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1. Introduction

Thefirst main result of this paper is abijective correspondence between the strictly
full triangulated subcategories densein a given triangulated category and the sub-
groups of its Grothendieck group (Thm. 2.1). Since every strictly full triangul ated
subcategory is dense in a uniquely determined thick triangulated subcategory, this
result refines any known classification of thick subcategoriesto a classification of
all strictly full triangulated ones. For example, one can thus refine the famous clas-
sification of the thick subcategories of the finite stable homotopy category given
by the work of Devinatz—Hopkins-Smith ([Ho], [DHS], [HS] Thm. 7, [Ra] 3.4.3),
which is responsible for most of the recent advances in stable homotopy theory.
One can likewise refine the anal ogous cl assification given by Hopkins and Neeman
([Ho] Sect. 4, [Ne] 1.5) of the thick subcategoriesof D(R)patf, the chain homotopy
category of bounded complexes of finitely generated projective R-modules, where
R is acommutative noetherian ring.

The second main result is a generalization of this classification result of Hop-
kins and Neeman to schemes, and in particular to non-noetherian rings. Let X
be a quasi-compact and quasi-separated scheme, e.g. any commutative ring or
algebraic variety. Denote by D (X )pat the derived category of perfect complexes,
the homotopy category of those complexes of sheaves of O x-modules which are
locally quasi-isomorphic to a bounded complex of free O x-modules of finite type.
| say athick triangulated subcategory A C D(X)paf IS a ®-subcategory if for
each object £ in D(X)pat and each A in A, the derived tensor product £ @ A
isaso in A. This is a mild condition on A. If X has an ample line bundle £
(e.g. for X aclassical, hence quasi-projective variety), it suffices by 3.11.1 below
to check that £ ® A C A. If X = Spec(R) for R a commutative ring, al
thick subcategories A C D(R)pat @re ®-subcategories. The second main result
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2 R.W. THOMASON

(Thm. 3.15) gives for X a quasi-compact and quasi-separated scheme a bijective
correspondence between the thick triangulated ®@-subcategories of D (X )pat and
the subspacesY C X which are unions of closed subspacesY, C X with X —Y,,
quasi-compact. To such aY corresponds the thick ®-subcategory of those perfect
complexes acyclic at each point of X — Y. For X noetherian, all subspaces are
guasi-compact, and the remaining condition that Y be a union of subspaces closed
in X is usually expressed by saying that ‘Y is closed under specialization’. For
a detailed comparison with the previous work of Hopkins and Neeman see 3.17
below.

Refining the second main result by thefirst, | obtain (Thm. 4.1) a classification
of all strictly full triangulated ®@-subcategories A of D(X)pat: they correspond
bijectively to data (Y, H) whereY C X isasubspaceasaboveand H C Kp(X on
Y') isa Ko(X)-submodule of the Grothendieck group of perfect complexesacyclic
off Y. Thus A is determined by a condition Y on the supports and a condition
H on the multiplicities. This classification has been my personal motivation for
developing the results of this paper. | seek to define a good intersection ring of
‘algebraic cycles on schemes X where the classical construction of the Chow
ring fails, for example on singular algebraic varieties or on regular schemes flat
and of finite type over Z. Inspired by the superiority of Cartier divisors over
Weil divisors and by recent progressin local intersection theory, | believe the good
notion of ‘algebraic n-cycle’ isthat of those perfect complexesin sometriangulated
subcategory A™ C D(X)pat Which remains to be defined. Technological secrets
about ‘moving lemmas’ demand that .A™ should be a ®-subcategory, and show it
cannot be thick in general. The classification has proved to be very helpful herein
clarifying the issues to be resolved.

Other results presented here worth mentioning are the Tensor Nilpotence Theo-
rem (Thms. 3.6 and 3.8), generalizing to schemes aresult of Hopkins and Neeman
for noetherian rings ([Ho] Thm. 10, [N€] 1.1) analogousto the Nilpotence Theorem
of Devinatz—Hopkins-Smith ([DHS] Thm. 1) in stable homotopy, and a useful but
little-known necessary and sufficient condition for the equality of two classesin
the Grothendieck group of atriangulated category (Lemma 2.4), due to Landsburg
inspired by Heller.

| have tried to make each theorem, proposition, and lemma resistant to
misinterpretation on being ‘zapped’ out of its context by endlessly restating, or
at least referencing, all hypotheses and definitions explicitly. However, | have
followed a customary global convention that ‘ring’ always means ‘commutative
rng'.

2. '‘Rappels

For the convenience of the reader and to eliminate ambiguities, | will briefly recall
some basic definitions and results of the theory of triangulated categories. Useful
genera references are the classic treatments [Ha] | and |1, and [Ve], as well as
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[SGA4] XVII Section 1.2, [SGA5] VIII, [SGA6], and the more recent [BBD]
Section 1, [Ri], [Sp], and [BN].

1.1. Let7 beatriangulated category. A full triangulated subcategory of 7 isafull
subcategory .4 with the structure of atriangulated category such that the inclusion
functori: A — T isatriangulated (a.k.a. ‘exact’) functor, i.e. such that it preserves
distinguished (‘exact’) triangles and commutes with the suspension (‘translation’)
endofunctors. Sincethe axioms of atriangulated category imply that any morphism
is an edge of an exact triangle which is unique up to isomorphism of the opposite
vertex ([Ha] | Sect. 1 TR1, TR3, Prop. 1.1.c, or [Ve] | Sect. 1 no. 1), and since the
functor 7 is fully faithful so two trianglesin A are isomorphicin 7 if and only if
they areisomorphic in A, atrianglein A is exact if and only if itsimage is exact
in 7. Thusthe triangul ated category structure of A is uniquely determined by that
onT.

Thus the definition above is equivalent to: afull triangulated subcategory of 7
isafull non-empty subcategory A of 7 such that for every exact triangle of 7 of
which two vertices are in A, then the third vertex is isomorphic to an object of A
(c.f.[Ve] | Sect. 1 no. 2-3).

1.2. A dtrictly full triangulated subcategory A of 7 isafull triangulated subcate-
gory such that .A contains every object of 7 which is isomorphic to an object of
A.

1.3. A thick (a.k.a épaisse) triangulated subcategory A of T is a strictly full tri-
angulated subcategory such that every direct summand in 7 of an object of A is
itself an object of .A. Rickard ([Ri] Prop. 1.3) showed that this definition is equiv-
alent to the somewhat more complicated classic definition given by Verdier ([Ve]
| Sect. 2 1-1). Using his definition Verdier showed that a full subcategory A of T
isathick triangulated subcategory if and only if there existsatriangulated category
7' and atriangulated functor 7 — 7" such that A is the full subcategory of those
objectswhoseimage in 7" isisomorphic to 0. (c.f. [Ve] | Sect. 2 nos. 1,2, 3).

1.4. A full triangulated subcategory A of a triangulated category D is densein D
if each object of D isadirect summand of an object isomorphic to an object in A.

REMARK 15. If A4 isafull triangulated subcategory of a triangulated category
T, the intersection of all the thick triangulated subcategories of 7 containing .4
is a thick triangulated subcategory D. This D is the smallest thick triangulated
subcategory of 7~ which contains .A. On the other hand, one checks easily that
the strictly full subcategory A of al objects of 7~ which are summands of objects
isomorphic to objectsin A isathick triangulated subcategory of 7. ThusD C A.
But by Rickard’s definition of thick one has. A C D since D isthick and contains
A.ThusD = A.
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Hence A isdensein athick triangulated subcategory D of T if and only if D is
the smallest thick triangulated subcategory of 7 which contains A.

1.6. Let 7 be atriangulated category, which we supposeis essentially small (1.7)
and so replace with an equivalent triangulated category which has a set of objects.
The Grothendieck group Ko(7") is the quotient group of the free abelian group
on the set of isomorphism classes of objects of 7 by the Euler relations: [B] =
[A] 4 [C] whenever thereis an exact trianglein 7

A B
\ / (1.6.1)
C

See [SGAG] IV Section 1, [SGAS5] VIII Section 2. The Grothendieck group
has the universal mapping property that any function from the set of isomorphism
classes of objects of 7 to an abelian group G such that the Euler relations hold
in G factors through a unique homomorphism Ko(7) — G. Ko( ) is covariant
for triangulated functors. One has [A] + [B] = [A @ B] from the exact triangle
A— A®B — B ~ ---. Then [4] + [0] = [A], which implies [0] = 0 in
the Grothendieck group. Note that if XA is the suspension of A in 7, so there
exists an exact triangle A — 0 — XA ~ ---, onehas[A4] + [XA4] = [0] = 0, s0
[XA] = —[A]. From dl thisit follows that every element of Ko(7) is of the form
[C] for some object C' of the triangulated category 7. The anal ogous statement for
the Grothendieck group of an abelian or exact category would not betrue; the [C]'s
only generate the group in these cases.

