Bull. Aust. Math. Soc. 100 (2019), 419–427 doi:10.1017/S0004972719000583

DIAMETER OF COMMUTING GRAPHS OF SYMPLECTIC ALGEBRAS

XIANYA GENG[∞], LITING FAN and XIAOBIN MA

(Received 24 February 2019; accepted 28 March 2019; first published online 4 June 2019)

Abstract

Let *F* be an algebraically closed field of characteristic 0 and let sp(2l, F) be the rank *l* symplectic algebra of all $2l \times 2l$ matrices $x = \binom{A & B}{C - A^{t}}$ over *F*, where A^{t} is the transpose of *A* and *B*, *C* are symmetric matrices of order *l*. The commuting graph $\Gamma(sp(2l, F))$ of sp(2l, F) is a graph whose vertex set consists of all nonzero elements in sp(2l, F) and two distinct vertices *x* and *y* are adjacent if and only if xy = yx. We prove that the diameter of $\Gamma(sp(2l, F))$ is 4 when l > 2.

2010 *Mathematics subject classification*: primary 05C50; secondary 15A27, 15A30. *Keywords and phrases*: commuting graphs, diameter, Lie algebras.

1. Introduction

The diameters of commuting graphs over groups, semigroups, rings and associative algebras and the isomorphisms between commuting graphs are well studied (see, for example, [1, 2]). In particular, let R be a noncommutative ring or an associative algebra and Z(R) be its centre. The commuting graph of R was defined in [3] to be the graph $\Gamma(R)$ whose vertex set is $R \setminus Z(R)$, and two distinct vertices x, y are joined by an edge whenever xy = yx, or equivalently, the bracket product [x, y] = xy - yxof x and y is 0. Denote by $M_n(R)$ the full matrix ring of all $n \times n$ matrices over a ring R. Akbari et al. [4] proved that if $n \ge 3$ and F is an algebraically closed field, then the diameter of $\Gamma(M_n(F))$ is always 4 and, if F is not algebraically closed, then either the commuting graph is disconnected or the diameter is between 4 and 6. They conjectured that the diameter of $\Gamma(M_n(F))$ is at most 5. When n = 2, [5, Remark 8] shows that the commuting graph of $M_n(F)$ is always disconnected. Miguel [12] confirmed the conjecture proposed in [4] by proving that the diameter of the commuting graph of the full matrix ring over the real numbers is at most 5. Dolžan et al. [8] determined the diameters of the commuting graphs of the set of all nilpotent matrices over a semiring, the group of all invertible matrices over a semiring and the

Financially supported by the National Natural Science Foundation of China (Grant Nos. 11671164, 11271149).

^{© 2019} Australian Mathematical Publishing Association Inc.

full matrix semiring. Dolžan *et al.* [7] obtained the diameters of commuting graphs of matrices over the binary Boolean semiring, the tropical semiring and an arbitrary nonentire commutative semiring, and found a lower bound for the diameter of the commuting graph of the semigroup of matrices over an arbitrary commutative entire antinegative semiring. For any composite *m*, Giudici and Pope [9] proved that the diameter of $\Gamma(M_n(Z_m))$ is 3.

Let *F* be an algebraically closed field of characteristic 0 and let sp(2l, F) be the symplectic algebra of rank *l* consisting of all $2l \times 2l$ matrices $x = \binom{A & B}{C - A'}$ over *F*, where A^t is the transpose of *A* and *B*, *C* are symmetric matrices of order *l*. The commuting graph $\Gamma(sp(2l, F))$ of sp(2l, F) is a graph whose vertex set is the set of all nonzero elements in sp(2l, F), and two distinct vertices *x* and *y* are adjacent if and only if xy = yx (or equivalently, the bracket product [x, y] = xy - yx of *x* and *y* is zero). The symplectic algebra sp(2l, F) is important because as a Lie algebra (with respect to the bracket product [x, y] = xy - yx), it is one of the nine simple Lie algebras over *F*. To reveal the commuting relations of elements in sp(2l, F), we determine the diameter of the commuting graph $\Gamma(sp(2l, F))$ of sp(2l, F).

