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1. Introduction

The first main result of this paper is a bijective correspondence between the strictly
full triangulated subcategories dense in a given triangulated category and the sub-
groups of its Grothendieck group (Thm. 2.1). Since every strictly full triangulated
subcategory is dense in a uniquely determined thick triangulated subcategory, this
result refines any known classification of thick subcategories to a classification of
all strictly full triangulated ones. For example, one can thus refine the famous clas-
sification of the thick subcategories of the finite stable homotopy category given
by the work of Devinatz–Hopkins–Smith ([Ho], [DHS], [HS] Thm. 7, [Ra] 3.4.3),
which is responsible for most of the recent advances in stable homotopy theory.
One can likewise refine the analogous classification given by Hopkins and Neeman
([Ho] Sect. 4, [Ne] 1.5) of the thick subcategories ofD(R)parf , the chain homotopy
category of bounded complexes of finitely generated projectiveR-modules, where
R is a commutative noetherian ring.

The second main result is a generalization of this classification result of Hop-
kins and Neeman to schemes, and in particular to non-noetherian rings. Let X
be a quasi-compact and quasi-separated scheme, e.g. any commutative ring or
algebraic variety. Denote by D(X)parf the derived category of perfect complexes,
the homotopy category of those complexes of sheaves of OX -modules which are
locally quasi-isomorphic to a bounded complex of freeOX -modules of finite type.
I say a thick triangulated subcategory A � D(X)parf is a 
-subcategory if for
each object E in D(X)parf and each A in A, the derived tensor product E 
 A
is also in A. This is a mild condition on A. If X has an ample line bundle L
(e.g. for X a classical, hence quasi-projective variety), it suffices by 3.11.1 below
to check that L�1 
 A � A. If X = Spec(R) for R a commutative ring, all
thick subcategories A � D(R)parf are 
-subcategories. The second main result
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2 R. W. THOMASON

(Thm. 3.15) gives for X a quasi-compact and quasi-separated scheme a bijective
correspondence between the thick triangulated 
-subcategories of D(X)parf and
the subspaces Y � X which are unions of closed subspaces Y� � X with X �Y�
quasi-compact. To such a Y corresponds the thick 
-subcategory of those perfect
complexes acyclic at each point of X � Y . For X noetherian, all subspaces are
quasi-compact, and the remaining condition that Y be a union of subspaces closed
in X is usually expressed by saying that ‘Y is closed under specialization’. For
a detailed comparison with the previous work of Hopkins and Neeman see 3.17
below.

Refining the second main result by the first, I obtain (Thm. 4.1) a classification
of all strictly full triangulated 
-subcategories A of D(X)parf : they correspond
bijectively to data (Y;H) where Y � X is a subspace as above andH � K0(X on
Y ) is aK0(X)-submodule of the Grothendieck group of perfect complexes acyclic
off Y . Thus A is determined by a condition Y on the supports and a condition
H on the multiplicities. This classification has been my personal motivation for
developing the results of this paper. I seek to define a good intersection ring of
‘algebraic cycles’ on schemes X where the classical construction of the Chow
ring fails, for example on singular algebraic varieties or on regular schemes flat
and of finite type over Z. Inspired by the superiority of Cartier divisors over
Weil divisors and by recent progress in local intersection theory, I believe the good
notion of ‘algebraicn-cycle’ is that of those perfect complexes in some triangulated
subcategory An � D(X)parf which remains to be defined. Technological secrets
about ‘moving lemmas’ demand that An should be a 
-subcategory, and show it
cannot be thick in general. The classification has proved to be very helpful here in
clarifying the issues to be resolved.

Other results presented here worth mentioning are the Tensor Nilpotence Theo-
rem (Thms. 3.6 and 3.8), generalizing to schemes a result of Hopkins and Neeman
for noetherian rings ([Ho] Thm. 10, [Ne] 1.1) analogous to the Nilpotence Theorem
of Devinatz–Hopkins–Smith ([DHS] Thm. 1) in stable homotopy, and a useful but
little-known necessary and sufficient condition for the equality of two classes in
the Grothendieck group of a triangulated category (Lemma 2.4), due to Landsburg
inspired by Heller.

I have tried to make each theorem, proposition, and lemma resistant to
misinterpretation on being ‘zapped’ out of its context by endlessly restating, or
at least referencing, all hypotheses and definitions explicitly. However, I have
followed a customary global convention that ‘ring’ always means ‘commutative
ring’.

2. ‘Rappels’

For the convenience of the reader and to eliminate ambiguities, I will briefly recall
some basic definitions and results of the theory of triangulated categories. Useful
general references are the classic treatments [Ha] I and II, and [Ve], as well as
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THE CLASSIFICATION OF TRIANGULATED SUBCATEGORIES 3

[SGA4] XVII Section 1.2, [SGA5] VIII, [SGA6], and the more recent [BBD]
Section 1, [Ri], [Sp], and [BN].

1.1. Let T be a triangulated category. A full triangulated subcategory of T is a full
subcategoryA with the structure of a triangulated category such that the inclusion
functor i:A ! T is a triangulated (a.k.a. ‘exact’) functor, i.e. such that it preserves
distinguished (‘exact’) triangles and commutes with the suspension (‘translation’)
endofunctors. Since the axioms of a triangulated category imply that any morphism
is an edge of an exact triangle which is unique up to isomorphism of the opposite
vertex ([Ha] I Sect. 1 TR1, TR3, Prop. 1.1.c, or [Ve] I Sect. 1 no. 1), and since the
functor i is fully faithful so two triangles in A are isomorphic in T if and only if
they are isomorphic in A, a triangle in A is exact if and only if its image is exact
in T . Thus the triangulated category structure of A is uniquely determined by that
on T .

Thus the definition above is equivalent to: a full triangulated subcategory of T
is a full non-empty subcategory A of T such that for every exact triangle of T of
which two vertices are in A, then the third vertex is isomorphic to an object of A
(c.f. [Ve] I Sect. 1 no. 2–3).

1.2. A strictly full triangulated subcategoryA of T is a full triangulated subcate-
gory such that A contains every object of T which is isomorphic to an object of
A.

1.3. A thick (a.k.a épaisse) triangulated subcategory A of T is a strictly full tri-
angulated subcategory such that every direct summand in T of an object of A is
itself an object of A. Rickard ([Ri] Prop. 1.3) showed that this definition is equiv-
alent to the somewhat more complicated classic definition given by Verdier ([Ve]
I Sect. 2 1–1). Using his definition Verdier showed that a full subcategoryA of T
is a thick triangulated subcategory if and only if there exists a triangulated category
T 0 and a triangulated functor T ! T 0 such that A is the full subcategory of those
objects whose image in T 0 is isomorphic to 0. (c.f. [Ve] I Sect. 2 nos. 1, 2, 3).

1.4. A full triangulated subcategory A of a triangulated category D is dense in D
if each object of D is a direct summand of an object isomorphic to an object inA.

REMARK 1.5. If A is a full triangulated subcategory of a triangulated category
T , the intersection of all the thick triangulated subcategories of T containing A
is a thick triangulated subcategory D. This D is the smallest thick triangulated
subcategory of T which contains A. On the other hand, one checks easily that
the strictly full subcategory eA of all objects of T which are summands of objects
isomorphic to objects in A is a thick triangulated subcategory of T . Thus D � eA.
But by Rickard’s definition of thick one has eA � D since D is thick and contains
A. Thus D = eA.
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4 R. W. THOMASON

HenceA is dense in a thick triangulated subcategoryD of T if and only if D is
the smallest thick triangulated subcategory of T which containsA.

1.6. Let T be a triangulated category, which we suppose is essentially small (1.7)
and so replace with an equivalent triangulated category which has a set of objects.
The Grothendieck group K0(T ) is the quotient group of the free abelian group
on the set of isomorphism classes of objects of T by the Euler relations: [B] =
[A] + [C] whenever there is an exact triangle in T

A - B

I@
@
@
@
@ 	�

�
�
�
�

C

(1:6:1)

See [SGA6] IV Section 1, [SGA5] VIII Section 2. The Grothendieck group
has the universal mapping property that any function from the set of isomorphism
classes of objects of T to an abelian group G such that the Euler relations hold
in G factors through a unique homomorphism K0(T ) ! G. K0( ) is covariant
for triangulated functors. One has [A] + [B] = [A � B] from the exact triangle
A ! A � B ! B  � � � . Then [A] + [0] = [A], which implies [0] = 0 in
the Grothendieck group. Note that if �A is the suspension of A in T , so there
exists an exact triangle A ! 0 ! �A  � � � , one has [A] + [�A] = [0] = 0, so
[�A] = �[A]. From all this it follows that every element of K0(T ) is of the form
[C] for some objectC of the triangulated category T . The analogous statement for
the Grothendieck group of an abelian or exact category would not be true; the [C]’s
only generate the group in these cases.

1.7. A category T is essentially small if it is equivalent to a small category, i.e. if
there exists a set of objects of T (as opposed to a class of objects in the sense of
Gödel–Bernays set theory) such that every object of T is isomorphic to an object
in this set.

