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We introduce a wall model for large-eddy simulation (WMLES) applicable to rough
surfaces with Gaussian and non-Gaussian distributions for both the transitionally and
fully rough regimes. The model is applicable to arbitrary complex geometries where
roughness elements are assumed to be underresolved, i.e. subgrid-scale roughness. The
wall model is implemented using a multi-hidden-layer feedforward neural network, with
the mean geometric properties of the roughness topology and near-wall flow quantities
serving as input. The optimal set of non-dimensional input features is identified using
information theory, selecting variables that maximize information about the output
while minimizing redundancy among inputs. The model also incorporates a confidence
score based on Gaussian process modelling, enabling the detection of potentially low
model performance for untrained rough surfaces. The model is trained using a direct
numerical simulation (DNS) roughness database comprising approximately 200 cases. The
roughness geometries for the database are selected from a large repository through active
learning. This approach ensures that the rough surfaces incorporated into the database
are the most informative, achieving higher model performance with fewer DNS cases
compared with passive learning techniques. The performance of the model is evaluated
both apriori and aposteriori in WMLES of turbulent channel flows with rough walls.
Over 550 channel flow cases are considered, including untrained roughness geometries,
roughness Reynolds numbers and grid resolutions for both transitionally and fully rough
regimes. Our rough-wall model offers higher accuracy than existing models, generally
predicting wall shear stress within an accuracy range of 1%—15 %. The performance of the
model is also assessed on a high-pressure turbine blade with two different rough surfaces.
We show that the new wall model predicts the skin friction and the mean velocity deficit
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induced by the rough surface on the blade within 1%-10 % accuracy except the region
with transition or shock waves. This work extends the building-block flow wall model
(BFWM) introduced by Lozano-Duran & Bae (2023. J. Fluid Mech. 963, A35) for smooth
walls, expanding the BFWM framework to account for rough-wall scenarios.

Key words: turbulent boundary layers, turbulence simulation, turbulence modelling

1. Introduction

Turbulent boundary layers (TBL) over rough surfaces are prevalent in engineering
applications. Examples include the deposition of fuel and airborne contaminants, as well
as erosion in turbomachinery applications contributing to the formation of roughness
on turbine blades (Bons et al. 2001). Another example is biofouling, resulting from
the accumulation of living organisms, which generates multiscale roughness geometries
on the immersed surfaces of marine vessels (Munk et al. 2009). These rough surfaces
significantly increase hydrodynamic drag and reduce the overall efficiency of engineering
systems (Bons 2010; Kirschner & Brennan 2012). Therefore, modelling the effects of
roughness and predicting drag in rough-wall flows are essential tasks in engineering.
Computational fluid dynamics complements experimental investigations by enabling
more cost-effective exploration under various operating conditions and reducing the
need for extensive physical testing. While roughness-resolved simulations such as direct
numerical simulation (DNS) and wall-resolved large-eddy simulation (WRLES) provide
valuable insights into the underlying physics and aid in the development of models,
their practical applicability to high Reynolds number flows is limited due to their
high computational cost. Recently, wall-modelled large-eddy simulation (WMLES) has
emerged as a competitive approach for modelling the effects of roughness on the outer
flow without resolving the small-scale flow and roughness details in the near-wall region.
In this work, we develop a rough-wall model for WMLES that is applicable to various
roughness geometries and flow conditions.

A surface is considered rough when its topographical features are large enough to
disrupt the near-wall eddies, resulting in increased drag and momentum deficit across
the TBL (Raupach et al. 1991; Jiménez 2004; Chung et al. 2021). In incompressible
zero-pressure-gradient TBL, the velocity deficit caused by roughness is quantified by
the roughness function AUT = AU /u., where AU represents the downward shift of the
mean velocity profiles in the logarithmic layer, and u, denotes the mean friction velocity.
In the fully rough regime, the momentum deficit is primarily caused by form drag. This
scenario is typically easier to investigate as wall friction becomes independent of Reynolds
number. In contrast, both form drag and viscous drag contribute to wall friction in the
transitionally rough regime. In these cases, drag is highly sensitive to Reynolds number
and roughness topographies, making the search for universal scaling laws and models
for drag challenging tasks. For zero-pressure-gradient TBL, the effect of roughness in
the fully rough regime is generally characterized by the equivalent sand-grain roughness
height k. This hydraulic roughness scale, proposed by Nikuradse (1933), represents the
size of uniformly packed sand-grain roughness that produces the same frictional drag as
the actual roughness geometry. In the fully rough regime, ks quantifies hydrodynamic drag
through a logarithmic relationship with the roughness function.
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Models with varying fidelity have been devised to account for wall-roughness effects,
ranging from empirical correlations based on Moody charts to wall functions for the
Reynolds-averaged Navier—Stokes equations (RANS), WRLES and WMLES. Many of
these rough-wall models are formulated in terms of equivalent sand-grain roughness
height, making the prediction of ks the main goal. The first, lower-fidelity family of models
aims to establish correlations between k; and other roughness geometrical parameters
without explicitly resolving the flow motion (e.g. Bons 2002; Flack & Schultz 2010;
Forooghi et al. 2017; Chung et al. 2021). Further details about this topic can be found in the
reviews by Bons (2002); Flack & Schultz (2010) and Forooghi et al. (2017). More recently,
data-driven methods have also been leveraged to enhance the prediction of k; without
resolving the flow. Jouybari et al. (2021) used machine-learning methods to predict kg
based on a large set of roughness parameters and demonstrated more accurate results than
previous empirical correlations. Ma et al. (2023) proposed a particle swarm optimized
backpropagation method to estimate k; and showed better performance in evaluation
metrics compared with both existing roughness correlation formulae and the traditional
backpropagation model. Yang et al. (2023) utilized ensemble neural networks to predict
ks based on the roughness height probability density function (PDF) and power spectrum.
Other methods do not rely on the use of k. For example, Yang et al. (2016) proposed an
analytical roughness model based on the exponential velocity profile within the roughness
layer for rectangular-prism roughness elements and demonstrated good predictions of
mean velocity and drag forces for this type of roughness where the flow separation point
is easily identified.

The second family of rough-wall models incorporates surface roughness effects directly
into RANS, WRLES or WMLES. These methods usually adopt one of the following
approaches.

(i) In the first approach, wall roughness is represented using a closure model for RANS
simulations. Cebeci & Chang (1978) adapted the mixing-length formulation of eddy
viscosity near rough walls by introducing an effective wall displacement as a function
of k. Feiereisen & Acharya (1986) further refined the model proposed by Cebeci
& Chang (1978) by directly incorporating measurable roughness parameters instead
of relying solely on kg. Durbin et al. (2001) extended the two-layer k—e model
to rough walls by modifying the calculation of the eddy viscosity based on k.
Aupoix & Spalart (2003) proposed two extensions of the Spalart—Allmaras model
to account for roughness effects using the value of kg as key parameter. Knopp
et al. (2009) presented an extension for k—w type turbulence models to account for
surface roughness based on k; and the rough-wall logarithmic law, demonstrating
its capability of predicting the aerodynamic effects of surface roughness on the flow
past an airfoil. Brereton & Yuan (2018) proposed a model of equivalent shear force for
the wall-roughness eddy viscosity, demonstrating good agreement with experimental
data for zero and favourable pressure gradient TBL over fully rough surfaces.

(i) The second approach consists of imposing the fluxes as wall boundary condition
obtained from analytical wall functions or rough-wall models that account for
roughness effects. Wilcox (1998) incorporated roughness effects into the boundary
condition for the w equation of the k—w turbulence closure model for RANS by
introducing a functional dependence with k. Suga et al. (2006) derived an analytical
wall function accounting for the effects of fine-grain surface roughness on turbulence
and heat transfer in RANS simulations. In the context of WMLES, the logarithmic
law for rough walls as a function of kg has been used to capture the downward shift
of velocity profiles (Yang et al. 2017; Li & Yang 2021). Li et al. (2022) provided
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a systematic assessment of the predictive capability of the logarithmic law rough-
wall model for WMLES and demonstrated good predictions of the mean velocity
against DNS data. The logarithmic law rough-wall model has also been widely used
to develop morphological models for flows over urban-like surfaces (Theurer 1993;
Macdonald et al. 1998; Grimmond & Oke 1999; Hanna & Britter 2010).

The third approach involves introducing a body force term to the Navier—Stokes
equations as a drag model representing roughness effects. The rationale for the
forcing term was discussed by Stripf et al. (2009). The body-force drag model has
been employed in both RANS equations (Aupoix 2016; Chedevergne & Forooghi
2020) and eddy-resolving simulations (Shaw & Schumann 1992; Busse & Sandham
2012). Busse & Sandham (2012) used a body-force term model and showed good
agreement for the mean flow and Reynolds stresses everywhere except in the
immediate vicinity of the rough surface. However, they noticed that the model
parameters need to be calibrated against experiments or DNS to be successfully
applied in a simulation setting. Anderson & Meneveau (2011) developed a dynamic
roughness model for large-eddy simulation (LES) applicable to multiscale, fractal-
like roughness by decomposing the surface into resolved and subgrid-scale (SGS)
height contributions. The unresolved height fluctuations were modelled using the
equilibrium logarithmic law, and the SGS roughness parameter was dynamically
estimated to achieve resolution-independent mean velocity profiles.

The roughness modelling approaches presented above have greatly facilitated the
prediction of surface roughness effects on turbulent flows. However, current rough-wall
models still face important limitations:

1y

2)

3)

4)

5)

Many wall models for WMLES lack true predictability, as they require the
specification of the non-trivial hydrodynamic property ks which is often empirically
measured rather than derived from a model. This reliance on a prescribed kg hinders
their ability to provide true predictions.

Although k; is effective for predicting drag in fully rough flows, its utility diminishes
in transitionally rough flows. This limitation stems from the fact that the logarithmic
relationship between k; and AU is valid only within the fully rough regime.

The assumptions underlying many wall models are rooted in ‘equilibrium’ turbulence,
i.e. the presence of wall-attached, statistically steady turbulence under zero-pressure-
gradient. Consequently, these wall models can accurately predict outcomes only
for a limited number of cases and cannot be generalized to complex scenarios
(e.g. adverse/favourable mean pressure gradient and separated flows) which are of
significant interest in practical applications.

Many models are tailored for specific roughness geometries. The challenge remains
to develop a rough wall model that can accommodate a broad spectrum of surface
topologies without sacrificing prediction accuracy.

On some occasions, the rough-wall models are, by construction, only applicable to
simple flow configurations such as channel flows and flat plates. This limitation may
be due to assumptions of flat walls, periodic boundary conditions or the need for global
flow quantities (e.g. turbulent channel height) that might not be well-defined in other
scenarios. As a result, these models are unsuitable for the complex geometries typical
in real-world engineering applications.

The reader is referred to the recent work by Durbin (2023) for a discussion on the strengths
and limitations of different approaches to formulate rough-wall models.
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Addressing current limitations is crucial for developing accurate and robust wall
models that capture the effects of roughness on turbulent flows across diverse conditions,
geometries and flow regimes. To overcome these limitations, the present work aims to
develop a wall model by utilizing the flow over rough walls in minimal turbulent channels.

This effort builds upon the concept of a building-block-flow wall model (BFWM) for
WMLES of smooth-wall flows, initially introduced by our group (Lozano-Durdn & Bae
2023). The core assumption of the model is that the essential physics required to predict
wall stress in complex scenarios can be captured by a finite set of simpler canonical
flows, referred to as building-block flows. Seven types of building-block flows, based
on turbulent Poiseuille-Couette flows, were used to train the BFWM. Model inputs
include local flow quantities (e.g. velocities, density, viscosity), while outputs consist
of wall shear stress and the angle between wall shear stress and wall-parallel velocity
at the first control volume. The model also provides the probability of flow association
with each building-block category and a confidence score for the predictions. Lozano-
Duran & Bae (2023) demonstrated that the BFWM approach successfully accounts for
multiple flow regimes (e.g. zero, adverse and favourable mean pressure gradients, as well
as separation) within a unified model, outperforming predictions by an equilibrium wall
model.

In this work, we aim to extend this framework to incorporate wall roughness, referred
to as BFWM-rough. Our long-term goal is to develop a rough-wall model for WMLES
that accommodates multiple roughness geometries and flow regimes, including both zero
and non-zero mean pressure gradient effects and flow separation. Towards this goal, the
primary objective of this first work is to develop the initial version of BEFEWM-rough for
WMLES under near-wall equilibrium assumptions, applicable to transitionally and fully
rough regimes with both Gaussian and non-Gaussian roughness geometries. Efforts are
already underway to incorporate additional rough surface geometries, non-equilibrium
effects and compressibility effects (Ma et al. 2024).

