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SUMMARY

The spread of African swine fever virus (ASFV) threatens to reach further parts of Europe. In
countries with a large swine production, an outbreak of ASF may result in devastating economic
consequences for the swine industry. Simulation models can assist decision makers setting up
contingency plans. This creates a need for estimation of parameters. This study presents a new
analysis of a previously published study. A full likelihood framework is presented including the
impact of model assumptions on the estimated transmission parameters. As animals were only
tested every other day, an interpretation was introduced to cover the weighted infectiousness

on unobserved days for the individual animals (WIU). Based on our model and the set of
assumptions, the within- and between-pen transmission parameters were estimated

to By =1:05 (95% CI 0-62-1-72), B, = 0-46 (95% CI 0-17-1-00), respectively, and the

WIU =1-00 (95% CI 0-1). Furthermore, we simulated the spread of ASFV within a pig house
using a modified SEIR-model to establish the time from infection of one animal until ASFV is
detected in the herd. Based on a chosen detection limit of 2-55% equivalent to 10 dead pigs out
of 360, the disease would be detected 13-19 days after introduction.
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INTRODUCTION

African swine fever (ASF) is a notifiable infectious dis-
ease in pigs (cited from [1]). It is caused by ASF virus
(ASFV), a DNA virus from the family Asfarviridae,
genus Asfivirus [2]. Since the introduction of ASFV to
Georgia in 2007, it has spread to the Russian
Federation and several Eastern EU countries, including
Latvia, Estonia, Lithuania, Moldova and Poland [3,4].
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ASF is considered to be a substantial threat for
Western Europe [5]. In countries with a large produc-
tion and/or export of swine and swine products, an out-
break of ASF may result in devastating economic
consequences for the swine industry due to export
restrictions, as exemplified by the Danish situation
[1,6].

Simulation models are widely used to study the spread
of animal diseases within a country and to propose effect-
ive control strategies to limit their spread [1,7-13]. An
important element of these spread models is modelling
the progress of the disease within the unit of interest,
i.e. the pig house. Understanding this mechanism is
important as it may have substantial impact on virus
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spread to other herds and disease detection within the
infected herds.

The ASFV spreads mainly due to direct contact
between infectious and susceptible animals [14-16]. It
can also spread via indirect and airborne contact
[15,17]. Quantifying the virus spread potential via
each route is important for proper modelling of the
spread of the virus within the herd. Using data from a
pig-to-pig transmission study [14], Guinat et al. [15] esti-
mated the transmission parameters of ASFV via the dir-
ect and indirect routes, separately, within a pig house.
The underlying assumptions behind the estimated trans-
mission parameters could have impacted the estimated
values. This warrants an investigation of the impact of
the chosen assumptions on the estimated values of the
transmission parameters.

In the current study, we estimated the transmission
parameters for the different routes of virus spread
based on the same data [14] and demonstrated the
impact of model assumptions on the estimated trans-
mission parameters. In addition, we simulated the
spread of ASFV within a pig house using the esti-
mated parameters to establish the time from the infec-
tion of one animal until ASFV is detected in the herd.

METHODS
Data

The data originates from Guinat et al [14] where
experiments were carried out on 40 weaner pigs at
the age of 7 weeks positioned in four separate rooms
A, B, C and D. In each of these rooms, a specific num-
ber of randomly chosen pigs were inoculated intra-
muscularly with the virulent Georgia 2007/1 ASFV
strain.

In rooms A and D, containing, respectively, 10 and
six pigs, half of the pigs were inoculated on day
0. Rooms B and C were each divided into two adja-
cent pens, pen 1 and pen 2, separated by a fence
under which it was possible for small amounts of
urine and faeces to pass. Direct nose-to-nose contact
was not possible. Eight pigs were located in pen 1,
and on day 0 half of these were initially inoculated.
In the adjacent pen 2, four pigs were situated. This
provided a situation with direct contact for the pigs
in rooms 4 and D, and both direct and indirect con-
tact for the pigs in rooms B and C.

Infection was considered to have occurred when a
blood sample, tested by virus isolation and quantitative
real-time polymerase chain reaction (qPCR), was
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confirmed positive for the virus; as considered in the
original study [14]. Samples were collected every
other day starting from day 3. For further details on
the sampling, we refer to Guinat et al. [15].