THEOREM 1.1. Let *F* be an algebraically closed field of characteristic zero. If l > 2, then the diameter of the commuting graph $\Gamma(sp(2l, F))$ of the symplectic algebra sp(2l, F) is 4.

REMARK 1.2. When l = 1, sp(2l, F) is the Lie algebra of type A_1 consisting of all 2×2 matrices of trace 0. By [5, Remark 8], we easily find that the commuting graph of sp(2, F) is disconnected. However, the diameter of $\Gamma(\text{sp}(2l, F))$ with l = 2 seems quite different from the cases where l > 2. We conjecture that the diameter of $\Gamma(\text{sp}(4, F))$ is 5.

2. Proof of Theorem 1.1

Let $M_{2l}(F)$ be the set of all $2l \times 2l$ matrices over F and let $e_{ij} \in M_{2l}(F)$ be the matrix with 1 at the (i, j)th position and 0 elsewhere. Put

$$E_{ij} = e_{ij} - e_{j+l,i+l}, \quad 1 \le i, j \le l,$$

$$E_{p,-q} = e_{p,q+l} + e_{q,p+l}, \quad 1 \le p < q \le l,$$

$$E_{-r,s} = e_{r+l,s} + e_{s+l,r}, \quad 1 \le r < s \le l,$$

and put

$$E_{p,-p} = e_{p,p+l}, \quad \text{for } 1 \le p \le l,$$

$$E_{-r,r} = e_{r+l,r}, \quad \text{for } 1 \le r \le l.$$

The set

$$\Sigma = \{E_{ij} : 1 \le i, j \le l\} \cup \{E_{p,-q} : 1 \le p \le q \le l\} \cup \{E_{-r,s} : 1 \le r \le s \le l\}$$

forms a basis of sp(2l, F) and the dimension of sp(2l, F) is $2l^2 + l$.

Let

[3]

$$J = \sum_{i=1}^{2l-1} e_{i,i+1} = \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 & 1 \\ 0 & 0 & \cdots & 0 & 0 \end{bmatrix}.$$

The lemma below follows from the proof of [4, Theorem 3].

LEMMA 2.1. If $l \ge 2$, the distance between J and J^{l} in $\Gamma(M_{2l}(F))$ is 4, where $\Gamma(M_{2l}(F))$ denotes the commuting graph of $M_{2l}(F)$.

Let
$$x_0 = (\sum_{i=1}^{l-1} E_{i,i+1}) + E_{l,-l}$$
 and let $y_0 = x_0^t = (\sum_{i=1}^{l-1} E_{i+1,i}) + E_{-l,l}$.

LEMMA 2.2. If $l \ge 2$, the distance between x_0 and y_0 in $\Gamma(sp(2l, F))$ is 4.

PROOF. Let

$$z = \left(\sum_{i=1}^{l} e_{ii}\right) + \left(\sum_{i=1}^{l} (-1)^{l-i} e_{l+i,2l-i+1}\right).$$

By direct calculation, one can verify that

$$z^{-1}x_0z = J, \quad z^{-1}y_0z = J^t.$$

Since the distance between J and J^t in $\Gamma(M_{2l}(F))$ is 4, the distance between x_0 and y_0 in $\Gamma(\operatorname{sp}(2l, F))$ is at least 4. Indeed, if $x_0 \sim u \sim v \sim y_0$ is a path in $\Gamma(\operatorname{sp}(2l, F))$, then $J \sim z^{-1}uz \sim z^{-1}vz \sim J^t$ is a path in $\Gamma(M_{2l}(F))$, in contradiction to Lemma 2.1. It is easy to verify that

$$x_0 \sim E_{1,-1} \sim E_{22} \sim E_{-1,1} \sim y_0$$

is a path of length 4 between x_0 and y_0 . Consequently, $d(x_0, y_0) = 4$.

In view of Lemma 2.2, the diameter of $\Gamma(\operatorname{sp}(2l, F))$ is at least 4 when $l \ge 2$. In what follows, we will prove that the distance between any distinct vertices *x* and *y* in $\Gamma(\operatorname{sp}(2l, F))$ is at most 4 when l > 2.

