi,L
w (δ, y)= µw

µf
bi,L(−1, y) (4.16)

and
bi,R

w (0, y)= µw

µf
bi,R(1, y) (4.17)

and for the flux equations (2.40),

1
µfσf

(
∂bi,L

∂x
(−1, y)+ ∂bi,R

∂x
(−1, y)

)
+ 1Pi

µfσf

∂Bsh

∂x
(−1, y)

= 1
µwσw

(
∂bi,L

w

∂xw
(δ, y)+ ∂bi−1,R

w

∂xw
(δ, y)

)
(4.18)

and

1
µfσf

(
∂bi,L

∂x
(1, y)+ ∂bi,R

∂x
(1, y)

)
+ 1Pi

µfσf

∂Bsh

∂x
(1, y)

= 1
µwσw

(
∂bi+1,L

w

∂xw
(0, y)+ ∂bi,R

w

∂xw
(0, y)

)
. (4.19)
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4.3. Matching modes

Matching modes and eliminating the bi,L
n and bi,R

n coefficients using (4.16) and (4.17)
we can use definitions (3.30)–(3.32), together with

cn =− σf

σw

λn tanh 2η
sinh λnδ

(4.20)

to construct the following 2N × 2N tridiagonal matrix equation from the flux
continuity equations (4.18) and (4.19):

an bn
bn an cn

cn an bn

bn an
. . .

. . .
. . .




p1,L

n

p1,R
n
...

pN,L
n

pN,R
n

= dsh
n


1P1
−1P1
...

1PN
−1PN

 . (4.21)

Defining the 2N ×N matrix R as

R =


1
−1

1
−1

. . .

 (4.22)

we can then write (4.21) in the compact form

An pn = dsh
n R1P (4.23)

where An and pn is the matrix and vector on the left-hand side, respectively, of (4.21),
and

1P =


1P1
1P2
...

1PN

 (4.24)

It is then simple to solve for pn, and hence ui, bi and bi
w using (4.8)–(4.15).

The mean velocities in the ducts can then be expressed in matrix form as

Um =
(

Ush
m I +

∞∑
n=1

kn

4

(
η sinh 2λ− λ sinh 2η
(λ2 − η2) cosh 2η

)
dsh

n (R
TA−1

n R)

)
1P (4.25)

where Um is the N-vector of mean velocities and I is the N ×N identity matrix.

5. Results
We now demonstrate these solutions for a number of cases. In § 5.1 we show

velocity and magnetic fields for a pair of ducts (N = 2) in both co- and counter-flow
configurations. To demonstrate more clearly the impact of electromagnetic coupling
between arrays of ducts we consider a number of cases with N = 3 and N = 5 in
detail, specifically those involving either fixed pressure drop or fixed velocity in both
flow configurations.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

20
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2015.202


Electromagnetically coupled ducts in MHD 611

1.0

0.5

0
1.0

0.5
0

Y X–0.5
–1.0 –1

0
1

2
3

0.5

–0.5

0

1.0
0.5

0
Y X–0.5

–1.0 –1
0

1
2

3

(a) (b)

FIGURE 7. (Colour online) Velocity profile for Ha= 500: (a) co-flow; (b) counter-flow.

5.1. Twin ducts
We consider the simplest non-trivial case of pressure driven flow in two ducts, where
δ = 0.02, and µf = µw = 1 and σw/σf = 1. In figure 7 we show the velocity profiles
for Ha = 500 in co-flow (1P1 = 1P2 = 1) and counter-flow (1P1 = −1, 1P2 = 1)
configurations, respectively. Note that Uref is taken as the peak velocity in a single
duct case. It is seen that the interactions in the counter-flow configuration are
particularly strong, resulting in a strongly suppressed core velocity in each duct. In
the co-flow configuration, we observe a small increase in core and side-jet flow in
relation to the single duct case.