1.7. A category 7T isessentially small if it is equivalent to a small category, i.e. if
there exists a set of objects of 7 (as opposed to a class of objects in the sense of
Godel-Bernays set theory) such that every object of 7 isisomorphic to an object
in this set.

Notethat if 7" isan essentially small triangulated category then any full subcate-
gory, any localization, and in particular any Verdier quotient by athick triangulated
subcategory ([Ve] | Sect. 2 no. 3) is essentially small. The stable homotopy cate-
gory of finite CW spectrais essentially small. For any quasi-compact and quasi-
separated scheme X (e.g. for any noetherian scheme) the triangulated category of
perfect complexes (3.1) on X, D(X)paf, is essentially small ([TT] Appendix F).
If A isan essentially small abelian category then the derived category D(.A) is
also essentialy small. However, neither the category of all abelian groups, nor its
derived category D (Z-mod) isessentially small: there aretoo many non-isomorphic
abelian groups. Indeed these exist in every cardinality.
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3. Classification of densestrictly full triangulated subcategories

Asin 1.5, each strictly full triangulated subcategory A of atriangulated category
T isdensein a uniquely determined thick subcategory D of 7. Thus to classify
al such A in T it sufficesto classify: (1) the thick subcategoriesD in T, and (2)
the strictly full dense triangulated subcategories A of D. The second part of the
classification is given by:

THEOREM 2.1 Let D be an essentially small (1.7) triangulated category. Then
there is a one-to-one correspondence between the strictly full dense (1.2, 1.4)
triangulated subcategories.A in D and the subgroups H of the Grothendieck group
Ko(D).

To A corresponds the subgroup which is the image of Ko(.A) in Ko(D). ToH
corresponds the full subcategory A whose objects are those A in D such that
[A] € H C Ko(D).

Proof. One checksthat these formul asdefine functions between the set of strictly
full dense triangulated subcategories and the set of subgroups: Trivialy im Ky(.A)
is a subgroup of Ko(D). The Euler relation in Ko(D) gives readily that Ay is
a strictly full triangulated subcategory of D. And Ay is densein D since for all
D e DonehasD® XD € Ay as|[D®XD] = [D]|+[XD]=[D]-[D]=0€ H.

It remains to be checked that the two functions are inverse to each other. For H
asubgroup, clearly im Ko(Ay) C H.Butasin 1.6, any element of H C K(D)
is of the form [D] for some D € D, and then D € Ay since [D] € H. Thus
HimKoy(Ag), and the composition of the two functions gives the identity on the
set of subgroups. To seethat the reverse composition givesthe identity on the set of
subcategories, completing the proof of the theorem, one must check that for each
D e DonehasD € Aif andonly if [D] € imKo(A) C Ko(D). But thisis given
by the following lemma.

LEMMA 2.2 Let A beastrictly full dense triangulated subcategory of the essen-
tially small triangulated category D. Then for any object D of D, one has that
D e Aifandonlyif [D] = 0in Ko(D)/im Ko(A).

Proof. Passing to an equivalent triangulated category, | may assume that D
has a set of objects. Consider the relation ~ on the set of isomorphism classes of
objects of D defined by D ~ D' iff there exist A and A’ in A such that there is
an isomorphism D & A = D' & A’. One checks easily that the relation ~ is an
equivalence relation. Denote by G the quotient by ~ of the set of isomorphism
classes of objects. Denote by (D) theclassin G of the object D of D.

| clam D € Aiff (D) ~ (0) in G. For clearly D € A implies (D) ~ (0).
Conversely if (D) ~ (0), there are A, A’ € A and an isomorphism D & A =
0pA' =A".ThenD® A € A, and astwo of thethree vertices of the exact triangle
A—= D@ A— D~ YA areinthedtrictly full triangulated subcategory A, at the
third vertex one hasaso D € A. This provesthe claim.
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To completethe proof of thelemma, it remainsto show that the set G isbijective
with the group Ko(D)/im Ko(A) via(D) <« [D].

But G hasa structure of an abelian monoid, with sum induced by the operation
of direct sum in D. (0) is the zero. In fact, G has inverses and so is an abelian
group. For given any element (D) € G, as Aisdensein D thereisa D’ € D such
that D @ D' € A. Then (D) + (D") = (D& D") ~ (0) = 0.

Further the Euler relation holdsin G, so that the surjection Obj D — G induces
asurjection of abelian groups Ko(D) — G sending [D]to (D). Forlet A -+ B —
C ~ YA beanexacttrianglein D. Asabove, thereare objects A’, C’ in D suchthat
A A, CaC aein Aso (A A’) = 0= (C e C"). Taking the direct sum of the
exacttriangle A — B — C ~ Y A with theexact triangles A’ —+ A’ — 0~ XA’
and0 - C' — C' ~ X0givesan exact triangle A® A’ - B A& C' —
CoC ~ X(Ae A'). The vertices A @ A’ and C @ C' are in the strictly full
triangulated subcategory A, and hence so is the third vertex B & A’ & C’. Thusin
GonehasO= (B A' & C') = (B) + (A") + (C") = (B) — (A) — (C), proving
the Euler relation holds there.

Thus one has a surjective homomorphism Ko(D) — G. Since each element of
Ko(D) is of the form [D] for some D € D by 1.6, the kernel of this surjection
consists of al [D] such that (D) ~ O, i.e. such that D € A. So the kernel is
imKo(A) and G = Ko(D)/imKp(A). O

COROLLARY 2.3 Let A beafull densetriangulated subcategory of the essentially
small triangulated category D. Then the homomor phisminduced on Ko( ) by the
inclusion of categoriesis a monomor phism of groups Ko(A) — Ko(D).

Proof. Let A be the strictly full triangulated subcategory of D whose objects
are those objects of D isomorphic to objects in A. The inclusion A C A is an
equivalence of triangulated categories and so induces an isomorphism Ky(.A) =2
Ko(A). Hence | may replace A by A and so may assume A isastrictly full dense
triangulated subcategory of D.

Let N = ker (Ko(A) — Ko(D)). By Theorem 2.1 the subgroups 0 and N
of Ko(A) correspond to strictly full dense triangulated subcategories Z and A
of A. But then Z and N are also strictly full dense triangulated subcategories of
D.ButimKy(Z) = 0=imN = imKy(N) in Ko(D). Then by Theorem 2.1,
Z =N CD,whence0 = Ko(Z) = Ko = (N)N. 0

Thereader may find theindirectness of the proof of thisuseful corollary psycho-
logically uncomfortable. If so, rather than dosing himself with a benzodiazepine,
he may find relief in deducing Corollary 2.3 from the following criterion for equal-
ity of two classesin Ko(D), whose proof is very similar to that of Lemma 2.2.
This criterion is due to Landsburg ([La]), inspired by an analog for Ky of exact
categoriesdue to Heller ([He] 2.1).

LEMMA 2.4. (Landsburg) Let D be an essentially small triangulated category,
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and let D, D' be two objects of D. Then [D] = [D'] in Ko(D) if and only if there
areobjects A, B, C' € D and two exact triangles

«

A B® D A

N N
v \ 8 ~ \ g (24.1)

\ \

C C

Proof. First | replace D by an equivalent triangulated category with a set of
objects. Now let ~ be the relation on the set of objects defined by D ~ D’ if
there exist A, B,C and two exact triangles as in (2.4.1). The relation ~ is an
equivalence relation: symmetry and reflexivity are clear; and as for transitivity,

note that if D ~ D' because of exact triangles A1, — B1 & D N C1 ~ and

Be D'

A1 Bie D B ¢ ~, while D' ~ D" because of the exact triangles

A % ByoD 5 0y~ and Ay 23 By D' 2 0y~ then D ~ D"
because of thee;acgtrianglesAleaAz oz lBlleaDeaBzeaD’ Ui CreCo~
and A1 @ Ay i Bio D @& By D" 5o C1 & C3 ~», conjugated by the
isomorphisms(B1® Bo®D')® D = B1® D® Bo® D' and (B1® Bx® D') D" =
B1® D' @ B, ® D”. Let G be the quotient of the set of objects of D by the
equivalencerelation ~. It remains to show that G = Ko(D) via (D) < [D].

G has a structure of an abelian monoid, the sum being induced by direct sum
in D. In fact, G is an abelian group. For given an element (D) of G, it has
an inverse (¥D) since (D @& ¥D) ~ (0) = 0 because of the exact triangles
D—-De&XD — XD ~andD — 0 — XD ~. The Euler relation holds in
G.Forif A— D — C ~ isan exact triangle, considering it alongside the exact
triangle A - A® C — C ~ gives (D) ~ (A& C) = (A) + (C).