For $x \in sp(2l, F)$, denote by C(x) the centraliser of x in sp(2l, F). That is,

$$C(x) = \{y \in \text{sp}(2l, F) : [x, y] = 0\}.$$

We investigate the dimensions of $C(E_{11})$, $C(E_{1,-1})$ and $C(E_{1,-2})$.

LEMMA 2.3. *Let* $l \ge 2$:

- (i) the dimension of $C(E_{11})$ is $2l^2 3l + 2$;
- (ii) the dimension of $C(E_{1,-1})$ is $2l^2 l$;
- (iii) the dimension of $C(E_{1,-2})$ is $2l^2 3l + 2$.

PROOF. Write any $y \in sp(2l, F)$ as a linear combination of the basis Σ of sp(2l, F):

$$y = \left(\sum_{1 \le i, j \le l} a_{ij} E_{ij}\right) + \left(\sum_{1 \le p \le q \le l} b_{p, -q} E_{p, -q}\right) + \left(\sum_{1 \le r \le s \le l} c_{-r, s} E_{-r, s}\right)$$

with $a_{ij}, b_{p,-q}, c_{-r,s} \in F$. One easily verifies that *y* commutes with E_{11} if and only if $a_{1j} = a_{j1} = 0$ for j = 2, 3, ..., l and $b_{1,-j} = c_{-j,1} = 0$ for j = 1, 2, ..., l. As a linear space, $C(E_{11})$ is spanned by a basis

$$\{E_{11}\} \cup \{E_{ij}: 2 \le i, j \le l\} \cup \{E_{p,-q}: 2 \le p \le q \le l\} \cup \{E_{-r,s}: 2 \le r \le s \le l\},$$

which altogether has $2l^2 - 3l + 2$ elements.

Similarly, y commutes with $E_{1,-1}$ if and only if the first column and the (l + 1)th row of y are zero vectors. As a linear space, $C(E_{1,-1})$ is spanned by a basis

$$\{E_{i,j}: 1 \le i \le l, 2 \le j \le l\} \cup \{E_{p,-q}: 1 \le p \le q \le l\} \cup \{E_{-r,s}: 2 \le r \le s \le l\},\$$

which altogether has $2l^2 - l$ elements.

By calculation, we find that *y* commutes with $E_{1,-2}$ if and only if

$$a_{11} = -a_{22},$$

 $a_{j1} = a_{k2} = 0,$ for $j = 2, 3, ..., l, k = 1, 3, 4, ..., l,$
 $c_{-1,j} = c_{-2,k} = 0,$ for $j = 1, 2, ..., l, k = 2, 3, ..., l.$

Thus $C(E_{1,-2})$ is a space with basis

$$\{E_{11} - E_{22}\} \cup \{E_{i,j} : 1 \le i \le l, 3 \le j \le l\} \cup \{E_{p,-q} : 1 \le p \le q \le l\} \cup \{E_{-r,s} : 3 \le r \le s \le l\},$$

which altogether has $2l^2 - 3l + 2$ elements.

The automorphism group of $\operatorname{sp}(2l, F)$ is denoted by $\operatorname{Aut}(\operatorname{sp}(2l, F))$. We now study the action of $\operatorname{Aut}(\operatorname{sp}(2l, F))$ on the basis of $\operatorname{sp}(2l, F)$. Let $\alpha \in M_{2l}(F)$ be invertible. If $\alpha^{-1}x\alpha \in \operatorname{sp}(2l, F)$ for any $x \in \operatorname{sp}(2l, F)$, then the mapping $\overline{\alpha}$ on $\operatorname{sp}(2l, F)$ defined by

$$\overline{\alpha}(x) = \alpha^{-1} x \alpha$$
, for all $x \in \operatorname{sp}(2n, F)$,

is an automorphism of sp(2l, F) (see [6]).

Lемма 2.4.