The precise mechanisms involved in these cases are worthy of further study.
Figures 8 and 9 show the current distribution and the non-dimensional Lorentz force
in the co-flow case, respectively. It is clear that the current density in the fluid at each
of the Hartmann layers (and walls) is large and flows perpendicular to the applied
field. Such currents give rise to steep gradients in the induced magnetic field within
the Hartmann layers and correspondingly large non-dimensional Lorentz forces which
act in the same direction as the pressure drop, as shown in figure 9. As a result,
the net force is large in the Hartmann layer, giving rise to large shear stresses. The
Lorentz forces are larger still in the corners near the connecting wall, with resulting
increase in wall shear stress. Away from the walls, the non-dimensional Lorentz force
reduces, ultimately opposing and balancing the pressure drop, resulting in the flat
core region. The combination of these effects leads to the significant core flow in the
co-flow case and enhanced core velocity near the adjoining wall (principally due to
the corner effects). In the side walls, although the current is significant, it flows in
a direction parallel to the induced field and the resulting Lorentz force is negligible.
As a result, the side layer exhibits pressure driven flow, resulting in the observed
jets. There is (relatively) weak coupling between the ducts due to the significant wall
resistance along the current path in this configuration. This is, of course, dependent
on the wall thickness and conductivity.

In figure 10 is shown the current distribution in the counter-flow case. The current
densities at the outer Hartmann layers are reduced relative to the co-flow case,
particularly near the centre region of the wall, and less so near the corners. However,
at the inner Hartmann walls, the current flows largely through the connecting wall,
into the neighbouring duct. The connecting wall resistance is relatively low in this
configuration, leading to strong coupling. The current near the inner Hartmann wall
gives rise to greatly reduced non-dimensional Lorentz forces (figure 11) as it has a
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FIGURE 8. (Colour online) Electric current distribution for Ha = 500. Arrows represent
the current flow, contours represent the magnitude of current density, co-flow case.
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FIGURE 9. (Colour online) Non-dimensional Lorentz force for Ha= 500, co-flow, case:
(a) duct 1; (b) duct 2.

significant component parallel to the applied field. The component perpendicular to
the applied field is similar in magnitude and direction to that in the core. As a result,
the net force in the inner Hartmann layers is much smaller in this configuration,
giving rise to negligible shear stresses. Away from the walls, the non-dimensional
Lorentz force opposes and balances the pressure drop, again resulting in the flat core
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FIGURE 10. (Colour online) Electric current distribution for Ha= 500. Arrows represent
the current flow, contours represent the magnitude of current density, counter-flow case.
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FIGURE 11. (Colour online) Non-dimensional Lorentz force for Ha= 500, counter-flow,
case: (a) duct 1; (b) duct 2.

region. The combination of these effects leads to the greatly reduced core flow in
the counter-flow case, resulting in an almost stagnant flow. In the side walls, as in
the co-flow case, the resulting Lorentz force is negligible, giving rise to the observed
pressure-driven jets.
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FIGURE 12. (Colour online) Velocity profile (a) and induced magnetic field (b) for Ha=
500, triple duct co-flow configuration.
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FIGURE 13. (Colour online) Electric current distribution for Ha= 500. Arrows represent
the current flow, contours represent the magnitude of current density, triple duct co-flow
configuration.

5.2. Triple ducts, N = 3
For the case of three ducts, we consider in detail the co- and counter-flow cases. In
the following we again choose the case where δ = 0.02, µf = µw = 1 and σw/σf = 1,
with each duct subject to a fixed pressure drop (in the appropriate directions).

The velocity profiles in the co-flow case are shown in figure 12(a). The peak and
core flow velocities in the central duct (duct 2) are a little larger than those of the
side ducts (ducts 1 and 3). The magnetic field, current flow and Lorentz force shown
in figures 12(b), 13 and 14, respectively, are consistent with the twin duct case. The
Lorentz forces are enhanced, particularly near the corners of the central duct, with a
resulting increase in the velocity.

