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We provide a fairly self-contained account of the localisation and cofinality theorems
for the algebraic K-theory of stable ∞-categories. It is based on a general formula
for the evaluation of an additive functor on a Verdier quotient closely following work
of Waldhausen. We also include a new proof of the additivity theorem of K-theory,
strongly inspired by Ranicki’s algebraic Thom construction, a short proof of the
universality theorem of Blumberg, Gepner and Tabuada, and a second proof of the
cofinality theorem which is based on the universal property of K-theory.
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1. Introduction

Algebraic K-theory is one of the most prominent tools for building bridges between
differential topology and number theory, ever since Quillen defined it for rings R.
One of the simplest useful features that is immediate from his many descriptions
is that K-spaces of rings in fact only depend on the categories of finitely gener-
ated projective modules and, more drastically, they are well-known to only depend
on the perfect derived ∞-categories. This perspective was strongly advertised by
Thomasson in his work on Zariski descent and makes it natural to consider alge-
braic K-theory as a functor on the ∞-category of stable ∞-categories. That set-up
also allows one to express most other important examples in a simple fashion:
For example, the algebraic K-theory of scheme X and Waldhausen’s A-theory of
spaces/animae B are recovered by considering the categories of perfect complexes
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2 F. Hebestreit, A. Lachmann and W. Steimle

of quasi-coherent sheaves on X and of compact spectra over B. Among the many
existing categorical set-ups for K-theory, it furthermore has the advantage of not
relying on extra structure on the categories under consideration.

While most of the fundamental theorems of K-theory have been transported into
this setting (Quillen’s dévissage being the notable exception), there is to the best
of our knowledge no account that stays within the language of stable ∞-categories
avoiding recourse to exact or Waldhausen categories. The first goal of the present
note is to give such an account in particular of the localisation theorem, i.e. the fact
that the K-space functor K : Catst∞ → An takes Verdier sequences to fibre sequences.
Formally, such a result first appeared in the work of Blumberg, Gepner and Tabuada
on the universal property of K, i.e. that it is the initial functor with this property
that furthermore takes values in E∞-groups and is equipped with a transformation
from the core functor Cr: Catst∞ → An. We give a somewhat minimalistic treatment
of this result as well, in particular avoiding all mention of non-commutative motives.
We also do not assume the input categories idempotent complete, which allows us
to provide an account of the cofinality theorem.

All of these results rest on a version of Waldhausen’s additivity theorem which
identifies

K(Ar(C)) � K(C)2

via the source and target functors s, t : Ar(C)→ C; here Ar(C) = Fun([1],C) is the
arrow category of C. We start our tour by providing a new direct proof of this fact
that is heavily inspired by work of the first and third authors on hermitian K-theory
and specifically Ranicki’s algebraic Thom construction.

On account of the occasion, shall take the remainder of this introduction to
explain the connection. To this end, we recall that in his quest to give an algebraic
description of the (topological) surgery sequence, Ranicki introduced quadratic and
symmetric Poincaré chain complexes (building on earlier work of Mishchenko):
These consist of a perfect chain complex C and a

{
quadratic

symmetric bilinear form q on
C, i.e. an element q of{

Ω∞+dϘq(C) = HomDp(R⊗LR)(C ⊗L C,R[−d])hC2

Ω∞+dϘs(C) = HomDp(R⊗LR)(C ⊗L C,R[−d])hC2
,

such that the associated polarisation q� : C[d]→ R HomR(C,R) is an equivalence.
Here d is said to be the dimension of (C, q). Especially for d = 0, Poincaré forms can
be thought of as derived generalisations of

{
quadratic
symmetric unimodular forms. In partic-

ular, Poincaré complexes permit a notion of Lagrangians, namely maps f : L→ C
together with a null-homotopy η : f∗q ∼ 0, such that the induced sequence

L
f−−→ C

f∗◦q�−−−→ R HomR(L,R[−d])

is a fibre sequence and η provides the null-homotopy of the composite. As the
starting point for his theory of algebraic surgery, Ranicki then proves the remarkable
fact that the anima of Poincaré objects of dimension d equipped with a Lagrangian
is equivalent to the anima

{
Fm(Dp(R),(Ϙq)[−d−1])

Fm(Dp(R),(Ϙs)[−d−1])
of chain complexes equipped with a
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The localisation theorem for the K-theory of stable ∞-categories 3{
quadratic
symmetric form of dimension d+ 1. On underlying objects, the process takes such

a d-dimensional Poincaré object (C, q) with Lagrangian L to the fibre of L→ C,
and the point is that both L and C can be reconstructed from the induced form on
the fibre.

Now Ranicki interpreted Lagrangians in the sense above as an algebraic incar-
nation of null-bordisms, owing to the fact that for M an oriented, compact d-
dimensional manifold, C∗(M) carries a canonical d-dimensional symmetric Poincaré
structure, and if ∂W = M then C∗(W )→ C∗(M) is a Lagrangian. Taking one’s
cue from Lefschetz duality, one arrives at a notion of algebraic cobordism between
two Poincaré objects such that the associated cobordism group is precisely Ran-
icki’s (homotopy)

{
quadratic
symmetric Witt- (or L-) group

{
Lq

d(R)

Ls
d(R)

. In the foundations of
hermitian K-theory, one upgrades these cobordism groups to cobordism categories{

Cob(Dp(R),(Ϙq)[−d])

Cob(Dp(R),(Ϙs)[−d])
. Then as an application of Ranicki’s Thom construction, one

finds {
Cob∂(Dp(R), (Ϙq)[d]) � Span(He(Dp(R), (Ϙq)[d−1]))
Cob∂(Dp(R), (Ϙs)[d]) � Span(He(Dp(R), (Ϙs)[d−1]))

,

where He denotes the category of forms so that Fm � CrHe, and by a simple
cofinality argument (i.e. the higher categorical extension of Quillen’s theorem A){

|Cob∂(Dp(R), (Ϙq)[d])|
|Cob∂(Dp(R), (Ϙs)[d])| � |Span(Dp(R))|,

where Span(C) denotes the category of spans in C (whenever C admits pullbacks).
In the present note, we will follow Quillen and adopt an appropriate version

of span categories as the definition of algebraic K-spaces, more precisely we shall
use K(C) = Ω|Span(C)| as our definition (though in the stable context it is par-
ticularly easy to see that this agrees with an implementation in terms of Segal’s
S-construction). The additivity theorem therefore takes the form

|Span(Ar(C))| � |Span(C)|2.
Treating the left-hand side as a simplistic analogue of Cob∂(Dp(R), Ϙs) leads one
looking for a similar replacement for Span(He(C, (Ϙs)[−1])). To this end, note that
there is a canonical map

He(Dp(R), (Ϙs)[−1]) −→ TwArr(Dp(R))

(C, q) �−→ q�,

where TwArr denotes the twisted arrow category. One might therefore guess that

Span(Ar(C)) � Span(TwArr(C))

for every stable C and we will show that this is indeed true by a rather simple
argument. From here, it is then again a cofinality argument to get to the additivity
theorem.
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4 F. Hebestreit, A. Lachmann and W. Steimle

Notation

All categories are tacitly assumed to be ∞-categories. Catst∞ denotes the category
of stable categories and exact functors; Sp and An denote the categories of spectra
and of ∞-groupoids (a.k.a. spaces or animae), and

Cr: Cat∞ → An, K : Catst∞ → An, K: Catst∞ → Sp

denote the groupoid-core, the space- and the spectrum-valued K-theory functors.