422

- (i) If $1 \le i < j \le l$, there is an invertible $\alpha \in M_{2l}(F)$ such that $\overline{\alpha}(E_{ij}) = E_{1l}$.
- (ii) There is an invertible $\beta \in M_{2l}(F)$ such that $\overline{\beta}(E_{p,-p}) = E_{1,-1}$, where $1 \le p \le l$.
- (iii) If $1 \le p < q \le l$, there is an invertible $\gamma \in M_{2l}(F)$ such that $\overline{\gamma}(E_{p,-q}) = E_{1,-2}$.
- (iv) There is an invertible $\theta \in M_{2l}(F)$ such that $\overline{\theta}(E_{1l}) = E_{1,-l}$.
- (v) If $1 \le i < j \le l$, there is an invertible $\xi \in M_{2l}(F)$ such that $\overline{\xi}(E_{ij}) = E_{1,-2}$.

PROOF. For $1 \le i \ne j \le l$, let P_{ij} be the permutation matrix obtained by permuting the *i*th and *j*th rows of the identity matrix of order *l*, and put

$$\alpha_{ij} = \begin{pmatrix} P_{ij} & 0\\ 0 & P_{ij} \end{pmatrix}.$$

Since $\alpha_{ij}^{-1} x \alpha_{ij} \in sp(2l, F)$ whenever $x \in sp(2l, F)$, the mapping

$$\overline{\alpha_{ij}}: x \mapsto \alpha_{ij}^{-1} x \alpha_{ij}, \quad \text{for all } x \in \text{sp}(2l, F),$$

is an automorphism of sp(2l, F).

If 1 < j < l, then the automorphism $\overline{\alpha_{jl}}$ sends E_{1j} to E_{1l} . If 1 < i < j, then the automorphism $\overline{\alpha_{1i}}$ sends E_{ij} to E_{1j} . If 1 < i < j < l, then the automorphism $\overline{\alpha_{jl}} \cdot \overline{\alpha_{1i}} = \overline{\alpha_{1i} \cdot \alpha_{jl}}$ sends E_{ij} to E_{1l} , which proves (i).

If $p \neq 1$, then the automorphism $\overline{\alpha_{1p}}$ sends $E_{p,-p}$ to $E_{1,-1}$, which proves (ii).

For $3 \le j \le l$, the automorphism $\overline{\alpha_{2j}}$ sends $E_{1,-j}$ to $E_{1,-2}$. For $2 \le i < j \le l$, the automorphism $\overline{\alpha_{2j}} \cdot \overline{\alpha_{1i}} = \overline{\alpha_{1i} \cdot \alpha_{2j}}$ sends $E_{i,-j}$ to $E_{1,-2}$, which proves (iii).

Let $\theta = I_{2l} - e_{ll} - e_{2l,2l} + e_{l,2l} - e_{2l,l}$. One easily verifies that the mapping $\overline{\theta}$ defined by

$$\overline{\theta}: x \mapsto \theta^{-1} x \theta$$
, for all $x \in \operatorname{sp}(2l, F)$,

stabilises sp(2*l*, *F*), thus is an automorphism of sp(2*l*, *F*). The proof of (iv) is completed by $\overline{\theta}(E_{1l}) = E_{1,-l}$.

Finally, (v) follows immediately from (i), (iii) and (iv).

Four particular subalgebras of sp(2l, F) are defined as follows:

$$H = \left\{ \begin{pmatrix} A & 0 \\ 0 & -A^t \end{pmatrix} : A \in M_l(F) \text{ is diagonal} \right\},\$$

$$V = \left\{ \begin{pmatrix} 0 & B \\ 0 & 0 \end{pmatrix} : B \in M_l(F) \text{ is symmetric} \right\},\$$

$$U = \left\{ \begin{pmatrix} A & 0 \\ 0 & -A^t \end{pmatrix} : A \in M_l(F) \text{ is strictly upper triangular} \right\},\$$

$$T = \left\{ \begin{pmatrix} A & B \\ 0 & -A^t \end{pmatrix} : A \in M_l(F) \text{ is upper triangular}, B \in M_l(F) \text{ is symmetric} \right\}.$$

