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Abstract

Let F be an algebraically closed field of characteristic 0 and let sp(2l, F) be the rank l symplectic algebra
of all 2l × 2l matrices x =

(A B
C −At

)
over F, where At is the transpose of A and B,C are symmetric matrices of

order l. The commuting graph Γ(sp(2l, F)) of sp(2l, F) is a graph whose vertex set consists of all nonzero
elements in sp(2l, F) and two distinct vertices x and y are adjacent if and only if xy = yx. We prove that
the diameter of Γ(sp(2l, F)) is 4 when l > 2.
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1. Introduction

The diameters of commuting graphs over groups, semigroups, rings and associative
algebras and the isomorphisms between commuting graphs are well studied (see, for
example, [1, 2]). In particular, let R be a noncommutative ring or an associative
algebra and Z(R) be its centre. The commuting graph of R was defined in [3] to be
the graph Γ(R) whose vertex set is R \ Z(R), and two distinct vertices x, y are joined
by an edge whenever xy = yx, or equivalently, the bracket product [x, y] = xy − yx
of x and y is 0. Denote by Mn(R) the full matrix ring of all n × n matrices over
a ring R. Akbari et al. [4] proved that if n ≥ 3 and F is an algebraically closed
field, then the diameter of Γ(Mn(F)) is always 4 and, if F is not algebraically closed,
then either the commuting graph is disconnected or the diameter is between 4 and
6. They conjectured that the diameter of Γ(Mn(F)) is at most 5. When n = 2, [5,
Remark 8] shows that the commuting graph of Mn(F) is always disconnected. Miguel
[12] confirmed the conjecture proposed in [4] by proving that the diameter of the
commuting graph of the full matrix ring over the real numbers is at most 5. Dolžan
et al. [8] determined the diameters of the commuting graphs of the set of all nilpotent
matrices over a semiring, the group of all invertible matrices over a semiring and the
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full matrix semiring. Dolžan et al. [7] obtained the diameters of commuting graphs
of matrices over the binary Boolean semiring, the tropical semiring and an arbitrary
nonentire commutative semiring, and found a lower bound for the diameter of the
commuting graph of the semigroup of matrices over an arbitrary commutative entire
antinegative semiring. For any composite m, Giudici and Pope [9] proved that the
diameter of Γ(Mn(Zm)) is 3.

Let F be an algebraically closed field of characteristic 0 and let sp(2l, F) be the
symplectic algebra of rank l consisting of all 2l × 2l matrices x =

(
A B
C −At

)
over F, where

At is the transpose of A and B,C are symmetric matrices of order l. The commuting
graph Γ(sp(2l, F)) of sp(2l, F) is a graph whose vertex set is the set of all nonzero
elements in sp(2l, F), and two distinct vertices x and y are adjacent if and only if
xy = yx (or equivalently, the bracket product [x, y] = xy − yx of x and y is zero). The
symplectic algebra sp(2l, F) is important because as a Lie algebra (with respect to the
bracket product [x, y] = xy − yx), it is one of the nine simple Lie algebras over F. To
reveal the commuting relations of elements in sp(2l, F), we determine the diameter of
the commuting graph Γ(sp(2l, F)) of sp(2l, F).

Theorem 1.1. Let F be an algebraically closed field of characteristic zero. If l > 2, then
the diameter of the commuting graph Γ(sp(2l, F)) of the symplectic algebra sp(2l, F)
is 4.

Remark 1.2. When l = 1, sp(2l, F) is the Lie algebra of type A1 consisting of all 2 × 2
matrices of trace 0. By [5, Remark 8], we easily find that the commuting graph of
sp(2, F) is disconnected. However, the diameter of Γ(sp(2l, F)) with l = 2 seems quite
different from the cases where l > 2. We conjecture that the diameter of Γ(sp(4, F))
is 5.