Note that if T is an essentially small triangulated category then any full subcate-
gory, any localization, and in particular any Verdier quotient by a thick triangulated
subcategory ([Ve] I Sect. 2 no. 3) is essentially small. The stable homotopy cate-
gory of finite CW spectra is essentially small. For any quasi-compact and quasi-
separated scheme X (e.g. for any noetherian scheme) the triangulated category of
perfect complexes (3.1) on X;D(X)parf , is essentially small ([TT] Appendix F).
If A is an essentially small abelian category then the derived category D(A) is
also essentially small. However, neither the category of all abelian groups, nor its
derived categoryD(Z-mod) is essentially small: there are too many non-isomorphic
abelian groups. Indeed these exist in every cardinality.
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THE CLASSIFICATION OF TRIANGULATED SUBCATEGORIES 5

3. Classification of dense strictly full triangulated subcategories

As in 1.5, each strictly full triangulated subcategory A of a triangulated category
T is dense in a uniquely determined thick subcategory D of T . Thus to classify
all such A in T it suffices to classify: (1) the thick subcategories D in T , and (2)
the strictly full dense triangulated subcategories A of D. The second part of the
classification is given by:

THEOREM 2.1 Let D be an essentially small (1.7) triangulated category. Then
there is a one-to-one correspondence between the strictly full dense (1.2, 1.4)
triangulated subcategoriesA inD and the subgroupsH of the Grothendieck group
K0(D).

To A corresponds the subgroup which is the image of K0(A) in K0(D). To H
corresponds the full subcategory AH whose objects are those A in D such that
[A] 2 H � K0(D).

Proof. One checks that these formulas define functions between the set of strictly
full dense triangulated subcategories and the set of subgroups: Trivially imK0(A)
is a subgroup of K0(D). The Euler relation in K0(D) gives readily that AH is
a strictly full triangulated subcategory of D. And AH is dense in D since for all
D 2 D one hasD��D 2 AH as [D��D] = [D]+[�D] = [D]� [D] = 0 2 H .

It remains to be checked that the two functions are inverse to each other. For H
a subgroup, clearly imK0(AH) � H . But as in 1.6, any element of H � K0(D)
is of the form [D] for some D 2 D, and then D 2 AH since [D] 2 H . Thus
H imK0(AH), and the composition of the two functions gives the identity on the
set of subgroups. To see that the reverse composition gives the identity on the set of
subcategories, completing the proof of the theorem, one must check that for each
D 2 D one has D 2 A if and only if [D] 2 imK0(A) � K0(D). But this is given
by the following lemma.

LEMMA 2.2 Let A be a strictly full dense triangulated subcategory of the essen-
tially small triangulated category D. Then for any object D of D, one has that
D 2 A if and only if [D] = 0 in K0(D)=im K0(A).

Proof. Passing to an equivalent triangulated category, I may assume that D
has a set of objects. Consider the relation � on the set of isomorphism classes of
objects of D defined by D � D0 iff there exist A and A0 in A such that there is
an isomorphism D � A �= D0 � A0. One checks easily that the relation � is an
equivalence relation. Denote by G the quotient by � of the set of isomorphism
classes of objects. Denote by hDi the class in G of the object D of D.

I claim D 2 A iff hDi � h0i in G. For clearly D 2 A implies hDi � h0i.
Conversely if hDi � h0i, there are A;A0 2 A and an isomorphism D � A �=
0�A0 = A0. ThenD�A 2 A, and as two of the three vertices of the exact triangle
A! D�A! D  �A are in the strictly full triangulated subcategoryA, at the
third vertex one has also D 2 A. This proves the claim.
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6 R. W. THOMASON

To complete the proof of the lemma, it remains to show that the setG is bijective
with the group K0(D)=imK0(A) via hDi $ [D].

But G has a structure of an abelian monoid, with sum induced by the operation
of direct sum in D. h0i is the zero. In fact, G has inverses and so is an abelian
group. For given any element hDi 2 G, asA is dense in D there is a D0 2 D such
that D �D0 2 A. Then hDi+ hD0i = hD �D0i � h0i = 0.

Further the Euler relation holds in G, so that the surjection ObjD � G induces
a surjection of abelian groups K0(D) � G sending [D] to hDi. For let A! B !

C  �A be an exact triangle inD. As above, there are objectsA0,C 0 inD such that
A�A0,C�C 0 are inA so hA�A0i = 0 = hC�C 0i. Taking the direct sum of the
exact triangle A! B ! C  �A with the exact triangles A0 ! A0 ! 0  �A0

and 0 ! C 0 ! C 0  �0 gives an exact triangle A � A0 ! B � A0 � C 0 !
C � C 0  �(A � A0). The vertices A � A0 and C � C 0 are in the strictly full
triangulated subcategoryA, and hence so is the third vertexB �A0 �C 0. Thus in
G one has 0 = hB �A0 �C 0i = hBi+ hA0i+ hC 0i = hBi � hAi � hCi, proving
the Euler relation holds there.

Thus one has a surjective homomorphism K0(D) � G. Since each element of
K0(D) is of the form [D] for some D 2 D by 1.6, the kernel of this surjection
consists of all [D] such that hDi � 0, i.e. such that D 2 A. So the kernel is
imK0(A) and G �= K0(D)=imK0(A). 2

COROLLARY 2.3 LetA be a full dense triangulated subcategory of the essentially
small triangulated category D. Then the homomorphism induced on K0( ) by the
inclusion of categories is a monomorphism of groupsK0(A)� K0(D).

Proof. Let eA be the strictly full triangulated subcategory of D whose objects
are those objects of D isomorphic to objects in A. The inclusion A � eA is an
equivalence of triangulated categories and so induces an isomorphism K0(A) �=
K0( eA). Hence I may replaceA by eA and so may assumeA is a strictly full dense
triangulated subcategory of D.

Let N = ker (K0(A) ! K0(D)). By Theorem 2.1 the subgroups 0 and N
of K0(A) correspond to strictly full dense triangulated subcategories Z and N
of A. But then Z and N are also strictly full dense triangulated subcategories of
D. But imK0(Z) = 0 = imN = imK0(N ) in K0(D). Then by Theorem 2.1,
Z = N � D, whence 0 = K0(Z) = K0 = (N )N . 2

The reader may find the indirectness of the proof of this useful corollary psycho-
logically uncomfortable. If so, rather than dosing himself with a benzodiazepine,
he may find relief in deducing Corollary 2.3 from the following criterion for equal-
ity of two classes in K0(D), whose proof is very similar to that of Lemma 2.2.
This criterion is due to Landsburg ([La]), inspired by an analog for K0 of exact
categories due to Heller ([He] 2.1).

LEMMA 2.4. (Landsburg) Let D be an essentially small triangulated category,
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THE CLASSIFICATION OF TRIANGULATED SUBCATEGORIES 7

and let D, D0 be two objects of D. Then [D] = [D0] in K0(D) if and only if there
are objects A;B;C 2 D and two exact triangles

(2.4.1)

A B �D

C

-










�JJ

JJ

JJ]

�

�


A B �D0

C

-










�JJ

JJ

JJ]

�0

�0
0

Proof. First I replace D by an equivalent triangulated category with a set of
objects. Now let � be the relation on the set of objects defined by D � D0 if
there exist A;B;C and two exact triangles as in (2.4.1). The relation � is an
equivalence relation: symmetry and reflexivity are clear; and as for transitivity,

note that if D � D0 because of exact triangles A1
�1
�! B1 � D

�1
�! C1 ; and

A1
�01
�! B1 � D0

�01
�! C1 ;, while D0 � D00 because of the exact triangles

A2
�2
�! B2 � D0

�2
�! C2 ; and A2

�02
�! B2 � D00

�02
�! C2 ;, then D � D00

because of the exact trianglesA1�A2
�1��2- B1�D�B2�D

0 �1��2- C1�C2 ;

and A1 � A2
�01��

0
2- B1 �D0 � B2 �D00

�01��
0
2- C1 � C2 ;, conjugated by the

isomorphisms (B1�B2�D
0)�D �= B1�D�B2�D

0 and (B1�B2�D
0)�D00 �=

B1 � D0 � B2 � D00. Let G be the quotient of the set of objects of D by the
equivalence relation �. It remains to show that G �= K0(D) via hDi $ [D].
G has a structure of an abelian monoid, the sum being induced by direct sum

in D. In fact, G is an abelian group. For given an element hDi of G, it has
an inverse h�Di since hD � �Di � h0i = 0 because of the exact triangles
D ! D � �D ! �D  and D ! 0 ! �D  . The Euler relation holds in
G. For if A ! D ! C  is an exact triangle, considering it alongside the exact
triangle A! A� C ! C  gives hDi � hA� Ci = hAi+ hCi.

Thus by the universal property of the Grothendieck group one has a homo-
morphism, clearly surjective, K0(D) � G sending [D] to hDi. This surjection is
injective, and so is an isomorphism of abelian groups. For given two elements in
K0(D), as in 1.6 they have the form [D], [D0] for objects D;D0 of D. If they go to
the same element of G, then D � D0 and there exist two exact triangles (2.4.1).
Then in K0(D) the Euler relations give [B � D] = [A] + [C] = [B � D0], so
[B] + [D] = [B] + [D0], and [D] = [D0] in this group. 2

EXAMPLE 2.5 The proof of Lemma 2.2, the backbone of Theorem 2.1, was
already implicit in the proof ([TT] 5.5.4) of a key special case of the K0-criterion
of Thomason–Trobaugh for the extension of perfect complexes (3.1) on an open
subscheme U to perfect complexes on the ambient scheme X . As an example and
since it will be needed in Section 3, I state this criterion:
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8 R. W. THOMASON

EXTENSION LEMMA. Let X be a quasi-compact and quasi-separated scheme,
Y � X a closed subspace such that X � Y is quasi-compact, and U � X a
quasi-compact open subscheme. Denote by K0(XonY ) the Grothendieck group
of the triangulated category of perfect complexes on X acyclic off Y . Let E� be a
perfect complex on U acyclic off U \ Y . Then there exists on X a perfect complex
F � acyclic off Y and such that the restriction F �jU is quasi-isomorphic to E�, if
and only if the class [E�] in K0(UonU \ Y ) is in the image of K0(XonY ).