Thus by the universal property of the Grothendieck group one has a homo-
morphism, clearly surjective, Ko(D) — G sending [D] to (D). This surjection is
injective, and so is an isomorphism of abelian groups. For given two elementsin
Ko(D), asin 1.6 they havethe form [D], [D'] for objects D, D’ of D. If they goto
the same element of G, then D ~ D’ and there exist two exact triangles (2.4.1).
Then in Ko(D) the Euler relations give [B @ D] = [A] + [C] = [B® D'}, s0
[B] + [D] = [B] + [D'], and [D] = [D'] in this group. O

EXAMPLE 2.5 The proof of Lemma 2.2, the backbone of Theorem 2.1, was
already implicit in the proof ([TT] 5.5.4) of akey special case of the Ko-criterion
of Thomason—Trobaugh for the extension of perfect complexes (3.1) on an open
subscheme U to perfect complexes on the ambient scheme X. As an example and
sinceit will be needed in Section 3, | state this criterion:
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EXTENSION LEMMA. Let X be a quasi-compact and quasi-separated scheme,
Y C X a closed subspace such that X — Y is quasi-compact, and U C X a
quasi-compact open subscheme. Denote by Ko(XonY') the Grothendieck group
of the triangulated category of perfect complexeson X acyclic off Y. Let E* bea
perfect complex on U acyclic off U NY. Then thereexistson X a perfect complex
F" acyclic off Y and such that the restriction F"|U is quasi-isomorphic to E', if
and onlyif theclass[E'] in Ko(UonU NY') isintheimage of Ko(XonY).

Proof. Thisstatementis[TT] 5.2.2, whose proof is spread out through [TT] Sec-
tion 5. Inessence, onereducestothecaseY = X andwhere X hasan amplefamily
of line bundles by an inductive argument. In this case, a Koszul complex trick for
extending to X morphisms defined on U between perfect complexeson X shows
that the perfect complexes on U which extend are the objects of a strictly full tri-
angulated subcategory. Trobaugh'srevelation ([TT] 5.5.1) is that this subcategory
is dense. Now Lemma 2.2 finishes the proof.

4. Classification of thick subcategoriesof perfect complexes

3.1. ‘Rappels': Let X be aquasi-compact and quasi-separated scheme. Recall that
any classical algebraic variety, moregenerally any noetherian scheme, and the affine
scheme Spec(R) for any commutative ring is quasi-compact and quasi-separated
([EGA] I).

A strict perfect complexon X isabounded complex of locally free O x -modules
of finite type ([SGA6] | 2.1, or [TT] 2.2.2). A perfect complex on X is acomplex
E" of sheaves of O x-modules such that there is an open cover of X by U’s such
that £°|U is quasi-isomorphic to a strict perfect complex on U ([SGA6] | 4.7, or
[TT] 2.2.10).

One denotes by D(X) the derived category of the abelian category of sheaves
of Ox-modules, and by D(X)paf its strictly full subcategory whose objects are
the perfect complexeson X. D (X )part isathick triangulated subcategory of D (X))
by ([SGA6] | 4.9, 4.10, 4.17 or [TT] 2.2.13). It is contained in the thick subcate-
gory D" (X)), of complexescohomologically bounded below with quasi-coherent
cohomology sheaves.

Theobjectsof D(X)paf are characterized by the following *finite presentation’
condition ((ThLG] Prop. 1.1, c.f. [TT] 2.4.1): an object E" of D" (X)), isaperfect
complex iff the functor Morp(x)(E") takes al direct sums in D*(X),, even
those with infinitely many factors, to direct sums of abelian groups. Note there
isasimilar characterization of the homotopy finite CTW spectrain the full stable
homotopy category (e.g., [ThSH] 2.5, with the dual to 2.6). This fact is part of
the parallel between the classification Theorem 3.15 below and the classification
theorem [HS] Theorem 7 in the finite stable homotopy category.

If the scheme X has an ample family of line bundles ([SGA6] Il 2.2.4 or
[TT] 2.1.1); for example, if X is an affine scheme Spec(R), or is quasi-projective
over a Spec(R), or is a separated regular noetherian scheme, ([TT] 2.1.2), then
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any perfect complex on X is globally quasi-isomorphic to a strict perfect complex
([SGAG] 11 2.2.8, or [TT] 2.3.1). In particular D(Spec)(R))pat isequivalent to the
triangulated category obtained from the category of bounded chain complexes of
finitely generated projective R-modules by inverting the quasi-isomorphisms. This
is the category abusively denoted D?(R) in [Ne], in flagrant incompatibility with
the standard use of this symbol asin[Ha], [Ve], and all the works of Grothendieck.

| refer to [Ha] 11, [SGAG] I, and [Sp] for the standard notations and results on
operations like the total derived tensor product @ and the total derived inverse
image L f*. Note that generally in [Ha] and [SGA6], ®§ . and L f* were defined
only on D~ (X), i.e. on cohomologically bounded above complexes, but they have
been extended to all D(X') by Spaltenstein ([Sp] 6.5, 6.7). See also [BN]. | will
sometimes abbreviate ®éX and L f* simply as® and f*, leaving the X understood
and suppressingthe‘ L’ when by the context these clearly refer to functors between
derived categoriesrather than the inducing functors on categories of complexes.

Finally | notethat | usually follow the customs of the tribe of algebraic geome-
ters, for whom the differentials in a complex increase degree, 0: E® — E™*1, and
who call ker 9/im o cohomology. For topologists, differentials decrease degree
and ker 9/im 0 is homology. To translate between the languages of these antipodal
peoples one reindexes the algebraic geometer’'s complex by setting E™ = E_,,, SO
reindexing H"(E") = H_,,(E.). For example, | say acomplex E" is cohomologi-
cally bounded aboveif H"(E") = 0for n > 0. Among the topol ogists one would
say this complex E. is homologically bounded below.

DEFINITION 3.2 Let X beaschemeand E" acomplex of sheavesof O x-modules.
The cohomological support of E- is the subspace Supph(£°) C X of those points
x € X at which the stalk complex of O ,-modules (E;,) is not acyclic.

Thus Supph(E°) U,,cz, SuppH™(£") isthe union of the supportsin the classic
sense ([EGA] O, 3.1.5) of the cohomology sheavesof E'.

LEMMA 3.3 Let X be a quasi-compact and quasi-separated scheme. Let " bea
perfect complex on X.

(@ For any z € X, E; is an acyclic complex of Ox ,-modules if and only if
E ®(L9X k(x) isan acyclic complex of k(x)-modules.
(b) If Y is a quasi-compact and quasi-separated schemeand f: YV — X a
mor phism of schemes, then
Supph(Lf*E") = f~*(Supph(E"))

(c) Supph(E") isclosedin X, and X — Supph(E") is quasi-compact.
Proof. (&) Consider the strongly converging Kinneth spectral sequence (e.g.
[EGA] 111 6.3.2)

By =Torhy (Hy(E,), kz)) = Hypo(E ©6, k().
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Thisshowsat oncethat if £, isacyclic, i.e.if H.(E,) = 0, then ' ®%_k(z) is
acyclic. Conversely, suppose £, isnot acyclic. Asthe perfect E” iscohomologically
bounded thereisaleast N such that Hy(E;) # 0. Then in the spectral sequence
Eiq = O0for¢ < N aswell asforp < 0. Thenfor p+ ¢ = N the spectral sequence
gives in the corner p = 0, ¢ = N an isomorphism Hy(E,) ®o, , k(z) =
Hy(E ®%, k(z)). As E, is perfect and H,(E;) = Ofor ¢ < N, Hy(E,) is
afinitely generated Oy ,-module ([SGAE] | 2.10b, 5.8.1, or [TT] 2.2.3, 2.2.12).
Then by Nakayama's lemma Hy (E;,) # 0implies Hy(E;) ®oy , k(z) # 0, s0
E ®éX k(z) isnot acyclic. This proves (a).

To prove (b), note by (a) that y € Supph(Lf*E") iff (Lf*E") ®(L9Y k(y) is
not acyclic. But for z = f(y) € X one has (Lf*E") ®% k(y) = (B @5,
k(2)) @) k(y). Ask(y) isan extensionfield of k(z) itisfaithfully flat over k (),
and (B ®p, k(x)) ®f, k(y) isnot acycliciff B ®f_ k(x) isnot acyclic, that
is, by (a) again, iff z € Supph(E"). This proves (b).

It remainsto prove (c). Supposefirst that X is anoetherian scheme. The coho-
mology sheaves of the perfect complex E- are coherent O x-modules ([SGA6] |
3.5, or [TT] 2.2.8, 2.2.12). Thus each Supp(H™(E")) is closed in X ([EGA] |
6.8.5), and as (E") is cohomologically bounded, for all but finitely many n one has
Supp(H™(E")) = Supp 0 = (). Thus Supph(E") = |J Supp(H"(E")) isclosed in
X . For X anoetherian scheme, any subspace, e.g. X — Supph(E") isquasi-compact
([EGA] I 2.7.1, [B-AC] 1l Sect. 4 no. 2 Prop. 9). This proves (c) for X noetherian.

Now suppose only that X is quasi-compact and quasi-separated. By absolute
noetherian approximation ([TT] C.9, 3.20) there exist a noetherian scheme X', an
affinemap g: X — X', and aperfect complex F* on X’ suchthat E* = Lg* F". By
(b), Supph(E") = g~1(Supph(F"), and so is closed in X as Supph(F") is closed
in the noetherian X'. Asthe affine map g is a quasi-compact map ([EGA] | 6.1.1),
X — Supph(E’) = g~1(X' — Supph(F")) is quasi-compact. This proves (c) and
completes the proof of the lemma.