In this work, we build a database of rough-wall turbulent flows using DNS cases
selected through active learning (AL). The resulting data are utilized to train the machine-
learning-based wall model, which is implemented in both structured and unstructured
WMLES solvers. To evaluate the performance of the model, BFWM-rough is assessed
across a wide range of cases, spanning from canonical turbulent channel flows to high-
pressure turbine (HPT) blade configurations. The manuscript is organized as follows. The
roughness database is introduced in § 2. The formulation of the newly proposed rough-wall
model is discussed in § 3. The model evaluation is presented in § 4. Finally, the conclusions
are offered in § 5.

2. Database of turbulence over rough surfaces

We generate a database of turbulent channel flows over rough surfaces to train the wall
model. The streamwise, wall-normal and spanwise directions are denoted by x, y and z,
respectively, and occasionally referred to as x1, x» and x3. The friction Reynolds number
is Re; =u;8/v, where u, is the friction velocity, v is the kinematic viscosity and § is
the channel half-height. The database is constructed in three steps. First, we create a
repository containing various irregular rough surfaces. Second, we apply an AL framework
to identify and select the most informative rough surfaces from the repository. Third, we
conduct DNS of turbulent channel flows with the rough walls selected in the previous step.
The resulting database is used to train the wall model, as described in § 3.

1007 A17-5


https://doi.org/10.1017/jfm.2025.29

https://doi.org/10.1017/jfm.2025.29 Published online by Cambridge University Press

R. Ma and A. Lozano-Durdn

2.1. Roughness repository

The roughness repository is a collection of rough surfaces designed for generating the DNS
database, which is utilized to train and validate the wall model. The repository includes
irregular rough surfaces characterized by different PDFs and power spectra, resembling
the realistic roughness encountered in engineering applications. These irregular rough
surfaces are created from the PDF and power spectra using a rough surface generator
(Pérez-Rafols & Almgqvist 2019). Two families of PDFs are considered: Gaussian and
Weibull. The Gaussian distribution is chosen due to its ubiquity in nature and engineering
applications (Williamson et al. 1969; Whitehouse 2023). Examples of Gaussian roughness
include turbine blades subject to erosion (Bons 2002), surface finish degradation on gas
turbine vanes during service (Bacci et al. 2021) and manufactured surfaces such as highly
polished steel (Das & Linke 2017). The Weibull distribution is used to represent roughness
resulting from tribology and wear (Panda et al. 2015), defect populations in materials
due to manufacturing processes, environmental factors or operational conditions (Cook &
DelRio 2019), as well as geophysical and terrain roughness (Barbosa & Gerke 2022). The
inclusion of Weibull roughness in the repository enables the representation of a broader
spectrum of asymmetrical and non-Gaussian roughness features.

The Gaussian and Weibull rough surfaces considered are statistically homogeneous
along the wall-parallel directions. The Gaussian roughness is generated based on the
normal distribution of roughness height by specifying the root-mean-square roughness
height in a range from 0.0056 to 0.035. The PDF of the Weibull distribution of the random
variable k follows

~ H [k H= _(k\H ~
PDFw(k)=7<i> e~ D7 k=0 2.1)

where the shape parameter H > 0 describes the shape of the probability distribution and
is randomly selected within [0.8, 2.3], and A > 0 is the scale parameter. The power spectra
describing the isotropic self-affine fractal is

PS(k)= K_2(1+Hf), Ko <Kk < K|

—2(1+Hy
PS(k) =k, a+ 'f), K < Ko

2.2)

where x = /kZ+«2, and «; and k, are the non-dimensional wavenumbers in the

streamwise (x) and spanwise (z) directions, respectively. The higher bound wavenumber
k1 =Ly /A; is set by giving the lower bound of the roughness wavelength 1; = 0.033§
to ensure that the smallest roughness length scales are resolved by adequate grid points.
The power spectra is controlled by two randomized parameters, the roll-off (lower bound)
wavenumber k¢ and the Hurst exponent Hy. The values of «( are selected within the range
[3,25], and the values of H are varied to obtain the power-law decline rate ¢ within the
range [-4,-3]. The resulting surface generated based on the PDF and power spectra is
then scaled from O to the root-mean-square height k;.,,,s in a range from 0.005§ to 0.034.
These values are determined to span the range of the roughness parameters for the actual
rough surfaces in engineering applications (Bons 2010; Kirschner & Brennan 2012). The
roughness repository includes 50 Gaussian rough surfaces and 50 Weibull rough surfaces.
Six roughness samples are visualized in figure 1.

The geometric properties of the roughness are characterized by statistical quantities
derived from the surface height distribution. The definition of roughness parameters is
given in table 1. These include roughness height measures such as mean height kg, first-
order moment of height fluctuations R, root-mean-square height ks, crest height k. and
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Figure 1. Visualization of roughness height for selected surface samples: (a—c) Gaussian roughness; (d—f)
Weibull roughness. The colours represent the level of k/§ from 0.0 (blue) to 0.12 (yellow), where § is the
channel half-height.

mean peak-to-valley height &, ; high-order moments of height fluctuations such as skewness
Sk and kurtosis K, ; height gradients such as the effective slope E S, and inclination angle
I; surface porosity P,; roughness density measures such as frontal solidity A7; and the
correlation length L.,,. The parameters E S, I and L., remain mainly constant along the
wall-parallel direction. However, the generated rough surfaces are not perfectly isotropic.
This relaxes the constraint on the applicability of the BFWM-rough to strictly isotropic
surfaces and allows the model to generalize to rough surfaces with mild anisotropic
features.

2.2. Active learning

We employ AL to efficiently build the training repository and minimize the computational
expenses associated with DNS. Ideally, DNS simulations of turbulent channel flow
using all surfaces from the roughness repository would be conducted to maximize the
amount of training data. However, in practice, the number of DNS we can perform is
constrained by computational resources. The AL approach iteratively selects the most
valuable rough surfaces from the repository for DNS. Active learning focuses on finding
the most informative cases to enhance model performance while reducing labelling costs
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Mean height

Crest height
Mean peak-to-valley height

Root-mean-square height

First-order moment of height fluctuations

Skewness
Kurtosis
Effective slope
Inclination angle
Surface porosity

Frontal solidity

kavg = A= [, k(x, )dA
ke =max{k(x, z)} —min{k(x, z)}

ki =mean{max|sxs{k(x, 2)} —min|sxs{k(x, 2)}}

kyms = \/Ait fx’z(k('xs 7) — kavg)sz
Ro= 4 [ Ik(x, 2) — kavgld A
sk—Ak‘x o2 (k(x, 2) = kavg) d A
Ku - Ak4 fx &(k(x Z) avg)4dA
S— AI f,zlak(XZ)|dA
I=tan~" (35(2%2y)
Po= g Jo* Ar(ydy
Ap
Ap=3L

Correlation length Leor =mingy{Ry, (Sx 0) <0.2}

Table 1. Definitions of roughness geometrical parameters. k(x, z) is the roughness height function, A 7 (y) is
the fluid area at the y location, A, is the frontal projected area of the roughness elements, and A; is the total
plan area. The correlation lengths are computed as the horizontal separation at which the roughness height
autocorrelation function Ry, (8x, 8z) = - (k(x + 6x, z 4+ 62)k(x, 2))x, drops below 0.2, where (-),, denotes
average over x and z. Given that the rough surfaces considered are isotropic, the parameters E'S, I, and L.,

are equivalent along any wall-parallel direction. Similar definitions of roughness parameters can be found in
Thakkar et al. (2017); Ma et al. (2021); Jouybari et al. (2021) and Chung et al. (2021).

(Settles 2009). This strategy ensures effective exploration of the repository by
incorporating DNS data that is most useful for training robust, generalizable models. In
recent years, the AL approach has been used in fluid applications. For instance, Zhou
et al. (2022) utilized it for efficient prediction of propeller aerodynamic and acoustic
performance, while Yang et al. (2023) applied it to predict equivalent sand-grain size. Both
studies demonstrate how the AL approach can guide the selection of new experiments
or simulations in regions with high discrepancy, significantly improving the trained
machine-learning model for various engineering problems.

The AL approach is implemented using a Gaussian process (GP) model to predict
the uncertainty from untrained roughness surfaces (Rasmussen & Williams 2006). The
GP model is a non-parametric method based on the assumption that the function to be
learned is drawn from a GP. This assumption enables the model to make predictions with
well-defined uncertainty. The inputs to the GP model include all roughness parameters
described in table 1. All roughness parameters are considered in the AL, as it is assumed no
apriori knowledge of which roughness parameters may be more critical than others during
the rough surface selection process. This assumption helps avoid bias in selecting rough
surfaces, allowing for the addition of diverse roughness types (e.g. Weibull roughness)
to the roughness repository. The output is the non-dimensionalized wall-shear stress
(tw)y1/(wU}), obtained from DNS of turbulent channel flows. Here, y; is the wall-normal
distance, v is the kinematic viscosity of the fluid, (r,) represents the mean wall shear
stress, where the angle brackets denote the average over the homogeneous directions
and time, and Uy = U (y1) is the mean wall-parallel velocity magnitude at y;. Detailed
computations of (ty), U(y;) and the wall-normal locations considered are presented in
§2.3. The GP model is defined by a mean function and a covariance kernel. A zero
mean function is used as the prior mean function, and a squared exponential kernel
serves as the prior covariance function. The posterior distribution, given the observed
data, is obtained from the prior distribution and is used to predict the uncertainty
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Figure 2. Schematic of the AL to select the rough surfaces for the DNS turbulent channel database.

(namely, predictive variance o2) of rough surfaces untrained by the GP model. During
the training process, the optimal hyperparameters for the GP model are determined by
minimizing the negative logarithm of the marginal likelihood. Readers are referred to
Rasmussen & Williams (2006) for additional details about the GP model algorithm.

The steps for AL, summarized in figure 2, are as follows.

(1) Initialization. A small set of DNS roughness data are used to initialize the process.
(i) GP model training. A GP model is trained using the initial labelled DNS data.
(i1i) Uncertainty sampling. The GP model is used to predict the uncertainty for all rough
surfaces in the repository. Rough surfaces with the highest uncertainty are selected.
(iv) New data generation. The DNS of turbulent channel flows over the selected rough
surfaces is performed at various Reynolds numbers.
(v) Model update. The newly labelled DNS data are added to the training set, and the
GP model is retrained.
(vi) Iteration. Steps (iii) to (v) are repeated until a stopping criterion is met.

The rough surfaces selected through the AL framework are labelled as GS# and WB#,
where GS and WB denote Gaussian and Weibull roughness, respectively. The value of #
is the identification number of the surface used to locate the case in table 2, where the
properties of roughness topography are listed. At each iteration, approximately 15 % of
the total number of rough surfaces is selected for performing DNS. This value is sufficient
to reduce uncertainty of the rough surfaces in the roughness repository at each iteration,
and was constrained by our computational resources to conduct new DNS cases in each
iteration. A total of four iterations of the GP model are performed after which the value of
o?/ o*tzr is less than 2.5 for the whole roughness repository, where crfr is averaged variance
of the last GP model.