The velocity profiles in the counter-flow case are shown in figure 15(a). The peak
and core flow velocities in the side duct (i) are strongly suppressed relative to the
co-flow case. The core flow in the side duct is suppressed to approximately 20 % of
the co-flow case, with a velocity ≈−0.15. The core flow in the centre duct (ii) is not
only suppressed, it is, in fact, reversed (relative to the applied pressure gradient). In
this case, the core flow has a velocity ≈−0.13. In the absence of a magnetic field (or
indeed, the side ducts), a positive core flow would be expected.
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FIGURE 14. (Colour online) Non-dimensional Lorentz force for Ha= 500, triple duct
co-flow configuration: (a) duct 1 (side); (b) duct 2 (centre).
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FIGURE 15. (Colour online) Velocity profile (a) and induced magnetic field (b) for Ha=
500, triple duct counter-flow configuration.

The induced magnetic field is shown in figure 15(b). The current flow in this
configuration is shown in figure 16 and it is worth noting that this differs markedly
from the current flow in the twin duct counter-flow case (figure 10), where current
flowed preferentially through the connecting wall (in the x-direction). Due to the
asymmetry between the side and centre ducts, there is in addition a significant
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FIGURE 16. (Colour online) Electric current distribution for Ha=50. Arrows represent the
current flow, contours represent the magnitude of current density, triple duct counter-flow
configuration.

current component along the wall (in the y-direction), with concomitant enhancement
of the Lorentz force near the connecting wall. The non-dimensional Lorentz force,
shown in figure 17, is significantly reduced in the Hartmann layers in comparison to
the co-flow case (by about a factor of 0.5). This leads to a reduction in wall shear
stress and accounts for the reduction in core flow in the side duct. Notably, in the
central duct, the coupling with the side ducts gives rise to a large Lorentz force in
the Hartmann layers that act in opposition to the pressure drop (unlike the case for
the side duct and all co-flow cases). This acts to further suppress the core flow in
the central duct. If this near-wall Lorentz force is sufficiently large (due to a large
Hartmann number and reduced wall resistance), then the core velocity can be entirely
reversed, as is the case here. The side jets again correspond to regions of negligible
Lorentz force and the jets result from pressure driven flow in the side layers and as a
result do not experience flow reversal, hence flow in the duct is of a counter-current
nature. Depending on the relative contributions to the mass flow rate of the core and
side jets, it is possible to have a net reversal of the mass flow rate in the duct.

So far in this section, we have fixed the Hartmann number, conductivities,
permeabilities and wall thickness. The coupling effects are a function of these
parameters. As stated earlier, for thin ducts, the dependence of the flow field can
be characterized in terms of the conductivity ratio, cw. This is not the case for
thick-walled ducts. In order to investigate the dependence of the coupling on these
parameters, it is proposed to consider the total deviation from the single duct case
across all ducts. To this end, the coupling parameter α is defined as

α =
N∑

i=1

∣∣∣∣Um,i

Ush
m

−1Pi

∣∣∣∣ . (5.1)

Each term in this sum is the normalized difference between the mean velocity in the
coupled case and the non-coupled case, for each duct. For a case with no coupling,
α = 0.

In figure 18 is shown the coupling parameter for the co- and counter-flow cases for
Ha= 500 as a function of σw/σf and wall thickness δ. Both cases exhibit appropriate
limiting behaviour for large δ and large σw/σf , where the wall conductivity is large in
comparison to the fluid conductivity. In this case the perfectly conducting wall case is
approached and the coupling effects are negligible. It is also the case that the coupling
decays rapidly for δ� 1.
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FIGURE 17. (Colour online) Non-dimensional Lorentz force for Ha = 500, triple duct
counter-flow configuration: (a) duct 1 (side); (b) duct 2 (centre).
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FIGURE 18. (Colour online) Coupling parameter α as a function of σw/σf and δ for Ha=
500: (a) co-flow case; (b) counter-flow case.