Proof. This statement is [TT] 5.2.2, whose proof is spread out through [TT] Sec-
tion 5. In essence, one reduces to the caseY = X and whereX has an ample family
of line bundles by an inductive argument. In this case, a Koszul complex trick for
extending to X morphisms defined on U between perfect complexes on X shows
that the perfect complexes on U which extend are the objects of a strictly full tri-
angulated subcategory. Trobaugh’s revelation ([TT] 5.5.1) is that this subcategory
is dense. Now Lemma 2.2 finishes the proof.

4. Classification of thick subcategories of perfect complexes

3.1. ‘Rappels’: Let X be a quasi-compact and quasi-separated scheme. Recall that
any classical algebraic variety, more generally any noetherian scheme, and the affine
scheme Spec(R) for any commutative ring is quasi-compact and quasi-separated
([EGA] I).

A strict perfect complex onX is a bounded complex of locally freeOX -modules
of finite type ([SGA6] I 2.1, or [TT] 2.2.2). A perfect complex on X is a complex
E� of sheaves of OX -modules such that there is an open cover of X by U ’s such
that E�jU is quasi-isomorphic to a strict perfect complex on U ([SGA6] I 4.7, or
[TT] 2.2.10).

One denotes by D(X) the derived category of the abelian category of sheaves
of OX -modules, and by D(X)parf its strictly full subcategory whose objects are
the perfect complexes onX: D(X)parf is a thick triangulated subcategory ofD(X)
by ([SGA6] I 4.9, 4.10, 4.17 or [TT] 2.2.13). It is contained in the thick subcate-
goryD+(X)qc of complexes cohomologically bounded below with quasi-coherent
cohomology sheaves.

The objects ofD(X)parf are characterized by the following ‘finite presentation’
condition ([ThLG] Prop. 1.1, c.f. [TT] 2.4.1): an objectE� ofD+(X)qc is a perfect
complex iff the functor MorD(X)(E

�) takes all direct sums in D+(X)qc, even
those with infinitely many factors, to direct sums of abelian groups. Note there
is a similar characterization of the homotopy finite CW spectra in the full stable
homotopy category (e.g., [ThSH] 2.5, with the dual to 2.6). This fact is part of
the parallel between the classification Theorem 3.15 below and the classification
theorem [HS] Theorem 7 in the finite stable homotopy category.

If the scheme X has an ample family of line bundles ([SGA6] II 2.2.4 or
[TT] 2.1.1); for example, if X is an affine scheme Spec(R), or is quasi-projective
over a Spec(R), or is a separated regular noetherian scheme, ([TT] 2.1.2), then
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THE CLASSIFICATION OF TRIANGULATED SUBCATEGORIES 9

any perfect complex on X is globally quasi-isomorphic to a strict perfect complex
([SGA6] II 2.2.8, or [TT] 2.3.1). In particular D(Spec)(R))parf is equivalent to the
triangulated category obtained from the category of bounded chain complexes of
finitely generated projectiveR-modules by inverting the quasi-isomorphisms. This
is the category abusively denoted Db(R) in [Ne], in flagrant incompatibility with
the standard use of this symbol as in [Ha], [Ve], and all the works of Grothendieck.

I refer to [Ha] II, [SGA6] I, and [Sp] for the standard notations and results on
operations like the total derived tensor product 
L

OX
and the total derived inverse

image Lf�. Note that generally in [Ha] and [SGA6], 
L
OX

and Lf� were defined
only onD�(X), i.e. on cohomologically bounded above complexes, but they have
been extended to all D(X) by Spaltenstein ([Sp] 6.5, 6.7). See also [BN]. I will
sometimes abbreviate
L

OX
andLf� simply as
 and f�, leaving theX understood

and suppressing the ‘L’ when by the context these clearly refer to functors between
derived categories rather than the inducing functors on categories of complexes.

Finally I note that I usually follow the customs of the tribe of algebraic geome-
ters, for whom the differentials in a complex increase degree, @:En ! En+1, and
who call ker@=im @ cohomology. For topologists, differentials decrease degree
and ker @=im @ is homology. To translate between the languages of these antipodal
peoples one reindexes the algebraic geometer’s complex by setting En = E�n, so
reindexing Hn(E�) = H�n(E:). For example, I say a complex E� is cohomologi-
cally bounded above if Hn(E�) �= 0 for n� 0. Among the topologists one would
say this complex E: is homologically bounded below.

DEFINITION 3.2 LetX be a scheme andE� a complex of sheaves ofOX -modules.
The cohomological support of E� is the subspace Supph(E�) � X of those points
x 2 X at which the stalk complex ofOX;x-modules (E�x) is not acyclic.

Thus Supph(E�)
S
n2Z SuppHn(E�) is the union of the supports in the classic

sense ([EGA] OI 3.1.5) of the cohomology sheaves of E�.

LEMMA 3.3 Let X be a quasi-compact and quasi-separated scheme. Let E� be a
perfect complex on X.

(a) For any x 2 X , E�x is an acyclic complex of OX;x-modules if and only if
E� 
L

OX
k(x) is an acyclic complex of k(x)-modules.

(b) If Y is a quasi-compact and quasi-separated scheme and f : Y ! X a
morphism of schemes, then

Supph(Lf�E�) = f�1(Supph(E�))

(c) Supph(E�) is closed in X , and X � Supph(E�) is quasi-compact.
Proof. (a) Consider the strongly converging Künneth spectral sequence (e.g.

[EGA] III 6.3.2)

E2
p;q = Tor p

OX;x
(Hq(E

�
x); k(x)) =) Hp+q(E

� 
L
OX

k(x)):
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10 R. W. THOMASON

This shows at once that ifE�x is acyclic, i.e. ifH�(E�x) = 0, thenE�
L
OX

k(x) is
acyclic. Conversely, supposeE�x is not acyclic. As the perfectE� is cohomologically
bounded there is a least N such that HN(E

�
x) 6= 0. Then in the spectral sequence

E2
p;q = 0 for q < N as well as for p < 0. Then for p+q = N the spectral sequence

gives in the corner p = 0, q = N an isomorphism HN (E
�
x) 
OX;x k(x)

�=

HN(E
� 
L
OX

k(x)). As E�x is perfect and Hq(E
�
x) = 0 for q < N , HN(E

�
x) is

a finitely generated OX;x-module ([SGA6] I 2.10b, 5.8.1, or [TT] 2.2.3, 2.2.12).
Then by Nakayama’s lemma HN (E

�
x) 6= 0 implies Hq(E

�
x) 
OX;x k(x) 6= 0, so

E� 
L
OX

k(x) is not acyclic. This proves (a).
To prove (b), note by (a) that y 2 Supph(Lf�E�) iff (Lf�E�) 
L

OY
k(y) is

not acyclic. But for x = f(y) 2 X one has (Lf�E�) 
L
OY

k(y) �= (E� 
L
OX

k(x))
L
k(x) k(y). As k(y) is an extension field of k(x) it is faithfully flat over k(x),

and (E� 
L
OX

k(x)) 
L
k(x) k(y) is not acyclic iff E� 
L

OX
k(x) is not acyclic, that

is, by (a) again, iff x 2 Supph(E�). This proves (b).
It remains to prove (c). Suppose first that X is a noetherian scheme. The coho-

mology sheaves of the perfect complex E� are coherent OX -modules ([SGA6] I
3.5, or [TT] 2.2.8, 2.2.12). Thus each Supp(Hn(E�)) is closed in X ([EGA] I
6.8.5), and as (E�) is cohomologically bounded, for all but finitely many n one has
Supp(Hn(E�)) = Supp 0 = ;. Thus Supph(E�) =

S
Supp(Hn(E�)) is closed in

X . ForX a noetherian scheme, any subspace, e.g.X�Supph(E�) is quasi-compact
([EGA] I 2.7.1, [B-AC] II Sect. 4 no. 2 Prop. 9). This proves (c) for X noetherian.

Now suppose only that X is quasi-compact and quasi-separated. By absolute
noetherian approximation ([TT] C.9, 3.20) there exist a noetherian schemeX 0, an
affine map g:X ! X 0, and a perfect complex F � onX 0 such thatE� �= Lg�F �. By
(b), Supph(E�) = g�1(Supph(F �), and so is closed in X as Supph(F �) is closed
in the noetherianX 0. As the affine map g is a quasi-compact map ([EGA] I 6.1.1),
X � Supph(E�) = g�1(X 0 � Supph(F �)) is quasi-compact. This proves (c) and
completes the proof of the lemma.

LEMMA 3.4 LetX be a quasi-compact and quasi-separated scheme. Let Y � X
be a closed subspace such thatX�Y is quasi-compact. Then there exists a perfect
complex E� on X such that Supph(E�)Y .

Proof. By absolute noetherian approximation ([TT] C.9, [EGA] IV 8.3.11)
there exist a noetherian scheme X 0 of finite type over Spec(Z), a closed subspace
Y 0 � X 0, and an affine map f :X ! X 0 such that Y = f�1(Y 0). If there is a
perfect complex E0� on X 0 such that Y 0 = Supph(E0�), then E� = Lf�E0

� will be
a perfect complex onX with Y = Supph(E�) by 3.3b. Thus it suffices to prove the
result when X is a noetherian scheme.