2. Localisation properties of functors on Catst∞

In the present section, we briefly recall various notions of additive and localising
functors, and give a brief discussion of their relation, in particular establishing a
higher categorical version of Waldhausen’s localisation criterion. We will assume the
reader is familiar with Verdier sequences, that is sequences that are simultaneously
fibre and cofibre sequences in Catst∞, and refer to [5, Appendix A] for a thorough
discussion. Let us recall explicitly that a split Verdier sequence, i.e. a Verdier
sequence in which both the inclusion and the projection admit both adjoints, is
the same thing as a stable recollement or a semi-orthogonal decomposition into
stable subcategories, see [5, § A.2].

For C stable, we let Seq(C) denote the category of bifibre sequences in C, i.e. the
full subcategory of Fun([1]× [1],C) consisting of cartesian squares with lower left
corner 0. For example via

it is equivalent to Ar(C) = Fun([1],C), and we shall frequently make this identifica-
tion implicitly.

We very briefly recall some fundamental terminology concerning Verdier
sequences: A square

of stable categories and exact functors is a Verdier square if it is cartesian and both
vertical maps are Verdier projections (i.e. localisations). It is called left or right
split if both vertical maps are left or right split Verdier projections, respectively
(i.e. right or left Bousfield localisations, note the order reversal). Finally, it is called
a Karoubi square if it becomes cartesian in the localisation of Catst∞ at the Karoubi-
equivalences (i.e. dense inclusions), and its vertical maps are Karoubi projections,
i.e. Verdier projections onto dense subcategories of D and D′, respectively.

Definition 2.1. Let E be a category with finite limits. Then we call a functor
F : Catst∞ → E with F (0) � ∗
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The localisation theorem for the K-theory of stable ∞-categories 5

(i) extension splitting if the combined fibre–cofibre map (fib, cof) : Seq(C)→ C2

induces an equivalence

F (Seq(C)) −→ F (C)2

for every C ∈ Catst∞,

(ii) additive if F takes every split Verdier square to a cartesian square in E,

(iii) Verdier-localising if F takes every Verdier square to a cartesian square in E,
and finally

(iv) Karoubi-localising if F takes every Karoubi square to a cartesian square in E.

From the discussion above, it is hopefully obvious that the second, third and
fourth conditions are successively stronger. We also record:

Observation 2.2. All four types of functors above preserve pairwise products and
moreover any group-like additive functor splits extensions.

Since Catst∞ is semi-additive it follows that any product preserving functor
F : Catst∞ → E uniquely lifts to MonE∞(E), and we call F group-like if it happens to
take values in GrpE∞(E). The groupoid-core functor Cr: Catst∞ → An is an example
of a non-group-like Verdier-localising functor, and in particular shows that general
additive functors do not split extensions.

Proof. For the preservation of products for additive functors, simply note that

is a split Verdier square. To see that extension splitting functors preserve products,
note that the map from their definition factors as

F (Seq(C)) −→ F (C2) −→ F (C)2.

The composite being an equivalence implies that F (Seq(C)) −→ F(C2) admits a
retraction, and it also admits a section induced by the functor C2 → Seq(C) taking
(x, y) to the split fibre sequence x→ x⊕ y → y. Thus, the first map in the above
composition is an equivalence, and so is the second. But generally, the map F (C⊕
D)→ F (C)× F (D) is a retract of F ((C⊕D)⊕ (C⊕D))→ F (C⊕D)× F (C⊕D),
which we have just shown is an equivalence.

The second claim follows from

being a split Verdier square together with the splitting lemma (in the category of
E∞-groups in E); the splitting lemma itself is a direct consequence for example of
[5, Lemma 1.5.12]. �
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6 F. Hebestreit, A. Lachmann and W. Steimle

We shall now discuss the relation between the four notions above more closely.

Additive vs extension-splitting functors

We start with an observation from [2].

Definition 2.3. Let KKst denote the ordinary category with objects stable cate-
gories and HomKKst(C,D) = K0(Funex(C,D)) and composition induced by functor
composition.

Recall that K0(C) is defined as the quotient of the monoid π0(CrC) (under direct
sum) by the congruence relation generated by x+ z ∼ y for every bifibre sequence
x→ y → z in C.

The natural transformation

Cr =⇒ π0Cr =⇒ K0

gives a functor Catst∞ → KKst and we call an exact functor C→ D a universal
K-equivalence if it maps to an isomorphism in KKst.

For example, if

is a left split Verdier sequence where g and q denote the left adjoints of f and p,
respectively, then the functor

(g, p) : D→ C⊕ E

is a universal K-equivalence: The inverse functor is f + q : C⊕ E→ D, with the
composition C⊕ E→ C⊕ E the identity already in Catst∞, and the other composite
contained in a fibre sequence

qp =⇒ idD =⇒ fg,

see the discussion preceeding [5, Lemma A.2.11], so

[(f + q) ◦ (g, p)] = [fg + qp] = [idD]

in K0 Funex(D,D). The analogous claim for right split Verdier sequences holds as
well.

Proposition 2.4. For a functor F : Catst∞ → E with F (0) � ∗ the following are
equivalent:

(i) F inverts universal K-equivalences and preserves pairwise products,

(ii) F is extension splitting, and

(iii) F is additive and group-like.

The proof builds on the following classical observation of Waldhausen. We denote
the functors extracting the first, second and third entry of a fibre sequence by
fib,m, cof : Seq(C)→ C.
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The localisation theorem for the K-theory of stable ∞-categories 7

Lemma 2.5. If F : Catst∞ → E is extension splitting then there is a canonical
equivalence between m∗ and

fib∗ + cof∗ : F (Seq(C)) −→ F (C).

In particular, any extension splitting functor is group-like with the inversion map of
F (C) induced by the shift functor (−)[1] : C→ C. Furthermore, a product preserving
functor F : Catst∞ → E with F (0) � 0 is extension splitting if and only if F takes

(s, t) : Ar(C) −→ C2

to an equivalence for every C ∈ Catst∞.

Proof. Simply note that the two functors

id : Seq(C) −→ Seq(C) and (x→ y → z) �−→ (x→ x⊕ z → z)

have equivalent evaluations at the first and third spots. Consequently, the latter
one induces the identity on F (Seq(C)) by assumption. But post-composing with
the evaluation at the middle term gives fib∗ + cof∗ (since F preserves products
by 2.2). The final item of the first claim follows from the natural bifibre sequence
x→ 0→ x[1].