For the co-flow case (figure 18a), in the limit of small δ and small σw/σf , the
perfectly insulating wall case is approached and again, coupling effects become
negligible. For co-flow, current flows along the Hartmann walls, in the y-direction
(as shown in figure 13). In such circumstances, a wall conductance ratio, cy, can be
characterized as cy ∝ (σwδ)/(σf ). It is clear that for any given δ, the peak coupling
occurs along a locus of points on which cy ∝ (σwδ)/(σf ) is constant, indicated by
the white line in the figure. Whilst the figure shows a calculation for Ha = 500,
increasing Ha leaves the result qualitatively unchanged, but shifted to the left (in
the direction of smaller σw/σf ), as indicated by the arrow. Conversely, decreasing Ha
shifts the values in the figure to the right. It is also to be noted that the peak value of
the coupling parameter increases with increasing Ha. As a result, for a given δ and
σw/σf , increasing Ha leads to a rapid increase in coupling, reaching a peak, which
then decays slowly.

For the counter-flow case (figure 18b), current flows both through and along
the Hartmann walls, as shown in figure 16. For current flowing through the wall
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FIGURE 19. (Colour online) Normalized central duct mean velocity as a function of σw/σf
and δ for Ha= 5, counter-flow case.
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FIGURE 20. (Colour online) Normalized central duct mean velocity as a function of σw/σf
and δ for Ha= 50, counter-flow case.

(as opposed to along the wall), into the neighbouring duct, a wall conductance ratio
is given by cx ∝ (σw)/(σf δ). Note that this conductance ratio will dominate the cy
for δ < 1. As δ is reduced, the conductance will increase and the coupling will be
enhanced, irrespective of σw/σf . Peak coupling occurs along a locus of points on
which cy ∝ (σw)/(σf ) is constant, indicated by the vertical white line in the figure.
As with the co-flow case, increasing Ha leaves the result qualitatively unchanged,
but shifted to the left (in the direction of smaller σw/σf ), as indicated by the arrow.
Conversely, decreasing Ha shifts the values in the figure to the right. As in the
co-flow case, for a given δ and σw/σf , increasing Ha leads to a rapid increase in
coupling, reaching a peak, which then decays slowly. This strong coupling in the
counter-flow case can lead to flow reversal of the core, to a point where the net
flow is reversed, despite the side jets. The phenomenon of flow reversal is studied in
figures 19–21, which indicate the mean velocity in the central duct as a function of
σw/σf and δ for Ha = 5, 50 and 500, respectively. No reversal of the mean velocity
(corresponding to mean velocity < 0) is seen for Ha= 5, indeed, further investigation
shows that net flow reversal occurs only for Ha> 13. For Ha= 50 and 500, net flow
reversal is clear.

5.3. Multiple ducts, N = 5
The arrangement considered in this section consists of five ducts with δ= 0.05 in both
co- and counter-flow configurations. Both fixed pressure drop and fixed mean velocity
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FIGURE 21. (Colour online) Normalized central duct mean velocity as a function of σw/σf
and δ for Ha= 500, counter-flow case.
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FIGURE 22. Mean velocities in ducts with fixed pressure, Ha = 500: (a) co-flow case;
(b) counter-flow case.

cases are considered. The effect of Hartmann number on the coupling between ducts
is investigated.

For the case of a fixed pressure drop, an identical pressure drop is applied in each
duct (differing only in sign in the counter-flow configuration). In figure 22(a) is shown
the mean velocities (and fixed pressures) in each duct in the co-flow configuration,
which indicates that there is flow enhancement relative to the single duct case, with
the greatest enhancement in the central duct. As in the three duct case, the velocity
and pressures are normalized with respect to the single duct case. The counter-flow
case is shown in figure 22(b). The coupling between ducts has significant detrimental
effects on the flow, with significantly reduced mean velocities in all ducts, especially
ducts 2 and 4. Figures 23(a) (co-flow) and 23(b) (counter-flow) show the dependence
of the normalized flow velocity on Hartmann number, for ducts 1, 2 and 3 (4 and 5
are identical to 2 and 1, respectively, due to symmetry).