As a starting point, six Gaussian rough surfaces not included in the roughness repository,
GSO01 to GS06, are generated. These six rough surfaces are created using the same method
as the other Gaussian rough surfaces in the roughness repository. This initial set of rough
surfaces is generated to ensure that the roughness geometries cover a broad range of
Gaussian roughness. The choice of this initial set mainly affects the number of iterations
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Case kayg/S ke/S ki/S kems/S Ra/S Sx K. ES 1 Py Af Leo/s

GSO01  0.062 0.125 0.120 0.018 0.014 0.068 2.902 0.540 —0.001 0.503 0.290 0.082
GS02 0.069 0.143 0.125 0.027 0.023 0.130 2.211 0.326 0.004 0.517 0.161 0.486
GS03 0.052 0.107 0.098 0.019 0.015 0.051 2.793 0.197 0.015 0.510 0.102 0.245
GS04 0.049 0.097 0.090 0.015 0.012 —0.001 2.752 0.290 —0.029 0.497 0.153 0.139
GS05 0.053 0.102 0.098 0.014 0.011 —0.095 2974 0.463 —0.001 0.477 0.240 0.110
GS06 0.069 0.141 0.137 0.023 0.018 0.091 2.778 0.347 0.016 0.510 0.179 0.195
GS07 0.037 0.070 0.068 0.009 0.007 —0.007 3.046 0.272 —0.005 0.468 0.136 0.098
GS08 0.038 0.069 0.064 0.010 0.008 —0.392 3.065 0.124 0.025 0.452 0.056 0.234
GS09 0.035 0.069 0.066 0.012 0.010 0.127 2.543 0.137 0.006 0.498 0.065 0.257
GS10 0.042 0.089 0.084 0.013 0.010 0.045 3.078 0317 —0.012 0.530 0.158 0.176
GS11 0.045 0.094 0.084 0.012 0.009 0.011 3.352 0.184 0.005 0.525 0.095 0.202
GS12 0.054 0.101 0.099 0.015 0.012 —-0.132 2908 0.327 0.001 0.463 0.160 0.250
GS13 0.036 0.077 0.070 0.011 0.009 0.301 2.733 0.259 —0.009 0.540 0.143 0.164
GS14 0.073 0.131 0.128 0.016 0.013 —0.104 2.967 0.694 —0.003 0.439 0.329 0.084
GS15 0.066 0.149 0.127 0.019 0.015 0.180 3.261 0.397 —0.008 0.556 0.213 0.148
GS16 0.100 0.173 0.170 0.025 0.019 —-0.378 3.743 0.259 0.002 0.421 0.134 0.251
GS17 0.088 0.167 0.159 0.022 0.017 —0.167 3.146 0.551 0.009 0.475 0.277 0.119
GS18 0.066 0.128 0.118 0.016 0.012 —0.186 3.180 0.443 0.012 0.488 0.222 0.122
GS19 0.074 0.154 0.151 0.022 0.017 0.001 2.981 0.693 0.004 0.520 0.357 0.082
WBO01 0.015 0.091 0.085 0.009 0.007 1.804 7.915 0.235 0.028 0.832 0.110 0.056
WB02 0.023 0.154 0.127 0.010 0.007 2.140 11.970 0.224  0.057 0.851 0.097 0.068
WB03 0.013 0.090 0.070 0.008 0.006 1.752 8.254 0.182 0.069 0.853 0.107 0.060
WB04 0.015 0.094 0.077 0.007 0.005 1997 9.711 0.279 —0.028 0.843 0.129 0.033
WBO05 0.022 0.157 0.139 0.013 0.009 2.055 10.171 0.343  0.072 0.859 0.196 0.053
WB06 0.011 0.084 0.074 0.007 0.005 2.210 10.867 0.152 0.078 0.866 0.064 0.094
WBO07 0.025 0.155 0.122 0.012 0.009 1.861 9.430 0.254 —0.062 0.842 0.146 0.066
WBO08 0.072 0.104 0.098 0.012 0.010 —0.718 3.655 0.218 0.038 0.304 0.107 0.091
WB09 0.064 0.087 0.087 0.011 0.009 —0.575 3.254 0.288 —0.030 0.265 0.145 0.080
WBI10 0.034 0.155 0.148 0.015 0.013 1355 5913 0.521 0.016 0.769 0.233 0.050
WBI1 0.034 0.123 0.116 0.014 0.011 1.002 4.404 0.577 —0.001 0.728 0.294 0.035
WBI12 0.042 0.171 0.161 0.020 0.016 0.980 4.375 0.615 —0.007 0.755 0.336 0.055
WBI13 0.039 0.164 0.154 0.017 0.013 1181 5.146 0.663 —0.032 0.761 0.408 0.037

Table 2. Roughness parameters for rough surfaces in the DNS database.

needed to reach the final dataset; however, the final outcome is generally unaffected. The
DNS of turbulent channel flows are performed for each roughness at six different Re;
values: 180, 360, 540, 720, 900 and 1000. This data are used to initialize the process and
train the first GP model (GP model-1). For the Gaussian rough surfaces, two iterations are
conducted to improve the initial GP model. Figure 3(a) shows that seven new surfaces,
GS07 to GS13, with the highest uncertainty, are selected from the roughness repository in
the first iteration. Figure 3(b) shows that six new surfaces, GS14 to GS19, are selected in
the second iteration. The reduced uncertainty in the second iteration, compared with the
first, demonstrates that the current strategy effectively explores the repository by adding
new data in the most uncertain regions of the parameter space. The GP model-3 is used
to test the 50 Weibull rough surfaces from the repository. Figure 3(c) shows that seven
Weibull rough surfaces, WBO01 to WBO07, with the highest prediction variance, are selected
in the third iteration. The GP model-4 is then trained with the updated DNS data and
used to test the Weibull roughness in one more iteration. As shown in figure 3(d), six
additional Weibull rough surfaces, WB08 to WB13, are selected in the fourth iteration.
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Figure 3. Uncertainty (02) for the rough surfaces in the repository normalized by the mean uncertainty of
the most updated GP model (0,2,). In the first two iterations of the GP model, only Gaussian roughness is
considered. In the third and fourth iterations, Weibull roughness is considered. (a) The first iteration using GP
model-1; (b) the second iteration using GP model-2; (c) the third iteration using GP model-3; (d) the fourth
iteration using GP model-4. The surfaces with the highest prediction variance coloured by yellow are selected
for performing DNS.

In summary, the resulting training database contains a total of 19 Gaussian and 13 Weibull
rough surfaces, which are used to conduct DNS of turbulent channel flows at six different
Re; values. As a result, the DNS roughness database includes 192 cases. The statistical
parameters of the rough surfaces in the DNS database are summarized in table 2.

Scatter plots of roughness parameters and the PDFs of roughness height are displayed in
figures 4 and 5, respectively. The results illustrate the distribution of selected roughness at
each iteration, demonstrating how the AL framework assists in exploring uncertain regions
within the input roughness feature space. The correlation coefficient between pairs of
roughness parameters is shown in figure 4. Strong correlations are observed among k./ R,
ki/R, and k,;,,5/R,. This is because all three metrics are sensitive to extreme surface
values (i.e. peaks and valleys) in the rough surfaces generated for the current roughness
repository. As extreme height variations (measured by k. and k;) increase, the overall
deviation from the mean (measured by k,,,5) also tends to increase. Exceptions to this trend
could include surfaces with isolated high peaks or deep valleys, which are not represented
in the current roughness repository.

Figure 4 also reveals strong correlations among the parameters k,,s/R, and S,
krms/Rq, and K, Sy and K,, as well as Sy and P,. For Gaussian roughness, these
correlations are less pronounced due to the parameters remaining relatively constant
with only small fluctuations. However, for Weibull roughness, the correlations become
significant, as these parameters are influenced by the shape parameter H of the Weibull
distribution: for smaller H values (H < 2), the rough surface is characterized by more
prominent peaks, resulting in larger k.5 / R, higher positive Sk, greater P, and larger K,.
Notably, ES shows weak correlation with both ks /R, and S, indicating that E'S may
be important to characterize the roughness geometry. Additionally, £S has a moderate
correlation with L.,/ R,, as high ES corresponds to short-wavelength, steep roughness,
while low ES is associated with long-wavelength, shallow roughness (Chung et al. 2021).
Overall, the high correlations among some of the roughness parameters suggest that only
areduced set may be needed as input variables for the wall model.
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Figure 4. Scatter plots of roughness parameters for the surfaces selected at each iteration in AL. The correlation
coefficient r between two parameters is shown on the top of each panel. The roughness repository is circled and
the roughness in the training set is filled. Gaussian roughness repository (red); Weibull roughness repository
(blue); initial set for AL is GSO1 to GS06 (yellow); GSO7 to GS13 at the first iteration (light red); GS14 to
GS19 at the second iteration (dark red); WBO1 to WBO07 at the third iteration (light blue); WBO0S to WB13 at
the fourth iteration (dark blue).
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Figure 5. The PDF of roughness height for rough surfaces in the roughness repository and rough surfaces

selected at different iterations in AL for (@) Gaussian roughness and (b) Weibull roughness.
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2.3. The DNS of rough-wall turbulent channel flows

The DNS of turbulent channel flows with the rough surfaces selected from §2.2 is

performed to generate the training database. The governing equations for momentum and

continuity are given by the incompressible Navier—Stokes equations,
%+8uiuj:_la_p+v a2ul~ ou;

F; — =0, 2.3
ot ax]' P 0X; 3x]'x]' + 0x; 2.3)

where u; is the ith component of the velocity (streamwise: i = 1, wall-normal: i =2,
spanwise: i =3), p denotes the pressure, p is the fluid density and v is the kinematic
viscosity of the fluid. An immersed boundary approach based on the volume-of-fluid
method is used, where the no-slip boundary condition on the rough surface is enforced by
the body force F; (Scotti 2006; Yuan & Piomelli 20145). The solver utilizes second-order
central finite differences for spatial discretization, second-order Adams—Bashforth semi-
implicit time advancement, and is parallelized using a message passing interface method
(Keating et al. 2004). The code has been extensively validated in previous investigations
of rough-wall turbulence (Yuan & Piomelli 2014b,c; Yuan & Jouybari 2018; Jouybari
et al. 2021).

Turbulent open-channel flows are simulated at six different frictional Reynolds numbers:
Re; =180, 360, 540, 720, 900, 1000. The Reynolds numbers are determined based on an
estimation of the roughness Reynolds number k" ranging from 0 to 300 for the rough
surfaces in the roughness repository. This choice of k" effectively captures the conditions
typically encountered in practical rough-wall flow scenarios, covering both transitionally
and fully rough regimes. Note that although the differences in Re; may not be highly
significant among some cases, the variation in roughness Reynolds number k;” — which
quantifies drag and differentiates roughness regimes — can still be substantial among
cases with similar Re;. A minimal-span channel simulation approach is used to enhance
computational efficiency (Jiménez & Moin 1991; Chung et al. 2015; MacDonald et al.
2017). Chung et al. (2015) and MacDonald et al. (2017) demonstrated that simulations in
a minimal-span domain can accurately capture the near-wall flow dynamics by adhering
to the domain constraints. In addition, MacDonald et al. (2017) compared DNS of open
channel flows over rough surfaces with DNS of standard-height channel flows over rough
surfaces in both full-span and minimal-span channels. Their results showed that open
channel flows have a negligible effect on the flow characteristics for both full-span and
minimal-span channels, with the primary difference occurring in the wake region. The
constraints proposed by Chung et al. (2015) and MacDonald et al. (2017) are

Ly >max(3L;, 1000v/u, Arx), 2.4
Ly >kep/0.15, (2.5)
L, > max(100v/u, ke /0.4, A7), (2.6)

where L, Ly and L, are the domain lengths in the streamwise, wall-normal and spanwise
directions, respectively; k., is the characteristic roughness height; and A, and 4,
are the streamwise and spanwise length scales of the roughness elements. The use of
minimal channels for flow over irregular roughness with a broad range of wavelengths
was investigated by Jouybari et al. (2021), who compared the minimal-span channel with
the full-span channel. Their results confirmed that the minimal-span approach remains
valid for multiscale, irregular rough surfaces. The crest roughness height k. is used as
the characteristic roughness height, and surface Taylor microscales A7, and Ar ; are
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Re; Ny x Ny x N, Ly/§xLy/s§xL;/s oxt Azt Ayt Ayh
180 400 x 300 x 160 3x1x1 1.35 1.13 0.03 1.66
360 400 x 300 x 160 3x1x1 270 225 0.05 3.33
540 400 x 300 x 160 3x1x1 405  3.38 0.08 4.99
720 400 x 300 x 160 3x1x1 540 450 0.11 6.65
900 400 x 300 x 160 3x1x1 675  5.63 0.14 8.32
1000 400 x 300 x 160 3x1x1 750  6.25 0.15 9.24

Table 3. Simulation parameters for DNS of rough-wall channel flows at different Re;. Ny, Ny, and N, are the
number of grid points in the streamwise, wall-normal, and spanwise direction, respectively, Ly, Ly, and L are
the streamwise, wall-normal, and spanwise dimensions of the computational domain, Ax™ and Az% are the
streamwise and spanwise grid resolutions, and A y;“ ., and Ayt are the minimum and maximum wall-normal
grid resolutions. Uniform grids are used in the streamwise and spanwise directions, and non-uniform grids with
a hyperbolic tangent function are used in the wall-normal direction. The number of grid points is kept constant
across Re; to resolve the roughness features and avoid interpolation between cases.

used as the streamwise and spanwise roughness length scales for multiscale random
roughness, following Jouybari et al. (2021). The surface Taylor microscale represents the
length scale of an equivalent roughness element in the context of irregular, multiscale
roughness. While other length scales may also characterize the roughness wavelength,
the surface Taylor microscale has proven suitable for meeting the constraints required in
minimal-span channels, as discussed by Jouybari ef al. (2021). The simulation domain
size is (Ly, Ly, L;) = (38, 4, §), based on the criteria for small-span channel simulations.
Periodic boundary conditions are used in the streamwise and spanwise directions, and no-
slip and symmetry boundary conditions are imposed at the bottom surfaces and the top
boundary. The grid size is determined to ensure that roughness elements are well resolved
by at least four grid points per Ar x and A7 ;, as recommended by Yuan & Piomelli (2014a).
Note that although the simulations are conducted in open channels, we still refer to § as
the channel half-height. The simulation details are shown in table 3.