For the second part, consider the equivalence

Seq(C) −→ Ar(C)

(x→ y → z) �−→ (x ∂−→ x[1])

which tells us that (cof,fib[1])∗ : F Seq(C)→ F (C2) � F (C)2 is an equivalence. Now
pre-compose with the shifting equivalence in the second factor. �

Proof of proposition 2.4. The implication (i) ⇒ (ii) is immediate from the exam-
ple preceding the statement. Conversely, being extension splitting implies that the
functor

hF : hCatst∞ → hE

factors over KKst (which immediately implies (i)): We have to check that for a
bifibre sequence f → g → h of exact functors C→ D, say, we have [f∗] + [h∗] = [g∗]
in π0 HomE(F (C), F (D)). But f, g and h define a map C→ Seq(D) whence the
claim follows from the previous lemma.

That (iii) implies (ii) is part of 2.2, and for the final implication, the previous
lemma takes care of F being group-like, while the example preceding the statement
implies additivity. �

Remark 2.6. The analogous statement in the situation of Poincaré categories from
[4–6], instead of merely stable ones, is not true. The analogue of an extension
splitting functor is a functor F : Catp∞ → E that equates metabolic and hyperbolic
Poincaré categories in the sense that the canonical upgrade Met(C, Ϙ)→ Hyp(C) of
the functor (s, cof) : Ar(C)→ C2 to a Poincaré functor induces an equivalence for
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8 F. Hebestreit, A. Lachmann and W. Steimle

every Poincaré category (C, Ϙ). It is not difficult to see that such a functor inverts
universal GW-equivalences (defined using the Poincaré refinement of Funex(C,D)
from [4, § 6.2]).

By an argument of Schlichting, a product preserving functor with this property
satisfies the isotropy decomposition principle of [5, § 3.2] (i.e. [16, Proposition 6.7
(2)] suffices as input to run the argument from [5]), but it need not be additive in
the sense of [5, § 1.5] even if E is the category of spectra; a counterexample is the
composition H GW0 : Catp∞ → Ab→ Sp. By contrast, 2.4 or a direct check implies
that H K0 : Catst∞ → Sp is additive (as are all HKi).

The reason for this difference is that the adjoints in a split Poincaré–Verdier
sequence are not themselves Poincaré functors.

Additive vs Verdier-localising functors

The relation between additive and Verdier-localising functors is encapsulated by
the following result, whose essence appears in Waldhausen’s work as the fibration
theorem [19, § 1.6]. For a stable subcategory A ⊆ B let FunA(I,B) denote the full
subcategory of Fun(I,B), spanned by those diagrams which take each map in I
to an equivalence modulo A (i.e. a map in B whose cofibre lies in A). It is easily
checked to be a stable subcategory of Fun(I,B).

Theorem 2.7 (Waldhausen). Given a Verdier sequence A→ B→ B/A the canon-
ical maps const : B→ FunA([n],B) induce a bifibre sequence

F (A) −→ F (B) −→ |F (FunA([−],B))|

of E∞-groups, whenever F : Catst∞ → An is group-like and additive; here
F (FunA([−],B)) is regarded as a simplicial E∞-group and the vertical bars denote
its colimit.

To see the implications of this statement, recall that sifted colimits in GrpE∞(An)
are preserved by the forgetful functor to An so the final term is simply the geo-
metric realisation of the simplicial anima F (FunA([−],B)). Furthermore, for M →
N → K (with chosen null homotopy of the composite) being a bifibre sequence in
GrpE∞(An) is equivalent to the underlying sequence of anima being a fibre sequence
(over the unit of K) and the map π0N → π0K being surjective.

Proof. Denote by dec: Fun(Δop,C)→ Fun(Δop,C) the décalage functor induced by
[0] ∗ − : Δ→ Δ. Per construction, the inclusions [n]→ [0] ∗ [n] = [1 + n] and [0]→
[0] ∗ [n] = [1 + n] induce natural transformations dec⇒ id and dec⇒ ev0. Recall
also that dec(X) is always a split-simplicial object over X0 using the latter maps
and the lowest degeneracies s0 of X (which do not feature in the simplicial structure
of dec(X)); in particular, X0 is a colimit of dec(X) by [12, Lemma 6.1.3.16].

Now consider the map d0 : FunA([1 + n],B)→ FunA([n],B). It is easily checked
to be a right split Verdier projection with kernel A, the requisite fully faithful right
adjoint given by

(b0 → · · · → bn) �−→ (b0
id−→ b0 → · · · → bn).
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https://doi.org/10.1017/prm.2023.35


The localisation theorem for the K-theory of stable ∞-categories 9

It follows that decF : FunA([−],B)→ F FunA([−],B) is equifibred, i.e. that

is cartesian for every f : [m]→ [n] in Δ: A square of E∞-groups with right vertical
map π0-surjective (in the case at hand even split surjective) is cartesian if and only
if the induced map on vertical fibres over 0 is an equivalence. But this map identifies
with the identity of F (A) by 2.4 and the analysis above. Note also that prior to
applying F , the square above is not necessarily cartesian (e.g. for f = d0), and in
particular not a (right split) Verdier square.

It now follows from the equifibrancy lemma of Segal and Rezk, see e.g. [5, Lemma
3.3.14] for a treatment in the present language, that

is cartesian, or in other words that

F (A) −→ F (B) −→ |F FunA([−],B)|

is a fibre sequence. To finally see that it is also a cofibre sequence, note that the
right-hand map is (per construction) simply the inclusion of the 0-simplices into
the realisation which induces a surjection on π0 for every simplicial anima. �

Remark 2.8. We will give another proof employing the relative Q-construction in
the final section, which passes to the Poincaré setting (though we will not pursue
that here).

Per construction, the projection FunA([n],B)→ Fun([n],B/A) takes values in
the subcategory spanned by those functors taking all maps in [n] to equivalences
in B/A. Since |[n]| � ∗ these span the essential image of the fully faithful functor
const : B/A→ Fun([n],B/A), so we obtain a map

|F (FunA([−],B))| −→ F (B/A)

for every functor F : Catst∞ → A. In particular:

Corollary 2.9. A grouplike additive functor F : Catst∞ → An is Verdier-localising
if and only if:

(i) the canonical map |F (FunA([−],B))| −→ F (B/A) constructed above is an
inclusion of path components for every Verdier sequence A→ B→ B/A, and
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10 F. Hebestreit, A. Lachmann and W. Steimle

(ii) for every Verdier square

we have

im(π0F (B)→ π0F (B/A)) = f−1im(π0F (B′)→ π0F (B′/A)).