ForX noetherian, the closed Y has finitely many irreducible components, with
generic points y1; : : : ; yk ([B-AC] II Sect. 4 no. 2, [EGA] I 2.1.5, 2.7). If there
are perfect complexes E�i on X such that Supph(E�i) = yi, then E� = �k

i=1E
�
i is
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THE CLASSIFICATION OF TRIANGULATED SUBCATEGORIES 11

perfect with Supph(E�) =
Sk
i=1 yi = Y . Thus it suffices to prove the case where

Y = y is irreducible closed with generic point y.
Then let U = Spec(A) be an affine open neighborhood of y in X . Let

ff1; : : : ; fng be a finite set of generators for the ideal in the noetherian ring A
corresponding to the reduced closed subscheme Y \U � Spec(A) ([EGA] I 4.6.1,

4.2). Consider the Koszul complex K � = K �(f1; : : : ; fn) = 
n
i1(A

fi
�! A), the

tensor product of chain complexes (A
fi
�! A)which are 0 except in degrees�1 and

0, and haveA in those two degrees between which the differential is given by multi-
plication by fi.K �(f1; : : : ; fn) is a strict perfect complex on Spec(A). On one hand
Supph(K �(f1; : : : ; fn)) � (f1 = 0) \ � � � \ (fn = 0) = Supp(A=(f1; : : : ; fn)) =
Y \U . On the other hand, Supph(K �(f1; : : : ; fn)) � Supp(H0(K(f1; : : : ; fn))) =
Supp(A=(f1; : : : ; fn))Y \ U . So Supph(K �) = Y \ U .

Let�K � be the suspension of the Koszul complexK �, so�K � is also perfect with
Supph(�K �) = Supph(K �) = Y \U . The sumK ���K � is perfect with cohomo-
logical support Y \U . InK0(U on Y \U) one has [K ���K �] = [K �]+ [�K �] =
[K �] � [K �] = 0. By the K0-extension criterion of Thomason–Trobaugh (2.5, or
[TT] 5.2.2) there is a perfect complexE� onX with Supph(E�) � Y and such that
E�jU ' K � � �K �. Then y 2 U \ Supph(E�), giving y = Y � Supph(E�) since
Supph(E�) is closed (3.3). Thus Y = Supph(E�). 2

LEMMA 3.5 (Mayer-Vietoris). Let X be a scheme, i:U ! X and j:V ! X
two open immersions, and denote by k:U \ V ! X the open immersion of the
intersection. Then for E�; F � 2 D(U [ V ) there is a natural long exact sequence:

#

MorD(U\V )(�k�E�; k�F �)
#�

MorD(U[V )(E
�; F �)
#

MorD(U)(i�E�; i�F �) �MorD(V )(j�E�; j�F �) (3:5:1)
#

MorD(U\V )(k
�E�; k�F �)
#�

MorD(U[V )(�
�1E�; F �)
#

(Note by a standard abuse one has replaced X by U [ V as the target of the
immersions i; j; k.)

comp3750.tex; 8/05/1997; 8:14; v.5; p.11

https://doi.org/10.1023/A:1017932514274 Published online by Cambridge University Press

https://doi.org/10.1023/A:1017932514274


12 R. W. THOMASON

Proof. For l:P ! X an open immersion let i!:OP -Mod ! OX -Mod be the
functor ‘extension by 0’ which sends a sheaf of OP -modules F to the sheaf of
OX-modules given by, for W � X open

(l!F)(W )

�
F(W ) if W � P
0 if W * P

:

Extend l! to complexes by applying l! in each degree of the complex. The
adjunction between the functors l! and l� on sheaves induces an adjunction l! a l�

on complexes. As l! and l� are exact functors on sheaves, these functors preserve
quasi-isomorphisms of complexes, so on passing to the derived category one still
has an adjoint pair, and in particular an adjunction isomorphism

MorD(X)(l!l
�E�; F �) �= MorD(P )(l

�E�; l�F �): (3:5:2)

Consider the sequence of complexes onU[V , where the morphisms are induced
by � the various adjunction maps ": l!l� ! 1 or by the l0!"l

0� for the immersions
between U \ V , U , V , and U [ V

0 ! k!k
�E� ! i!i

�E� � j!j
�E� ! E� ! 0: (3:5:3)

This sequence is exact on U [V , being locally split exact on U and on V since the
relevant adjunction maps restrict to natural isomorphisms k!k

�E�jU �= j!j
�E�jU ,

i!i
�E�jU �= E�jU , etc. Thus the sequence gives an exact triangle in D(U [ V ).

Applying to this exact triangle the contravariant functor MorD(U[V )( ; F �) yields
a canonical long exact ‘Puppe’ sequence ([Ha] I 6.1, or [Ve] I Sect. 1 1–2), which
conjugated by the isomorphisms (3.5.2) for l = i; j; k yields (3.5.1). 2

THEOREM 3.6 (Tensor nilpotence). LetX be a quasi-compact and quasi-separated
scheme. Let E� be a perfect complex on X , and F � a complex of sheaves of
OX-modules which has quasi-coherent cohomology (i.e., F � 2 D(X)qc). Let
f :E� ! F � be a morphism in D(X).

Suppose for all x 2 X that f 
L
OX

k(x) = 0 in D(k(x)). Then there exists a
positive integer n such that 
nf :
n

OX
E� ! 
n

OX
F � is 0 in D(X).

Proof. (c.f. [Ho] Thm. 10, [Ne] 1.1) Recall that 
nF � � L 
n
OX

F � exists for
any F � 2 D(X), not just for F � 2 D�(X), by [Sp] 6.5, 5.9.

3.6.1. I claim the conclusion ‘9n such that 
nf ' 0’ is a local question on X .
For suppose X is covered by opens U� such that for each of these opens 9n�
with 
n�f jU� = 0 in D(U�). Passing to a refinement of this cover, I may assume
the U� are affine and hence quasi-compact. As X is quasi-compact, there is a
finite subcover X =

Sk
i=1 Ui. I will show by induction on k that there is an n

such that 
nf = 0 in D(X). To start the induction at k = 1, note then that
X = U1 so 
n1f = 0. To do the induction step assuming the result for k � 1, set
V =

Sk
i=2 Ui. By the induction hypothesis, 9n0 such that 
n0f = 0 in D(V ). Set
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THE CLASSIFICATION OF TRIANGULATED SUBCATEGORIES 13

m = maxfn1; n
0g so 
mf jU1 = 0 in D(U1) and 
mf jV = 0 in D(V ), as well

as 
mf jU1 \ V = 0jU1 \ V = 0 in D(U1 \ V ). Since X = U1 [ V , the Mayer–
Vietoris sequence (3.5.1) then implies that 
mf 2 MorD(X)(


mE�;
mF �) is �
of some morphism t 2 MorD(U1\V )(�k

� 
m E�; k� 
m F �). That is to say, on
unfolding the proof of 3.5.1, that 
mf :
mE� ! 
mF � factors in D(X) as

NmE�

mf
���!

Nm F �

�(
mE�
)

??y
x??"(
mF �

);

k!�k
�
NmE� ���!

k!(t)
k!k
�
Nm F �

(3:6:1:1)

where �: Id ! �k!k
� �= k!�k

� is the composite of the obvious isomorphism
and the natural third edge of the exact triangle induced by the exact sequence
(3.5.3), and where �: k!k

� ! Id is the adjunction map. But then for n = 2m,

nf �= (
mf)
 (
mf) = 0 in D(X), as it has an induced factorization through
(
mf)
 (k!t), which identifies under natural isomorphisms to k!((k

� 
m f)
 t)
and hence to 0 since k� 
m f = 0 in D(U1 \ V ). This proves the induction step,
and hence the claim.

3.6.2. The desired conclusion 9n
n f = 0 being local, and the hypotheses over
X implying the hypotheses over any quasi-compact open subscheme, to prove
the theorem I may and do restrict to the affine case, X = Spec(R). Then I
may (3.1) assume E� is a strict perfect complex. Let E�_ be the dual complex
E�_Hom(E�;OX) ' RHom(E�;OX). Then E�_ 
OX F � ' E�_ 
L

OX
F � is a

complex with quasi-coherent cohomology. There is a natural isomorphism

MorD(X)(E
�; F �) �= MorD(X)(OX ; RHom(E�; F �))

�= MorD(X)(OX ; E
�_ 
 F �); (3:6:2:1)

induced by the adjunction E� 
L ( ) a RHom(E�; ) and the natural iso-
morphism RHom(E�; F �) ' RHom(E�;OX ) 
L F � ' E�_ 
 F � for E� strict
perfect ([SGA6] I 7.4, 7.7, boosted by [TT] 2.4.1.a,b and [Ha] I Sect. 7). Under
the isomorphism (3.6.2.1) f :E� ! F � corresponds to a f [:OX ! E�_ 
 F � in
D(X)qc. Under other instances of this natural isomorphism 
nf corresponds to

nf [:OX

�= 
nOX ! 
n(E�_ 
 F �) and for all x 2 X , f 
 k(x) corresponds
to f [ 
 k(x). Thus replacing F � by E�_ 
 F � and E� by OX , I reduce to the case
E�OX .