LEMMA 3.4 Let X be aquasi-compact and quasi-separated scheme. LetY C X
be a closed subspace suchthat X — Y isquasi-compact. Then there exists a perfect
complex £ on X such that Supph(E)Y.

Proof. By absolute noetherian approximation ([TT] C.9, [EGA] IV 8.3.11)
there exist a noetherian scheme X' of finite type over Spec(Z), a closed subspace
Y' C X'/, and an affinemap f: X — X' suchthat Y = f~(Y”). If thereis a
perfect complex E' on X' such that Y/ = Supph(E""), then E* = Lf*E" will be
aperfect complex on X with Y = Supph(E") by 3.3b. Thusit sufficesto provethe
result when X is a noetherian scheme.

For X noetherian, the closed Y hasfinitely many irreducible components, with
generic points y1, ...,y ([B-AC] Il Sect. 4 no. 2, [EGA] | 2.1.5, 2.7). If there
are perfect complexes E; on X such that Supph(E;) = 7;, then E* = @ ,E; is
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perfect with Supph(E") = U¥_, 77 = Y. Thusit suffices to prove the case where
Y = g isirreducible closed with generic point y.

Then let U = Spec(A) be an affine open neighborhood of y in X. Let
{f1,-.., fn} beafinite set of generators for the ideal in the noetherian ring A
corresponding to the reduced closed subschemeY NU C Spec(A4) ([EGA] 1 4.6.1,

4.2). Consider the Koszul complex K = K'(f1,..., fn) = Q}4(4 IR A), the

tensor product of chain complexes (A N A) whichare0exceptin degrees—1 and
0, and have A inthose two degrees between which the differential is given by multi-
plicationby f;. K'(f1,. .., fn) isastrict perfect complex on Spec(A). Ononehand
Y NU. Ontheother hand, SUpph(K - (f1, ..., fa)) 2 SUPP(HO(K (f1,..., fn))) =
Supp(A/(f1,---, fn))Y NU.SOSUpph(K") =Y NU.

Let X K bethe suspension of theKoszul complex K, so X K" isalso perfect with
Supph(XK") = Supph(K°) = Y NU.Thesum K" & XK is perfect with cohomo-
logical supportY NU.InKo(U onY NU)onehas[K @ XK'| = [K'|+ [2K]| =
[K'] — [K'] = 0. By the Kp-extension criterion of Thomason—Trobaugh (2.5, or
[TT] 5.2.2) thereis a perfect complex E- on X with Supph(£°) C Y and such that
E|lU~K ®&XK.Theny € UNSupph(E"), givingy =Y C Supph(E°) since
Supph(E£") isclosed (3.3). ThusY = Supph(E"). O

LEMMA 3.5 (Mayer-Vietoris). Let X beascheme, i:U — X and j:V — X
two open immersions, and denote by £: U NV — X the open immersion of the
intersection. Thenfor E°, F* € D(U U V) thereisa natural long exact sequence:

Morp vy (E%*E', k*F")
Morpwuv) (Eﬁ Fr)
Morp ) (" B, i F) éaMorD(V) (j*E,j*F") (35.1)
Morpwnv) (k*iE'v k*F")
Morp oy (Ele', F)

(Note by a standard abuse one has replaced X by U U V' as the target of the
immersionsi, 7, k.)
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Proof. Fori: P — X an openimmersion let 4,: Op-Mod — Ox-Mod be the
functor ‘extension by 0" which sends a sheaf of Op-modules F to the sheaf of
O x-modules given by, for W C X open

aH { g I E

Extend I, to complexes by applying /; in each degree of the complex. The
adjunction between the functors, and [* on sheavesinduces an adjunction, 4 [*
on complexes. As [, and [* are exact functors on sheaves, these functors preserve
guasi-isomorphisms of complexes, so on passing to the derived category one still
has an adjoint pair, and in particular an adjunction isomorphism

Morpx) (WI*E", F") = Morppy(I"E", 1" F). (3.5.2)

Consider the sequence of complexeson U UV, wherethe morphismsareinduced
by + the various adjunction maps ¢: ;i* — 1 or by the [{e!”* for the immersions
betweenUNV,U,V,andU UV

O kk'E —ii"E ®jj"E — E — 0. (3.5.3)

Thissequenceisexacton U UV, being locally split exact on U and on V' sincethe
relevant adjunction maps restrict to natural isomorphisms kik*E*|U = j5ij*E"|U,
wi*E'|U = E’|U, etc. Thus the sequence gives an exact triangle in D(U U V).
Applying to this exact triangle the contravariant functor Morp vy (-, F7) yields
acanonical long exact ‘ Puppe’ sequence ([Ha] | 6.1, or [Ve] | Sect. 1 1-2), which
conjugated by the isomorphisms (3.5.2) for [ = i, 5, k yields (3.5.1). O

THEOREM 3.6 (Tensor nilpotence). Let X bea quasi-compact and quasi-separated
scheme. Let £ be a perfect complex on X, and F" a complex of sheaves of
Ox-modules which has quasi-coherent cohomology (i.e., F* € D(X),). Let
fiE — F beamorphismin D(X).

Suppose for all z € X that f ®éx k(x) = 0in D(k(z)). Then there exists a
positive integer n such that ®" f: ®¢, B — @, Fis0in D(X).

Proof. (c.f. [Ho] Thm. 10, [N€] 1.1) Recall that @™ F" = © ®p, I existsfor
any F" € D(X), notjust for F* € D~ (X), by [Sp] 6.5, 5.9.

3.6.1. | claim the conclusion ‘dn such that @™ f ~ O’ isaloca question on X.
For suppose X is covered by opens U, such that for each of these opens dn,,
with @™« f|U, = 0in D(U,). Passing to arefinement of this cover, | may assume
the U, are affine and hence quasi-compact. As X is quasi-compact, there is a
finite subcover X = Ui?:l U;. | will show by induction on £ that there is an n
such that ®"f = 0 in D(X). To start the induction at k¥ = 1, note then that
X =U; so®™f = 0. To do the induction step assuming the result for & — 1, set
V = UY_, U;. By theinduction hypothesis, 3n’ suchthat "™ f = 0in D(V). Set
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m = max{ni,n’'} SO Q™ f|U1 = 0in D(U1) and ™ f|V = 0in D(V), aswell
a"flUtNV =0U1NV =0inD({U1NV).Snce X = Uy UV, the Mayer—
Vietoris sequence (3.5.1) then implies that @™ f € Morpx)(®™E', @™ F") is d
of some morphism ¢ € Morp,nvy (2™ ®™ E7,k* @™ F*). That is to say, on
unfolding the proof of 3.5.1, that @ f: @™ E" — @™ F" factorsin D(X) as

®m B Q™ f ®m F
e [e@mm), (3.6.1.1)

WIS @™ B~ ik @
ki(t

where 6:1d — Ykk* = kXk* is the composite of the obvious isomorphism
and the natural third edge of the exact triangle induced by the exact sequence
(3.5.3), and where ¢: ki k* — Id is the adjunction map. But then for n = 2m,
R"f=(®@"f)® (®™f)=0in D(X), asit hasan induced factorization through
(@™ f) ® (kit), which identifies under natural isomorphismsto ki ((k* @™ f) ® t)
and henceto O since k* @™ f = 0in D(Uy N V). This proves the induction step,
and hence the claim.

3.6.2. Thedesired conclusion dn ®™ f = 0 being local, and the hypotheses over
X implying the hypotheses over any quasi-compact open subscheme, to prove
the theorem | may and do restrict to the affine case, X = Spec(R). Then |
may (3.1) assume E" is a strict perfect complex. Let EV be the dual complex
EVHOM(E ,Ox) ~ RHoM(E,Ox). Then B ®@o, F* ~ EV ®p F'isa
complex with quasi-coherent cohomology. Thereis a natural isomorphism

MOI’D(X) (E, F) = MOTD(X)(OX, RHOm(E,F))
~ Morp(y)(Ox, BV ® F), (3.6.2.1)

induced by the adjunction E- ®* () 4 RHom(E, ) and the natural iso-
morphism RHoM(E", F') ~ RHom(E",Ox) @ F ~ EV @ F" for E" dtrict
perfect ([SGA6] | 7.4, 7.7, boosted by [TT] 2.4.1.ab and [Ha] | Sect. 7). Under
the isomorphism (3.6.2.1) f: E- — F" correspondsto a f: Ox — EV @ F" in
D(X)4e. Under other instances of this natural isomorphism ®" f corresponds to
"1 0x = "0Ox — QM(EY ® F') andforal z € X, f ® k(x) corresponds
to f* ® k(). Thusreplacing F" by E'V ® F" and E" by Oy, | reduce to the case
EOx.