2. Proof of Theorem 1.1

Let M2l(F) be the set of all 2l × 2l matrices over F and let ei j ∈ M2l(F) be the matrix
with 1 at the (i, j)th position and 0 elsewhere. Put

Ei j = ei j − e j+l,i+l, 1 ≤ i, j ≤ l,
Ep,−q = ep,q+l + eq,p+l, 1 ≤ p < q ≤ l,
E−r,s = er+l,s + es+l,r, 1 ≤ r < s ≤ l,

and put

Ep,−p = ep,p+l, for 1 ≤ p ≤ l,
E−r,r = er+l,r, for 1 ≤ r ≤ l.

The set

Σ = {Ei j : 1 ≤ i, j ≤ l} ∪ {Ep,−q : 1 ≤ p ≤ q ≤ l} ∪ {E−r,s : 1 ≤ r ≤ s ≤ l}

forms a basis of sp(2l, F) and the dimension of sp(2l, F) is 2l2 + l.
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Let

J =

2l−1∑
i=1

ei,i+1 =



0 1 0 · · · 0
0 0 1 · · · 0
...

...
. . .

. . .
...

0 0 · · · 0 1
0 0 · · · 0 0


.

The lemma below follows from the proof of [4, Theorem 3].

Lemma 2.1. If l ≥ 2, the distance between J and Jt in Γ(M2l(F)) is 4, where Γ(M2l(F))
denotes the commuting graph of M2l(F).

Let x0 = (
∑l−1

i=1 Ei,i+1) + El,−l and let y0 = xt
0 = (

∑l−1
i=1 Ei+1,i) + E−l,l.

Lemma 2.2. If l ≥ 2, the distance between x0 and y0 in Γ(sp(2l, F)) is 4.

Proof. Let

z =

( l∑
i=1

eii

)
+

( l∑
i=1

(−1)l−iel+i,2l−i+1

)
.

By direct calculation, one can verify that

z−1x0z = J, z−1y0z = Jt.

Since the distance between J and Jt in Γ(M2l(F)) is 4, the distance between x0 and y0

in Γ(sp(2l, F)) is at least 4. Indeed, if x0 ∼ u ∼ v ∼ y0 is a path in Γ(sp(2l, F)), then
J ∼ z−1uz ∼ z−1vz ∼ Jt is a path in Γ(M2l(F)), in contradiction to Lemma 2.1. It is easy
to verify that

x0 ∼ E1,−1 ∼ E22 ∼ E−1,1 ∼ y0

is a path of length 4 between x0 and y0. Consequently, d(x0, y0) = 4. �

In view of Lemma 2.2, the diameter of Γ(sp(2l, F)) is at least 4 when l ≥ 2. In
what follows, we will prove that the distance between any distinct vertices x and y in
Γ(sp(2l, F)) is at most 4 when l > 2.

For x ∈ sp(2l, F), denote by C(x) the centraliser of x in sp(2l, F). That is,

C(x) = {y ∈ sp(2l, F) : [x, y] = 0}.

We investigate the dimensions of C(E11),C(E1,−1) and C(E1,−2).

Lemma 2.3. Let l ≥ 2:

(i) the dimension of C(E11) is 2l2 − 3l + 2;
(ii) the dimension of C(E1,−1) is 2l2 − l;
(iii) the dimension of C(E1,−2) is 2l2 − 3l + 2.
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Proof. Write any y ∈ sp(2l, F) as a linear combination of the basis Σ of sp(2l, F):

y =

( ∑
1≤i, j≤l

ai jEi j

)
+

( ∑
1≤p≤q≤l

bp,−qEp,−q

)
+

( ∑
1≤r≤s≤l

c−r,sE−r,s

)
with ai j, bp,−q, c−r,s ∈ F. One easily verifies that y commutes with E11 if and only if
a1 j = a j1 = 0 for j = 2,3, . . . , l and b1,− j = c− j,1 = 0 for j = 1,2, . . . , l. As a linear space,
C(E11) is spanned by a basis