By [BN] 5.1 (c.f. [SGA6] II Sect. 3 or [TT] B.16, B.17 for F � 2 D+(X)qc) F �

is quasi-isomorphic to a complex of quasi-coherentOX -modules, so I may assume
F � is such a complex. Under the equivalence of the category of quasi-coherent
OX-modules on X = Spec(R) and the category of R-modules, F � is identified to
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14 R. W. THOMASON

a complex of R-modules, and f :OX ! F � is identified to a map f :R ! F � in
D(R-Mod), i.e. to a class f 2 H0(F �).

Thus it remains to show that:

3.6.2.2. If F � is a complex of R-modules, and f 2 H0(F �) is such that for all
x 2 Spec(R)f 
 k(x) = 0 in H0(F � 
 k(x)), then there is a positive integer n
such that 
nf = 0 in H0(
nF �).

3.6.3. I next reduce to the case where F � is strict perfect. For F � 2 D(R-Mod) is
quasi-isomorphic to a complex of freeR-modules, which in turn is the direct colimit
of its strict perfect subcomplexes ([TT] 2.3.2). So I may assume that F � lim

�!
F �� for

fF ��g a directed system of strict perfect complexes. For such a filtering system
H0(F �) �= lim

�!
H0(F ��), so f 2 H0(F �) is the image of a f� 2 H0(F ��) for some

�. Passing to the cofinal directed subsystem of � � � and setting f� equal to the
image of f� , I may assume that there is a family of f� 2 H0(F ��) compatible under
the structure maps of the system and inducing f in the colimit H0(F �). Note that
now all F �� and so also F � are complexes of flat R-modules, whence the derived
tensor product over R, F � 
L k(x), is represented by the tensor product of chain
complexes F � 
 k(x).

Set T� = fx 2 Spec(R) j f� 
 k(x) = 0 in H0(F �� 
 k(x))g Note T� � T�0

if � � �0. Also
S
T� = fx 2 Spec(R) j f 
 k(x) = 0 in H0(F � 
 k(x))g =

Spec(R). I claim that each T� is a constructible set in Spec(R). For, representing
the homology class f� 2 H0(F ��) by an element ef� 2 F 0

�, one has f�
k(x) = 0 in
H0(F ��
k(x)) iff ef�
k(x) is a boundary inF ��
k(x), i.e. iff 0 = ef�
k(x):R!

(F 0
�=@F

�1
� )
 k(x). As F 0

�=@F
�1
� is a finitely presentedR-module, by [EGA] IV

9.4.5 on settingX = S = Spec(R) one gets thatT� is a locally constructible subset
of Spec(R). As Spec(R) is quasi-compact and separated, T� is then constructible
([EGA] 0III 9.1.12), proving the claim. But then the two remarks preceding the
claim imply that there exists an � such that T� = Spec(R) by [EGA] IV 1.9.9,
1.9.4. For this �, f� 2 H0(F ��) satisfies f� 
 k(x) = 0 for all x 2 Spec(R). If
for the strict perfect F �� this implies that for some n
n f� = 0 in H0(
nF ��), one
gets 
nf = 0 in H0(
nF �) by taking the image under F �� ! F �. This completes
the reduction to proving (3.6.2.2) for F � strict perfect over the ring R.

3.6.4. Next I will reduce to the case where R is a noetherian ring of finite Krull
dimension. Any commutative ring R is the direct colimit lim

�!
R� of its subrings of

finite type over Z. These R� are noetherian rings of finite dimension ([EGA] IV
5.5.4, 0IV 14.1.4). As the strict perfect complex F � consists of a finite number
of nonzero direct summands of finitely generated free modules and finitely many
maps @ between them, the projections on the summands and the maps between
them being represented by finitely many matrices with values in R, there exists
a � and a strict perfect complex F �� over R� such that F � �= R 
R� F

�
� . Passing
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THE CLASSIFICATION OF TRIANGULATED SUBCATEGORIES 15

to the cofinal system of � � �, I get a family F �� = R� 
R� F
�
� of strict perfect

complexes over the R�, compatible under the structure maps of the system and
such that F � �= lim

�!
F ��. Then as H0(F �) �= lim

�!
H0(F ��), there is a �0 such that

f 2 H0(F �) is the image of a f�0 2 H0(F ��0). Restricting to the cofinal system of
� � �0 and setting f� to be the image of f�0 , I may assume I have a compatible
family of f� 2 H0(F ��). Note asF �� is strict perfect, the tensor product of complexes
F �� 
 ( ) represents the total derived functor F �� 


L
R�

( ).
Let T� � Spec(R�) be the subset of those x 2 Spec(R�) such that f� 


k(x) = 0 in H0(F �� 
 k(x)). As in 3.6.3 above, T� is constructible. Denot-
ing by �
�: Spec(R
) ! Spec(R�) the structure maps of the system and by
��: Spec(R) = lim

 �
Spec(R
) ! Spec(R�) the projections from the inverse limit

of schemes, one clearly has ��1

� (T�) � T
 and

S
��1
� (T�) = fx j f 
 k(x) =

0 in H0(F � 
 k(x))g = Spec(R). Then by [EGA] IV 8.3.4 there is an � such that
T� = Spec(R�); i.e., such that for all x 2 Spec(R�), f� 
 k(x) = 0. If 
nf� in
H0(
nF ��) for the noetherianR�, then
nf = ���(


nf�) = 0 inH0(
nF �). This
completes the reduction to the case where R is noetherian of finite dimension.

3.6.5. Now it remains to show: if R is a noetherian ring of finite Krull dimension,
F � a bounded complex of finitely generated projectiveR-modules, and f 2 H0(F �)
is such that 8x 2 Spec(R)f 
 k(x) = 0 in H0(F �
 k(x)), then 9n > 0 such that

nf = 0 in H0(
nF �). To prove this, following the strategy of [Ne], I will induct
on the dimension of R.

3.6.6. To prepare the induction, I claim that if N � R is the ideal of all nilpotent
elements ofR, and if the statement 3.6.5 holds forR=N , then it holds forR. For then
9n1 > 0 such that
n1f = 0 inH0((
n1F �)
RR=N). That is, on choosing a repre-
sentative of
n1f in (
n1F �)0, 9x 2 (
n1F �)�1 and 9y =

Pk
1 rifi 2 N(
n1F �)0

with ri 2 N � R, fi 2 (
n1F �)0 such that 
n1f = @x + y. As each ri 2 N
is nilpotent, 9n2 > 0 such that for the finitely generated ideal (r1; : : : ; rk) � N ,
(r1; : : : ; rk)

n2 = 0. Then 
n2y 2 (r1; : : : rk)
n2(
n2 
n1 F �)0 = 0. The element


n2(
n1f) = 
n2(@x + y) is a sum of terms 
n2y = 0 and of terms of the
form a 
 @x, b 
 @x and a 
 @x 
 b where a and b are products of @x and y.
As @y = @(
n1f � @x) = @ 
n1 f � @@x = 0, in any case @a = @b = 0 and
a
 @x
 b = @(a
 x
 b). Thus
n1+n2f 2 @(
n1+n2F )�1, so
n1+n2f = 0 in
H0(
n1+n2F �). This proves the claim.

Note dimR = dimR=N as Spec(R) and Spec(R=N) = Spec(R)red have
homeomorphic underlying spaces ([EGA] I 4.5, IV 5.1).

3.6.7. Now I finish the proof of 3.6.5 with the inductive argument. To start the
induction with the case dimR = 0, I may by the claim 3.6.6 replace R by the
reduced noetherian ring of dimension 0 which is R=N . But thereafter R is the
product of its finitely many residue fields k(x) (e.g., [B-AC] VII Sect. 1 no. 3
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16 R. W. THOMASON

Exemple 1, IV Sect. 2 no. 5 Prop. 9, II Sect. 3 no. 5 Prop. 16). Thus H0(F �) �=L
xH

0(F � 
 k(x)) and as f 
 k(x) = 0 for all x, one has f = 0.
To do the induction step, suppose dimR = d > 0 and that 3.6.5 is already

demonstrated for noetherian rings of dimension� d� 1. Again replacing R by its
quotientR=N by the nilradical, I may supposeR is reduced. LetR!

Qm
i=1 k(�i)

be the map of R to the product of the residue fields at the finitely many minimal
primes ofR, �i 2 Spec(R). AsR is reduced, each such residue field k(�i) is in fact
the local ring R�i . Indeed

Qm
i=1 k(�i) is isomorphic to the localization S�1R for S

the set of non zero-divisors ofR, those elements contained in no minimal prime ([B-
AC] II Sect. 4 no. 3 Cor. 3 à Prop. 14, IV Sect. 2 no. 5 Prop. 10). By hypothesis, for
each �if
k(�i) = 0, so f
S�1R = 0 inH0(F �
R S

�1R = S�1F �). If f 2 F 0

is a representative of the class f 2 H0(F �), this means there exists a y0 2 S�1F�1

such that @y0 = f in S�1F 0. Then for some s 2 S there exists y 2 F�1 such
that sf = @y in F 0. The elements y:R ! F�1 and f :R ! F 0 determine a map
of complexes �: (R s

�! R) ! F �, where (R
s
�! R) is the complex with R in

degrees 0 and �1, 0 in the other degrees, and where the non-trivial differential is
given by s. As s 2 S is a non zero-divisor, this complex of R-modules is quasi-
isomorphic to the complex which is R=sR concentrated in degree 0. Again as s
is a non zero-divisor the closed immersion i: Spec(R=s) ! Spec(R) is a regular
closed immersion and the direct image functor i�:D(R=s)qc ! D(R)qc preserves
perfect complexes and so restricts to a triangulated functor i�:D(R=s)parf !