By [BN] 5.1 (c.f. [SGA6] Il Sect. 3or [TT] B.16, B.17for F* € DT (X),.) F"
is quasi-isomorphic to acomplex of quasi-coherent O x-modules, so | may assume
F is such a complex. Under the equivalence of the category of quasi-coherent
O x-moduleson X = Spec(R) and the category of R-modules, F isidentified to
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acomplex of R-modules, and f: Ox — F" isidentifiedtoamap f: R — F" in
D(R-Mod), i.e. toaclass f € HO(F).
Thusit remainsto show that:

3.6.22. If F"isacomplex of R-modules, and f € HO(F") is such that for all
z € Spec(R)f @ k(x) = 0in HO(F" ® k(x)), then there is a positive integer n
suchthat @™ f = 0in HO(@"F").

3.6.3. | next reduce to the case where F" is strict perfect. For F* € D(R-Mod) is
guasi-isomorphictoacomplex of free R-modules, whichinturnisthedirect colimit
of itsstrict perfect subcomplexes([TT] 2.3.2). So | may assumethat - I|_r>n F,, for

{F, } adirected system of strict perfect complexes. For such a filtering system
HO(F) = Ii_r>nH°(F,;é), so f € HO(F") istheimage of a f3 € H°(F}) for some
(. Passing to the cofinal directed subsystem of « = (3 and setting f,, equal to the
image of f3, | may assumethat thereisafamily of f, € HO(F,,) compatible under
the structure maps of the system and inducing f in the colimit H9(F"). Note that
now all F;, and so also F" are complexes of flat R-modules, whence the derived
tensor product over R, F* ®% k(z), is represented by the tensor product of chain
complexes F* ® k(x).

SetT, = {z € Spec(R) | fo ® k(z) = 0in HO(F;, ® k(x))} Note T, C Ty
if « < o.Also T, = {z € Spec(R) | f ® k(z) = 0in HO(F" ® k(z))} =
Spec(R). | claim that each T, is a constructible set in Spec(R). For, representing
thehomology class f,, € HO(F,) by anelement f,, € F?, onehas f, ®k(z) = 0in
HO(F,®@k(x)) iff fo@k(z) isaboundary in F:, @ k(z),i.e.iff 0 = fo@k(z): R —
(F2/OF;Y) @ k(z). As FQ/OF, * isafinitely presented R-module, by [EGA] IV
9.450nsetting X = S = Spec(R) onegetsthat T, isalocally constructible subset
of Spec(R). As Spec(R) is quasi-compact and separated, 7, is then constructible
([EGA] Oy 9.1.12), proving the claim. But then the two remarks preceding the
claim imply that there exists an « such that 7, = Spec(R) by [EGA] IV 1.9.9,
1.9.4. For this a, f, € HO(F;) satisfies f, ® k(z) = Ofor al = € Spec(R). If
for the strict perfect F, thisimpliesthat for somen @™ f, = 0in HO(®"F},), one
gets®"f = 0in H°(®"F") by taking theimage under £, — F". This completes
the reduction to proving (3.6.2.2) for F" strict perfect over thering R.

3.6.4. Next | will reduce to the case where R is a noetherian ring of finite Krull
dimension. Any commutative ring R is the direct colimit lim R,, of its subrings of

finite type over Z. These R,, are noetherian rings of finit;ji mension ([EGA] IV
554, Oy 14.1.4). As the strict perfect complex F consists of a finite number
of nonzero direct summands of finitely generated free modules and finitely many
maps 0 between them, the projections on the summands and the maps between
them being represented by finitely many matrices with valuesin R, there exists
a g and a strict perfect complex Fj; over Ry suchthat F* = R ®g, Fy. Passing
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to the cofinal system of « - 3, | get afamily F,, = R, ®r, Fj; of strict perfect
complexes over the R,,, compatible under the structure maps of the system and
such that = lim F7;. Then as HO(F) = Ii_r)nHO(Fc'v), there is a 3’ such that
f € HO(F") istheimage of a f3 € HO(F} ). Restricting to the cofinal system of
a > ' and setting f,, to be the image of fs, | may assume | have a compatible
family of f, € HO(F.,). Noteas F;, isstrict perfect, thetensor product of complexes
F, ® () representsthetotal derived functor F, ®% ().

Let 7, C Spec(R,) be the subset of those x € Spec(R,) such that f, ®
kE(z) = 0in H°(F, ® k(x)). As in 3.6.3 above, T, is constructible. Denot-
ing by m,,:Spec(R,) — Spec(R,) the structure maps of the system and by
To: Spec(R) = I(iLnSpec(Pw) — Spec(R,,) the projections from the inverse limit
of schemes, one clearly has = (T,) C T, and U, ' (To) = {z | f ® k(z) =
0in HO(F" ® k(z))} = Spec(R). Thenby [EGA] IV 8.3.4 thereis an « such that
T, = Spec(R,); i.e., such that for al = € Spec(R,,), fo @ k(x) = 0. If @ f, in
HO(®@"F,,) for thenoetherian R, then ®" f = 7% (@™ f,) = 0in HO(®"F"). This
completes the reduction to the case where R is noetherian of finite dimension.

3.6.5. Now it remainsto show: if R isa noetherian ring of finite Krull dimension,
F" abounded complex of finitely gener ated projective R-modules, and f € HO(F")
issuchthat Vr € Spec(R)f ® k(z) = 0in H°(F" ® k(x)), then 3n > 0 such that
®"f = 0in HO(®"F"). To provethis, following the strategy of [N€], | will induct
on the dimension of R.

3.6.6. To prepare theinduction, | claim that if N C R istheideal of al nilpotent
elementsof R, andif the statement 3.6.5 holdsfor R/, thenit holdsfor R. For then
Jng > Osuchthat @™ f = 0in HO((@™ F")®@rR/N). Thatis, onchoosing arepre-
sentativeof @™ f in (@™ F")%, 3z € (@ F )~ tand Iy = Y5 rifi € N(@MF)°
withr; € N C R, f; € (@ F)% suchthat 1 f = 0z + y. Aseachr; € N
is nilpotent, 3n, > 0 such that for the finitely generated ideal (r1,...,7¢) C N,
(r1,...,7%)"2 = 0. Then @2y € (r1,...7r)"2(@™ @™ F*)° = 0. The element
RM(@"Mf) = ®@"2(dz + y) is a sum of terms ®™2y = 0 and of terms of the
forma ® 0z, b ® 0z and a ® dx ® b where a¢ and b are products of 9z and y.
Asdy = 9(@™f —dz) = 9 @™ f — d0x = 0, in any case da = db = 0 and
a®0r®b=0(a®z®b). Thus@™t™2f ¢ 9(@ut™F)~1 so@utm2f = 0in
HO(®@™tm2F"), This provesthe claim.

Note dmR = dimR/N as Spec(R) and Spec(R/N) = Spec(R)req have
homeomorphic underlying spaces ([EGA] | 4.5, 1V 5.1).

3.6.7. Now | finish the proof of 3.6.5 with the inductive argument. To start the
induction with the case dim R = 0, | may by the claim 3.6.6 replace R by the
reduced noetherian ring of dimension O which is R/N. But thereafter R is the
product of its finitely many residue fields k(z) (e.g., [B-AC] VII Sect. 1 no. 3
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Exemple 1, IV Sect. 2 no. 5 Prop. 9, Il Sect. 3 no. 5 Prop. 16). Thus HO(F") =
@, HO(F" ® k(r)) andas f ® k(x) = Ofor al z, onehas f = 0.

To do the induction step, suppose dmR = d > 0 and that 3.6.5 is aready
demonstrated for noetherian rings of dimension < d — 1. Againreplacing R by its
quotient R/N by thenilradical, | may suppose R isreduced. Let R — [ 4 k(m;)
be the map of R to the product of the residue fields at the finitely many minimal
primesof R, n; € Spec(R). As R isreduced, each suchresiduefield k(n;) isin fact
thelocal ring R,),. Indeed [, k(n;) isisomorphic to the localization S~ 1R for S
the set of non zero-divisorsof R, those elementscontainedinno minimal prime ([B-
AC] Il Sect. 4 no. 3Cor. 3aProp. 14, 1V Sect. 2 no. 5 Prop. 10). By hypothesis, for
eachn; f®k(n;) =0,0f@S R =0iINH(F @S *R=S1F).If fc FO
isarepresentative of theclass f € HO(F"), thismeansthereexistsay’ € S~1F 1
such that 9y’ = f in S~1FC. Then for some s € S there existsy € F~* such
that sf = dy in FO. Theelementsy: R — F~1 and f: R — F° determine amap
of complexes 8: (R —+ R) — F', where (R - R) is the complex with R in
degrees 0 and —1, 0 in the other degrees, and where the non-trivial differentia is
given by s. Ass € S isanon zero-divisor, this complex of R-modules is quasi-
isomorphic to the complex which is R/sR concentrated in degree 0. Again as s
is a non zero-divisor the closed immersion i: Spec(R/s) — Spec(R) is aregular
closed immersion and the direct image functor i,.: D(R/s)4. — D(R)q. preserves
perfect complexes and so restricts to a triangulated functor i.: D(R/s)pat —
D(R)pat ([SGA6] VII 1.4,1.9,111 48.1,25). Let «: R — i, R/s = R/s bethe
canonical quotient map. Replacing 3: (R —+ R) — F" by its composite with
the isomorphism in D(R)pat ix(R/s) =~ (R —> R) whose composite with « is
the inclusion of R into degree 0 of (R — R), | get afactorization in D(R)pat