Then H, U, V, T are all subalgebras of sp(2l, F). The following assertions are well known,

- *T* is a Borel subalgebra (that is, a maximal solvable subalgebra) of sp(2*l*, *F*) (see [10] or [11]),
- The dimension of *H* is *l* and the E_{ii} , for i = 1, 2, ..., l, form a basis of *H*,
- The dimension of U is $\frac{1}{2}l(l-1)$ and the $E_{i,j}$, for $1 \le i < j \le l$, form a basis of U,
- The dimension of V is $\frac{1}{2}l(l+1)$ and the set $\{E_{p,-q} : 1 \le p \le q \le l\}$ forms a basis of V.

Since $T = H \oplus U \oplus V$, any given $t \in T$ has a unique decomposition in the form

$$t = h + u + v, \quad h \in H, u \in U, v \in V,$$

where *h*, *u*, *v* will respectively be called the *H*-term, the *U*-term and the *V*-term of *t*. We write the *V*-term *v* of *t* as the linear combination of $\{E_{p,-q} : 1 \le p \le q \le l\}$,

$$v = \sum_{1 \le p \le q} c_{p,-q} E_{p,-q},$$

and put

$$\Delta(t) = \{ (p, -q) : [h, c_{p,-q}E_{p,-q}] \neq 0 \}.$$

If $\Delta(t) \neq \emptyset$, we set

$$d(t) = \max\{p + q : (p, -q) \in \Delta(t)\},\$$

and call it the degree of t.

Let

$$\Psi = \left\{ \begin{pmatrix} I_l & C \\ 0 & I_l \end{pmatrix} : C^t = C \right\}.$$

If $\alpha = \begin{pmatrix} I_l & C \\ 0 & I_l \end{pmatrix} \in \Psi$, then the mapping $\overline{\alpha} : x \mapsto \alpha^{-1} x \alpha$ for $x \in \operatorname{sp}(2l, F)$ is an automorphism of $\operatorname{sp}(2l, F)$. The set $\{\overline{\alpha} : \alpha \in \Psi\}$ forms a subgroup of $\operatorname{Aut}(\operatorname{sp}(2l, F))$, which will be denoted by *G*. Direct calculation shows that *G* stabilises *T*. In addition, if $\alpha \in \Psi$, then $\overline{\alpha}(t)$ and $t \in T$ have the same *H*-term and the same *U*-term. Now we consider how to simplify the *V*-term of *t* by applying $\overline{\alpha} \in G$.

LEMMA 2.5. For any given $t \in T$, there exists $\alpha \in \Psi$ such that $\Delta(\overline{\alpha}(t)) = \emptyset$.

PROOF. Suppose to the contrary that $\Delta(\overline{\alpha}(t)) \neq \emptyset$ for any $\alpha \in \Psi$. Choose $\overline{\beta} \in G$ with $\beta \in \Psi$ which minimises $d(\overline{\beta}(t))$ and suppose that $d(\overline{\beta}(t)) = k$. Assume that

$$\beta(t) = h + u + v$$
, where $h \in H, u \in U, v \in V$,

and represent h, u, v as linear combinations of the bases of H, U, V, respectively:

$$h = \sum_{i=1}^{l} a_{ii} E_{ii}, \quad u = \sum_{1 \le i < j \le l} b_{ij} E_{ij}, \quad v = \sum_{1 \le p \le q \le l} c_{p,-q} E_{p,-q}.$$

Thus $[h, c_{p,-q}E_{p,-q}] = 0$ when p + q > k, and there is (p', -q') such that p' + q' = k and

$$[h, c_{p', -q'} E_{p', -q'}] = (a_{p', p'} + a_{q', q'}) c_{p', -q'} E_{p', -q'} \neq 0.$$

Put

$$\gamma = I_{2l} - \sum_{p+q=k, a_{pp}+a_{qq}\neq 0} c_{p,-q} (a_{pp} + a_{qq})^{-1} E_{p,-q}.$$