Model

To model the spread of ASFV, a modified version of
the SEIR model was chosen [18]. In this model, the ani-
mals are assigned to four compartments depending on
their health state. The susceptible animals, which ini-
tially counted all non-inoculated pigs in the experiment,
were located in the first compartment (S). When an ani-
mal became infected, it moved to the exposed compart-
ment (E). Animals remained infected for a latent period
of L days after which they became infectious and
moved to compartment (/). After an infectious period
of T days, the pigs entered the recovered compartment
(R) — either dead or immune. However, all pigs were
euthanized for welfare reasons [14].

It was assumed that the number of pigs, becoming
infected at time ¢ throughout the time period At in
pen i (E;,), out of the total amount of susceptible
pigs (S;,), was binomially distributed with a certain
probability of a single pig becoming infected, p;,.
This probability of becoming infected depended on
the total number of animals (N;,=S;,+ E;, + I;,), the
number of infectious pigs (I;,), and their number of
infectious contacts with the remaining susceptible pigs
within and between pens (8, and ) [19]. The probabil-
ity of avoiding becoming infected was obtained from
the probability density function of the Poisson distribu-
tion [20]. To find the actual probability of becoming
infected, this was subtracted from 1. Therefore, the
probability of infection in each pen was given by:
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From the assumption that the data are binomially
distributed, the parameters f,, and f, were estimated
using the maximum-likelihood method. In Guinat
et al. [15], the 95% confidence intervals (95% ClIs)
for the transmission parameters were determined by
adding *1-96 times the standard error to the esti-
mates. This approach provides symmetric Cls, corre-
sponding to an underlying assumption of normality
of the estimated parameters, this assumption is often
violated when parameters are bounded as in the
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present case where both f,, and S, have to be positive.
Therefore, to estimate the corresponding 95% Cls, we
chose to use the profile likelihood method, which has
the advantage of allowing asymmetric ClIs [21].

The parameter estimation was initially done for dif-
ferent values of L. We have chosen to consider latent
periods of 3, 4 and 5 days. These three values of L
were chosen as pigs infected by intramuscular inocula-
tions showed clinical signs 4-4 + 1-0 days after inocula-
tion [14].

We were also interested in determining if one of the
three durations of L was more likely or if there was a
general variation within the tested animals. Therefore,
a new model using the rule of average conditional
probabilities was constructed [22]. This allowed us to
adjust the current model to a new joint model that
considered L as a stochastic variable. The rule of con-
ditional probabilities is given by the formula:

P(Y=y)=Y P(Y=y|Z=2)PZ=2).

The conditional probability P(Y =y|Z=z) is the
probability of an event y given Z =z. We expressed
this in terms of L and the data observations x; and
inserted the expression into the likelihood function.
The likelihood was expressed as a function of By, Sy
and the probability of each L:

M

5
L By Bo) =[] D PX =xiIL =DP(L = ).
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Here x; are the data observations and M is the num-
ber of days with observations. As before, the infection
parameter estimates were determined using maximum
likelihood. However, in this model, the probabilities
of the specific duration of latent period could be deter-
mined as well.

When possible, models are compared by using a
likelihood ratio test [21], which determines if para-
meters from one model are significantly different
from parameters in another nested model. If this is
not possible, the models can be compared based on
their Akaike’s Information Criterion (AIC).

MATLAB and Statistics Toolbox Release 2015b,
The MathWorks, Inc., Natick, Massachusetts, USA,
was used in this study.

Assumptions

When estimating the transmission parameters, it was
necessary to establish when each pig became infected
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and when it got infectious. When doing this, only
the naturally infected pigs were considered. We also
had to determine the number of infectious pigs that
could have transmitted the disease. It was assumed
that euthanized pigs were infectious too, including
the day of euthanasia and that no pigs were infectious
on day 2.

The particular day a pig was infected was calculated
by subtracting the number of days in L from the day
in the experiment when the pig became infectious.
However, as the observations were only noted on
every other day, this provided a time interval of 2
days for becoming infectious, and therefore also a
2-day interval for becoming infected. For this particu-
lar reason, an interpretation was used to cover the
weighted infectiousness on unobserved days for the indi-
vidual animals (WIU). It is not specified how this mat-
ter was handled in Guinat et al. [15] and hence we
were unable to reproduce the results from the article.
Therefore, we chose to introduce the parameter WIU.