As demonstrated by Chung et al. (2015) and MacDonald et al. (2017), the minimal-span
channel provides reliable results for wall friction and turbulent statistics within the region
y < 0.34. In the context of wall model development, our primary focus is on the flow close
to the wall. Therefore, the minimal-span channel approximation is sufficient to capture
the near-wall physics necessary for developing an accurate wall model, provided that the
near-wall grid size for WMLES is below 0.3§. Validation of the minimal-span approach
has been done for open channel over roughness and the results compared to a full-span
open channel are demonstrated in Appendix A.

In all simulations, mean quantities and statistics are averaged over a time period
T >206/u, after transients to achieve statistical convergence. The streamwise mean
velocity U (y) is calculated as

1
Uly)=u)= Af_T /; //A u(x,y, z, t)dxdzds, 2.7
f

where u is the instantaneous streamwise velocity, A 7 is the fluid-occupied area at each
y location, T is the total time considered, and the angle brackets denote average over
homogeneous directions and time. The streamwise mean velocity profiles are shown in
figure 6 for four selected rough surfaces. The mean wall shear stress (t,,) is computed by
integrating the time-averaged body force Fj in the streamwise direction (Yuan & Piomelli
2014b,c), and the friction velocity u; = /(ty)/p.
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Figure 6. Streamwise mean velocity profiles of selected rough surfaces: (a,b) Gaussian roughness GS01 and
GS03; (c,d) Weibull roughness WB08 and WB10. The dashed lines are U™ =y and U}t = % Iny*t +5.0.

In the logarithmic region, the streamwise mean velocity profile in smooth walls (Uy)
can be approximated by

1
UF~—Inyt +5.0, (2.8)
K

where x & 0.41 is the von Kdrman constant. For rough-wall cases, the logarithmic velocity
distribution for the mean velocity profile (U,) also holds in the fully rough regime,

1 —d
Uf~=In (y _ ) +8.5, (2.9)
K ks

where 12;“ =k, for fully rough cases (but not for transitionally rough cases), and d is
the zero-plane displacement, computed based on the location of the centroid of the wall-
normal profile of the averaged drag force (Jackson 1981). For small d, the roughness
function AU can be obtained by the difference of mean velocities in wall units between
smooth and rough walls within the logarithmic layer,

1.
AU~ —Ink} —3.5. (2.10)
K

To evaluate whether a rough-wall case is in the transitionally or fully rough regime, Igj

can be computed according to (2.10). The values of Igj for each flow case in the current
DNS database are presented in table 4. According to Flack & Schultz (2010), a flow is
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Figure 7. Roughness function AU as a function of (a) mean peak-to-valley roughness height k;” and (b)
equivalent sand-grain roughness height ;7. A total of 192 rough cases corresponding to table 4 are included in
this plot.

considered to be fully rough if /G;F > 70. Using this reference, it can be seen that the present
DNS database spans a wide range of both transitionally and fully rough regimes. The
relationship between the roughness function and roughness height is examined in figure 7
for the rough cases presented in table 4. In figure 7(a), the mean peak-to-valley roughness
height is used as the roughness scale, showing that Gaussian and Weibull rough cases
follow distinct trends. The relationship between AU and k;" has been summarized by
Chung et al. (2021), who suggested that this relationship varies for different roughness
types, making k;" a less effective scale for collapsing AU*. A better collapse is observed
using k; as the roughness scale in figure 7(b), where alignment with the reference sand-
grain roughness curve from Nikuradse (1933) indicates the fully rough regime. Note that
here, k; is obtained for each rough surface from the DNS results in the fully rough
regime based on (2.10), and k" in the transitionally rough regime is computed based
on k" = ku-/v. The results suggest that the onset of the fully rough regime occurs at
approximately k;" &~ 60 for Gaussian roughness and k;~ ~ 90 for Weibull roughness.

3. Wall model formulation

3.1. Framework of WMLES

The wall model is developed within the framework of WMLES, where only the most
energetic eddies in the outer layer of the flow are resolved by the computational grid.
The effects of the small scales far from the wall are modelled by a SGS model. Close
to the wall, the energy-containing eddies are under-resolved, and the wall-shear stress is
obtained using a wall model. The flow solver integrates the coarse-grained incompressible
Navier—Stokes equations,

— N — — SGS —
dui | Owim; _ 10p | 0w Ot T 0w 3.
ot 0x; P 0X; 0Xp X 0x; 0x;
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Case kF
- Re; =180 Re; =360 Re; =540 Re; =720 Re; =900 Re; =1000

GSO01 1.1 20.1 39.5 61.1 85.8 99.5
GS02 6.5 11.6 18.7 234 28.5 31.6
GS03 5.6 10.2 17.6 215 27.6 30.8
GS04 5.7 11.9 20.4 28.7 36.4 40.8
GS05 5.7 11.9 21.8 334 45.1 52.9
GS06 8.0 21.5 40.1 60.3 74.9 87.6
GS07 5.1 6.4 9.8 13.6 17.7 20.0
GS08 4.7 4.8 6.4 7.3 8.3 8.8
GS09 45 55 7.1 8.1 9.5 10.0
GS10 5.0 7.5 12.6 17.5 22.8 25.7
GS11 44 7.1 111 14.2 16.4 18.1
GS12 4.5 8.7 13.8 19.6 254 29.6
GS13 4.8 8.0 12.4 17.2 21.8 25.0
GS14 53 16.7 339 52.7 71.3 82.6
GS15 73 18.6 3255 49.0 65.0 76.3
GS16 10.4 17.2 29.4 41.2 53.7 55.6
GS17 79 27.0 532 80.8 107.7 122.0
GS18 4.7 13.3 244 36.1 48.6 55.8
GS19 7.6 319 61.6 92.6 125.4 144.9
WBO01 71 20.2 38.8 56.7 76.4 84.1
WB02 9.1 26.0 46.0 66.0 82.8 93.9
WBO03 6.6 15.5 28.5 42.8 54.0 60.9
WB04 6.0 14.1 28.0 427 584 65.1
WBO05 13.8 472 88.0 121.1 161.7 181.8
WB06 4.6 10.2 16.5 233 29.0 31.3
WBO07 10.9 32.7 59.0 83.5 108.8 122.7
WBO08 5.6 8.7 13.1 17.7 231 26.0
WB09 4.9 7.4 11.5 16.1 20.9 23.6
WBI10 17.6 61.0 110.3 157.3 204.4 236.5
WBI11 9.5 35.6 67.7 103.6 131.7 1521
WB12 17.8 63.1 114.3 169.6 218.1 242.1
WB13 15.0 54.3 101.5 142.1 192.3 216.1

Table 4. The roughness parameter k; at different Re, determined from the DNS results based on the
rough-wall logarithmic law.

where the overline denotes coarse-grained quantities and tiS.GS is the deviatoric part of the

SGS stress tensor. At the walls, the non-slip boundary condition is replaced by a shear
stress boundary condition, which is obtained from the wall model.

Figure 8 depicts an overview of WMLES and the BFWM-rough. The general steps to
build the wall model are as follows.

(i) First, the DNS database of minimal-span turbulent channel flows over rough surfaces,
as presented in § 2.3, is used to extract mean velocity profiles and wall shear stress
for various rough wall geometries.

(i) The inputs to the wall model are constructed as non-dimensional numbers based
on the mean velocity profile at two wall-normal locations and roughness geometric
parameters. The model is trained using mean velocities from multiple wall-normal
locations. This approach is motivated by the fact that, in WMLES, the wall-normal
location varies with different grid resolutions and flow conditions, requiring the
model to learn this variability.
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Figure 8. Overview of BFWM-rough for WMLES: for each wall face, the inputs to the wall model include
the local flow state and local roughness parameters. The flow state consists of the magnitudes of wall-parallel
velocities (11 and uy) at the centre locations of the first and second off-wall control volumes (y; and y»),
along with the kinematic viscosity v. The roughness is assumed to be SGS and known for each control volume
attached to the wall. The input roughness parameters are based on the statistical moments of the local roughness
height distribution. The output of BFWM-rough is the wall-shear stress vector t,, and the confidence score
C €10, 1]. The wall-shear stress vector is predicted with a FNN, while the confidence score is determined
using a GP model. The wall-shear stress vector from BFWM-rough is applied as the local boundary condition
to the WMLES.

(iii)) Wall roughness is assumed to be SGS, meaning that the WMLES grid does not
resolve the roughness geometric features. In cases where wall roughness is such
that k" <5, the model includes a sensor to switch back to BFWM-smooth from
Lozano-Duran & Bae (2023).

(iv) The output of BFWM-rough is the local wall-shear stress, which serves as the
boundary condition for WMLES at the wall.

(v) The relationship between inputs and outputs in BFWM-rough is modelled using feed
forward neural network (FNNs).

In the following sections, we discuss the model assumptions, the selection of input and
output variables, the architecture of FNNs, and the details of wall model training.

3.2. Wall model assumptions

We summarize the main modelling assumptions of the BEWM-rough.

(i) Building block flow assumption. A finite set of simple flows, based on minimal-
span turbulent channel flows over rough surfaces, is sufficient to formulate a
generalizable rough-wall model.

(i) Quasi-equilibrium assumption. The near-wall region of complex cases is in a quasi-
equilibrium state, i.e. statistically steady flow under mean zero-pressure-gradient
effects.

(iii) Velocity/shear-stress alignment assumption. The direction of the wall-shear stress
vector is aligned with the relative wall-parallel velocity at the first control volume
attached to the wall.

(iv) Statistical roughness description assumption. A collection of statistical parameters
of the rough surface, such as the mean and root-mean-square roughness heights,

1007 A17-18


https://doi.org/10.1017/jfm.2025.29

https://doi.org/10.1017/jfm.2025.29 Published online by Cambridge University Press

Journal of Fluid Mechanics

along with high-order moments of height fluctuations (see table 1), are sufficient to
describe the geometrical effects of the surface topology on the wall shear stress.

(v) Space/time locality assumption. The relative wall-parallel velocity from the first
two contiguous wall-normal control volumes above the wall, combined with (iv),
provides enough information to predict the wall shear stress.

(vi) Subgrid-scale roughness assumption and outer-layer similarity. The roughness
effects on the flow are assumed to be SGS and the only impact of roughness on
the resolved scales is through the wall shear stress.

(vii) Viscous scaling assumption. The best-performing non-dimensional form of the
velocity inputs and the model output is obtained by scaling the variables using the
kinematic viscosity and wall-normal distance.

(viii) Mean-flow training data assumption. Inputs and outputs samples based on mean
velocity profiles and mean wall-shear stress are suitable for training accurate wall
models.

Assumptions (i) and (ii) justify the use of the current DNS training database, which
targets equilibrium turbulent flows over rough surfaces. Therefore, the application of the
BFWM-rough to complex geometries presupposes that the near-wall flow field maintains
quasi-equilibrium conditions. Assumptions (iii), (iv) and (v) are adopted primarily for
the sake of model simplicity. Incorporating flow information from farther away from the
wall could potentially enhance the accuracy of the model, especially for rough surfaces
with larger roughness heights. However, this would also increase the complexity of the
model when dealing with unstructured grids in realistic geometries. Similarly, the use
of roughness statistics instead of detailed local topography simplifies the model, akin to
the use of k, in other approaches. Assumption (vi) is supported by previous observations
from the literature (Raupach et al. 1991) and by the Townsend’s outer-layer similarity
hypothesis (Townsend 1976), which has been confirmed by multiple studies (Flack et al.
2005; Flores & Jimenez 2006; Leonardi & Castro 2010; Mizuno & Jiménez 2013; Chung
et al. 2014; Chan et al. 2015; Lozano-Durdn & Bae 2019a). The viscous scaling from
assumption (vii) is appropriate for the flow scenarios addressed in this study but may
become inaccurate under conditions with significant pressure gradients or compressibility
effects. The rationale behind assumption (viii) is that the fluctuations of the flow are less
critical compared with the mean quantities for predicting the mean wall shear stress.
Consequently, the training dataset relies on average flow values from DNS, with added
Gaussian noise to improve the robustness of the model.