Then $\gamma \in \Psi$. By calculation,

$$\overline{\gamma}(h) = \gamma^{-1}h\gamma = h - \sum_{p+q=k, a_{pp}+a_{qq}\neq 0} c_{p,-q}E_{p,-q},$$
$$\overline{\gamma}(v) = \gamma^{-1}v\gamma = v,$$

and

$$\overline{\gamma}(u) = \gamma^{-1} u \gamma = u + v', \quad \text{with } v' \in V_{k-1},$$

where V_{k-1} denotes the subalgebra of V spanned by $\{E_{p,-q}: p+q \le k-1\}$. Since

$$\overline{\gamma}(\overline{\beta}(t)) = h + u + \left(v - \sum_{p+q=k, a_{pp}+a_{qq}\neq 0} c_{p,-q} E_{p,-q} + v'\right)$$

with $v' \in V_{k-1}$, we have $d(\overline{\gamma}(\overline{\beta}(t)) \le k - 1)$, a contradiction to the assumption for $\overline{\beta}$. \Box

[6]

424

We need a known result about the Borel subalgebras of an arbitrary Lie algebra to simplify elements in sp(2l, F).

LEMMA 2.6 [10, Theorem 16.4]. The Borel subalgebras of an arbitrary Lie algebra L are conjugate under $\mathcal{E}(L)$, a subgroup of the automorphism group of L.

LEMMA 2.7. For a given $x \in \text{sp}(2l, F)$, there exists an automorphism σ of sp(2l, F), such that $\sigma(x) \in T$ and the *H*-term of $\sigma(x)$ commutes with both the *U*-term and the *V*-term of $\sigma(x)$.

PROOF. Since x lies in a Borel subalgebra of sp(2l, F) and T is a standard Borel subalgebra of sp(2l, F), by Lemma 2.6, there is an automorphism τ of sp(2l, F) such that $\tau(x) \in T$. For convenience, we assume $x \in T$ and that

$$x = \begin{pmatrix} A & C \\ 0 & -A^t \end{pmatrix},$$

where $A \in M_l(F)$ is upper triangular and *C* is symmetric. By Jordan's theorem, there is an invertible matrix $X \in M_l(F)$ such that $X^{-1}AX = D + W$ and [D, W] = 0, where *D* is diagonal and *W* is strictly upper triangular. Let $\alpha = \text{diag}(X, (X^t)^{-1})$. Then the mapping $\overline{\alpha} : z \mapsto \alpha^{-1} z \alpha$ on sp(2l, F) is an automorphism of sp(2l, F). Denote $\overline{\alpha}(x)$ by *y*. The *H*-term and the *U*-term of *y* are respectively $\text{diag}(D, -D^t)$ and $\text{diag}(W, -W^t)$, and

 $[\operatorname{diag}(D, -D^t), \operatorname{diag}(W, -W^t)] = 0.$

By Lemma 2.5, there exists $\beta \in \Psi$ such that $\overline{\beta}(y)$ has the same *H*-term (respectively, *U*-term) as *y* and such that $\Delta(\overline{\beta}(y)) = \emptyset$. The condition $\Delta(\overline{\beta}(y)) = \emptyset$ implies that the *H*-term of $\overline{\beta}(y)$ commutes with the *V*-term of $\overline{\beta}(y)$.

LEMMA 2.8. Let $x \in sp(2l, F)$, $x \neq 0$. If l > 2, there is $y \in C(x)$, $y \neq 0$, such that the dimension of C(y) is greater than half the dimension of sp(2l, F).

PROOF. By Lemma 2.7, there is an automorphism σ of sp(2l, F), with $\sigma(x) \in T$ and such that the *H*-term of $\sigma(x)$ commutes with both the *U*-term and the *V*-term of $\sigma(x)$. Assume $\sigma(x) = h + u + v$, where $h \in H$ commutes with $u \in U$ and $v \in V$.

Case 1: $[h, E_{p,-q}] = 0$ for some p, q with $1 \le p \le q \le l$.