{E11} ∪ {Ei j : 2 ≤ i, j ≤ l} ∪ {Ep,−q : 2 ≤ p ≤ q ≤ l} ∪ {E−r,s : 2 ≤ r ≤ s ≤ l},

which altogether has 2l2 − 3l + 2 elements.
Similarly, y commutes with E1,−1 if and only if the first column and the (l + 1)th

row of y are zero vectors. As a linear space, C(E1,−1) is spanned by a basis

{Ei, j : 1 ≤ i ≤ l, 2 ≤ j ≤ l} ∪ {Ep,−q : 1 ≤ p ≤ q ≤ l} ∪ {E−r,s : 2 ≤ r ≤ s ≤ l},

which altogether has 2l2 − l elements.
By calculation, we find that y commutes with E1,−2 if and only if

a11 = −a22,

a j1 = ak2 = 0, for j = 2, 3, . . . , l, k = 1, 3, 4, . . . , l,
c−1, j = c−2,k = 0, for j = 1, 2, . . . , l, k = 2, 3, . . . , l.

Thus C(E1,−2) is a space with basis

{E11 − E22} ∪ {Ei, j : 1 ≤ i ≤ l,3 ≤ j ≤ l} ∪ {Ep,−q : 1 ≤ p ≤ q ≤ l} ∪ {E−r,s : 3 ≤ r ≤ s ≤ l},

which altogether has 2l2 − 3l + 2 elements. �

The automorphism group of sp(2l, F) is denoted by Aut(sp(2l, F)). We now study
the action of Aut(sp(2l, F)) on the basis of sp(2l, F). Let α ∈ M2l(F) be invertible. If
α−1xα ∈ sp(2l, F) for any x ∈ sp(2l, F), then the mapping α on sp(2l, F) defined by

α(x) = α−1xα, for all x ∈ sp(2n, F),

is an automorphism of sp(2l, F) (see [6]).

Lemma 2.4.

(i) If 1 ≤ i < j ≤ l, there is an invertible α ∈ M2l(F) such that α(Ei j) = E1l.
(ii) There is an invertible β ∈ M2l(F) such that β(Ep,−p) = E1,−1, where 1 ≤ p ≤ l.
(iii) If 1 ≤ p < q ≤ l, there is an invertible γ ∈ M2l(F) such that γ(Ep,−q) = E1,−2.
(iv) There is an invertible θ ∈ M2l(F) such that θ(E1l) = E1,−l.
(v) If 1 ≤ i < j ≤ l, there is an invertible ξ ∈ M2l(F) such that ξ(Ei j) = E1,−2.

Proof. For 1 ≤ i , j ≤ l, let Pi j be the permutation matrix obtained by permuting the
ith and jth rows of the identity matrix of order l, and put

αi j =

(
Pi j 0
0 Pi j

)
.
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Since α−1
i j xαi j ∈ sp(2l, F) whenever x ∈ sp(2l, F), the mapping

αi j : x 7→ α−1
i j xαi j, for all x ∈ sp(2l, F),

is an automorphism of sp(2l, F).
If 1 < j < l, then the automorphism α jl sends E1 j to E1l. If 1 < i < j, then the

automorphism α1i sends Ei j to E1 j. If 1 < i < j < l, then the automorphism α jl · α1i =

α1i · α jl sends Ei j to E1l, which proves (i).
If p , 1, then the automorphism α1p sends Ep,−p to E1,−1, which proves (ii).
For 3 ≤ j ≤ l, the automorphism α2 j sends E1,− j to E1,−2. For 2 ≤ i < j ≤ l, the

automorphism α2 j · α1i = α1i · α2 j sends Ei,− j to E1,−2, which proves (iii).
Let θ = I2l − ell − e2l,2l + el,2l − e2l,l. One easily verifies that the mapping θ defined

by
θ : x 7→ θ−1xθ, for all x ∈ sp(2l, F),

stabilises sp(2l,F), thus is an automorphism of sp(2l,F). The proof of (iv) is completed
by θ(E1l) = E1,−l.