3.3. Input and output variables

The goal of this section is to select the non-dimensional input variables for the wall
model that are most informative for predicting the wall shear stress across the entire
training dataset. The input variables include both flow variables and roughness topography
parameters. The variables y; and y, denote the wall-normal distances to the centres of the
first and second control volumes off the wall, respectively (as shown in figure 8), and are
related to the WMLES grid resolution by y; & A /2. The magnitudes of the corresponding
wall-parallel velocities relative to the wall at y; and y, are u; = (u; (y1)2 + wg (yl)z)l/ z
and u» = (uy (y2)2 + wg (yz)z)l/z, where u; and w, are samples generated as detailed
below. Three different grid resolutions, A/§=1/20, 1/10, 1/5, are included in the
generation of data for the input and output variables. The grid resolutions correspond to the
condition where the first off-wall grid point lies within the buffer layer or the logarithmic
layer, which aligns with typical grid resolutions in WMLES for engineering applications.
The candidate input variables considered can be organized into five categories:
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1) roughness parameters,

k ke ke k L.
avgv _(” _[7 ﬂ’Sk’ KM7ES7 PO! 17 ﬂ9/lf; (3'2)
R, R, R, R, Rq
2) products of roughness parameters,
ES?, S2, ESSi, ESK,; (3.3)

3) roughness height scaled by yq,
kavg ke ﬁ kyms M

3.4)

’ ’

yioonoy oy R
4) products of non-dimensional roughness parameters and roughness height scaled by yj,

Skkavg Kukavg ESkavg Pokavg ]kavg

, , , , , 3.5)
)1 V1 b)) i i
Skkrms , Kukrms , ESkrms , Pokrms , Ikrms ’ (35)
y1 V1 Y1 Y1 V1
5) local Reynolds number at y; and y»,
Uiyl ’ M2y2‘ (3.6)

v v

The samples for u(y;) and w(y;) are generated based on a Gaussian distribution N[, 2]
with mean pu and variance o~ as

us 00 ~ N[V ks 00] . wi) ~N [ WO wl ] 3D

where U (y;) and W(y;) are the DNS streamwise and spanwise mean velocities, and
Urms (¥i) and wy,s(y;) are the DNS root-mean-squared streamwise and spanwise velocity
fluctuations at y; (with i =1, 2). Products of roughness parameters are also included
in categories 2) and 4) as inputs to facilitate model training. Although the FNN
can uncover nonlinear relationships between inputs and outputs, it was observed that
incorporating quadratic relationships between roughness parameters enabled the training
of higher-performing models with less data.
The non-dimensional output of the wall model is

7, = Jws (3.8)

vuq

where the scaling factor vu;/y; represents the naive estimation of the wall shear stress
using finite differences. The values of 7,, s are generated based on a Gaussian distribution
Tw.s ~ N[(tw), r,%’rms], where (t,,) is the mean wall-shear stress calculated from DNS,
and Ty ,ms is computed based on the correlation 7y yms/{Tw) =0.298 + 0.018 In Re,
(Orlii & Schlatter 2011). As discussed in § 3.2, the main goal of the current wall model
is to correctly predict mean flow quantities. It was found that this approach facilitates
the training of more robust models than the use of actual instantaneous DNS values for
velocities and wall shear stress.

We aim to select the best-performing input variables from all the candidates defined
above. To that end, we use the ‘minimum redundancy maximum relevance’ (MRMR)
algorithm to aid the finding of the optimal set of the input features (Ding & Peng 2005;
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Peng et al. 2005). The MRMR algorithm is designed to rank input variables by considering
both their relevance to the output and their redundancy with respect to each other. This
helps improve the accuracy of the model and reduce overfitting by eliminating unnecessary
inputs. Here, we use the MRMR algorithm to determine the order in which input features
will be tested when training candidate models in the following section.

The relevance and redundancy are computed using mutual information, which measures
the amount of information shared between variables. The mutual information / between a
pair of random variables (¢, V) is defined as

PDF(¢,¥)

1, ¥) = // PDF@. ) loz( s T dody. (3.9)

where PDF (¢, ) is the joint PDF of ¢ and v, and PDF(¢) and PDF () are
the marginal PDFs of ¢ and v, respectively. The MRMR algorithm ranks features by
evaluating the importance score (also known as ‘mutual information quotient’) of an

input ¢;p,

MIQ, =-2n (3.10)

where Vy, is the relevance of the input feature ¢;, with respect to the output variable ¢y,

Vi, = 1 (@in, dour) (3.11)

and Wy, is the redundancy of the input feature ¢;, with respect to the rest of input features

Win,

1
Woi, = < I (in, Vin), (3.12)
|S| Wines

where |S| is the number of features in the set of the input variables S maximizing M1 Q. .
Higher relevance indicates a stronger association with the output, while lower redundancy
implies less similarity between inputs.

We use MRMR to identify a subset of input variables that collectively maximize
relevance to the target while minimizing redundancy among the selected inputs. Table 5
displays the sequence of the candidate input features informed by the MRMR importance
scores in descending order, with the top-ranked inputs being the most informative for
predicting the output. The results in table 5 suggests that the local Reynolds numbers,
u1y1/v and uny»/v, along with the roughness features k;,,,s/R, and E $2, contain the
most relevant information for the wall model. It is interesting that the ranking does not
prioritize Si, which has traditionally been a key ingredient in models and correlations for
predicting k. However, as shown in figure 4, Sy is strongly correlated with k., / R, in the
present roughness database, where k5 / R, is the second most important input feature in
the ranking. Thus, the effect of Sy is effectively accounted for by including &5/ Ry,

3.4. Wall model training

The order of inputs provided by the ranking in table 5 is used in this section to determine
the number of model inputs. An FNN is used to parameterize the relationship between
inputs and outputs. The layers are connected using hyperbolic tangent sigmoid transfer
functions as the activation function except for the last layer, which is connected with
rectified linear units. The training algorithm utilized is gradient descent with momentum
and adaptive learning rate backpropagation (Yu & Liu 2002). A total of 192 cases of
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Sequence 1 2 3 4 5 6 7 8 9 10 11
ury Krms 2 uy. ke Kukrms ki Pokyms
Input feature L #e ES =R n P, ES s Y - Lakems

Sequence 12 13 14 15 16 17 18 19 20 21 22

Kukavg  kpms Pokavg  Leor kuvg Y1 E Skqyg kavg Ikavg
Input feature o o ESSk 5 7 ¥ ESK, 7 i 7. o

Sequence 23 24 25 26 27 28 29 30 31 32

ke k. Tkyms — Skkrms — Skkavg 2 ESkyms
Input feature Ry Ku St L= Vi Vi S v

Table 5. Ranking of candidate input variables for the wall model according to MRMR importance score in
descending order.

kavg/A kL/A kl/A krms/A Ra/A
0.06~2.1 0.38~3.55 0.35~3.49 0.04~0.56 0.03~0.47

Table 6. Range of applicability for BFEWM-rough for SGS roughness: ratio of roughness height parameters to
the grid size of the training dataset.

turbulent channel flows are randomly divided into training dataset (70 % of the total),
validation dataset (15 % of the total) and testing dataset (15 % of the total). The training
dataset is used to develop a candidate BFWM-rough model; the validation dataset, while
not used for parameter estimation, provides the stopping criterion during training to
prevent overfitting and enhance the generalizability of the model. The model architecture
—including the number of hidden layers and neurons — and hyperparameters are optimized
based on performance metrics from the validation dataset. The testing dataset, not involved
in the training process, serves as an independent set of cases to assess the performance of
BFWM-rough on untrained scenarios.

To find the best-performing model, different numbers of input features are tested
according to the order presented in table 5. Note that this ranking is key to limit the
number of possible input combinations. For each number of inputs, 100 random splits
of the training, validation and testing datasets are conducted. For each split, the optimal
number of hidden layers and neurons per layer is determined through a grid search. The
number of hidden layers and neurons per layer considered in the grid search ranges from
3 to 6 and from 5 to 20, respectively. The optimal model for each combination of inputs is
then determined based on the minimum L;-norm error over the entire training, validation
and testing datasets from the 100 random splits. A total of 8000 central processing unit
hours were taken to obtain the optimal wall model.

The errors for different candidate wall models are plotted against the number of inputs
in figure 9. The results show that the wall model requires at least five non-dimensional
inputs to achieve errors below 10 %. A less significant reduction in error, from 8 % to
4.6 %, is observed with a higher number of inputs after the fifth ranked input. As an
interesting observation, it was not possible to train wall models with errors below 10 %
without including roughness parameters non-dimensionalized by the grid size.

According to the Buckingham-m theorem (Buckingham 1914), the number of
dimensionless numbers (7 terms) required to uniquely determine the wall shear stress
in the rough-wall channel simulations equals the total number of parameters needed
to set up the cases minus the independent fundamental units. In this study, there are
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Figure 9. Apriori Ly-norm error in the prediction of 7,, as function of the number of input features as ranked
in table 5. The inset shows the errors when the number of inputs ranges from 5 to 32.
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Figure 10. Scatter plot of regression results of actual 7,, and predicted 7,, for BFWM-rough. The results are
plotted for three grid resolutions: (a) A/ =1/20; (b) A/5§=1/10; (c) A/s =1/5.

seven parameters: U, (mean centreline velocity), 8, v, kypms, H, Hy and «o. The number
of fundamental units is two (length and time). Therefore, a total of five dimensionless
numbers is required to completely specify the case, and hence the wall shear stress. This
implies that any model aiming to accurately predict the wall shear stress is expected
to require five non-dimensional inputs. This might explain why the model error drops
significantly after five inputs. In practice, the non-dimensional inputs available to the wall
model do not include global parameters of the case (such as U, and §). Instead, local
quantities are used as proxies. For that reason, adding more inputs can still inform the
model predictions.

Based on the results shown in figure 9, the model with 23 inputs is selected as the
BFWM-rough model. This model was chosen because it has the minimum number of
inputs while maintaining an L;-norm error below 5 %. The corresponding FNN comprises
five hidden layers with 15 neurons per layer. The L;-norm error for BFWM-rough is
4.76 % across all datasets. As an example, regression results for three different grid reso-
lutions are illustrated in figure 10. It is also useful to evaluate the range of applicability of
BFWM-rough in terms of typical roughness heights relative to the WMLES grid
resolution. The ratio of roughness height parameters in the training database to the training
grid size is summarized in table 6. The BEFEWM-rough covers a peak-to-valley roughness
height k. from 0.38A to 3.55A, and a root-mean-square roughness height k., from 0.04A
to 0.56A. In WMLES scenarios characterized by higher ratios (i.e. finer grid resolutions
relative to typical roughness element sizes) it may be more accurate to geometrically
resolve the roughness with the WMLES mesh and use a wall model for smooth surfaces.
The aposteriori performance of BFWM-rough is assessed in actual WMLES in § 4.
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3.5. Confidence score

A GP model, similar to the one introduced for AL in § 2.2, is used to calculate a
confidence score for the roughness topology. The main objective is to identify potential
deficiencies in the BFWM-rough when applied to surfaces with roughness features that
differ significantly from those in the training dataset. The GP model is trained on all
cases considered for BFWM-rough, but it only utilizes the non-dimensional roughness
parameters as inputs. The confidence score is defined as C =min{a,2r /o2, 1}, where
2 is the mean prediction variance of the GP model over the training dataset, and
o2 is the predictive variance of the case for which the confidence is computed. Note
that the confidence score provides an assessment only of the roughness geometry and
does not account for the flow conditions. When o2 ~ o2, then C ~ 1 and confidence
in the roughness geometry is high. This indicates that the geometric properties of the
roughness considered are similar to those the BFEWM-rough was trained on. Conversely,
large uncertainty in the roughness surface properties will increase o2, thereby lowering
the confidence score C < 1. In those cases, the prediction from BFWM-rough might be
subject to significant errors.

o

4. Model evaluation

We evaluate the performance of the BFWM-rough across different cases. The testing
cases include 556 turbulent channel flows over different rough surfaces. The model is
also assessed in a turbulent flow over a HPT blade with two different surface roughnesses.

Two sources of errors can be identified in the evaluation of a wall model (Lozano-Durin
et al. 2022): errors from the outer LES input data, referred to as external wall-modelling
errors, and errors from the wall model physical assumptions, referred to as internal wall-
modelling errors. In the former, errors from the SGS model at the matching locations
propagate to the value of t,, predicted by the wall model. These errors can be labelled as
external to the wall model inasmuch as they are present even if the wall model provides
an exact physical representation of the near-wall region. The second source of errors
represents the intrinsic wall-model limitations: even in the presence of exact values for the
input data, the prediction might be inaccurate when the physical assumptions the model
is rooted in do not hold. In BFWM-rough, internal errors may come from the breakdown
of the assumptions discussed in § 3.2 (e.g. lack of quasi-equilibrium conditions, non-local
effects, untrained roughness topologies, etc.). The combined external plus internal error
is referred to as total error. In the following, we use apriori testing to assess the internal
errors of BFWM-rough and aposteriori testing to evaluate the total errors.