Suppose that $E_{p',-q'}$ belongs to $\{E_{p,-q} : [h, E_{p,-q}] = 0, 1 \le p \le q \le l\}$ and minimises p + q. We claim that $\sigma(x)$ commutes with $E_{p',-q'}$. For if $[\sigma(x), E_{p',-q'}] \ne 0$, then $[u, E_{p',-q'}] \ne 0$. Write $u = \sum_{1 \le i < j \le l} a_{ij} E_{ij}$. Since $[u, E_{p',-q'}] \ne 0$, there are i, j with $1 \le i' < j' \le l$ such that $[a_{i'j'}E_{i'j'}, E_{p',-q'}] \ne 0$. The condition [h, u] = 0 implies that $[h, E_{i'j'}] = 0$. Note that $[E_{i'j'}, E_{p',-q'}] = 0$. The condition [h, u] = 0 implies that $[h, E_{i'j'}] = [h, E_{p',-q'}] = 0$ we have $[h, [E_{i'j'}, E_{p',-q'}]] = 0$. Thus $[h, E_{i',-p'}] = 0$ or $[h, E_{i',-p'}] = 0$. In either case, we have a contradiction, since i' + q' < p' + q' (when j' = p') and i' + p' < p' + q' (when j' = q'), which completes the proof of the claim. If p' = q', then $E_{p',-q'}$ is conjugate to $E_{1,-1}$ under an automorphism of sp(2l, F) (by Lemma 2.4(ii)), thus $C(E_{p',-q'})$ has the same dimension $2l^2 - l$ as $C(E_{1,-1})$, which is greater than $\frac{1}{2}(2l^2 + l)$.

 $E_{1,-2}$ under an automorphism of sp(2*l*, *F*) (by Lemma 2.4(iii)), thus $C(E_{p',-q'})$ has dimension $2l^2 - 3l + 2$, which is greater than $\frac{1}{2}(2l^2 + l)$ (recalling that l > 2). Choose $y = \sigma^{-1}(E_{p',-q'})$ so that [x, y] = 0. As C(y) and $C(E_{p',-q'})$ have the same dimension, the dimension of C(y) is greater than $\frac{1}{2}(2l^2 + l)$, that is, half the dimension of sp(2*l*, *F*).

Case 2: $[h, E_{p,-q}] \neq 0$ for all p, q with $1 \leq p \leq q \leq l$ and $[h, E_{ij}] = 0$ for some i, j with $1 \leq i < j \leq l$.

In this case, the condition [h, v] = 0 forces v = 0. Thus $\sigma(x) = h + u$. Suppose that $E_{i'j'}$ lies in $\{E_{ij} : [h, E_{ij}] = 0, 1 \le i < j \le l\}$ and maximises j - i. We claim that $\sigma(x)$ commutes with $E_{i'j'}$. Indeed, if $[\sigma(x), E_{i'j'}] \ne 0$, then $[u, E_{i'j'}] \ne 0$ and there are i_0, j_0 with $1 \le i_0 < j_0 \le l$ such that $[a_{i_0,j_0}, E_{i'j'}] \ne 0$. The condition [h, u] = 0 implies that $[h, E_{i_0,j_0}] = 0$. Note that $[E_{i_0,j_0}, E_{i'j'}] = 0$. The condition [h, u] = 0 implies that $[h, E_{i_0,j_0}] = [h, E_{i'j'}] = 0$, we have $[h, [E_{i_0,j_0}, E_{i'j'}]] = 0$. Thus either $[h, E_{i_0,j_0}] = 0$ (when $j_0 = i'$) or $-E_{i',j_0}$ (when $j' = i_0$). From $[h, E_{i_0,j_0}] = [h, E_{i'j'}] = 0$ (when $j' = i_0$). In either case, we have a contradiction, since $j' - i_0 > j' - i'$ (when $j_0 = i'$) and $j_0 - i' > j' - i'$ (when $j' = i_0$), which completes the proof of the claim. By Lemma 2.4, $E_{i'j'}$ is conjugate to $E_{1,-2}$ under an automorphism of sp(2l, F), so $C(E_{i'j'})$ has the same dimension $2l^2 - 3l + 2$ as $C(E_{1,-2})$, which is greater than $\frac{1}{2}(2l^2 + l)$ (recalling that l > 2). Choose $y = \sigma^{-1}(E_{i'j'})$.