Finally, (v) follows immediately from (i), (iii) and (iv). �

Four particular subalgebras of sp(2l, F) are defined as follows:

H =

{(
A 0
0 −At

)
: A ∈ Ml(F) is diagonal

}
,

V =

{(
0 B
0 0

)
: B ∈ Ml(F) is symmetric

}
,

U =

{(
A 0
0 −At

)
: A ∈ Ml(F) is strictly upper triangular

}
,

T =

{(
A B
0 −At

)
: A ∈ Ml(F) is upper triangular, B ∈ Ml(F) is symmetric

}
.

Then H,U, V, T are all subalgebras of sp(2l, F). The following assertions are well
known,

• T is a Borel subalgebra (that is, a maximal solvable subalgebra) of sp(2l, F) (see
[10] or [11]),

• The dimension of H is l and the Eii, for i = 1, 2, . . . , l, form a basis of H,
• The dimension of U is 1

2 l(l − 1) and the Ei, j, for 1 ≤ i < j ≤ l, form a basis of U,
• The dimension of V is 1

2 l(l + 1) and the set {Ep,−q : 1 ≤ p ≤ q ≤ l} forms a basis
of V .

Since T = H ⊕ U ⊕ V , any given t ∈ T has a unique decomposition in the form

t = h + u + v, h ∈ H, u ∈ U, v ∈ V,

where h, u, v will respectively be called the H-term, the U-term and the V-term of t.
We write the V-term v of t as the linear combination of {Ep,−q : 1 ≤ p ≤ q ≤ l},

v =
∑

1≤p≤q

cp,−qEp,−q,
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and put
∆(t) = {(p,−q) : [h, cp,−qEp,−q] , 0}.

If ∆(t) , ∅, we set
d(t) = max{p + q : (p,−q) ∈ ∆(t)},

and call it the degree of t.
Let

Ψ =

{(
Il C
0 Il

)
: Ct = C

}
.

If α =
(Il C

0 Il

)
∈ Ψ , then the mapping α : x 7→ α−1xα for x ∈ sp(2l,F) is an automorphism

of sp(2l, F). The set {α : α ∈ Ψ} forms a subgroup of Aut(sp(2l, F)), which will be
denoted by G. Direct calculation shows that G stabilises T . In addition, if α ∈ Ψ, then
α(t) and t ∈ T have the same H-term and the same U-term. Now we consider how to
simplify the V-term of t by applying α ∈ G.

Lemma 2.5. For any given t ∈ T, there exists α ∈ Ψ such that ∆(α(t)) = ∅.

Proof. Suppose to the contrary that ∆(α(t)) , ∅ for any α ∈ Ψ. Choose β ∈ G with
β ∈ Ψ which minimises d(β(t)) and suppose that d(β(t)) = k. Assume that

β(t) = h + u + v, where h ∈ H, u ∈ U, v ∈ V,

and represent h, u, v as linear combinations of the bases of H,U,V , respectively:

h =

l∑
i=1

aiiEii, u =
∑

1≤i< j≤l

bi jEi j, v =
∑

1≤p≤q≤l

cp,−qEp,−q.

Thus [h, cp,−qEp,−q] = 0 when p + q > k, and there is (p′,−q′) such that p′ + q′ = k and

[h, cp′,−q′Ep′,−q′] = (ap′,p′ + aq′,q′)cp′,−q′Ep′,−q′ , 0.

Put
γ = I2l −

∑
p+q=k, app+aqq,0

cp,−q(app + aqq)−1Ep,−q.

Then γ ∈ Ψ. By calculation,

γ(h) = γ−1hγ = h −
∑

p+q=k, app+aqq,0

cp,−qEp,−q,

γ(v) = γ−1vγ = v,

and
γ(u) = γ−1uγ = u + v′, with v′ ∈ Vk−1,

where Vk−1 denotes the subalgebra of V spanned by {Ep,−q : p + q ≤ k − 1}. Since

γ(β(t)) = h + u +

(
v −

∑
p+q=k, app+aqq,0

cp,−qEp,−q + v′
)

with v′ ∈ Vk−1, we have d(γ(β(t)) ≤ k − 1, a contradiction to the assumption for β. �
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We need a known result about the Borel subalgebras of an arbitrary Lie algebra to
simplify elements in sp(2l, F).