WIU was treated as a continuous variable in the
range [0, 1]. On days where an animal was not observed,
WIU = 0 indicates that all pigs have the same infectious-
ness status as the day before. Similarly, WIU =1 indi-
cates that all pigs have the same infectiousness status
as the following day. Since no animals recover during
the experiment, then WIU only affects when an animal
converts from being infected to also becoming
infectious.

To be able to compare the parameter estimates, it
was necessary for them to be based on the same obser-
vations for each L, as the maximum-likelihood method
depends on this. Since our intention was to compare
the maximum log likelihood values directly, we
excluded the observations on day 7 for all L, as choos-
ing the latent period L =5 would require observations
on day 2 that were not available.

Simulations

The obtained estimates of the transmission parameters
allowed us to make stochastic simulations of the
spread of ASFV within a pig house. We did this in
order to examine if a time frame for detection of an
outbreak could be established.

We based our simulations on the SEIR model,
where the pigs were located in one of the compart-
ments S, E, I or R. Initially all pigs, except the one
pig initiating the outbreak, were located in compart-
ment S. During the time for the first infectious pig to
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reach compartment R, the infection would either die
out or spread to the rest of the herd.

We chose to consider a housing structure contain-
ing six adjacent pens on each side of a passage.
Each pen contained 30 pigs. Due to symmetry, this
left us with three different points of initial spread
represented by initial spread in pens 1, 2 and 3 respect-
ively. A thousand independent outbreaks were simu-
lated and for each of these the transmission
parameters S, and S, were sampled from two inde-
pendent zero-truncated normal distributions. All
parameters, including the latent period, were based
on the model that maximizes the likelihood of the
data. To ensure that the pigs stayed in the exposed
state for a given number of days, compartment E
was divided into a corresponding number of sub-
compartments with a probability of 100% of moving
to the next compartment the following day.

We chose to consider the infectious period from
Guinat et al. [14] with a mean of 4-5 days and a stand-
ard deviation of 0-75 days. To make sure that the
infectious pigs remained infectious for at least 3
days, corresponding to the lower limit of the 95%
CI, compartment / was divided into three sub-
compartments. The probability of moving from one
sub-compartment to the next was set to 2/3, and the
rates ry1,, i1, and r g, where r 45 denotes the number
of pigs moving from compartment 4 to B, were found
as independent random samples from a binomial (m,
2/3 ) distribution. Here m is the number of infectious
pigs in sub-compartment A. This means that the infec-
tious period of each animal will follow an Erlang dis-
tribution with k=3 and A=(2/3). The mean of this
duration is 45 days and the standard deviation for
the individual animals is 2-6 days. It is unknown if
Guinat et al. [14] used a fixed duration for all animals.
The initial infectious pig was placed in the first sub-
compartment of /.

Since the chosen housing structure differed from the
one used in the experimental setup, the formulation of
the probability of infection is not directly transfer-
rable. From the assumption that spread of infection
is faster to the closest neighbours, we now considered
an individual probability formulation for each pen
depending on its location and the distance to its neigh-
bours. It was assumed that nose-to-nose contact could
only occur between pigs within the pen. The distance
between two neighbour pens was set to d =1, and the
passage was accounted for by adding the constant § =
1. Finally, p was a weight between 0 and 1, describing
how fast the force of infection decreased. As an
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example, we considered the probability of infection
given in pen 1:

pl,zl—exp<—< W£
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p' were the weights of the pens on the same side of the
passage as pen 1, and p™*° were the weights of the pens
on the other side of the passage. The remaining 11
probabilities were formulated in a similar fashion.
Therefore, the number of pigs in pen 1, moving
from compartment S to the first sub-compartment of
E and given as the rate rgg,, was found as a random
samples from a (s, p; )-binomial distribution. Here s
is the number of pigs in compartment S.

We estimated the time for detection of the disease,
within the pig house, based on the number of dead
animals. Halasa et al. [1] estimated this mortality
level due to ASF when the disease was detected within
a large infected herd. Detection occurred when the
mortality was 2-55%. In our simulation, this is equiva-
lent to at least 10 out of 360 animals in the house. We
also examined the time for detection using 5 or 15
dead animals, respectively.