Apriori performance is assessed by the relative error in the BFWM-rough model
output when the input is generated from DNS data. The model was implemented in
actual WMLES to perform aposteriori testing. For turbulent channel flows, WMLES with
BFWM-rough was conducted using our in-house code (Bae et al. 2019; Lozano-Durin
& Bae 2019a,b). For HPT blade simulation with wall roughness, the BFWM-rough was
implemented into the high-fidelity solver charLES, developed by Cascade Technologies,
Inc (Bres et al. 2018; Fu et al. 2021).

4.1. Comparison with existing rough-wall models

The performance of BFWM-rough is compared with existing models in the literature
through apriori testing. Five models are considered, and their functional forms are
summarized in table 7. Note that previous models predict either the roughness function
AU or the equivalent sand-grain roughness height k", whereas BFEWM-rough predicts
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Model form Reference
2. 73k,+ms(2 + 85070 8 <0
kf 2.11k), ., Sk =0 Flack et al. (2020)
2.48k} (1 + Sp)>24, Sk >0
4.0k (140.1780)%, Sk <0 .
+ rms =X
ki = {2 48kr+ms(1 n Sk)2 245 50 Kuwata & Kawaguchi (2019)
AU = LIn(RH) + 1.12ES + 1.47 Chan et al. (2015)
AU = ln(ESk,‘ng) +3.5 De Marchis et al. (2020)
AUt = c,ln(czk,tm ES)[(c3 — Dtanh(caSg) + 1]e~sES®, Bornhoft ez al. (2024)

c1 =3.026, ¢ =3.444, c3 =28.56, c4 =0.0031, c5s = 0353 ce = 0.894.

Table 7. Models considered for comparison with the BFEWM-rough.

the wall shear stress. We use AU™ to enable comparisons across different models
For models based on correlations for k", the predicted roughness function AUT pred is

computed based on (2.10). For BFEWM-rough, AU ' pred is computed according to the

equation AUT = U™ — U™ in the logarithmic layer (Flack & Schultz 2010). This equation
can be rewritten in the followmg formulation to relate AU with the predicted wall-shear
stress from BFWM-rough:

+ gt Tw,s Ur

AU, eq = Us <1 /Tw,r Us> , 4.1)
where 1, , is the predicted wall-shear stress from BFWM-rough, 7, 5 is the wall-shear
stress from the DNS of smooth-wall channel flow, and Uy and U, are obtained from the
mean velocity profiles of DNS for smooth- and rough-wall channel flows, respectively.
The equation assumes that U S+ , Tw,s and U, are the true values obtained from DNS, while
Ty,r 1s derived from the model prediction. This establishes an apriori relationship between
Ty, and AUT.

The performance of different models for Gaussian and Weibull roughness is shown
in figure 11. The correlation proposed by Flack et al. (2020) provides good predictions
for Gaussian roughness with high E£S and Weibull roughness with low Si, as shown in
figure 11(a). This aligns with the assertion from Flack et al. (2020) that this correlation
does not adequately capture wavy surfaces with low ES or surfaces with high positive
skewness. A similar correlation proposed by Kuwata & Kawaguchi (2019) improves
predictions for Gaussian roughness with negative S; (figure 11b), although it still
overestimates most Weibull roughness with high S. This may be due to the fact that the
correlation was developed for rough surfaces with moderate skewness (—1 < S; < 1). The
correlation proposed by Chan et al. (2015) (figure 11¢) provides accurate predictions for
Weibull roughness with positive S; but overpredicts drag for both Gaussian roughness
and Weibull roughness with negative S;. De Marchis et al. (2020) found a linear-log
correlation between AU and ES -k, which overestimates Gaussian roughness and
Weibull roughness with negative Sy while underpredicting Weibull roughness with high
positive Sk, as shown in figure 11(d). Figure 11(e) displays results from a correlation with
a more comprehensive treatment of roughness parameters, proposed by Bornhoft er al.
(2024). This model offers improved predictions compared with the previously discussed
models; however, it still overpredicts Gaussian roughness and shows significant errors
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Figure 11. Comparison with rough-wall models from table 7 on the overall 192 rough cases in § 3.4: (a) model
for k;~ from Flack ez al. (2020); (b) model for k;~ from Kuwata & Kawaguchi (2019); (c) model for AU™ from
Chan et al. (2015); (d) model for AUT from De Marchis et al. (2020); (¢) model for AU from Bornhoft
et al. (2024); (f) results from the BFWM-rough. Here red circle, Gaussian roughness; blue cross, Weibull
roughness.

for certain Weibull roughness profiles. Finally, results for BFWM-rough are shown in
figure 11(f), where it provides the most accurate predictions for both training and testing
rough cases. For fairness, it should be noted that our model achieves the highest accuracy
partly because it was specifically trained on Gaussian and Weibull roughness. However, it
is also worth emphasizing that BFWM-rough can be retrained with an expanded roughness
database using the workflow outlined in this study.

4.2. Rough-wall turbulent channel flow

The performance of BFWM-rough is evaluated first in WMLES of turbulent channel flows.
The WMLES equations are solved using staggered second-order finite differences and a
fractional-step method with a third-order Runge—Kutta time advancement scheme (Bae
et al. 2019; Lozano-Durén & Bae 2019a,b). The dynamic Smagorinsky model (Germano
et al. 1991; Lilly 1992) is used as the SGS model. The simulations are conducted by
fixing the Reynolds number based on the mean centreline velocity, Re, = U.§/v. The
streamwise, wall-normal and spanwise lengths of the computational domain are 274, 28
and 7 §, respectively. Six grid resolutions are considered, all of them with equal grid size in
each spatial direction: A/§ =1/5,1/8, 1/10, 1/15, 1/20 and 1/30. The simulations were
carried out for 30 eddy turnover times after transients.

Hereafter, we use the term ‘untrained’ (or testing) to indicate that the model was
never trained for that particular rough surface, rough Reynolds number (k;") and/or grid
resolution. The term ‘trained’ is used when the model was explicitly trained for that
condition. The four categories of cases examined are as follows:
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Case Re; ki

g A-priori error of T, A-posteriori error of T,

Training grid A/6  Testing grid A/§ Training grid A/8 Testing grid A/

120 /10 1/5 115 18 130 120 1/10 1/5 1/15 18 1/30
WBI3 720 142.1 —2.42 548 452 150 241 3441-1705 -738 —-738 —12.5 —6.76—-23.56
WB06 360 10.2 —0.51-2.99 —11.76 —9.53 —0.03 —26.45 255 7.64 1710 141 11.47 —10.06
GS03 720 21.5 0.75 456 117 006 451 684 —414 468 977 —-1.02 6.72-11.00
WBO05 360 32.7 1.60-240 —5.92-341 —-3.82 13.49 —833 264 1199 —4.67 8.33-16.46
GS14 540 339 197-1.85 -231 827 553 -5.65 —0.77 1095 1611 516 13.84 —9.09
GS18 1000 55.8 4.95 261 723-0.11 —6.34 1042 234 13.04 1242 7.04 1511 —-5.59

Table 8. Relative errors (in %) of 7, for the trained Gaussian/Weibull rough surfaces at trained/untrained grid
resolutions and untrained Reynolds numbers. Note that these cases are from the testing dataset in § 3.4. The
relative error is computed based on the predicted value from the BFWM-rough and the actual value from DNS
in turbulent channel flows. The table shows case name, Re;, and IGj'

(1) trained Gaussian/Weibull rough surfaces;
(i1) untrained Gaussian/Weibull rough surfaces;
(iii) untrained bimodal Gaussian rough surfaces;
(iv) untrained ellipsoidal, sinusoidal, Fourier-mode and sand-grain rough surfaces from
Jouybari et al. (2021).

Cases in (i), (ii) and (iii) are evaluated at untrained grid resolutions and untrained kj,
whereas cases in (iv) are only conducted for untrained ks+.

4.2.1. Trained Gaussian/Weibull rough surfaces

Six cases from the testing datasets in § 3.4, spanning both fully and transitionally
rough regimes, are selected for evaluation: WB13-Re; =720, WB06-Re, = 360, GS03-
Rer =720, WB05-Re; =360, GS14-Re; = 540 and GS18-Re, = 1000. Note that the six
rough surfaces are seen during the training process, however, they are evaluated at un-
trained rough Reynolds numbers. The cases are also examined for three training grid sizes
(A/6=1/20,1/10,1/5) and three testing grid sizes (A/8 =1/30, 1/15, 1/8). The grid
sizes A/6=1/15 and A/§ =1/8 fall within the range of the training grids, while
A/ =1/30 is outside this range.

The apriori and aposteriori errors for the predicted wall shear stress are listed in table 8.
The apriori mean error is 6 % with a standard deviation of 7 %. The errors range from
0% to 30 %, with the latter occurring for rough surfaces with Weibull distributions at
the finest grid resolution considered (A/§ = 1/30). This discrepancy could be attributed
to two factors. First, the characterization of Weibull surfaces requires more parameters
than Gaussian roughness, complicating predictions due to the increased dimensionality
of the input space. Second, the finest grid resolution falls outside the bounds of the
training set. These factors combined make Weibull surfaces at fine grid resolutions more
susceptible to inaccurate results due to model extrapolation. The mean aposteriori error is
9 %, with a standard deviation of 5 %. In some instances, aposteriori errors are lower than
apriori errors. However, this apparent improvement is due to error cancellation arising
from external errors in the SGS model.

The streamwise mean velocity profiles from WMLES are plotted and compared with
DNS results in figure 12. To facilitate the visualization of near-wall errors from WMLES,
the mean velocity U is normalized by U, instead of u,. The wall-normal distance
is non-dimensionalized by (y —d)/§. Three grid resolutions are shown: A/§ =1/20,
A/§=1/15and A/ =1/30. The agreement between DNS and WMLES is within 5 %,
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Figure 12. Mean velocity profiles for DNS (line) and WMLES (symbols) of turbulent channel flows for
selected test cases: (@) WB13 at Re; =720; (b) WB06 at Re; =360; (¢) GS03 at Re; = 720; (d) WBOS5 at
Rer =360; (e) GS14 at Re, =540; (f) GS18 at Re; = 1000. The roughness geometries are visualized with
a section of § in x and 0.58 in z. Three grid resolutions are visualized: A/8 =1/20 (o); A/§=1/15 (+);
A8 =1/30 (x).

demonstrating the capability of BFEWM-rough in predicting the mean velocity profiles for
both fully and transitionally rough cases. It is important to note that the SGS model plays a
crucial role in predicting the mean velocity profile. Therefore, most of the errors observed
in figure 12 are likely dominated by deficiencies in the SGS model rather than internal
errors from BFWM-rough.

4.2.2. Untrained Gaussian/Weibull rough surfaces

We evaluate BFWM-rough on surfaces from the roughness repository whose geometrical
features are not included in the training process. Additionally, these cases contain
untrained k; and are assessed in untrained grid resolutions. To identify the most
challenging cases, we use the confidence score C introduced in § 3.5 to select rough
surfaces with the lowest confidence for evaluation. Figure 13 displays the confidence
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Figure 13. Confidence score for each surface in the roughness repository. Surface indices 1-50 are Gaussian
roughness, and surface indices 51-100 are Weibull roughness. The training cases are coloured in green. The
four cases with the smallest C (coloured in red) are selected for evaluation of BEWM-rough.
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Case kavg ke ki krms  Ra Sk K, ES 1 P, Ay Leor

WB14 0.026 0.128 0.122 0.013 0.010 1.510 6.593 0.308 —0.012 0.798 0.172 0.064
WB15 0.031 0.140 0.119 0.013 0.010 1.227 5.402 0.336 0.005 0.779 0.144 0.060
WB16 0.040 0.184 0.162 0.019 0.014 1.384 6.008 0.289 0.063 0.786 0.201 0.105
WB17 0.028 0.109 0.089 0.011 0.009 0.952 4.495 0.327 0.012 0.748 0.177 0.061
BMO1 0.047 0.151 0.139 0.022 0.018 0.597 3.007 0.574 —0.001 0.693 0.264 0.064
BMO02 0.046 0.136 0.132 0.020 0.016 0.468 2.804 0.547 0.008 0.666 0.264 0.067
BMO03 0.039 0.109 0.105 0.017 0.014 0.516 2.810 0.617 —0.014 0.646 0.298 0.058
BMO04 0.084 0.123 0.122 0.018 0.014 —0.530 2.814 0.635 —0.028 0.315 0.276 0.055

Table 9. Roughness parameters of Weibull and Bimodal rough surfaces for model evaluation.

scores for each surface in the roughness repository. As expected, the confidence levels
for all training cases (coloured in green) are around 100 %. The confidence scores for
the untrained rough surfaces range from 45 % to 90 %. The four cases with the lowest
C scores (WB14, WB15, WB16 and WB17, coloured in red) are selected for evaluation
of BFWM-rough. The geometrical parameters of these four surfaces are summarized in
table 9.