D(R)parf ([SGA6] VII 1.4, 1.9, III 4.8.1, 2.5). Let �:R ! i�R=s = R=s be the
canonical quotient map. Replacing �: (R s

�! R) ! F � by its composite with
the isomorphism in D(R)parf i�(R=s) ' (R

s
�! R) whose composite with � is

the inclusion of R into degree 0 of (R s
�! R), I get a factorization in D(R)parf

of f = R
�
�! i�(R=s)

�
�! F �. This factorization and the naturality of various

standard quasi-isomorphisms gives the following commutative diagram inD(R)parf

for all n > 0
This diagram gives a factorization of
n+1

R f through i�(
n
R=si

�f). ButR=s is a
noetherian ring, and as s is a non zero-divisor one has dim(R=s) 6 dim(R)� 1 6
d� 1 ([EGA] 0IV 16.1.2.2). Then by the induction hypothesis that 3.6.5 is known
for dimensions 6 d � 1 and since i�f 
R=s k(x) = f 
R k(x) = 0 in D(k(x))
for all x 2 Spec(R=s) � Spec(R), one gets that there exists an n > 0 such that

n
R=si

�f = 0 in D(R=s)parf . Then the factorization gives
n+1
R f = 0 inD(R)parf .

This completes the proof of the induction step for 3.6.5, and hence the proof of the
theorem.

REMARK 3.7. For k a field the derived categoryD(k) is equivalent (by the functor
sending a complex to its cohomology groups) to the category of Z-graded k-vector
spaces. Thus the Theorem 3.6 says that given a map in D(X)qc, f :E� ! F �, with
E� perfect and such that for all x 2 XH�(f 
L k(x)) is the zero map, then there
exists an integer n > 0 such that
nf = 0 inD(X). To the more sophisticated this
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THE CLASSIFICATION OF TRIANGULATED SUBCATEGORIES 17

is a surprisingly strong conclusion, and in any case the naive attempts to strengthen
it fail.

(3.6.7.1)

R

(
NnR)
R

(
NnR)
 i�(R=s)

i�(
Nn

R=sR=s)

(
Nn F �)
R

Nn+1 F �

(
Nn F �)
 F �

(
Nn F �)
R i�(R=s)

i�(
Nn

R=s i
�F �)

�=

1
�

�=


nf
1


n+1f

(
nf)
f

(
nf)
1

i�(
ni�f)

1
f

1
�

�=

1
�

�=

?

?

?

-

-

@
@
@
@
@@R

-

-

�
�
�
�
���

@
@
@
@
@R

?

6

?

For example, it is not sufficient to suppose that H�(f) = 0 rather than H�(f 

k(x)) = 0 for all x. For let X = Spec(Z(p)), and let the complexes E�, F � be
given by the rows in the diagram below, with f given by the columns and where
the center column is in degree 0

� � � ���! 0 ���! 0 ���! Z(p)
p

���! Z(p) ���! 0 ���! � � �??y
??y 1

??y
??y

??y
� � � ���! 0 ���! 0 ���! Z(p) ���! 0 ���! 0 ���! � � �

(3:7:1)

Then H�(f) = 0, but for all n > 0 H0((
nf)
 Z=p) is an isomorphism Z=p �=
Z=p.

Nor can one strengthen the conclusion to f = 0 in D(X) rather than 9n 
n

f = 0, even if one supposes H�(f) = 0 in addition to f 
 k(x) = 0 for
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18 R. W. THOMASON

all x. For again with X = Spec(Z(p)) consider the map of complexes give by

� � � ���! 0 ���! 0 ���! Z(p)
p2

���! Z(p) ���! 0 ���! � � �??y
??y p

??y
??y

??y
� � � ���! 0 ���! Z(p)

p2

���! Z(p) ���! 0 ���! 0 ���! � � �

(3:7:2)

Here f 6= 0 inD(Z(p))parf asH0(f 
Z=p2) = p:Z=p2 ! Z=p2, although f 
Z=p
and f 
 Q are 0.

In both counterexamplesX = Spec(Z(p)) is about as nice a scheme as one could
imagine except for fields and ;, and the counterexamples generalize to Spec(Z) and
to Spec(k[T ]). Having entered this far into the question, one should abandon all
hope.

THEOREM 3.8 (Tensor nilpotence with parameters). Let X be a quasi-compact
and quasi-separated scheme,E� andG� perfect complexes onX , andF � a complex
of sheaves of OX-modules with quasi-coherent cohomology. Let f :E� ! F � be
a morphism in D(X)qc. Suppose for all x 2 Supph(G�) that f 
 k(x) = 0 in
D(k(x)). Then there is an integer n > 0 such thatG�
 (
nf) = 0 as a morphism
G� 
 (
nE�)! G� 
 (
nF �) in D(X).

Proof. (c.f. [Ho] Thm. 10ii) For each x 2 X(G� 
 f)
 k(x) = 0 in D(k(x))
as either G� 
 k(x) ' 0 or else x 2 Supph(G�) and f 
 k(x) = 0. So by Tensor
Nilpotence 3.6 there is an n > 0 such that 
n(G� 
 f) = 0 in D(X). A fortiori
(
n�1RHom(G�;OX ))
 (
nG�)
 (
nf) = 0. I will show that G� 
 (
nf) is
a retract of this morphism and so is also 0.

For this, it suffices to show by induction on n that G� is a direct summand in
D(X)parf of (
n�1RHom(G�;OX))
 (
nG�). For n = 1 this is trivial. To do the
induction step to prove it forn > 2 it suffices to prove that (
n�2RHom(G�;OX ))

(
n�1G�) is a direct summand of (
n�1RHom(G�;OX)) 
 (
nG�). For n � 3
this follows upon tensoring with (
n�3RHom(G�;OX)) 
 (
n�2G�) from the
case n = 2, namely that G� is a direct summand of RHom(G�;OX) 
 (
2G�).
Hence it suffices to prove the latter.

As G� is perfect, there is in D(X) a natural isomorphism (easy, or [SGA6] I
7.7)

� : RHom(G�;OX )
L G�
�
�! RHom(G�;OX)


L

RHom(OX ; G
�)
�
�! RHom(G�; G�) (3:8:1)

Thus the problem is to show G� is a direct summand of RHom(G�; G�) 
 G�.
But if �:G� ! RHom(G�; G�) 
 G� is ( ) 
 G� of the morphism OX !

RHom(G�; G�) corresponding to 1G� :G� ! G�, and if eval:RHom(G�; G�) 
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THE CLASSIFICATION OF TRIANGULATED SUBCATEGORIES 19

G� ! G� is the evaluation map, then eval � � = 1G� . So G� splits off of
RHom(G�; G�)
G�. 2

DEFINITION 3.9 LetT be a triangulated category with a fixed functor
:T �T !

T which is a covariant triangulated functor in each variable.
A full triangulated left-
-subcategoryA of T is a full triangulated subcategory

of T such that for all objects T 2 T and A 2 A, T 
 A is also an object in the
subcategoryA. Similarly a full triangulated right-
-subcategory has A
 T 2 A
wheneverA 2 A and T 2 T .

A full triangulated left-
-subcategory is said to be respectively strictly full,
thick, or dense if it is such as a triangulated subcategory (1.2–1.4).

The condition of being a strictly full left-
-subcategory is invariant under
replacing 
 by any naturally isomorphic functor
0.

When 
 is commutative up to isomorphism, the concepts of strictly full tri-
angulated left-
-subcategory and of strictly full triangulated right-
-subcategory
are equivalent, and one says simply strictly full triangulated 
-subcategory. I
emphasize that despite what this terminology suggests, the condition ofA being a

-subcategory is stronger than merely requiring that 
 on T restricts to a functor
A�A! A; it saysA is a sort of ‘ideal’ in the ‘ring’ T with
 as ‘multiplication’.
(However, use of the term ‘ideal’ for such an A as in 3.9.1 with Y a closed sub-
scheme would lead immediately to a bad terminological singularity at ‘the ideal
associated to Y’.)

For X a quasi-compact and quasi-separated scheme and T = D(X)parf ,
henceforth I consider strictly full triangulated 
-subcategories where by default

 = 
L

OX
is the usual derived tensor product.

EXAMPLE 3.9.1 IfX is a quasi-compact and quasi-separated scheme and Y � X
is any subspace, the full subcategory of D(X)parf consisting of those perfect com-
plexes E� such that Supph(E�) � Y is a thick triangulated 
-subcategory of
D(X)parf .

REMARKS 3.10 (a) The intersection of any set of full (resp. strictly full, resp.
thick) triangulated left-
-subcategories of T is again a full (resp. strictly full, resp.
thick) triangulated left-
-subcategory of T . Thus each subcategory of T has a
smallest full (resp. strictly full, resp. thick) left-
-subcategory containing it.

(b) Let A be a full triangulated left-
-subcategory of T . By 1.5, the smallest
thick triangulated subcategory eA of T containing A has as objects all direct sum-
mands in T of objects isomorphic to objects in A. So an easy check shows eA is
in fact a thick triangulated left-
-subcategory of T , and is also the smallest such
containingA.

PROPOSITION 3.11 (
-subcategory test). Let X be a quasi-compact and quasi-
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20 R. W. THOMASON

separated scheme with an ample family of line bundles fL�g ([SGA6] II 2.2.4).
SupposeA � D(X)parf is a thick triangulated subcategory, and that for each L�,
a line bundle in the given ample family, and for eachA� inA one has thatL�1

� 
A�

is in A. ThenA is a thick triangulated 
-subcategory of D(X)parf .