)

+ By

RESULTS
Parameter estimation

When fixing the latent period, it can be seen from
Table 1 that a latent period of 5 days would be pre-
ferred as it provides the highest maximum likelihood
of —32-64 and hereby also the lowest AIC with the par-
ameter estimates f, =105 (0:62—1:72), S, =046
(0-17—1-00) and WIU =1-00 (0—1) — the numbers in
parentheses are the 95% Cls. When comparing the
other durations of the latent period, the transmission
parameters decrease as the duration of the latent period
decreases. However, the only case where the estimate of
WIU is different from 1-00 is for L =4. It should be
noted that the 95% ClIs for the WIU are (0-1) in
every case (Table 1). Every value of S, is included in
the ClIs for the remaining f,, values. Furthermore, for
each L the ClIs for p,, and S, intersect.

When allowing a mixture of the latent periods, the
maximum-likelihood estimates can be found in
Table 2. Here, a latent period of 5 days was the most
likely period with a probability of P;_s = 71-62%.
Again, WIU was estimated to be 1-00 (0—1) and the
transmission parameter estimates were f,, = 1-04
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Table 1. Parameter estimates (95% confidence intervals) for the within-pen (B,,) and between-pen () transmission
rate, weighted infectiousness of unobserved days for the individual animals (WIU), maximum-likelihood values
(max Liog) and the AIC estimated using a latent period (L) of 3, 4 or 5 days

Parameter L=3 L=4 L=5

B 0-95 (0-57-1-47) 1-00 (0-56-1-69) 1-05 (0-62-1-72)
B 0-31 (0-08-0-74) 0-46 (0-16-1-06) 0-46 (0-17-1-00)
WIU 1-00 (0-1) 0-56 (0-1) 1-00 (0-1)

max Lo —33-51 —33-61 —32-64

AIC 73-01 7322 71-28

Table 2. Average conditional probabilities

ﬂw ﬁb PL:3 PL=4 PL = 5; WIU max ['log AIC
1-04 (0-61-1-65)  0-40 (0-10-0-95)  28-38% (0-100)  0-00% (0-100)  71-62% (0-100) 1-00 (0-1) —32-53  75-06

Fig. 1. Contour plot showing the asymmetric 95%
confidence intervals in bold corresponding to a latent
period of 5 days (Table 1).

(0-61—1-65) and p, =0-40 (0-10—0-95), resembling the
values in Table 1 for L =5. It should be noted that
the probability of having a latent period of 4 days is
estimated to 0. As expected, the maximum-likelihood
value was highest for this model, compared with the
maximume-likelihood values in Table 1, when the latent
period was fixed to 5 days.

A likelihood ratio test was performed in order to test
if a mixture of the latent period (Table 2) is significantly
better than a fixed duration of the latent period
(Table 1). As the biggest difference in maximum-likeli-
hood values is between the one from Table 2 and the
one for L=4 from Table 1, we started by testing
only these two models using the likelihood ratio test.
This yielded a P-value of 0-3396. Since this P-value is
>0-05, we cannot, with a significance level of 0-05,
reject the null hypothesis, i.e. we do not have evidence
to conclude that the estimates in Table 2 are more likely
than the estimates in Table 1. Thus, based on the cur-
rent data, a fixed latent period of 5 days is the most
likely latent period, and it is significantly better than
using a mixture of integers for the latent period.

As mentioned earlier, the profile likelihood method
has the advantage of allowing asymmetric ClIs.
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Figure 1 shows that the Cls for the estimated trans-
mission parameters for L =5 in Table 1 are asymmet-
ric as they do not form an ellipse. This confirms the
necessity of using a method that allows asymmetric
ClIs such as the profile likelihood method.

Simulations

When carrying out the simulations, a value of p, the
weight of the pen for infection spread, must be chosen.
However, we do not have any experimental evidence
pointing towards a specific value — except that it
should be positive and less than one. We have chosen
to examine p =0-5, p =0-7 and p = 0-9 to span a wide
range.

Figure 2 shows the accumulated number of dead
pigs on each day including percentiles. It can be seen
that the curves are steeper the higher the value of p,
indicating a faster spread of the virus. Therefore, we
can see that the value of p influences the simulation
results. Detailed within house outbreak data could
be used to estimate p or suggest alternative formula-
tions. We have chosen to use p = 0-7 in the remaining
simulations.