For example, |F (FunA([−],B))| → F (B/A) is an equivalence for every Verdier
sequence if and only if F is Verdier-localising and π0F (B)→ π0F (B/A) is surjective
for all Verdier sequences (since π0FB→ π0|FunA([−],B))| is always surjective). We
also obtain:

Corollary 2.10. An additive functor F : Catst∞ → Sp is Verdier-localising if and
only if the canonical map |F (FunA([−],B))| −→ F (B/A) constructed above is an
equivalence for every Verdier sequence A→ B→ B/A.

Proof. From 2.7 it follows immediately that for additive F the cofibre of F (A)→
F (B) is given by the spectrification of (|Ω∞F (FunA([−],B))|, |Ω∞−1F (FunA([−],
B))|, . . . ). But this is also a formula for the colimit of F (FunA([−],B)), so we learn
that

F (A) −→ F (B) −→ |F (FunA([−],B))|
is a bifibre sequence. It follows immediately that F takes Verdier sequences to
fibre sequences if and only |F (FunA([−],B))| −→ F (B/A) is an equivalence for all
A→ B. But for stable targets, this suffices by the following observation. �

Lemma 2.11. If E is stable, then a functor F : Catst∞ → E with F (0) � 0 is Verdier-
localising if and only if it takes Verdier sequences to (bi)fibre sequences.

The proof is immediate from the fact that in a stable category a commutative
square is cartesian if and only if the induced map on (horizontal, say) fibres is an
equivalence.

Verdier-localising vs Karoubi-localising functors

The following is easy to check:

Observation 2.12. A functor F : Catst∞ → E with F (0) � 0 is Karoubi-localising
if and only if it is Verdier-localising and inverts Karoubi equivalences.

It is therefore tempting to construct a Karoubi-localising functor from a Verdier-
localising one by forming

F ◦ (−)� : Catst∞ → E

(the universal approximation of F from the right by a functor inverting Karoubi
equivalences). If F is additive then this functor is obviously additive again, but if
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The localisation theorem for the K-theory of stable ∞-categories 11

F is Verdier-localising F ◦ (−)� need not be so; the standard counterexample being
K: Catst∞ → Sp, the connective K-spectrum.

Lemma 2.13. If F : Catst∞ → E is Verdier-localising, then F ◦ (−)� : Catst∞ → E is
Karoubi-localising if F takes pullback squares in Catst∞, whose vertical legs are dense
inclusions, to pullbacks in E.

Proof. Given the previous observation, it suffices to check that F ◦ (−)� is again
Verdier-localising. Given then a Verdier square

with common vertical fibre F consider the diagram

Since idempotent completion preserves limits (e.g. by the comments following 3.5)
the outer square is still a pullback. Furthermore, the lower vertical maps are dense
inclusions (e.g. since their source and target receive compatible dense inclusions
from C = A/F and D = B/F , respectively). It now follows that both squares are
in fact pullbacks (in particular, the upper one is a Verdier square): For the lower
one, it is clear that the map form A�/F to the pullback is fully faithful, and essen-
tial surjectivity follows from the essential surjectivity of B� → B�/F and it then
formally follows for the upper one.

Per assumption, F therefore takes both individual squares to pullbacks, and
consequently also the outer diagram. �

We do not know a similar criterion for the functors F ◦ (−)min, which are again
additive whenever F is, but usually lose their localisation properties.

3. A reminder on K-spaces via the Q-construction

The goal of the present section is to recall the Q-construction, its relation to span
categories and K-theory. Let TwArr(D) denote the version of the twisted arrow
category such that (s, t) : TwArr(D)→ D×Dop is the right fibration classifying
HomD : Dop ×D→ An.

Definition 3.1. For a category C with finite limits let Qn(C) be the full subcategory
of Fun(TwArr([n]),D) spanned by those diagrams which take every square of the
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form

to a cartesian square in C.

One readily checks that these categories assemble into a simplicial subcategory
of Fun(TwArr([−]),D), and in total we obtain a functor

Q: Catlex∞ → Fun(Δop,Catlex∞ ),

which we will refer to as the Q-construction.

Proposition 3.2 (Barwick). For every category C with finite limits, the simplicial
category Q(C) is a complete Segal object in Cat∞ (and thus Catlex∞ ) in the sense
that the Segal maps induce equivalences

Qn(C) −→ Q1(C)×Q0(C) · · · ×Q0(C) Q1(C)

and that

is cartesian.

Proof. This exact version is proven in [10, § 2]. �

We can therefore apply any limit preserving functor Catst∞ → An to Q(C) and
obtain a complete Segal space; recall that these are the animae which span the
image of the Rezk nerve

N: Catst∞ −→ sAn

C �−→ HomCat∞([−],C).

This functor N is fully faithful and has a left adjoint, the associated category functor,
which we will denote by

asscat : sAn −→ Catst∞.

Definition 3.3. For C a category with finite limits we define

Span(C) = asscat(Cr Q(C))

resulting in a functor Span: Catlex∞ → Cat∞.
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We shall adopt:

Definition 3.4. For C stable we define its projective class anima or algebraic
K-space as

K(C) = Ω|Span(C)|,
where the loop space is formed with base object 0 ∈ Cr(C) = Cr(Span(C)).

In particular, the functor

C −→ Q1(C)

x �−→ (0← x→ 0)

induces a map Cr(C) −→ K(C) natural in the input category C ∈ Catst∞. There
results a map

π0(CrC) −→ π0(K(C))

which exhibits the target as the quotient of the source by the congruence relation
generated by b ∼ a+ c whenever there is a fibre sequence a→ b→ c in C; this is
somewhat unpleasant to see directly, but follows for example immediately from
the identification of Q(C) with the edgewise subdivision of the S-construction of C,
compare e.g. [5, Appendix B.1]. We will later use the following elementary result
of Thomason, see [18]:

Theorem 3.5. If A→ B is a dense inclusion among stable categories (i.e. the
functor is fully faithful and every object of B is a retract of one in A), then the
induced map K0(A)→ K0(B) is injective, and sets up a bijective correspondence
between dense inclusions into B (up to equivalence over B) and subgroups of K0(B).

In particular, it follows that every stable category B admits a minimal dense
stable subcategory, namely {b ∈ B | [b] = 0 ∈ K0(B)}. We shall denote it by Bmin

and refer to it as the minimalisation of B. In particular, (−)min : Catst∞ → Catst∞ is
left adjoint to idempotent completion.

4. The additivity theorem

The goal of the present section is to present a short proof of the additivity theorem
for K-spaces. As detailed in the previous section, we adopt K(C) � Ω|Span(C)| as
the definition of these (for C stable, which is the only case we shall consider). Our
goal is therefore to prove:

Theorem 4.1. The source and target projection give an equivalence

(s, t) : |Span(ArC)| −→ |Span(C)|2

for every stable C.

From 2.4 we then immediately obtain:
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Corollary 4.2. The functor K : Catst∞ → An is additive and group-like.