COROLLARY 3.11.1 (a) If X = Spec(R) is an affine scheme, all thick triangu-
lated subcategories of D(X)parf are thick triangulated 
-subcategories.

(b) If X is a quasi-compact and quasi-separated scheme with an ample line
bundleOX(1) ([EGA] II 4.5), e.g. any scheme quasi-projective over some ring, and
ifA � D(X)parf is a thick triangulated subcategory such thatOX(�1)
A � A,
then A is a 
-subcategory.

(c) Let X be as in 3.11 with an ample family of line bundles, and let A �

D(X)parf be a thick triangulated subcategory which is locally determined. (That
is, one supposes that if E� 2 D(X)parf and if there exists an open cover fU�g of
X such that for each U� there is an F �� 2 A and an isomorphism E�jU� �= F �� jU�
in D(U�)parf , then E� 2 A.) Then A is a 
-subcategory.

Proof of Cor. (c) SupposeA� 2 A. As any line bundleL�1 is locally isomorphic
toOX , L�1
A� is locally isomorphic toA�. AsA is locally determined, this gives
L�1 
A� 2 A for any line bundle L and then Proposition 3.11 yields the result.

(b) If OX(1) is an ample line bundle the set fOX(1)g consisting of OX(1)
alone is an ample family, and (b) gives the result.

(a) If X is affine, OX is an ample line bundle. As OX 
 A� �= A� 3.11 applies
to give the result.

Proof of Proposition. Let B � D(X)parf be the full subcategory of those B�

such that for eachA� 2 A one hasB�
A� 2 A. AsA is a strictly full triangulated
subcategory ofD(X)parf , B is also a strictly full triangulated subcategory. AsA is
thick, B is also closed under the taking of direct summands, i.e. a thick subcategory
of D(X)parf . The proposition asserts that BD(X)parf . By hypothesis, for all L� in
the ample family one has L�1

� 
 A � A. Then by induction on k > 1 one gets
L�k� 
 A � A, i.e. L�k� 2 B. The proof of the proposition is thus completed by
the following Lemma 3.12.

LEMMA 3.12 Let X be a quasi-compact and quasi-separated scheme with an
ample family of line bundles fL�g. Let B � D(X)parf be a thick triangulated
subcategory such that for all integers k > 0 and all �, L�k� 2 B. Then BD(X)parf .

Proof. For any complex of sheaves of OX-modules B� quasi-isomorphic to a
bounded complex which in each degree is a finite direct sum of L�k� for various �
and k > 0, one hasB� 2 B. One sees this by an easy induction on the total number
of factors L�k� in the direct sums.

By the global resolution of perfect complexes on schemes with an ample family
of line bundles ([SGA6] II 2.2.8, or as a porism to [TT] 2.3.1), each perfect complex
E� onX is quasi-isomorphic to a bounded above complexB� which in each degree
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THE CLASSIFICATION OF TRIANGULATED SUBCATEGORIES 21

is a finite direct sum of variousL�k� . For each integern denote by �>nB� the brutal
truncation of B�, the subcomplex given by

(�>nB�)i
�
Bi if i > n
0 if i < n

: (3:12:1)

Then �>nB� is bounded and by the preceding paragraph �>nB� 2 B. I claim
that for all n sufficiently less than 0 that E� ' B� is a direct summand of �>nB�

in D(X)parf . As B is thick this will imply E� 2 B. Thus BD(X)parf , which will
prove the lemma. Thus it suffices to prove the claim.

For this, I will show for n � 0 that the inclusion of complexes �>nB� � B�

is a split epimorphism in D(X)parf , that the identity morphism 1:B� ! B� factors
through it. Denote by �6n�1B� the opposite brutal truncation, B�=�>nB�. There
is an exact triangle inD(X)parf: �>nB� ! B� ! �6n�1B�  . By the long exact
Puppe sequence ([Ve] I Sect. 1 1–2, [Ha] I 1.1)

� � � ! MorD(X)(B
�; �>nB�)! MorD(X)(B

�; B�)

! MorD(X)(B
�; �6n�1B�)! � � � (3:12:2)

it suffices to show for n� 0 that B� ! �6n�1 B� is 0 in D(X)parf .
For anyF � 2 D+(X)qc there is a natural strongly converging spectral sequence

(e.g. [TT] 2.4.1.5–6)

E
p;q
2 = Hp(X ; cHq(RHom(B�; F �))) =) Extp+q

D(X)
(B� ; F �)

= MorD(X)(�
�p�qB�; F �) (3:12:3)

As B� is perfect the functor RHom(B�; ) has finite cohomological dimen-
sion (e.g. [TT] 2.4.1.b), and in particular there exists an integer a such that for
all F � 2 D+(X)qc with m an integer such that Hq(F �) = 0 if q > m, then
Hq(RHom(B�; F �)) = 0 for q > m � a Moreover, for all qHq(RHom(B�; F �))
is a quasi-coherent sheaf on X (e.g. [TT] 2.4.1.c). As X is quasi-compact and
quasi-separated there exists an integer b such that for all quasi-coherent sheaves
F on X and all p > b one has Hp(X ; F) = 0 ([EGA] III 1.4.12 applied to
X ! Spec(Z) and boosted by IV 1.7.21 or [TT] B.11). Then if F � 2 D+(X)qc
with Hq(F �) = 0 for q > a � b, then Hq(RHom(B�; F �)) = 0 for q > �b, and
Hp(X ; Hq(RHom(B�; F �))) = 0 for p+ q > 0, indeed unless p 6 b and q < �b.
Thus the spectral sequence (3.12.3) gives MorD(X)(B

�; F �) = 0 for such F �. In
particular MorD(X)(B

�; �6n�1 B�) = 0 if n 6 a� b. 2

EXAMPLE 3.13 Proposition 3.11 and its corollary show that the ‘usual kinds’ of
thick subcategories of D(X)parf are triangulated 
-subcategories. Here I give an
example of the existence of an ‘exotic’ thick subcategory which is not a 
-sub-
category.
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22 R. W. THOMASON

Let X = P1
k be the projective line over a field k, �:P1

k ! Spec(k) its struc-
ture map, and O(1) its fundamental line bundle. As � is smooth and projective
the derived direct image functor R�� preserves perfect complexes and induces a
triangulated functor D(P1

k)parf ! D(k)parf ([SGA6] III 4.8.1, 2.5 or [TT] 2.5.4).
Let A � D(P1

k)parf be the thick triangulated subcategory whose objects are
those E� for which the natural adjunction morphism ":L��R��E� ! E� is an
isomorphism in D(P1

k)parf . As the other adjunction morphism �: Id ! R��L�
�

is always a natural isomorphism in D(k)parf (e.g. [ThFP] Lemme 3), using the
adjunction identities R��" � �R�� = 1 and "L�� � L��� = 1 one checks easily
that L��D(k)parf � A, and that in factA is equivalent to D(k)parf via the functors
R�� and L��.

ButA is not a
-subcategory of D(P1
k)parf . For if F � 6' 0 is any nonzero object

of D(k)parf , L��F � 2 A while O(�1)
 L��F � =2 A. Indeed L��R��(O(�1)

L��F �) ' 0 since by the projection formula ([SGA6] III 3.7, or [Ha] II 5.6)
R��(O(�1) 
 L��F �) ' (R��O(�1)) 
 F � and R��O(�1) ' 0 by Serre
([EGA] III 2.12–16).

The mechanism of this example might suggest that the classification of thick

-subcategories ofD(X)parf given by 3.15 below might be extended to classify all
thick subcategories on anX with an ample family of line bundles by incorporating
some additional structure related to Pic(X). However, it seems difficult to find a
candidate structure which reduces to the usual classification when X is affine and
so all thick subcategories are 
-subcategories.

LEMMA 3.14 Let X be a quasi-compact and quasi-separated scheme, and
E�; F � 2 D(X)parf two perfect complexes on X . Suppose that Supph(E�) �
Supph(F �). ThenE� is in the smallest thick triangulated
-subcategory ofD(X)parf

containing F �.
Proof. (c.f. [Ho] proof of Thm. 7, [Ne] 1.2) Denote by A this smallest thick

triangulated 
-subcategory containing F �.
For a morphism a:G� ! OX in D(X)parf , denote by C(a) the cone of a. Then

by definition and the minor abuse of considering OX 
 ( )( ), one has exact
triangles for n > 1

(3.14.1)

G� OX

C(a)

-










�JJ

JJ

JJ]

a NnG� OX

C(
na)

-










�JJ

JJ

JJ]


na
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G� 
 (
NnG�) G�

G� 
 C(
na)

-










�JJ

JJ

JJ]

1
(
na)

As 
n+1a is identified to the composition a � (G� 
 (
na)), the octahedral
axiom ([Ve] I Sect. no.1–1 TR4, or [Ha] I Sect. TR4) gives from these a further
exact triangle for all n > 1

(3.14.2)

G� 
 C(
na) C(
n+1a)

C(a)

-










�JJ

JJ

JJ]

Using the exact triangle resulting from tensoring this one with E�, by induction
on n one sees that if E� 
C(a) is in the thick triangulated 
-subcategoryA, then
so is E� 
 C(
na) for all n > 1.