Figure 3 shows the median number of accumulated
dead pigs for each pen. It is seen that the distance
between the pens influences the timing of the infection.
First of all, infection takes off about 10 days earlier in
the pen with the initially infectious pig compared with
infection in the remaining pens. When inspecting the
ordering of the other pens, it becomes clear that
those closer to the initially infectious pen get infected
before those further away.
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Fig. 2. Accumulated number of dead pigs with the initially infected pig located in pen 1. (a) p=0-5. (b) p=0-7. (¢c) p=09.
The simulations are represented by the median and the 50% (25%; 75%) and 95% (2:5%; 97-5%) simulation envelopes.

Figure 4 shows that in the majority of the simula-
tions, the entire herd will eventually become infected
and die. However, it is also seen that in some cases
the disease will die out before the infection spreads
further.

When looking at the median for the 1000 simula-
tions, we see that five pigs had died on day 13 after
introduction, independently on the location of the ini-
tially infectious pig, day 17 was the first day where at
least 10 pigs had died in both cases, and 15 pigs were
dead, respectively, 19 and 18 days after introduction
of infection. Therefore, based on the chosen detection
limit, the disease will be detected 13-19 days after
introduction. This confirms the results on Figure 4
showing no apparent difference in the timing of the
infection based on the initial location of the infection.

DISCUSSION
Parameter estimation

In this study, within- and between-pen transmission
parameters for the spread of ASFV in a pig house
were estimated. Based on maximum-likelihood esti-
mation and likelihood ratio testing, a fixed latent per-
iod of 5 days was found to most adequately describe
the data (Table 1). Under more realistic conditions,
the force of infection between pigs in ordinary pig
houses may vary more, and thus we expect that the
latent period should be described by a distribution.
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However, the current data did not contain enough
information to confirm this. Thus, more studies are
needed, i.e. preferably with detailed observations
from an outbreak in a real pig house.

Some of the data observations used in this study
made it unlikely to have a WIU close to zero, i.e.
the same status as the day before. This is especially
clear on day 10 in room 4 and on day 8 in room D
when considering L =3, e.g. in room D there are no
infectious animals on day 8 if WIU =0, but on day
11, corresponding to L =3, two newly infected ani-
mals are diagnosed. In these cases, setting WIU
close to zero would mean that several pigs got infected
even though the risk of becoming infected was very
small. This pushes WIU away from zero and towards
one. In general, it is clear that a higher WIU will
increase the probability for a susceptible pig to
become infected as pigs are considered to become
infectious sooner. This may be counterbalanced by a
longer latent period, and thus it is not surprising
that L =5 leads to WIU = 1.

The estimate of WIU is 1 for L=3 and L =5, but
for L=4 WIU is <I. This could be due to the fact
that animals are tested every other day. If ethically
possible, it would be better to use a dynamic sampling
strategy with more frequent sampling in periods with
higher risks.

In the mixture model for the latent period, the esti-
mated probability of L =4 was zero. As seen above,
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Fig. 3. The median of the accumulated number of infectious pigs in each pen depending on the location of the initially
infectious pig. (a) The infectious pig is located in pen 1. (b) The infectious pig is located in pen 3.

there are particular animals where L=3 or L=15 is
more likely. It is believed that those particular obser-
vations have a high influence on the likelihood func-
tion, and thus push the probability mass away from
L=4

In the study of Guinat et al. [15], there are no com-
ments regarding the issue of day 7; when a latent per-
iod of 5 days is assumed, observations on day 7 cannot
be used on the same terms as when a latent period of 3
or 4 days is used. The estimated parameters can be
based on 18 observations for a latent period of 3 or
4 days and only 14 observations for a latent period
of 5 days. The maximum-likelihood method is very
sensitive to this problem as the maximum-likelihood
value in general becomes lower when it is based on
more observations. This means that to be able to com-
pare all of the maximum-likelihood values, the calcu-
lation has to be done based on the same observations.
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This problem is not being addressed in [15], and there-
fore the reported models 1 and 2 cannot be directly
compared with model 3, as is the case. It turns out
that excluding the four observations, making it pos-
sible to compare all three models, changes the param-
eter estimates considerably (data not shown). This can
be explained by the fact that these four observations
occur in the first couple of days in the experiment,
where few animals are infected, leading to a lower
risk of infection. Furthermore, it could be due to an
increase in infectiousness for the infectious animals
after the initial detection by qPCR.