For the case of a fixed applied velocity, with the same arrangements as before, an
identical mean velocity is applied in each duct (differing only in sign in the counter-
flow configuration). The pressures (and fixed mean velocities) in each duct are shown
in figure 24(a). As expected, for a given mean velocity, the necessary pressure drop
is significantly reduced, which is to be expected. The counter-flow case is shown in
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FIGURE 23. Mean velocities versus Hartmann number for fixed pressure drops: (a) co-
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FIGURE 24. Pressure drop in ducts with fixed velocity, Ha = 500: (a) co-flow case;
(b) counter-flow case.

figure 24(b). It is clear that pressure drops are increased by a factor of two to three
relative to the single-duct case, in order to maintain the flow rates in this configuration.
Figure 25(a) (co-flow) and (b) (counter-flow) show the dependence of the normalized
flow velocity on Hartmann number, for ducts 1–3.

It is clear from these results that the coupling between ducts in a co-flow
configuration has beneficial effects in terms of pressure drop (or conversely mean
velocity). However, it is also clear that these relative gains increase with increasing
Hartmann number, only up to Ha∼ 200. In the counter flow configurations, a similar
behaviour is seen, albeit with a negative impact on hydrodynamic parameters. In
these cases, pressure drops increase with increasing Hartmann number, reaching a
peak at Ha∼ 50, beyond which there is a reduction in the pressure drop relative to
the single duct case.

The explanation of this dependence on Hartmann number can be viewed in the
context of the coupling parameter shown in figure 18. Although figure 18 corresponds
to a three-duct case, the results for the five-duct case are qualitatively similar. This
five-duct case corresponds to a particular point in the plane of figure 18(a,b). For
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small Ha, this point lies to the left of the peak loci. As Ha increases, the loci move
to the left, with coupling reaching a peak as the loci passes the point in the plane. As
Ha increases still further, the coupling diminishes (albeit relatively slowly, as explained
in § 5.2).

6. Conclusion

This work presents an analytical solution to the laminar flow of an electrically
conducting fluid in an array of partially conducting ducts of arbitrary wall thickness
subject to an applied magnetic field. The solution is developed initially by applying
the separation of variables method to the case of a single duct. The importance
of considering the effect of arbitrary thickness walls on the flow is shown by
demonstrating the limitations of the thin-wall approximation developed by Hunt.
These results are then extended to arrays of two, three and five parallel ducts stacked
in the direction of the applied magnetic field. The electromagnetic flow coupling
between ducts and its impact on the flow is studied in detail, in both co- and
counter-flow configurations. It is shown that the conducting walls have a strong
influence on the currents near the walls and in particular on the Lorentz forces near
the wall, giving rise to significant enhancement of shear stresses in the co-flow case
which is beneficial in terms of pressure drop (or conversely mean velocity). In the
counter-flow case there is strong suppression of wall shear stresses leading to a
strong reduction of core flow. In certain circumstances, the coupling between ducts
is sufficiently strong to induce flow reversal and counter-current flows result. Such
phenomena are likely to have significant detrimental effects on both heat and mass
transfer in fusion applications in particular. These analytical solutions give insight
into the physics of such flows and provide important benchmarking and validation
data for computational MHD, as well as approximate flow parameters for 1D systems
codes.
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Appendix A. The Shercliff solution
The following Shercliff solution is valid for non-conducting walls, for a square duct

of unit half-width.

Ush(x, y)=
∞∑

n=1

Un(x) cos λny (A 1)

Bsh(x, y)=
∞∑

n=1

Bn(x) cos λny (A 2)

Un(x)= kn

λ2
n

(
1− sinh pn2 cosh pn1x− sinh pn1 cosh pn2x

sinh(pn2 − pn1)

)
(A 3)

Bn(x)= kn

λ2
n

(
sinh pn1 sinh pn2x− sinh pn2 sinh pn1x

sinh(pn2 − pn1)

)
(A 4)

pn1 = λ−
√
λ2 + λ2

n (A 5)

pn2 = λ+
√
λ2 + λ2

n (A 6)

λn = (n− 1
2)π (A 7)

λ= Ha
2

(A 8)

kn = 2
sin λn

λn
. (A 9)
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