of f = R i.(R/s) 2, F. This factorization and the naturality of various
standard quasi-isomorphismsgivesthefollowing commutativediagramin D ( R) par
foraln >0
Thisdiagram gives afactorization of ®7}%+1f through 7., ( %/Si*f). But R/sisa
noetherian ring, and as s isanon zero-divisor onehasdim(R/s) < dim(R) — 1 <
d — 1 ([EGA] O,y 16.1.2.2). Then by the induction hypothesisthat 3.6.5 is known
for dimensions < d — 1 and since i* f ®p/, k(z) = f ®g k(z) = 0in D(k(z))
for all x € Spec(R/s) C Spec(R), one gets that there exists an n > 0 such that
/50" f = 0in D(R/s)pat. Thenthefactorization gives ®%"* f = 0in D(R)par-
This completesthe proof of the induction step for 3.6.5, and hence the proof of the
theorem.

REMARK 3.7. For k afield the derived category D (k) isequivalent (by thefunctor
sending acomplex to its cohomology groups) to the category of Z-graded k-vector
spaces. Thus the Theorem 3.6 saysthat givenamap in D(X),., f: £ — F", with
E perfect and such that for all x € X H*(f @ k(z)) isthe zero map, then there
existsaninteger n > Osuchthat ®” f = 0in D(X). To the more sophisticated this
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isasurprisingly strong conclusion, and in any case the naive attempts to strengthen

it fail.
R @ntlf ®n+1 F
(®n R) SR (®"f)®f ) ®F
RN FRL /
(36.7.1) 10 (" F) ® iy
(®" R) ®@ix(R/s) ) ®r ix(R/5)
(®" el
ix(QRys B/9) i (@R i F)
ix (@M% f)

For example, it is not sufficient to supposethat H*(f) = O rather than H*(f ®
k(x)) = O for al z. For let X = Spec(Z,), and let the complexes E", F" be
given by the rows in the diagram below, with f given by the columns and where
the center column isin degree O

s 0 0 Z(p) Ld Z(p) s 0
l l % l l (3.7.1)
> 0 0 Z 0 s 0

Then H*(f) = 0, but for al n > 0 H°((®" f) ® Z/p) is an isomorphism Z /p =
Z/p.

Nor can one strengthen the conclusion to f = 0 in D(X) rather than In @™
f = 0, even if one supposes H*(f) = 0 in addition to f ® k(z) = 0 for
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al z. For again with X = Spec(Z,)) consider the map of complexes give by

> > > Lp) > Lp) s 0 N
| r| | | (372)
» O gy — 2 » 0 r 0

Here f # 0in D(Z,))pat 8 HO(f © Z/p?) = p: Z/p* — Z/p? dthough f ® Z /p
and f ® Q are 0.

Inboth counterexamples X = Spec(Z ,,)) isabout as niceaschemeasone could
imagine except for fieldsand (), and the counterexamples generalizeto Spec(z) and
to Spec(k[T']). Having entered this far into the question, one should abandon all
hope.

THEOREM 3.8 (Tensor nilpotence with parameters). Let X be a quasi-compact
and quasi-separated scheme, £ and G perfect complexeson X, and F* a complex
of sheaves of O x-modules with quasi-coherent cohomology. Let f: E° — F" be
a morphismin D(X),.. Suppose for all € Supph(G") that f ® k(z) = 0in
D(k(z)). Thenthereisaninteger n > Osuchthat G ® (®™ f) = 0 asa morphism
G ®(@"E) =G Q(Q"F)inD(X).

Proof. (c.f. [Ho] Thm. 10ii) Foreschz € X(G" ® f) ® k(z) = 0in D(k(z))
aseither G ® k(z) ~ 0or elsez € Supph(G*) and f ® k(z) = 0. So by Tensor
Nilpotence 3.6 thereisan n > 0 such that ®"(G" ® f) = 0in D(X). A fortiori
(@ 1RHOM(G", Ox)) ® (®"G") ® (®"f) = 0.1 will show that G" ® (®"f) is
aretract of this morphism and soisalso 0.

For this, it suffices to show by induction on n that G* is a direct summand in
D(X)pat Of (" 1RHOM(G",Ox)) ® (8"G"). For n = 1thisistrivia. Todo the
induction stepto proveitforn > 2itsufficesto provethat (2" 2RHom(G", Ox))®
(®"1G") isadirect summand of (®" 1RHom(G",Ox)) ® (®"G"). Forn > 3
this follows upon tensoring with (®"3RHom(G", Ox)) ® (®"2G") from the
case n = 2, namely that G is a direct summand of RHom(G", Ox) ® (R2G").
Hence it suffices to prove the latter.

As G is perfect, thereisin D(X) a natural isomorphism (easy, or [SGAG] |
7.7)

6: RHom(G", Ox) % G° =5 RHom(G", Ox )%
RHom(Ox,G) — RHom(G",G") (3.8.1)
Thus the problem is to show G is a direct summand of RHom(G",G") ® G".

But if G — RHom(G',G') ® G is ( ) ® G' of the morphism Ox —
RHom(G",G") corresponding to 15-: G — G-, and if eva: RHOM(G",G") ®
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G — G is the evaluation map, then eval o = 15-. So G° splits off of
RHomM(G',G") ® G". O

DEFINITION 3.9 Let 7 beatriangul ated category with afixed functor @: 7 x T —
T which is a covariant triangulated functor in each variable.

A full triangulated | eft-®-subcategory A of 7 isafull triangulated subcategory
of 7 such that for all objects7" € T and A € A, T ® A isaso an object in the
subcategory A. Similarly afull triangulated right-®-subcategory has A® T € A
whenever A e AandT € T.

A full triangulated left-®-subcategory is said to be respectively strictly full,
thick, or denseif it is such as atriangulated subcategory (1.2-1.4).

The condition of being a strictly full left-®-subcategory is invariant under
replacing ® by any naturally isomorphic functor ®'.

When ® is commutative up to isomorphism, the concepts of strictly full tri-
angulated left-®-subcategory and of strictly full triangulated right-®-subcategory
are equivalent, and one says simply strictly full triangulated ®-subcategory. |
emphasi ze that despite what this terminology suggests, the condition of A being a
®-subcategory is stronger than merely requiring that ® on 7 restricts to a functor
Ax A — A;itsaysAisasortof ‘idea’ inthe‘ring’ 7 with ® as‘multiplication’.
(However, use of the term ‘ideal’ for such an A asin 3.9.1 with Y a closed sub-
scheme would lead immediately to a bad terminological singularity at ‘the ideal
associatedto Y'.)

For X a quasi-compact and quasi-separated scheme and 7 = D(X)paf,
henceforth | consider strictly full triangulated ®-subcategories where by default
® = ®¢, istheusual derived tensor product.

EXAMPLE 3.9.1 If X isaquasi-compact and quasi-separated schemeandY C X
isany subspace, the full subcategory of D (X )pat consisting of those perfect com-
plexes E* such that Supph(E") C Y is a thick triangulated ®-subcategory of
D(X)part-

REMARKS 3.10 (a) The intersection of any set of full (resp. strictly full, resp.
thick) triangul ated | eft-®-subcategories of 7" isagain afull (resp. strictly full, resp.
thick) triangulated left-®-subcategory of 7. Thus each subcategory of 7 has a
smallest full (resp. strictly full, resp. thick) left-®@-subcategory containing it.

(b) Let A be afull triangulated left-®-subcategory of 7. By 1.5, the smallest
thick triangulated subcategory A of 7" containing A has as objects all direct sum-
mands in 7 of objects isomorphic to objectsin 4. So an easy check shows A is
in fact a thick triangulated left-®-subcategory of 7, and is also the smallest such
containing A.

PROPOSITION 3.11 (®-subcategory test). Let X be a quasi-compact and quasi-
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separated scheme with an ample family of line bundles {£,} ([SGAG] Il 2.2.4).
Suppose A C D(X)pat isathick triangulated subcategory, and that for each £,
aline bundlein the given ample family, and for each A" in A onehasthat £, ® A’
isin A. Then A isa thick triangulated ®-subcategory of D (X )par-

COROLLARY 3.11.1 (a) If X = Spec(R) is an affine scheme, all thick triangu-
lated subcategories of D (X )pat arethick triangulated @-subcategories.

(b) If X is a quasi-compact and quasi-separated scheme with an ample line
bundle O (1) ((EGA] Il 4.5), e.g. any scheme quasi-projectiveover somering, and
if A C D(X)par isathick triangulated subcategory suchthat Ox (—1) ® A C A,
then A is a ®-subcategory.