The errors in 7, are shown in figures 14 and 15 for both apriori and aposteriori
testing across different training and testing grid resolutions. The streamwise mean velocity
profiles from WMLES are plotted in figure 16 and compared with those from DNS for
some selected cases. We should note that these selected untrained rough surfaces are
the most challenging test cases with the least confidence scores. Generally, in apriori
testing, BFWM-rough tends to overpredict drag in the transitionally rough regime and
underpredict drag in the fully rough regime. However, this pattern is not always seen
in aposteriori testing due to possible error cancellation. Both apriori and aposteriori
errors decrease with increasing k" in the transitionally rough regime and stabilize in the
fully rough regime. The BFWM-rough exhibits apriori errors ranging from —20 % to
40 % across the training grids, and errors within 25 % in aposteriori testing due to
error cancellation. As summarized in table 10, the mean and standard deviation of drag
prediction errors on Weibull roughness are within 8 % and 10 %, respectively. In the
transitionally rough regime, the mean prediction error is smaller than in the fully rough
regime, but the standard deviation is larger. The error variation in aposteriori testing shows
a similar trend with increasing k;", with values generally lower than in apriori testing. The

1007 A17-29


https://doi.org/10.1017/jfm.2025.29

https://doi.org/10.1017/jfm.2025.29 Published online by Cambridge University Press

R. Ma and A. Lozano-Durdn

A=1/200 A=1/100
0.4

0.4

——
——

- 02 0.2
o
=
m
0rF-5 0
-0.2 . —0.2
0 100 200 0 100 200

A=1/1506

Error

o 100 200

Figure 14. Apriori error variation of wall-shear stress against k. Untrained Weibull and Bimodal rough
surfaces are tested for Re; = 180, 360, 540, 720, 900 and 1000 with trained and untrained grid resolutions,
as shown by the symbols with increasing k. The error is given as a fraction. Note that these selected untrained
rough surfaces are the most challenging test cases with the least confidence scores.
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Figure 15. Aposteriori error variation of wall-shear stress against ;. Untrained Weibull and Bimodal rough
surfaces are tested in WMLES of turbulent channel flow at Re; = 180, 360, 540, 720, 900 and 1000 with
trained and untrained grid resolutions, as shown by the symbols with increasing k. The error is given as
a fraction, and the legend is the same as figure 14.
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Figure 16. Mean velocity profiles for DNS (line) and WMLES (symbols) of turbulent channel flows at
Re; = 1000 with test Weibull surfaces: (@) WB14; (b) WB15; (c) WB16; (d) WB17. The roughness geometries
are visualized with a section of § in x and 0.58 in z. Three grid resolutions are visualized: A/§ =1/20 (o);
AJS=1/15(H); A/5 =1/30 (x).

Test untrained roughness A priori error of Ty, A posteriori error of T,
Transitionally Fully Transitionally Fully
Merr Oerr Merr Oerr Merr Oerr Merr Oerr
Weibull 44 10.4 —7.7 5.0 1.2 7.8 —6.5 39
Bimodal 17.1 13.8 —2.6 7.9 4.5 8.0 -85 3.1

Table 10. Model evaluation in the transitionally and fully rough regimes, demonstrated by the mean and
standard deviation (in %) of the errors in the testing untrained Weibull and Bimodal rough cases (crossing
different Re, with training and testing grids).

best predictions are achieved for WB17, with errors mostly under 10 % in both apriori and
aposteriori testing across all grid resolutions. In contrast, WB16 shows the largest errors,
likely due to its high &;,,,s and large correlation wavelength (small ES), which fall outside
the characteristics of Weibull rough cases in the training database.

4.2.3. Untrained bimodal Gaussian rough surfaces

In this section, BFWM-rough is evaluated on rough surfaces with a bimodal Gaussian
distribution. The goal is to assess the performance of BFWM-rough on a new roughness
type that shares some similarities with the surfaces included in the roughness repository
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Figure 17. Confidence scores for 23 bimodal rough surfaces not included in the roughness repository. The
four cases with the smallest C (coloured in red) are selected for evaluation of BEFWM-rough.

but does not follow the same generation process. The selection of bimodal Gaussian
roughness is motivated by the presence of engineering surfaces, which are frequently
generated by successive processes or multiple factors. This introduces two or more
different modal roughness distributions into the final surface (Peng & Bhushan 2000).
One example of a bimodal roughness distribution is observed in ice accretion on airfoils
(Bornhoft et al. 2022). The bimodal Gaussian distributions are constructed by combining
two Gaussian distributions according to (Peng & Bhushan 2000)

PDF p(k)=PDF(k; 0, 1)+ PDF(k: ug. 0)—PDF(k: 0, ) PDFg(k: pg. o3).

_ ~ “4.2)
where PDF g(k) is the PDF of the bimodal distribution, PDF¢(k; 0, 1) is a normal
distribution and PDF g (k; g, 0(2;) is the Gaussian distribution with randomized mean

0 < ug < 0.5 and randomized variance 0 < oé < 0.5. The power spectra is specified in
the same way as described in § 2.1. The resulting surface map is then scaled from 0 to
the root mean square height normalized by the channel half-height ;5 /5, whose values
are randomly chosen in the range of 0.005 < k;.,,5 /8 < 0.030. A total of 23 bimodal rough
surfaces are generated. Their confidence scores, shown in figure 17, are approximately
50 %. The most challenging surfaces for evaluation are identified as those with the
lowest confidence score: BMO1, BM02, BM03 and BM04 (where BM refers to bimodal
roughness). Their roughness parameters are listed in table 9.

The performance of BFWM-rough for BM0O1, BM02, BM03 and BM04 is shown
in figures 14 and 15. Similar error variations as Weibull roughness are observed with
increasing k. Table 10 shows that the mean and standard deviation of errors for Bimodal
roughness are larger than Weibull in the transitionally rough regime, but comparable to
Weibull in the fully rough regime. It is also worth noting that for both Weibull and Bimodal
roughness, the errors are generally smaller in aposteriori testing than apriori testing due
to the internal and external error cancellation. Despite the mean errors being larger than in
the previous sections, the results still demonstrate that BFWM-rough can offer reasonable
predictions for new roughness types as long as these follow similar distributions to those it
was trained for. The largest errors are obtained for BMO04. The primary distinction between
BMO04 and the other three surfaces, as well as surfaces in the training database, is the
combination of large negative Sy and large effective slopes for BM04. These roughness
features can lead to less drag; however, since the training database lacks this information,
the wall model results in an overestimation of the wall shear stress for BM04. The mean
velocity profiles of WMLES compared with DNS are shown in figure 18. The improved
agreement with the DNS results for BM04 at the grid resolutions of A/§ =1/20 and
A /8 =1/30 1is due to error cancellation in aposteriori evaluation.
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Figure 18. Mean velocity profiles for DNS (line) and WMLES (symbols) of turbulent channel flows at
Re; = 1000 with bimodal surfaces: (a) BMO01; (b) BM02; (¢) BMO03; (d) BM04. The roughness geometries
are visualized with a section of § in x and 0.58 in z. Three grid resolutions are visualized: A/§ =1/20 (o);
A/§=1/15(4); A/6=1/30 (x).

4.2.4. Untrained rough surfaces from Jouybari et al. (2021)

The final cases analysed are the roughness types from Jouybari et al. (2021). The goal is to
assess the performance of BFWM-rough on surfaces with topologies significantly different
from the roughness repository used for training. A total of 42 rough surfaces are evaluated
(labelled from CO1 to C42), including 27 fully rough and 15 transitionally rough cases.
The cases comprise ellipsoidal, sinusoidal, Fourier-mode and sand-grain roughnesses. The
topology of some of the surfaces is shown in figure 19. The exact 7, for all 42 rough cases
is obtained from the DNS of turbulent channel flows at Re; = 1000 as reported by Jouybari
et al. (2021).

The confidence score for each surface is presented in figure 19(a). Overall, the results
demonstrate the capability of the confidence score to identify untrained surfaces. The
confidence levels range from 0.35 to 0.45, which are lower than those for the previous
test cases involving untrained Weibull and Bimodal roughnesses. The highest confidence
scores are found for cases C31 to C42, which correspond to sand-grain roughness and
surfaces generated by low-order Fourier modes. These cases share more similarities with
the isotropic roughness in the training dataset, explaining their higher confidence scores.
The lowest confidence is observed for ellipsoidal roughness (CO1 to C24) and roughness
with streamwise sinusoidal waves (C25 to C30). This is expected, as the ellipsoidal
elements are generated with varying orientations and semiaxis lengths, and the sinusoidal
rough surfaces feature only streamwise waves. Both of these roughness types represent
strongly anisotropic roughness, differing significantly from the surfaces in the training
database.
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Figure 19. (a) Confidence score for each rough surface and (b) apriori relative error (in %) of predicted 7,
using the BFWM-rough and actual 7,, from DNS of Jouybari et al. (2021). The cases with the model error
within £30 % are highlighted in yellow in (@). The dashed lines in (b) denote the error values at +30 %.
Roughness index 1-42 corresponds to Cases C01-C42 in Jouybari ef al. (2021). The topology of some of the
surfaces is visualized on the right-hand side: ellipsoidal roughness, CO4 and C21; surfaces with sinusoidal
waves, C29 and C30; roughness generated by Fourier modes, C34 and C39; sandgrain roughness, C31 and
C37.

Index of roughness in Jouybari et al. (2021)

Apriori relative errors for 7y, are plotted in figure 19(b). The grid resolution considered is
A/§ =1/20. Consistent with the evaluation by the confidence score, BFWM-rough tends
to perform best for cases C31 to C42. However, the predictions can exhibit errors of up
to 30 %, which is significantly higher than the errors reported for previous test cases. The
majority of cases from COl to C30 show errors above 30 %, correlating with their low
confidence scores. There are instances where the confidence score is low, yet the errors
remain below 30 %. This might be coincidental, and caution should always be exercised
for predictions accompanied by low values of the confidence score.

4.3. High-pressure turbine blade with roughness

We assess the performance of BFWM-rough in a HPT with wall roughness. Surface
roughness on HPT blades can result from the manufacturing process or in-service
degradation, significantly affecting the aerothermal performance of the blade (Nardini
et al. 2023). The case selected for evaluation is the VKI LS-89 HPT blade with surface
roughness, and the results are compared with previous numerical studies by Jelly et
al. (2023) and Nardini er al. (2023). This case involves laminar—turbulent transition,
strong pressure gradient effects, shock waves and vortical wakes. Therefore, it presents
a challenging scenario to evaluate the predictive capabilities of WMLES in practical flow
conditions involving complex geometries and flow physics.

Our WMLES follows the WRLES set-up from Jelly er al. (2023). The exit
Reynolds number is Reey = Pex UexCax /oo =590 000, and the exit Mach number is
Maey = U,y /coo =0.9, where p., and U,, are the mean exit density and velocity,
respectively. Here C,, is the axial chord length, p is the dynamic viscosity of the
reference state and ¢ is the acoustic velocity for the reference state. The inflow freestream
turbulence is generated by a spanwise array of parallel bars. The turbulence intensity
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Figure 20. Visualization of Voronoi control volumes for WMLES of the HPT blade: the whole computational
domain with a zoom-in view near the leading edge of the blade.

(TI) is defined as TI = 1/3(u/rms2 + v/rmsz + w/rmsz). The value of T1 is set to 8 %
of the axial mean inlet velocity U;, by adjusting the distance of the bars upstream of the
blade. The total pressure and temperature are specified at the inlet with the characteristic
boundary conditions. At the exit, the non-reflective Navier—Stokes characteristic boundary
conditions are enforced. The static pressure is prescribed at the exit based on the isentropic
Mach number relationships. Periodic boundary conditions are prescribed at the upper,
lower and spanwise boundaries. The spanwise extent of the domain is set to 0.4C,,, as
suggested by Pichler er al. (2017), to ensure the correct development of the largest inflow
turbulence structures.