Proof. Given 4.1 and 2.5 note only that K evidently preserves products, and so lifts
uniquely to MonE∞(An) (in addition to MonE1(An)) since Catst∞ is semi-additive.
Thus, the E1-structure underlying the canonical E∞-structure is also induced by
the loop multiplication and this is group-like. �

As mentioned in the introduction, the proof of 4.1 is strongly inspired by the
algebraic Thom construction of Ranicki. Namely, we will prove the following two
results which immediately imply 4.1, since cofinal maps induce equivalences on
realisations; see 4.5 for an explanation of the connection to the algebraic Thom
construction.

Proposition 4.3. For C stable, there are canonical equivalences Span(C) �
Span(Cop) and Span(Ar(C)) � Span(TwArr(C)) that fit together into a natural
commutative square

It is generally true that if a category C admits pullbacks and pushouts, then
TwAr(C) also has all pullbacks (so that Span(TwArr(C)) is indeed defined): Gen-
erally, the total space of a right fibration inherits pullbacks from the base by direct
inspection, and this can be applied to (s, t) : TwArr(C)→ C× Cop.

Proposition 4.4. If C has finite limits and colimits and a zero object, then

(s, t) : Span(TwArr(C)) −→ Span(C× Cop)

is cofinal.

Proof of proposition 4.3. We first review the (well-known) equivalence Span(C)→
Span(Cop) for stable C. It is the identity on objects, and on morphisms it is given
by first completing a span to a bicartesian square and then forgetting the initial
vertex:

(Here F10 = F00 ∪F01 F11.) To define this equivalence on higher cells, denote by
Q̂n(C) ⊂ Fun([n]× [n]op,C) the full subcategory of diagrams F such that each
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square

is bicartesian. Restriction along the inclusion TwAr[n]→ [n]× [n]op defines an
equivalence

Q̂n(C) �−→ Qn(C); (*)

(to see that this is indeed an equivalence, we note that diagrams on [n]× [n]op or
on TwAr[n] lie in Q̂n(C) or Qn(C) if and only if they are left Kan extended from the
full subcategory Jn of pairs (i, j) where i = 0 or j = n, so both categories restrict
to Fun(Jn,C) by an equivalence.)

The duality of [n]× [n]op that switches the entries induces an equivalence

Fun([n]× [n]op,C)
op−→ Fun(([n]× [n]op)op,Cop)op → Fun([n]× [n]op,Cop)op,

by pre-composition. This in turn restricts to an equivalence

Q̂n(C) �−→ Q̂n(Cop)op.

From this we obtain the desired equivalence Span(C)→ Span(Cop) by applying
(∗) and taking groupoid cores in each simplicial degree, and then passing to the
associated categories.

The equivalence Span(Ar(C))→ Span(TwAr(C)) is essentially obtained by per-
forming the above procedure in the target of the arrows; thus, on morphisms it is
given by the rule

On higher cells, it is obtained from a map of simplicial animae Q̂n(Ar(C))→
Qn(TwAr(C)) given by (restriction of) the following composite:

HomCat∞([n]× [n]op × [1],C) TwAr−−−−→HomCat∞(TwAr([n]× [n]op × [1]),TwAr(C))

−→ HomCat∞(TwAr[n],TwAr(C))

where the last map is restriction along the embedding

TwAr[n] −→ TwAr([n]× [n]op × [1])

(i→ j) �−→ ((i, j, 0)→ (j, i, 1)).

To see that this map of simplicial animae is indeed an equivalence, it suffices to
consider the cases n = 0 and n = 1 by the Segal condition: But for n = 0, it is the
identity and for n = 1 it is given by the rule explained above.
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16 F. Hebestreit, A. Lachmann and W. Steimle

The commutativity of the diagram follows directly from the definition of the
equivalences. �

Remark 4.5. To explain the connection to Ranicki’s algebraic Thom construction,
let us briefly recall the latter in the language of Poincaré categories from [4], which
we shall use freely in the rest of this remark; the relation of this framework to
Ranicki’s categorical setting from [15] is explained in [11, 3.2.6 Example].

To every Poincaré category, (C, Ϙ) is associated its metabolic category Met(C, Ϙ),
with underlying category Ar(C). Translated to this language, Ranicki showed in
[15, 1.15] that associating to an arrow its fibre induces an equivalence

Pn(Met(C, Ϙ))→ CrHe(C, Ϙ[−1]),

where Pn denotes the anima of Poincaré objects, and He the category of hermitian
objects; see [4, § 2.4] for a treatment in the present generality. The name pre-
sumably stems from the fact that for some manifold M with boundary, by Atiyah
duality the fibre of the metabolic object given by C∗(M)→ C∗(∂M) in C = Dp(Z)
is C∗(ThνM ), the chains of the Thom spectrum of the stable normal bundle of M ,
up to a shift.

Now for any stable category C, there is another Poincaré category Hyp(C) with
underlying category C× Cop. One has He(Hyp(C)) � TwArr(C) and Pn(Hyp(C)) �
Cr(C). Using the hermitian Q-construction one can then compute

Cr(Q Ar(C)) � Pn(Hyp(Q Ar(C)))

� Pn(Q Hyp Ar(C))

� Pn(Q MetHyp(C))

� Pn(Met(Q Hyp(C)))

� Cr(He(Q Hyp(C)[−1]))

� Cr(Q He Hyp(C)[−1])

� Cr(Q He Hyp(C))

� Cr(Q TwArr(C))

using various commutation rules and the equivalence Hyp(C)[−1] � Hyp(C) via
(x, y) �→ (x, y[−1]): This proves 4.3 and we found the proof given above by unwinding
the effect of these equivalences.

In [5], we used a similar analysis to conclude Pn(Q Met(C, Ϙ)) � Cr Q He(C, Ϙ),
where the left-hand side defines the cobordism category Cob∂(C, Ϙ) of Poincaré
objects with boundary in (C, Ϙ). We then used an analogue of 4.4 to deduce
|Cob∂(C, Ϙ)| � |Span(C)|, and thus |Cob(Met(C, Ϙ))| � |Cob(Hyp(C))|, the hermi-
tian analogue of 4.1.

For the proof of 4.4 we observe:

Lemma 4.6. If f : C→ D is a left exact right fibration (in particular C and D are
assumed to have finite limits) and x ∈ D, then the functor (f/x)op −→ x/Span(f)
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that is informally given by

(w, f(w)
ϕ−→ x) �−→ (w, x

ϕ←− f(w) id−→ f(w))

admits a right adjoint given by

(w, x
χ←− y ψ−→ f(w)) �−→ (ȳ, f(ȳ) � y χ−→ x)

where ȳ → w is a lift of ψ.