Lemma 2.6 [10, Theorem 16.4]. The Borel subalgebras of an arbitrary Lie algebra L
are conjugate under E(L), a subgroup of the automorphism group of L.

Lemma 2.7. For a given x ∈ sp(2l,F), there exists an automorphismσ of sp(2l,F), such
that σ(x) ∈ T and the H-term of σ(x) commutes with both the U-term and the V-term
of σ(x).

Proof. Since x lies in a Borel subalgebra of sp(2l, F) and T is a standard Borel
subalgebra of sp(2l, F), by Lemma 2.6, there is an automorphism τ of sp(2l, F) such
that τ(x) ∈ T . For convenience, we assume x ∈ T and that

x =

(
A C
0 −At

)
,

where A ∈ Ml(F) is upper triangular and C is symmetric. By Jordan’s theorem, there is
an invertible matrix X ∈ Ml(F) such that X−1AX = D + W and [D,W] = 0, where D is
diagonal and W is strictly upper triangular. Let α = diag(X, (Xt)−1). Then the mapping
α : z 7→ α−1zα on sp(2l, F) is an automorphism of sp(2l, F). Denote α(x) by y. The
H-term and the U-term of y are respectively diag(D,−Dt) and diag(W,−W t), and

[diag(D,−Dt), diag(W,−W t)] = 0.

By Lemma 2.5, there exists β ∈ Ψ such that β(y) has the same H-term (respectively,
U-term) as y and such that ∆(β(y)) = ∅. The condition ∆(β(y)) = ∅ implies that the
H-term of β(y) commutes with the V-term of β(y). �

Lemma 2.8. Let x ∈ sp(2l, F), x , 0. If l > 2, there is y ∈ C(x), y , 0, such that the
dimension of C(y) is greater than half the dimension of sp(2l, F).

Proof. By Lemma 2.7, there is an automorphism σ of sp(2l, F), with σ(x) ∈ T and
such that the H-term of σ(x) commutes with both the U-term and the V-term of σ(x).
Assume σ(x) = h + u + v, where h ∈ H commutes with u ∈ U and v ∈ V .

Case 1: [h, Ep,−q] = 0 for some p, q with 1 ≤ p ≤ q ≤ l.
Suppose that Ep′,−q′ belongs to {Ep,−q : [h, Ep,−q] = 0, 1 ≤ p ≤ q ≤ l} and minimises

p + q. We claim that σ(x) commutes with Ep′,−q′ . For if [σ(x), Ep′,−q′] , 0, then
[u, Ep′,−q′] , 0. Write u =

∑
1≤i< j≤l ai jEi j. Since [u, Ep′,−q′] , 0, there are i, j with

1 ≤ i′ < j′ ≤ l such that [ai′ j′Ei′ j′ , Ep′,−q′] , 0. The condition [h, u] = 0 implies that
[h,Ei′ j′] = 0. Note that [Ei′ j′ ,Ep′,−q′] is either Ei′,−q′ (when j′ = p′) or Ei′,−p′ (when j′ =

q′). From [h,Ei′ j′] = [h,Ep′,−q′] = 0 we have [h, [Ei′ j′ ,Ep′,−q′]] = 0. Thus [h,Ei′,−q′] = 0
or [h, Ei′,−p′] = 0. In either case, we have a contradiction, since i′ + q′ < p′ + q′

(when j′ = p′) and i′ + p′ < p′ + q′ (when j′ = q′), which completes the proof of
the claim. If p′ = q′, then Ep′,−q′ is conjugate to E1,−1 under an automorphism
of sp(2l, F) (by Lemma 2.4(ii)), thus C(Ep′,−q′) has the same dimension 2l2 − l as
C(E1,−1), which is greater than 1