The mesh generation is based on the Voronoi tessellation of a collection of points. The
Voronoi control volumes are visualized in figure 20. The size of the background grid
is Ap =0.0311C,,. The grid size near the upstream bars is refined to (1/2)A, with 20
layers, and the flow field near the bars is wall-resolved. As shown in the zoom-in view of
figure 20, the grid size near the blade is refined by four levels, and for each level, the grid
size is reduced by 50 % with 30 layers. As a result, the minimum grid size near the blade
surface is (1/16) A, = 0.00195C,, and the number of control volumes per boundary layer
thickness ranges from O (at the blade leading edge) to 30 (at the blade trailing edge). The
total number of control volumes is 26 x 10°.

Two different surface roughness profiles are considered for the blade. The cases, denoted
as BSO1 and BSO02, feature three-dimensional, irregular Gaussian roughness. The key
geometrical parameters of the roughness are summarized in table 11, which also includes
the confidence scores for both rough surfaces. The confidence scores are C =0.73 for
BSO01 and C =0.67 for BS02, indicating that the roughness topologies can potentially
be well-predicted by BEFWM-rough. The WMLES with BFWM-rough is conducted for
both blade surfaces, using the Vreman model (Vreman 2004) as the SGS model. The
instantaneous axial velocity field from WMLES with BFWM-rough for roughness BSO1
is visualized in figure 21, with the boundary layer transition observable in the zoom-in
view. The results are compared with the WRLES results of Jelly et al. (2023) and DNS
data of Nardini et al. (2023) for the same rough surfaces.

1007 A17-35


https://doi.org/10.1017/jfm.2025.29

https://doi.org/10.1017/jfm.2025.29 Published online by Cambridge University Press

R. Ma and A. Lozano-Durdn

krms/cax Sk Ku ES Lcor/cax C
BS01 0.4 x 1073 0.0 3.0 0.16 3.6 x 1073 0.73
BS02 0.6 x 1073 0.0 3.0 0.18 9.5x 1073 0.67

Table 11. The key geometrical roughness parameters of the blade surface roughness BSO1 and BS02 from
Jelly et al. (2023). The last column contains the confidence score of BEWM-rough for BSO1 and BS02.

Figure 21. Visualization of the instantaneous axial velocity field normalized by the axial mean inlet velocity
Uax [ Uin for WMLES of the HPT blade. The arrow indicates the location at 99 % of the axial chord length for
probing the mean tangential velocity.

Figure 22 shows the time- and spanwise-averaged skin-friction coefficient Cy for
WMLES and DNS. The C; for a smooth blade obtained from DNS is included as a
reference to demonstrate the effects of roughness. The WMLES using an equilibrium
wall model with prescribed ks (denoted by EQWM-ky) is also shown in figure 22 for a
comparison with BFWM-rough. The value of k; is taken to be ky = ok, 5, with o set to a
constant value. Hama (1954) suggested a scaling factor of o« =5 for Gaussian roughness.
However, this is not always accurate as the other roughness parameters such as £S and
Lcor/ R, may also affect the value of k. For example, we found that « ranges from 3.5 to
6.5 for Gaussian roughness in our DNS database. For that reason, the EQWM-k; is tested
within the range o = 3~7. The shaded area in figure 22 shows the variation of the results
by EQWM-k; for the range of values considered for k.

On the pressure side (PS) of the blade, the increase in Cy is due to the boundary
layer transition, which occurs in the trailing-edge region. The increase in roughness on
the PS of the blade is accurately captured by BFWM-rough and EQWM-k; for the two
rough surfaces. The results also indicate that the skin friction on the PS of the blade
is only mildly sensitive to the value of k;. The roughness effects are more significant
on the suction side (SS) of the blade. The sharp increase in skin friction corresponds to
the laminar-to-turbulent transition of the boundary layer, with larger roughness elements
(BS02) triggering an earlier transition compared with the smaller roughness (BS01). Both
WMLES with BFWM-rough and EQWM-k; capture the key trends of the rough wall blade
that are absent in the smooth wall case, such as the faster and larger increase in C y and the
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Figure 22. Time and spanwise-averaged distribution of skin friction coefficient C; along the axial position
of the blade normalized by axial chord length x/C,,. (a) Roughness BSO1 and (b) roughness BS02. The
DNS results of smooth and rough surfaces are from Nardini e al. (2023). The blade roughness BSO1 and
BS02 correspond to cases k3 and k3 in Nardini et al. (2023). The shaded area denotes the WMLES with
EQWM-k;, where kg = ok, and « =3 ~ 7. Note that x/C,y > 0 and x/C,x < 0 correspond to the SS and
PS, respectively, with x/C, = 0 locate at the leading edge of the blade.
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Figure 23. Mean tangential velocity at x/Cyy =0.99 normalized by the local freestream velocity U,/ Ux
along the blade-normal direction normalized by axial chord length y,/C4y. (a) Roughness BSOl and (b)
roughness BS02. The WRLES results of smooth and rough surfaces are from Jelly ez al. (2023). The shaded
area denotes the WMLES with EQWM-k,, where ky = aky s, and « =3 ~ 7.

second peak after x /C,, > 0.5. It is also observed that the BFWM-rough outperforms the
EQWM-k; in the region 0.5 < x/C,y < 0.8 where the fully developed turbulence occurs
in the two rough cases, while the prediction based on EQWM-k; shows sensitivity to the
variation of k; in this region. In addition, for both BFWM-rough and EQWM-k;, the value
of Cy is overpredicted from x/Cqx =0.7 to the trailing edge for the two rough cases.
This might be related to the interaction of the TBL over the blade with the shock waves
within the region 0.7 < x/C, < 0.9. This effect was described by Nardini et al. (2023),
who noted that a normal shock wave is induced by the roughness, with larger roughness
magnitude increasing the intensity of normal shock patterns. The presence of shock waves
may lead to the formation of shock-induced vortices, and these vortices can interact with
the boundary layer, influencing its stability and altering the skin friction pattern. This
intricate effect might not be correctly captured by WMLES and multiple factors beyond
the wall model (e.g., SGS models and grid resolution) are probably at play.

Figure 23 shows the mean tangential velocity profiles close to the trailing edge at the
axial location x/C,, = 0.99. The results from WMLES are compared with WRLES from
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Jelly et al. (2023). Although both the smooth- and rough-blade boundary layers have
transitioned to turbulence in the trailing-edge region of the SS surface, the flow has yet to
reach fully rough conditions (Jelly ez al. 2023). Figure 23 illustrates that the velocity deficit
is generally well captured by the WMLES with BFWM-rough for both rough surfaces
considered. For BSO1, BFWM-rough slightly overpredicts the velocity deficit, while for
BS02, the predictions exhibit high accuracy. These results indicate that BFWM-rough
performs well in modelling the integrated momentum deficit along the blade, which is
ultimately responsible for the lower-speed mean velocity profiles at the trailing edge. The
WMLES with EQWM-k; also demonstrates good performance for case BSO1; however, it
clearly underpredicts the velocity deficit for case BS02.

5. Conclusions

We introduce a wall model for WMLES applicable to rough surfaces with Gaussian and
Weibull distributions for both the transitionally and fully rough regimes. The model can
be applied to arbitrary complex geometries where the surface roughnesses are assumed
to be underresolved. The wall model is implemented using a multi-hidden-layer FNN,
with the statistical geometric parameters of the surface roughness and near-wall flow
quantities serving as input. The wall model, referred to as BFWM-rough, extends the
BFWM introduced by Lozano-Duran & Bae (2023) to rough walls.

A roughness repository containing 100 random rough surfaces was created,
encompassing a wide range of Gaussian and Weibull roughness features. Active learning
was then employed to optimally construct the DNS training database by selecting
rough surfaces from the repository with maximum uncertainty. This approach effectively
improved the wall model prediction capabilities while minimizing the number of DNS
cases required for training. A total of 19 Gaussian and 13 Weibull rough surfaces were
selected through AL and used to conduct the DNS of turbulent channel flows. The DNS
cases were performed in a minimal-span channel flow at six different Re; ranging from
180 to 1000. The final DNS database comprises approximately 200 cases.

The optimal set of non-dimensional inputs to the model was selected using information
theory. The approach identifies a collection of non-dimensional inputs with minimum
redundant information among them and maximum information about the output. Over
30 input candidates were ranked in order of importance to predict the wall shear stress.
The most informative inputs were found to be based on flow state variables such as
local Reynolds numbers at the first and second points off the wall (u;y;/v and usy,/v)
and mean roughness features related to roughness height fluctuations and effective slope
(krms/Rq and ES?),

The wall model also incorporates a confidence score to detect potential low performance
in the presence of untrained rough surfaces. The score is computed using GP model
to evaluate the uncertainty of the roughness topology compared with the roughness
repository used for training. The confidence score was calculated for different roughness
types, such as Gaussian, Weibull, Bimodal, sandgrain and Fourier-mode roughness. The
results demonstrated the ability of the confidence score to highlight potential model
deficiencies for rough surfaces with strong anisotropic characteristics. In such cases, the
confidence score can be used for apriori detection of low performance scenarios for
BFWM-rough. This information can also be leveraged to inform future extensions of
the model by incorporating roughness types with low confidence scores into the training
dataset.

The BFWM-rough model has been tested apriori and aposteriori in more than 550
turbulent channel flows across various rough surfaces and flow conditions. These include
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cases with untrained rough Reynolds numbers and grid resolutions over untrained surface
roughness with Gaussian and Weibull distributions both at transitionally and fully rough
flow conditions. The model was compared with five different models from previous studies
and demonstrated superior predictive accuracy for both Gaussian and Weibull roughness.
The model was also evaluated in over 40 rough surfaces whose geometrical features were
not incorporated in the training process, such as bimodal rough surfaces and rough surfaces
from Jouybari et al. (2021) that contain ellipsoidal, sinusoidal, sand-grain roughness
and rough surfaces generated with low-order Fourier modes. The results show that the
rough-wall model typically predicts the wall shear stress within a 1%—15 % accuracy
range for roughness types resembling Gaussian and Weibull distributions. While the
performance of BFWM-rough degrades for bimodal distributions, the accuracy remains
comparable. Model errors increase to around 30%—-50 % for roughness types exhibiting
strong anisotropy, as these geometries differ considerably from the training set. However,
the low performance in these cases can be anticipated by the low confidence score.

The BFWM-rough has also been evaluated in a complex flow involving a HPT blade
with two different rough surfaces. This case includes laminar—turbulent transition, strong
pressure gradient effects, shock waves and vortical wakes, making it a challenging
scenario for assessing the predictive capabilities of WMLES in practical flow conditions.
The results show that BFWM-rough outperforms the equilibrium wall model with the
prescribed kg, and captures key trends of the rough wall blade that are absent in the smooth
wall case, such as the faster and larger increase in friction coefficient, with errors typically
ranging between 1 % and 10 %. The BFWM-rough also accurately predicts the integrated
momentum deficit along the blade, which is ultimately responsible for the slower mean
velocity profiles at the trailing edge.

The current version of BFWM-rough is designed for equilibrium turbulence over
isotropic rough surfaces. Future developments aim to extend its applicability to more
general flow conditions, including mean pressure gradient effects and separation,
following the approach from Lozano-Durdn & Bae (2023). Additionally, the wall model is
expected to be expanded to cover a broader range of roughness types, including those with
anisotropic geometries.
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Appendix A

We conduct a validation case to confirm that the minimal-span domain size is statistically
representative of the roughness distribution. The DNS of a minimal-span open channel
and a full-span open channel over the same rough surface are carried out at Re; = 1000
for a comparison. The selected roughness is from GS02, which has the largest wavelength
among the rough surfaces in the DNS database (i.e. the least sampling of the geometrical
elements with this wavelength), making it the most constraining case. The minimal-span
channel corresponds to a domain size L, =38 and L, =§. For the full-span channel, the
rough surface GS02 is duplicated in the streamwise and spanwise directions, resulting in
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Figure 24. Comparison of streamwise mean velocity profiles for DNS of turbulent channel flow with a
minimal-span domain and a larger domain over the same rough surface GS02.

a domain size Ly, =68 and L, = 38. The results in figure 24 show that (u)™ is identical
below y/é = 0.3 between the minimal-span and full-span channels. This result confirms
that the chosen domain size is adequate for the rough surfaces considered in this work.
Since only the mean velocity below y/§ = 0.2 from DNS is taken to construct the input of
the BFWM-rough, truncating larger roughness wavelengths does not impact the accuracy
of the training data used for the wall model.
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