Proof. Unwinding definitions we have to show that

Homx/ Span(f)((w, x
ϕ←− f(w) id−→ f(w)), (v, x

χ←− y ψ−→ f(v)))

� Homx/f ((ȳ, f(ȳ) � y χ−→ x), (w, f(w)
ϕ−→ x))

naturally in (w, f(w)
ϕ−→ x). The left-hand side, call it Lϕ, unwinds to be the

pullback

where the right vertical map is

HomSpan(C)(w, v)
Span(f)−−−−−→ HomSpan(D)(f(w), f(v))

−◦(x φ←− f(w)
id−→f(w))−−−−−−−−−−−−−−−→

HomSpan(D(x, f(v)).

But per definition

HomSpan(C)(w, v) � Cr Fun(TwArr([1]),C)×Cr(C×C) {(w, v)}
� Cr(C/w)×CrC Cr(C/v)

and similarly for the lower right-hand term, allowing us to rewrite this pullback as

where the right vertical map identifies component-wise as

C/w
f−→ D/f(w)

ϕ◦−−−−→ D/x and C/v
f−→ D/f(v).

Switching the order of pullbacks, the fibre of the right-hand map is contractible
(since f is a right fibration), so this pullback rewrites as
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where ȳ → v is the lift of ψ to C. Switching the order of pullbacks back this gives

where the right-hand vertical map is

HomC(ȳ, w)
f−→ HomD(y, f(w))

φ◦−−−−→ HomD(y, x).

But this pullback also describes the right-hand term in the equivalence we have
to produce, and the whole procedure above is readily checked to be natural in
(w, φ : f(w)→ x). �

Proof of proposition 4.4. For the cofinality claim, we have to check that
|(c, d)/Span(s, t)| � ∗ for all (c, d) ∈ C× Cop. But from the lemma we find
|(c, d)/Span(s, t)| � |(s, t)/(c, d)| and the category (s, t)/(c, d) has an initial object:
One easily checks that id : 0→ 0 is initial in TwArr(C), and whenever a functor
preserves the initial objects, all its slices inherit these. �

5. The universality theorem

The goal of the present section is to give a short and self-contained proof of the
universal property of K : Catst∞ → An, as first established by Blumberg, Gepner
and Tabuada in [3]. A version of the argument for higher Waldhausen categories
was given by Barwick [1], and another proof in the original setting was given in
[5]. These sources all prove a more general statement for arbitrary additive func-
tors to An (maybe preserving filtered colimits), that gives the universal property
when specified to Cr. The following rather minimalistic argument below is adapted
from [17], which proves a similar universal property in the setting of (ordinary)
Waldhausen categories.

Theorem 5.1 (Blumberg, Gepner, Tabuada). The functor K : Catst∞ → An is the
initial group-like additive functor under Cr: Catst∞ → An.

Proof. We have to show that restriction along the natural transformation Cr⇒ K

gives an equivalence

Nat(K, F ) −→ Nat(Cr, F )

for every grouplike additive F : Catst∞ → An. For a general functor F : Catst∞ → An
set G(F ) = Ω|F Q−|, so that G(Cr) � K. The inclusion

C→ Q1(C), x �−→ (0← x→ 0)

induces a natural transformation F → G(F ) which in turn extends to a natu-
ral transformation η : id⇒ G (where ηCr : Cr⇒ K is of course the transformation
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considered above). Now consider the commutative diagram

the upper square commutes simply because G is a functor, and the other three parts
are consequences of the naturality of η. We now claim that the arrows labelled by
� are equivalences: This is an immediate consequence of the following propositions.
A diagram chase then implies that the entire diagram consists of equivalences. �

Proposition 5.2. The transformation ηF : F → GF is an equivalence for every
grouplike additive F .

Proposition 5.3. The two transformations ηGF , GηF : GF → GGF differ by an
automorphism of the target.

Proposition 5.2 is proven in detail for example in [5, Theorem 3.3.4], but in
the end the argument again goes back to Quillen and Waldhausen (a version of it
is required in the proof that the iterated Q- and S- constructions define positive
Ω-spectra). We repeat it for completeness’ sake:

Definition 5.4. For C stable we define Null(C) : Δop → Catst∞ as fib(dec(Q(C))→
Q0(C)), where the fibre is formed over 0 ∈ C = Q0(C).

Here we use the décalage functor dec from the proof of 2.7 where dec(Q(C))→
Q0(C) is induced by the natural transformation dec⇒ ev0. The natural transfor-
mation dec→ id induces a natural map

Null(C) −→ Q(C).

Remark 5.5. It is not difficult to check that Null(C) is again a complete Segal
object, and that

Cr Null(C) = N(0/Span(C)),

see the discussion in [5, § 3.3].

Proof of proposition 5.2. The simplicial object Null(C) is split (over 0) in the sense
of [12, § 6.1.3], so in particular |F Null(C)| � ∗ for every (not necessarily additive)
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F : Catst∞ → An. Further it follows that the natural map

η : F (C)→ Ω|F Q(C)|
is essentially by definition induced by applying F and realisation to the square

where the top horizontal map is induced by C→ Null(C)0, x �→ (0← x→ 0). Thus,
we need to show that the square remains cartesian after applying F and realisation.
Using the equifibrancy lemma (compare again the proof of 2.7), we can do this by
showing that the map of simplicial animae F Null(C)⇒ F Q(C) is equifibred for
every group-like additive functor F : Catst∞ → An.

It is easy to check from the Segal condition that it suffices to treat the squares

where the vertical maps are one of d0, d1 and d2. For d1 and d2, these squares are
split Verdier squares (before applying F ). For the remaining case, we first note that
d0 is a split Verdier projection in both vertical maps, so that it suffices to compare
vertical fibres over 0 (since the map π0F Q2(D)→ π0F Q1(D) is surjective since it
is split by the degeneracy s0). But on the left, this fibre identifies with D×D and
on the right with Ar(D), and the functor between them identifies with (d, d′) �→
(d′ → d⊕ d′). But this map is clearly a right inverse to (s, cof) : Ar(D)→ D2, so
an equivalence after applying F by 2.4. �

Proof of proposition 5.3. Unwinding definitions, one finds that the two maps in
question

Ω|F Q(−)| =⇒ Ω|Ω|F Q2(−)||
are induced by the maps into the different Ω- and Q-terms. In particular, the
composites

Ω|F Q(−)| =⇒ Ω|Ω|F Q Q(−)|| =⇒ Ω2|F Q2(−)|
are exchanged by flipping both the Ω and the Q-terms; here the second map is
the canonical limit–colimit interchange pulling the right-hand Ω through the outer
realisation. We now claim that this is an equivalence, finishing the proof.

To this end, note that for each k ∈ Δ the sequence

Ω|F Q Qk(C)| −→ ∗ −→ |F Q Qk(C)|
(with the appropriate homotopy) is not just a fibre, but also a cofibre sequence
of E∞-groups: This is equivalent to the assertion that π0|F Q Qk(C)| = 0 and this
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holds for any stable category D in place of Qk(C): The functor

Q0 D = D −→ Q1(D)

x �−→ (0← 0→ x)

composes to the identity with d1 : Q1(D)→ D and to 0 with d0, so the claim is a
consequence of F being reduced.