(c) Let X be asin 3.11 with an ample family of line bundles, and let A C
D(X)pat be a thick triangulated subcategory which is locally determined. (That
is, one supposesthat if E° € D(X)pat and if there exists an open cover {Ug} of
X such that for each Uy thereisan Fj; € A and anisomorphism E°|Ug = Fj|Up
in D(Ug)paf, then E- € A.) Then A is a ®-subcategory.

Proof of Cor. (c) Suppose A" € A. Asany linebundle £~ islocally isomorphic
to Oy, L~1® A islocaly isomorphicto A'. As A islocally determined, this gives
L~1® A € Afor any line bundle £ and then Proposition 3.11 yields the result.

(b) If Ox(1) is an ample line bundle the set {Ox (1)} consisting of Ox (1)
aloneis an ample family, and (b) givesthe result.

(@ If X isaffine, Ox isanamplelinebundle. AsOx ® A" = A" 3.11 applies
to give the result.

Proof of Proposition. Let B C D(X)paf be the full subcategory of those B
suchthat foreach A" € AonehasB'® A" € A. As Aisastrictly full triangulated
subcategory of D (X )pat, B isalso astrictly full triangulated subcategory. As A is
thick, B isalso closed under the taking of direct summands, i.e. athick subcategory
of D(X)pat. The proposition assertsthat BD (X )pat. By hypothesis, for al £, in
the ample family one has £, ® A C A. Then by induction on k¥ > 1 one gets
LF® AC A, ie L* € B. The proof of the proposition is thus completed by
the following Lemma 3.12.

LEMMA 3.12 Let X be a quasi-compact and quasi-separated scheme with an
ample family of line bundles {£,}. Let B C D(X )pat be a thick triangulated
subcategory such that for all integersk > Oand all o, £,* € B. Then BD(X )gar .

Proof. For any complex of sheaves of O x-modules B* quasi-isomorphic to a
bounded complex which in each degree is afinite direct sum of £* for various o
and k > 0, onehas B° € B. One seesthis by an easy induction on the total number
of factors £,* in the direct sums.

By the global resolution of perfect complexeson schemeswith an ample family
of linebundles ([SGAB] 1l 2.2.8, or asaporismto [TT] 2.3.1), each perfect complex
E" on X isquasi-isomorphic to abounded above complex B- which in each degree
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isafinitedirect sumof various £ *. For each integer n denote by o>" B' the brutal
truncation of B-, the subcomplex given by

sn i [ B ifizn
(o B){O e (3.12.1)

Then o>™ B is bounded and by the preceding paragraph o>™ B € B. | claim
that for all n sufficiently lessthan O that £ ~ B' is adirect summand of o>" B’
in D(X)pat. As B isthick thiswill imply E- € B. Thus BD(X)pat, Which will
prove the lemma. Thusit suffices to prove the claim.

For this, | will show for n < 0 that the inclusion of complexes o> B* — B’
isasplit epimorphismin D (X )part, that the identity morphism 1: B- — B factors
through it. Denote by o<"~! B* the opposite brutal truncation, B'/c>" B'. There
isan exact trianglein D(X)parf: 0" B° — B° — 0<"~1 B’ ~». By thelong exact
Puppe sequence ([Ve] | Sect. 11-2, [Ha] | 1.1)

Mo (8o @122

it sufficesto show for n < Othat B — o<"~1 B is0in D(X)pat.
Forany F" € D" (X),. thereisanatural strongly converging spectral sequence
(e0.[TT] 2.4.1.5-6)

E}Y = HP(X ; cHY(RHOM(B', F"))) = EtiD-lE‘)I()(B.’ F)

— I\/IOI’D(X) (EipiqB', F) (3123)

As B’ is perfect the functor RHom(B", ) has finite cohomological dimen-
sion (e.qg. [TT] 2.4.1.b), and in particular there exists an integer a such that for
al F* € D" (X)4 with m an integer such that #?(F") = 0if ¢ > m, then
HI(RHom(B", F)) = 0for ¢ > m — a Moreover, for al ¢H?(RHom(B", F"))
is a quasi-coherent sheaf on X (e.g. [TT] 2.4.1.c). As X is quasi-compact and
guasi-separated there exists an integer b such that for all quasi-coherent sheaves
FonX andadlp > bonehas H?(X ; F) = 0 ([EGA] Il 1.4.12 applied to
X — Spec(z) and boosted by IV 1.7.21 or [TT] B.11). Thenif F* € D" (X),
with H?(F") = 0for g > a — b, then HY(RHom(B", F")) = O for ¢ > —b, and
HP(X; HY(RHom(B", F"))) = 0forp+¢ > 0, indeed unlessp < band g < —b.
Thus the spectral sequence (3.12.3) gives Morpx)(B", F') = 0 for such F". In
particular Mor p(yy (B, 05" B') = 0if n < a —b. O

EXAMPLE 3.13 Proposition 3.11 and its corollary show that the ‘usual kinds' of
thick subcategories of D(X)qaf are triangulated ®-subcategories. Here | give an
example of the existence of an ‘exotic’ thick subcategory which is not a ®-sub-

category.
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Let X = P} be the projective line over afield k, m: PL — Spec(k) its struc-
ture map, and O(1) its fundamental line bundle. As 7 is smooth and projective
the derived direct image functor R, preserves perfect complexes and induces a
triangulated functor D (P1)pat — D (k)part ((SGA6] 111 4.8.1, 25 or [TT] 2.5.4).

Let A C D(P)pat be the thick triangulated subcategory whose objects are
those £ for which the natural adjunction morphism ¢: L7*Rn.E° — E isan
isomorphism in D(P})pat- As the other adjunction morphism n:1d — R, Lr*
is always a natural isomorphism in D(k)pat (€.9. [ThFP] Lemme 3), using the
adjunction identities Rm,.e o nRm, = 1 and eLn* o L7*n = 1 one checks easily
that L7* D (k)pat C A, and that in fact A isequivalent to D(k)pat Viathe functors
Rr, and Lr*.

But A is not a®-subcategory of D(P})pat. For if F 2 0isany nonzero object
of D(k)pat, L7*F" € Awhile O(-1) ® L7*F" ¢ A. Indeed L7*Rm,.(O(—1) ®
L7*F") ~ 0 since by the projection formula ([SGA6] Il 3.7, or [Ha] Il 5.6)
Rm.(O(-1) ® L7*F") ~ (Rm.0O(-1)) ® F' and Rw,O(—1) ~ 0 by Serre
([EGA] 11l 2.12-16).

The mechanism of this example might suggest that the classification of thick
®-subcategoriesof D (X )pat given by 3.15 below might be extended to classify all
thick subcategorieson an X with an ample family of line bundles by incorporating
some additional structure related to Pic(X). However, it seems difficult to find a
candidate structure which reduces to the usual classification when X is affine and
so al thick subcategories are ®-subcategories.

LEMMA 3.14 Let X be a quasi-compact and quasi-separated scheme, and
E,F € D(X)pat two perfect complexes on X. Suppose that Supph(E") C
Supph(F"). Then E" isinthe smallest thick triangul ated ®-subcategory of D (X ) part
containing F".

Proof. (c.f. [Ho] proof of Thm. 7, [N€] 1.2) Denote by A this smallest thick
triangulated ®-subcategory containing F".

For amorphisma: G* — Ox in D(X)pat, denote by C(a) the cone of a. Then
by definition and the minor abuse of considering Ox ® ( )( ), one has exact
trianglesforn > 1

a RMa

G Ox ®n G Ox

(3.14.1) C(a) C(®"a)
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1®(®"a)

o

G e Q"G
G ® C(®"a)
As ®"*t1q is identified to the composition a o (G° ® (®"a)), the octahedral

axiom ([Ve] | Sect. no.1-1 TR4, or [Ha] | Sect. TR4) gives from these a further
exacttriangleforal n > 1

G ® C(®"a)

(3.14.2) N
. . \

\
C(a)

Using the exact triangle resulting from tensoring this onewith E-, by induction
onn oneseesthat if E* ® C'(a) isin thethick triangulated ®-subcategory A, then
ViISE ® C(®"a) foraln > 1.