As F � is perfect, there is an isomorphism (3.8.1) RHom(F �;OX) 
 F � �=
RHom(F �; F �), so RHom(F �; F �) is an object of the 
-subcategory A. Let
f :OX ! RHom(F �; F �) be the morphism corresponding to 1:F � ! F �, and
let a:G� ! OX be the ‘homotopy fibre’ of f , the edge opposite the vertex
RHom(F �; F �) in the exact triangle having f as an edge. Then C(a) ' RHom
(F �; F �) is in the 
-subcategory A, so E� 
 C(a) 2 A and as above, for all
n > 1E� 
 C(
na) 2 A.

I claim there exists ann > 1 such thatE�
(
na) = 0 inD(X)parf . Then consid-
ering the long exact Puppe sequence which results from applying MorD(X)( ; E�)
to the exact triangle which is the tensor with E� of the second exact triangle of
(3.14.1), one will obtain thatE� �= E�
OX ! E�
C(
na) is a split monomor-
phism, i.e. that E� is a direct summand of E� 
 C(
na). As A is thick, this will
imply that E� is in A, proving the lemma.

It remains to prove the claim. By tensor nilpotence with parameters (Thm. 3.8),
it suffices to show for all x 2 Supph(E�) that a 
 k(x) = 0 in D(k(x)). But
if x 2 Supph(E�) � Supph(F �), then F � 
 k(x) 6' 0. Thus the map k(x) !
RHomk(x)(F

� 
 k(x); F � 
 k(x)) corresponding to 1:F � 
 k(x) ! F � 
 k(x)
is not zero, and so is a split monomorphism in D(k(x))parf as any non null-
homotopic map from the field k(x) to a chain complex of k(x)-vector spaces
splits. But for F � perfect one has an easy isomorphism (e.g. [SGA6] I 7.1.2)
RHomOX (F

�; F �)
 k(x) �= RHomk(x)(F
� 
 k(x); F � 
 k(x)), under which this

split monomorphism is identified to f 
 k(x). As fa = 0 since a is the homotopy
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fibre of f , and as f 
 k(x) is a split monomorphism, one gets a
 k(x) = 0. 2

THEOREM 3.15 (Classification of thick 
-subcategories). Let X be a quasi-
compact and quasi-separated scheme. Denote by C the set of thick triangulated

-subcategories (3.9) of the derived categoryD(X)parf of perfect complexes (3.1)
on X . Denote by S the set of those subspaces Y � X such that Y =

S
Y� is a

union of closed subspaces Y� of X such that X � Y� is quasi-compact.
Then there is a bijective correspondence between C and S.
The bijection :S! C sends a subspaceY � X to the thick subcategory whose

objects are those perfectE� such that Supph(E�) � Y , i.e. which are acyclic off Y .
The inverse bijection ':C ! S sends a triangulated subcategory A � D(X)parf

to the subspace Y =
S
E�2A Supph(E�).

Proof. (c.f. [Ho] Thm. 11, [Ne] 1.5). Lemma 3.3 gives that the subspace '(A)
is in S for any subcategory A of D(X)parf , and clearly for any subspace Y � X
 (Y ) is a thick triangulated 
-subcategory, and so is in C. So the functions ' and
 are defined. It is easy to see that both' and  preserve the partial orders on C and
on S given by inclusions of subcategories and of subspaces, and that ' (Y ) � Y
and  '(A) � A. It remains to show ' and  are mutually inverse, for which it
suffices to prove the reverse inclusions ' (Y ) � Y for Y 2 S and  '(A) � A

for A 2 C.
To prove ' (Y ) � Y , since Y 2 S is a union of closed Y� � X with X � Y�

quasi-compact, it suffices to show for each such Y� there exists a perfect complex
E� such that Supph(E�) � Y�, such anE� necessarily being in (Y ) sinceY� � Y .
But the existence of such an E� is given by Lemma 3.4.

To show  '(A) � A forA a thick triangulated
-subcategory, let an arbitrary
E� 2  '(A) be given. I will show E� 2 A. By the definition of  ,', there are
F �� in A such that Supph(E�) �

S
Supph(F ��). The closed subspaces Supph(E�),

Supph(F ��) being the complements of quasi-compact opens (Lemma 3.3), they
are constructible subsets of X by definition ([EGA] 0III 9.1.2, IV 1.8.1). Then by
[EGA] IV 1.9.9 there is a finite subset fSupph(F �i )g of fSupph(F ��)g such that
SupphE� �

Sn
i1 Supph(F �i ). So Supph(E�) � Supph(�n

i1F
�
i ), and as�n

i=1F
�
i 2 A,

Lemma 3.14 gives E� 2 A. 2

REMARKS 3.16.1 Recall from Corollary 3.11.1 that ifX has an ample line bundle
OX(1), then a thick triangulated subcategory A of D(X)parf is a 
-subcategory
if OX(�1) 
A � A. This condition is satisfied for the most ‘natural’ A, e.g. if
membership in A is locally determined (3.11.1.c), and is satisfied for all thick A
when X is Spec(R) for a ring R (3.11.1.a).

3.16.2. If Y is an arbitrary subspace of a quasi-compact and quasi-separatedX , one
does have a thick triangulated 
-subcategory  (Y ) of D(X)parf , whose objects
are the perfect complexes acyclic off Y . But the subspace corresponding under
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3.15 to this thick 
-subcategory is not in general Y , but rather Y 0 � Y where Y 0

is the union of all Y� � Y such that Y� is closed in X with quasi-compact com-
plement. For example, consider the polynomial ring in infinitely many variables
C [T1; T2; : : :], set X = Spec(C [T1; T2; : : :]) and let Y be the closed point corre-
sponding to the maximal ideal (T1; T2; : : :). ThenX�Y is not quasi-compact, and
indeed Y 0 = ;, i.e. any perfect complex acyclic off Y is acyclic everywhere. Thus
this closed subspace Y is not ' of a thick triangulated
-subcategory ofD(X)parf .
This example is due to Neeman ([Ne] 4.1).

But when X is noetherian, all subspaces are quasi-compact ([B-AC] II Sect. 4
no. 2 Prop. 9, [EGA] I 2.7.1), and the subspaces Y � X in S are just those Y
which are unions of closed subspaces of X , the Y ‘closed under specialization’.

HISTORY 3.17 Hopkins told me that he proved versions of the nilpotence theorems
3.6 and 3.8, and of the classification Theorem 3.15 in the caseX = Spec(R) for R
a noetherian ring, but that while writing them up in his expository article on similar
results in stable homotopy, he was inspired with a ‘more obvious proof’ for 3.6,
which yielded statements for R any commutative ring ([Ho] Thm. 10, Thm. 11).
As usual, ‘obvious’ means wrong. Neeman pointed out the error ([Ne], after 1.4),
and gave a proof of 3.6 for X = Spec(R) of a noetherian ring R ([Ne] 1.1). In fact
3.6.6–3.6.7 is essentially Neeman’s proof, which Hopkins says is essentially the
same as his first unpublished proof. Neeman asks ([Ne] 1.6) if tensor nilpotence
holds on Spec(R) when R is not noetherian; Theorem 3.6 shows that it does (c.f.
3.6.2.2 vs. [Ne] 1.1).

Hopkins used his version of tensor nilpotence to deduce a classification of
the thick triangulated subcategories of D(R)parf ; Theorem 11 of [Ho] states that
each thick triangulated subcategory ofD(R)parf is the thick subcategory of perfect
complexes acyclic off some subspace Y � Spec(R) closed under specialization.
Hopkins says he had a valid proof of this for R noetherian, and in fact the literal
statement of ([Ho] Thm. 11) is true for all R by Theorem 3.15 and 3.16.2 above.
But the remarks succeeding to Hopkins’ statement suggest he believed he had
established a bijective correspondence between the thick subcategories and the
subspaces Y closed under specialization. This is Neeman’s interpretation of the
statement as given in ([Ne] Sect. 0), and proved by Neeman forR noetherian ([Ne]
1.5). Neeman also pointed out that this bijective correspondence fails for certain
non-noetherian R ([Ne] 4.1). My Theorem 3.15, boosted by 3.11.1.a, gives the
correct bijective correspondence for arbitrary commutative rings R.

5. Classification of all strictly full 
-subcategories of D(X)parf

THEOREM 4.1 Let X be a quasi-compact and quasi-separated scheme. Recall
the definitions of 1.2, 3.1, and 3.9. Then:

There is a bijective correspondence between the set of strictly full triangulated

-subcategoriesA ofD(X)parf , and the set of data (Y;H), where Y is a subspace
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of X which is a union of closed subspaces Y� of X with X � Y� quasi-compact,
and H � K0(X on Y ) is a K0(X)-submodule of the Grothendieck group of the
triangulated category of perfect complexes on X acyclic off Y .

To (Y;H) corresponds the triangulated subcategory A � D(X)parf whose
objects are those perfect complexes E� acyclic off Y and such that the class [E�]
in K0(X on Y ) lies in H .

Proof. The theorem results easily on combining 2.1 and 3.15. For the strictly full
triangulated subcategoryA is dense in the smallest thick triangulated subcategoryeA containing it by 1.5. As A is a 
-subcategory of D(X)parf , eA is also a 
-sub-
category (3.10.b). Then by 3.15, eA corresponds to some subspace Y of the type
stated. By 2.1, the strictly full dense triangulated subcategories of eA correspond
bijectively to subgroups ofK0( eA)K0(X on Y ). As the ring structure onK0(X) =
K0(D(X)parf) and its action on K0(X on Y ) are induced by the derived tensor
product 
, one checks easily that the strictly full dense triangulated 
-subcate-
goriesA of eA correspond to those subgroupsH � K0(X on Y )which areK0(X)-
submodules. 2
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