But then it follows that also

|Ω|F Q2(C)|| → ∗ → |F Q2(C)|
is a cofibre sequence of E∞-groups, so in particular a fibre sequence of underlying
animae. Looping the resulting equivalence |Ω|F Q2(C)|| � Ω|F Q2(C)| once gives the
claim. �

Remark 5.6. The additional input needed for the more general versions of theorem
5.1 proved in [1, 3] (see [5, § 2.7] for the version in the precise set-up of this paper)
is that GF = Ω|F Q−| is again additive for every additive F : Catst∞ → An. With
this information, the conclusion is that generally GF is a group completion of F ,
i.e. it is initial among grouplike additive functors equipped with a transformation
from F .

While the reader will hopefully agree that the argument we gave for the additivity
of G(Cr) = K in the previous section is simpler than those given in any of the
references above, it does not extend beyond this case, essentially because it makes
use of the fact that Cr is defined on non-stable categories (namely TwAr(C)).

6. The localisation theorem

The goal of this section is to prove:

Theorem 6.1. The algebraic K-functor

K : Catst∞ → An

is Verdier-localising. The same is true for the spectrum-valued functor obtained from
K by the canonical embedding of E∞-groups into spectra.

To prove this result, we recall from corollary 2.9 that an additive and group-
like functor F : Catst∞ → An is Verdier-localising provided the following condition
holds:

(*) For any Verdier sequence A→ B→ C, the canonical map |F (FunA([−],B))| →
F (C) is an equivalence.

Proposition 6.2. Let F : Catst∞ → An be an additive, space-valued functor satis-
fying condition (∗). Then also the functor |F Q | satisfies (∗).

In particular, it follows that if |F Q | is again additive, both functors |F Q | and
Ω|F Q | are Verdier-localising as functors Catst∞ → GrpE∞(An).
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Remark 6.3. As mentioned previously, it is generally true that |F Q | is additive
whenever F : Catst∞ → An is, but we do not prove that in this note (see [5, § 2.7]).

For the proof of 6.2, we use the following result about stable ∞-categories:

Lemma 6.4. Verdier sequences are stable under applying (−)I = Fun(I,−), for any
finite poset I.

Proof. Since the cotensor (−)I has a left adjoint, given by the tensor (−)I, we
deduce that (−)I preserves limits (for an arbitrary category I). On the other hand,
for a finite poset I, the functor (−)I also has a right adjoint equally given by (−)I,
see [4, Definition 6.5.1 and Lemma 6.5.6], so (−)I also preserves colimits. �

Remark 6.5. Alternative to using the tensoring construction from [4], one may
prove the lemma more directly using the formula for mapping spaces in Verdier
quotients (we will recall it in 6.9) and that in functor categories from [9], namely

Nat(F,G) � lim
f : x→y∈TwArr(J)

HomC(F (x), G(y)).

This argument goes as follows: For I a finite poset, TwArr(I) is a finite category,
so limits over it commute with filtered colimits in An. It then follows easily from
6.9 that the canonical functor

DI/CI → (D/C)I

is fully faithful whenever C ⊆ D is a full stable subcategory. As that formula also
implies that any arrow in a Verdier quotient can be lifted with given source, one
can inductively show essential surjectivity: Call the length of the longest chain in
I starting at some i ∈ I the height h(i). Given a functor F : I→ D/C and a lift
Gk : Ih�k → D to the sub-poset consisting of the elements of height at most k, we
can extend G to an element j of height k + 1 by lifting colimi<j F (i)→ F (j) with
source colimi<j G(i). Since Id�k+1 is obtained from Id�k by glueing on cones over
subsets of the form {i ∈ I | i < j}, any choices of lifts for all j ∈ I of height k + 1
combine into a functor Gk+1 as desired.

Proof of proposition 6.2. It suffices to show that the relevant map is an equivalence
in each simplicial degree of the Q-construction, i.e. that the canonical map

|F (FunQk A([−],Qk B))| → |F (Qk C)|
of spaces is an equivalence. By the lemma,

Qk A→ Qk B→ Qk C

is also a Verdier projection, in view of the equivalence

Qk C � Fun(Jk,C),

where Jk ⊂ TwAr[k] is the sub-poset
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Thus, we are reduced to the case k = 0 which holds by assumption. �

To prove the first part of 6.1, we are left to show that the groupoid core functor
Cr: Catst∞ → An satisfies condition (∗). Clearly,

Cr FunA([−],B) = Cr Fun([−],BA) = MapCat∞([−],BA) = N(BA)

where BA is the category of equivalences modulo A in B, and N is the Rezk nerve.
Now the canonical map |N(BA)| → |BA| is an equivalence, so the claim follows
from:

Proposition 6.6. Let A ⊆ B be stable subcategory and BA ⊆ B the category of
equivalences modulo A. Then

|BA| → Cr(B/A)

is faithful and even an equivalence if A ⊆ B is a Verdier inclusion (i.e. closed under
retracts).

Remark 6.7. Note in particular, that the proposition implies that for dense C ⊆ D

the anima |DC| is discrete and in this case

π0|DC| ∼= π0Cr(D)/π0Cr(C) ∼= K0(D)/K0(C),

the former by inspection, the latter by Thomason’s theorem 3.5. This observation
will yield the cofinality theorem in the next section.

Proposition 6.6 is a special case (namely, S = BA) of the following general
computation of cores in (nice enough) localisations:

Proposition 6.8. Let S ⊂ B be a subcategory of an∞-category B. Assume that the
morphisms of S are closed under 2-out-of-3 and pushouts in B. Then, the canonical
functor

|S| = S[S−1]→ B[S−1]

is faithful. Furthermore, the following are equivalent:

(i) |S| ⊆ CrB[S−1] is fully faithful.

(ii) The morphisms of S satisfy 2-out-of-6 in B.

(iii) A morphism of B lies in S if and only if its source and target do, and it becomes
invertible in B[S−1].

Here closure under pushouts means that the pushouts in B of all morphisms in
S exist and lie in S again. The proof is based on the following formula for mapping
spaces in localisations admitting a calculus of fraction, which was established by
Nuiten [14]. A textbook account is in [8, § 7.2].
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Theorem 6.9. Let S ⊂ B be a subcategory of an ∞-category B. Assume that the
morphisms of S contain the equivalences in C and are closed under pushout in B.
Then, the canonical map

colim
(y→y′)∈S(y)

HomB(x, y′)→ HomB[S−1](x, y)

is an equivalence, where S(y) is the full subcategory of y/B spanned by the maps in
S.