As F" is perfect, there is an isomorphism (3.8.1) RHom(F",Ox) ® F' =
RHom(F",F"), so RHom(F", F") is an object of the ®-subcategory A. Let
f:Ox — RHom(F", F") be the morphism corresponding to 1. F* — F", and
let a: G — Ox be the "homotopy fibre’ of f, the edge opposite the vertex
RHom(F", F") in the exact triangle having f as an edge. Then C(a) ~ RHom
(F",F") isin the ®-subcategory A, so £ ® C(a) € A and as above, for all
n>1E ® C(®"a) € A.

| claimthereexistsann > 1suchthat E°®(®"a) = 0in D (X )paf. Thenconsid-
ering thelong exact Puppe sequencewhich results from applying Mor ) ( , £7)
to the exact triangle which is the tensor with E- of the second exact triangle of
(3.14.1), onewill obtainthat £ = £" ® Ox — E° ® C(®"a) isasplit monomor-
phism, i.e. that £ is adirect summand of £° ® C(®"a). As A is thick, thiswill
imply that £ isin A, proving the lemma

It remains to prove the claim. By tensor nilpotence with parameters (Thm. 3.8),
it suffices to show for al = € Supph(£°) that a« ® k(z) = 0in D(k(z)). But
if z € Supph(E") C Supph(£"), then F* ® k(x) # 0. Thus the map k(z) —
RHOMy, () (F" ® k(z), F* ® k(z)) corresponding to 1: F* ® k(z) — F" ® k(z)
is not zero, and so is a split monomorphism in D(k(z))pat @ any non null-
homotopic map from the field k(z) to a chain complex of k(xz)-vector spaces
splits. But for F" perfect one has an easy isomorphism (e.g. [SGA6] | 7.1.2)
RHOoMo, (F", F") @ k(x) = RHOMy(,) (F" @ k(z), F” ® k(x)), under which this
split monomorphismisidentified to f ® k(x). As fa = 0 since a isthe homotopy

C(®”+1a)
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fibreof f,and as f ® k(x) isasplit monomorphism, onegetsa ® k(z) =0. O

THEOREM 3.15 (Classification of thick ®-subcategories). Let X be a quasi-
compact and quasi-separated scheme. Denote by ¢ the set of thick triangulated
®-subcategories(3.9) of the derived category D (X )pat Of perfect complexes(3.1)
on X. Denote by & the set of those subspacesY C X suchthat Y = |JY, isa
union of closed subspacesY,, of X suchthat X — Y, is quasi-compact.

Then there is a bijective correspondence between ¢ and &.

Thebijectiony: & — ¢ sendsasubspaceY C X tothethick subcategory whose
objectsarethose perfect £ suchthat Supph(£°) C Y, i.e. whichareacyclicoff Y.
Theinverse bijection ¢: ¢ — & sends a triangulated subcategory A C D (X )pat
to the subspace Y = g ¢4 Supph(E").

Proof. (c.f. [Ho] Thm. 11, [Ne] 1.5). Lemma 3.3 gives that the subspace p(.A)
isin & for any subcategory A of D (X )pat, and clearly for any subspaceY” C X
(Y') isathick triangulated ®-subcategory, and so isin ¢. So the functions ¢ and
1 are defined. It is easy to seethat both ¢ and ¢ preservethe partial orderson ¢ and
on & given by inclusions of subcategories and of subspaces, and that py(Y) C Y
and Yp(A) D A. It remains to show ¢ and ) are mutually inverse, for which it
suffices to prove the reverse inclusions py)(Y) D Y forY € & and ¢p(A) C A
for A e c¢.

Toprovepy(Y) DY, sinceY € & isaunionof closedY, C X with X — Y,
guasi-compact, it sufficesto show for each such Y, there exists a perfect complex
E" suchthat Supph(£") C Y, suchan E" necessarily beingin(Y’) sinceY, C Y.
But the existence of such an E" is given by Lemma 3.4.

To show 1p(A) C A for A athick triangulated ®-subcategory, let an arbitrary
E € ¢p(A) be given. | will show E* € A. By the definition of ,y, there are
F;, in A such that Supph(E") C |J Supph(F.,). The closed subspaces Supph(E"),
Supph(F;,) being the complements of quasi-compact opens (Lemma 3.3), they
are constructible subsets of X by definition ((EGA] Oy 9.1.2, IV 1.8.1). Then by
[EGA] IV 1.9.9 there is a finite subset {Supph(F;)} of {Supph(F,,)} such that
SupphE" C Uz Supph(F;). So Supph(E") C Supph(ej; F;), andas ), F; € A,
Lemma3.14 gives £ € A. O

REMARKS3.16.1 Recall from Corollary 3.11.1that if X hasanamplelinebundie
Ox (1), then athick triangulated subcategory A of D(X)pat is a ®@-subcategory
if Ox(—1) ® A C A. This condition is satisfied for the most ‘natural’ A, e.g. if
membership in A is locally determined (3.11.1.c), and is satisfied for al thick A
when X is Spec(R) for aring R (3.11.1.8).

3.16.2. If Y isanarbitrary subspaceof aquasi-compact and quasi-separated X, one

does have a thick triangulated ®-subcategory (Y') of D(X)pat, Whose objects
are the perfect complexes acyclic off Y. But the subspace corresponding under
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3.15 to this thick ®-subcategory isnot in general Y, but rather Y’ C Y where Y’
isthe union of al Y, C Y suchthat Y, isclosed in X with quasi-compact com-
plement. For example, consider the polynomial ring in infinitely many variables
C[Ty,T>,...], set X = Spec(C[11,T2,...]) and let Y be the closed point corre-
sponding to themaximal ideal (17, 1%, . ..). Then X — Y isnot quasi-compact, and
indeed Y' = (), i.e. any perfect complex acyclic off Y isacyclic everywhere. Thus
this closed subspace Y is not ¢ of athick triangulated ®-subcategory of D (X )par -
This example is due to Neeman ([N€] 4.1).

But when X is noetherian, all subspaces are quasi-compact ([B-AC] |11 Sect. 4
no. 2 Prop. 9, [EGA] | 2.7.1), and the subspacesY C X in & arejust those Y
which are unions of closed subspacesof X, theY ‘closed under specialization’.

HISTORY 3.17 Hopkinstold methat he proved versionsof the nilpotence theorems
3.6 and 3.8, and of the classification Theorem 3.15in the case X = Spec(R) for R
anoetherian ring, but that while writing them up in hisexpository article on similar
results in stable homotopy, he was inspired with a ‘more obvious proof’ for 3.6,
which yielded statements for R any commutative ring ((Ho] Thm. 10, Thm. 11).
Asusual, ‘obvious means wrong. Neeman pointed out the error ([Ne], after 1.4),
and gave aproof of 3.6 for X = Spec(R) of anoetherianring R ([Ne] 1.1). In fact
3.6.6-3.6.7 is essentially Neeman’s proof, which Hopkins says is essentialy the
same as his first unpublished proof. Neeman asks ([N€] 1.6) if tensor nilpotence
holds on Spec(R) when R is not noetherian; Theorem 3.6 shows that it does (c.f.
3.6.2.2vs. [N¢] 1.1).

Hopkins used his version of tensor nilpotence to deduce a classification of
the thick triangulated subcategories of D(R)paf; Theorem 11 of [Ho] states that
each thick triangulated subcategory of D (R)pat isthe thick subcategory of perfect
complexes acyclic off some subspace Y C Spec(R) closed under specialization.
Hopkins says he had a valid proof of this for R noetherian, and in fact the literal
statement of ([Ho] Thm. 11) is true for al R by Theorem 3.15 and 3.16.2 above.
But the remarks succeeding to Hopkins statement suggest he believed he had
established a bijective correspondence between the thick subcategories and the
subspaces Y closed under speciaization. This is Neeman's interpretation of the
statement asgivenin ([Ne] Sect. 0), and proved by Neeman for R noetherian ([Ne]
1.5). Neeman also pointed out that this bijective correspondence fails for certain
non-noetherian R ([Ne] 4.1). My Theorem 3.15, boosted by 3.11.1.a, gives the
correct bijective correspondence for arbitrary commutative rings R.

5. Classification of all strictly full ®-subcategories of D(X)

THEOREM 4.1 Let X be a quasi-compact and quasi-separated scheme. Recall
the definitions of 1.2, 3.1, and 3.9. Then:

Thereis a bijective correspondence between the set of strictly full triangulated
®-subcategories A of D(X)paf, and the set of data (Y, H), whereY isa subspace
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of X whichisa union of closed subspacesY,, of X with X — Y, quasi-compact,
and H C Ko(X onY) isa Koy(X)-submodule of the Grothendieck group of the
triangulated category of perfect complexeson X acyclic off Y.

To (Y, H) corresponds the triangulated subcategory A C D(X)pat Whose
objects are those perfect complexes E* acyclic off Y and such that the class [E"]
in Ko(X onY) liesin H.

Proof. Thetheorem resultseasily on combining 2.1 and 3.15. For the strictly full
triangulated subcategory A is dense in the smallest thick triangulated subcategory
A containing it by 1.5. As A is a ®-subcategory of D(X )part, A isaso a ®@-sub-
category (3.10.b). Then by 3.15, A corresponds to some subspace Y of the type
stated. By 2.1, the strictly full dense triangulated subcategories of A correspond
bijectively to subgroupsof Ko(A) Ko(X onY’). Asthering structureon Ko(X) =
Ko(D(X )pat) and its action on Ko(X onY’) are induced by the derived tensor
product ®, one checks easily that the strictly full dense triangulated ®-subcate-
gories.A of A correspondto thosesubgroups H C Ko(X onY’) whichare Ko(X)-
submodules. O
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