Case 3: $[h, E_{p,-q}] \neq 0$ for all p, q with $1 \leq p \leq q \leq l$ and $[h, E_{ij}] \neq 0$ for all i, j with $1 \leq i < j \leq l$.

In this case, the condition [h, v] = [h, u] = 0 forces u = v = 0. Thus $\sigma(x) = h$ is a diagonal matrix. Let $y = \sigma^{-1}(E_{11})$. Then [x, y] = 0 and the dimension $2l^2 - 3l + 2$ of C(y) is the same as that of $C(E_{11})$, which is greater than $\frac{1}{2}(2l^2 + l)$.

PROOF OF THEOREM 1.1. We have found two distinct vertices in $\Gamma(sp(2l, F))$ with distance 4. Now it suffices to prove that the distance between any pair of vertices x, y of $\Gamma(sp(2l, F))$ is at most 4. Let x, y be nonzero elements of sp(2l, F). By Lemma 2.8, there are nonzero elements x', y' with $x' \in C(x)$ and $y' \in C(y)$ such that the dimensions of C(x') and C(y') are both greater than half the dimension of sp(2l, F). Thus a nonzero element, say z, lies in $C(x') \cap C(y')$. Consequently, $x \sim x' \sim z \sim y' \sim y$ is a path in $\Gamma(sp(2l, F))$. Therefore, $d(x, y) \leq 4$.

Acknowledgements

The authors would like to express their sincere gratitude to the referees for their insightful comments and suggestions, which led to a number of improvements to this paper.

References

[1] A. Abdollahi, 'Commuting graphs of full matrix rings over finite fields', *Linear Algebra Appl.* **428** (2008), 2947–2954.

- [2] A. Abdollahi and H. Shahverdi, 'Characterization of the alternating group by its non-commuting graph', J. Algebra 357 (2012), 203–207.
- [3] S. Akbari, M. Ghandehari, M. Hadian and A. Mohammadian, 'On commuting graphs of semisimple rings', *Linear Algebra Appl.* 390 (2004), 345–355.
- [4] S. Akbari, A. Mohammadian, H. Radjavi and P. Raja, 'On the diameters of commuting graphs', *Linear Algebra Appl.* 418 (2006), 161–176.
- [5] S. Akbari and P. Raja, 'Commuting graphs of some subsets in simple rings', *Linear Algebra Appl.* 416 (2006), 1038–1047.
- [6] R. W. Carter, Simple Groups of Lie Type (Wiley Interscience, New York, 1972).
- [7] D. Dolžan, D. K. Bukovšek and P. Oblak, 'Diameters of commuting graphs of matrices over semirings', *Semigroup Forum* 84 (2012), 365–373.
- [8] D. Dolžan and P. Oblak, 'Commuting graph of matrices over semirings', *Linear Algebra Appl.* 435 (2011), 1657–1665.
- [9] M. Giudici and A. Pope, 'The diameters of commuting graphs of linear groups and matrix rings over the integers modulo m', Australas J. Combin. 48 (2010), 221–230.
- [10] J. E. Humphreys, Introduction to Lie Algebras and Representation Theory (Springer, New York, 1972).
- [11] N. Jacobson, Lie Algebras (Interscience Publishers, New York, 1962).
- [12] C. Miguel, 'A note on a conjecture about commuting graphs', *Linear Algebra Appl.* 438 (2013), 4750–4756.

XIANYA GENG, School of Mathematics and Big Data,

Anhui University of Science and Technology, Huainan, PR China e-mail: gengxianya@sina.com

LITING FAN, School of Mathematics and Big Data,

Anhui University of Science and Technology, Huainan, PR China e-mail: 1275371706@qq.com

XIAOBIN MA, School of Mathematics and Big Data,

Anhui University of Science and Technology, Huainan, PR China e-mail: xiaobintiandi@163.com

[9]