As mentioned earlier, the 95% Cls for S, and S, over-
lap for each L. This made us consider an alternative one
parameter model (data not shown). Our primary goal
with this model was to examine whether a model includ-
ing only airborne transmission was more likely than a
model including both airborne and direct transmission.
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Fig. 4. Accumulated number of infectious pigs and accumulated number of dead pigs depending on the location of the
initially infectious pig. (@) The infectious pig is located in pen 1. (b) The infectious pig is located in pen 3. The simulations
are represented by the median and the 50% (25%; 75%) and 95% (2-5%; 97-5%) simulation envelopes.

The likelihood ratio test indicated that a model includ-
ing both airborne and direct transmission is more likely
than a model including only airborne transmission
(results not shown). This alternative formulation is not
nested within the model presented in this paper, so
they cannot be compared with a likelihood ratio test.
However, they can be compared using AIC, and as
the two model structures have the same number of para-
meters, then this corresponds to preference for the
model with the highest likelihood. The likelihood is
higher for the model presented in this paper (Table 1),
and thus the presented model remains preferred.
Guinat ef al. have made a corrigendum [23], and for
a latent period of 5 days, it is to some degree possible to
compare their findings with this paper. The estimated
transmission parameters are similar. However, the
CIs are markedly different as expected due to the
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difference in methodology. De Carvalho Ferreira
et al. [24] estimated the within-pen transmission rate
for the Malta *78 and the Netherlands '86 ASFV iso-
lates. The estimates varied from 0-45 and 3-63 (mean
values) depending on the infection dose of the inocu-
lated animals and the criteria of infectiousness and
moment of infection that was used to calculate the
transmission rate. In the current study, the estimates
of the within-pen transmission rate for the Georgia
2007 strain are close to 1 and thus within the range
found by de Carvalho Ferreira et al. Actually, the
95% Cls are also within the previously described range.

Simulations

Guinat et al. [15] simulated a circular pig house with
independent contacts to both neighbours. We found
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Fig. 5. The proposed housing structure showing a total of 12 pens in a pig house.

this structure to be artificial and with an increased
force of infection. Hence, we simulated another struc-
ture (Fig. 5) with a more realistic resemblance of a
typical structure of a Danish pig house. For a moder-
ately contagious disease like ASF [25], the structure of
the housing system may play a role in the spread of the
virus, and hence the detection of the disease within the
herd.

We studied a possible detection limit for the farmer,
based on the total number of infectious pigs showing
clinical symptoms and the total number of dead pigs.
As our limits are merely suggestions and the attentive-
ness of the farmers varies, other detection parameters
could be examined as well. For instance, the farmer
could also suspect an outbreak of the virus if, on a sin-
gle day, the number of dead pigs or pigs showing clin-
ical symptoms increased considerably.

We concluded from our assumptions, and the
median of the simulations, that the disease would be

https://doi.org/10.1017/50950268817001613 Published online by Cambridge University Press

detected in a herd around days 13-19 after introduc-
tion. From the percentiles displayed in the results, it
is obvious that there are some uncertainties in these
values (Fig. 4). Another uncertainty is the value of p
(Fig. 2).

The probability of infection (1) is chosen such that
it accounts for the distances in the housing structure.
As the parameter estimates are based on data, which
in this case originate from an experimental setup
with at most one adjacent pen, this does not provide
any information about the transmission patterns of
ASFV in a realistic housing structure as simulated.
Therefore, experiments providing data for larger hous-
ing structures would be relevant in order to estimate
the parameters in a more realistic model.

Some experimental infection studies focus on using
only one strain of the virus, which can be a limited fac-
tor as other isolates may have different clinical mani-
festation and spread behaviour. De Carvalho Ferreira
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et al. [24] estimated the transmission rate for the
Malta 78 and the Netherlands 86 ASFV isolates
and showed that the transmission rates were different
for the two strain using the same criteria to define
infectiousness and moment of infection.

It is important to mention that the results of our
study represent a housing system of an industrialized
swine production system. Thus, our findings might
not be a good representation of within herd spread
of ASF in herds in the Eastern European countries.
This is because the housing structure of many herds
in Eastern European countries might differ substan-
tially from the housing structure of industrialized
swine production systems in Western Europe.
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