2 (2l2 + l). If p′ , q′, then Ep′,−q′ is conjugate to
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E1,−2 under an automorphism of sp(2l, F) (by Lemma 2.4(iii)), thus C(Ep′,−q′) has
dimension 2l2 − 3l + 2, which is greater than 1

2 (2l2 + l) (recalling that l > 2). Choose
y = σ−1(Ep′,−q′) so that [x, y] = 0. As C(y) and C(Ep′,−q′) have the same dimension, the
dimension of C(y) is greater than 1

2 (2l2 + l), that is, half the dimension of sp(2l, F).

Case 2: [h, Ep,−q] , 0 for all p, q with 1 ≤ p ≤ q ≤ l and [h, Ei j] = 0 for some i, j with
1 ≤ i < j ≤ l.

In this case, the condition [h, v] = 0 forces v = 0. Thus σ(x) = h + u. Suppose that
Ei′ j′ lies in {Ei j : [h, Ei j] = 0, 1 ≤ i < j ≤ l} and maximises j − i. We claim that σ(x)
commutes with Ei′ j′ . Indeed, if [σ(x), Ei′ j′] , 0, then [u, Ei′ j′] , 0 and there are i0, j0
with 1 ≤ i0 < j0 ≤ l such that [ai0, j0,Ei0, j0 , Ei′ j′] , 0. The condition [h, u] = 0 implies
that [h, Ei0, j0 ] = 0. Note that [Ei0, j0 , Ei′ j′] is either Ei0, j′ (when j0 = i′) or −Ei′, j0 (when
j′ = i0). From [h, Ei0, j0 ] = [h, Ei′ j′] = 0, we have [h, [Ei0, j0 , Ei′ j′]] = 0. Thus either
[h, Ei0, j′] = 0 (when j0 = i′) or [h, Ei′, j0 ] = 0 (when j′ = i0). In either case, we have a
contradiction, since j′ − i0 > j′ − i′ (when j0 = i′) and j0 − i′ > j′ − i′ (when j′ = i0),
which completes the proof of the claim. By Lemma 2.4, Ei′ j′ is conjugate to E1,−2

under an automorphism of sp(2l,F), so C(Ei′ j′) has the same dimension 2l2 − 3l + 2 as
C(E1,−2), which is greater than 1

2 (2l2 + l) (recalling that l > 2). Choose y = σ−1(Ei′ j′).
Then [x, y] = 0. As C(y) and C(Ei′ j′) have the same dimension, the dimension of C(y)
is greater than 1

2 (2l2 + l).

Case 3: [h, Ep,−q] , 0 for all p, q with 1 ≤ p ≤ q ≤ l and [h, Ei j] , 0 for all i, j with
1 ≤ i < j ≤ l.

In this case, the condition [h, v] = [h, u] = 0 forces u = v = 0. Thus σ(x) = h is a
diagonal matrix. Let y = σ−1(E11). Then [x, y] = 0 and the dimension 2l2 − 3l + 2 of
C(y) is the same as that of C(E11), which is greater than 1

2 (2l2 + l). �

Proof of Theorem 1.1. We have found two distinct vertices in Γ(sp(2l, F)) with
distance 4. Now it suffices to prove that the distance between any pair of vertices x, y
of Γ(sp(2l, F)) is at most 4. Let x, y be nonzero elements of sp(2l, F). By Lemma 2.8,
there are nonzero elements x′, y′ with x′ ∈ C(x) and y′ ∈ C(y) such that the dimensions
of C(x′) and C(y′) are both greater than half the dimension of sp(2l,F). Thus a nonzero
element, say z, lies in C(x′) ∩ C(y′). Consequently, x ∼ x′ ∼ z ∼ y′ ∼ y is a path in
Γ(sp(2l, F)). Therefore, d(x, y) ≤ 4. �
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