The special case where B is stable and S = BA (so that B[S−1] = B/A) was
also treated by Nikolaus and Scholze in [13, Theorem I.3.3] and enters the basic
analysis of Verdier quotients. We include a short proof of the general statement for
completeness’ sake.

Proof. Denote by ty : S(y)→ B the functor taking targets. The proof has three
steps, the first two of which in fact work for an arbitrary S containing the identities
of C.

Step 1 : Whenever the functor

colim
(y→y′)∈S(y)

HomB(−, y′) : Bop → An

inverts S, it agrees with HomB[S−1](−, y) : Bop → An.

Step 2 : We have

colim
(y→y′)∈S(y)

HomB(−, y′) � (ty)! const∗�|−/ty|

as functors Bop → An.

Step 3 : If S satisfies the assumptions from the statement and f : x→ x′ is in S,
then f∗ : x′/ty → x/ty admits a left adjoint.

Since adjunctions give equivalences on realisations, the theorem follows.

Proof of step 1 Denoting by p : Bop → B[S−1]op the localisation functor we compute

p!

(
colim

(y→y′)∈S(y)
HomB(−, y′)

)
� colim

(y→y′)∈S(y)
p! HomB(−, y′)

� colim
(y→y′)∈S(y)

HomB[S−1](−, y′)

� HomB[S−1](−, y)

as follows. The first equivalence holds because left Kan extension is a left adjoint and
thus preserves colimits, and the second one holds because representable functors left
Kan extend to representable functors by Yoneda’s lemma. For the last equivalence,
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observe that the functor

S(y) −→ Fun(Bop,An)

(y → y′) �−→ HomB[S−1](−, y′)

inverts all morphisms in S(y) by 2-out-of-3 for equivalences in B[S−1], and that
|S(y)| is contractible since it has idy as an initial object. But if a functor Bop →
An inverts S, then its left Kan extension along p is simply the induced functor
B[S−1]op → An by inspection of universal properties.

Proof of step 2 The right-hand equivalence is a direct consequence of the pointwise
formula for Kan extensions:

((ty)! const∗)(x) � colim
x/ty

const∗�|x/ty|

For the left-hand one, we use

colim
f∈S(y)

HomS(y)(g, f) � |g/S(y)| � ∗

to compute

(ty)! const∗ � (ty)!

(
colim
f∈S(y)

HomS(y)(−, f)
)
� colim
f∈S(y)

(ty)! HomS(y)(−, f)

� colim
(y→y′)∈S(y)

HomB(−, y′).

Proof of step 3 The left adjoint is easily checked to be given by taking an object
x→ z ← y (with left pointing arrow in S) to x′ → p← y, where

is a pushout; this pushout exists by assumption since f : x→ x′ is in S and similarly
the composite y → z → p is in S since S is closed under pushouts and composition.
We leave it to the reader to check the adjunction property. �

Remark 6.10. Note in passing that the equivalence

HomB[S−1](x, y) � |x/ty|

arising from the proof above describes the left-hand side as a certain space of
zig-zags

x→ z ← y

with the left pointing arrow in S, as a calculus of fractions is supposed to do.
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Proof of proposition 6.8. Applying theorem 6.9 to S ⊂ B and S ⊂ S (for the latter,
noting that pushouts in S are computed in the ambient category B), we see that

HomS[S−1](x, y)→ HomB[S−1](x, y)

is computed by the formula

colim
(y→y′)∈y/S

HomS(x, y′)→ colim
(y→y′)∈y/S

HomB(x, y′).

Since S ⊂ B is a subcategory, this is a directed colimit of full inclusions of subspaces,
and therefore a full inclusion itself.

This shows the first part. For the second part, we first note that all three
conditions are conditions on the respective homotopy categories, and that the
homotopy categories of the localisations admit a (classical) calculus of fractions
as a consequence of theorem 6.9 (cf. [8, Corollary 7.2.12]).

We first show the implication (i)⇒(iii): If f has source and target in S and
becomes invertible in B[S−1], then under (i) it is represented by a zig-zag in Ho(S)
so that, by calculus of fractions and 2-out-of-3, f belongs itself to S. The implication
(iii)⇒(ii) is trivial, since equivalences satisfy 2-out-of-6. Finally, assume (ii) holds,
and let f be an invertible morphism in B[S−1] between objects of S; we need to
show that it is represented by a zig-zag in S.

For this, we may clearly assume that f is a morphism in B. Applying calculus of
fractions again, we see that a morphism f of B is split mono in the localisation if
and only if, after post-composition with a morphism g of B, it lies in S. If f is even
an equivalence in the localisation, then so is g, and applying the same argument to
g, we find another morphism h such that h ◦ g ∈ S; then f ∈ S by 2-out-of-6. �

Proof of theorem 6.1. The groupoid-core functor satisfies (∗) by 6.6 and the dis-
cussion preceding it. From 6.2 we conclude that the functor |Cr Q | also does,
so by corollary 2.9, |Cr Q | : Catst∞ → An is Verdier-localising and therefore also
K = Ω|Cr Q |. For the second claim, we recall that a fibre sequence of E∞-groups
gives rise to a fibre sequence of spectra if (and only if) it is surjective on
π0, but any Verdier projection induces an epimorphism on K0 by the formula
for K0 (or by noting that π0|Cr Q(C)| = 0 for any C and using that |Cr Q | is
Verdier-localising). �

7. The cofinality theorem

The first goal of this section is to formulate and prove the cofinality theorem for alge-
braic K-theory, and the second, to derive that K gives rise to a Karoubi-localising
functor.

The cofinality theorem follows rather directly from the methods developed for the
proof of the fibration theorem. After explaining this, we give a second, independent
proof of the cofinality theorem which only uses the universal property of K-theory
and which is based on the fact that the quotient E∞-monoid Cr(A�)/Cr(A) is
group-like and discrete.

We start by stating the cofinality theorem.
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Theorem 7.1. If A→ B is a dense inclusion of stable categories, then

Ki(A) −→ Ki(B)

is an isomorphism for i > 0 and there is a short exact sequence

0→ K0(A)→ K0(B)→ π0Cr(B)/π0Cr(A)→ 0.

The statement at the level of K0 is of course part of Thomason’s theorem 3.5,
and we will not give an independent argument for it. One concludes from theorem
7.1 rather easily that the functor K : Catst∞ → An satisfies the assumptions of 2.13
(see e.g. corollary 7.8 for a generalisation), so we obtain:

Corollary 7.2. The functor K ◦(−)� : Catst∞ → An is Karoubi-localising.

By contrast, the functor K ◦(−)min is not Verdier-localising: The Verdier pro-
jection Dp(Z)→ Dp(Q) with kernel the torsion complexes, does not yield an exact
sequence on K-groups after minimalisation, since the map K1(Dp(Z)→ K1(Dp(Q))
is not surjective.

Corollary 7.2 gains much of its traction from the following:

Theorem 7.3. The functor

Ω∞ : Fun(Catst∞,Sp) −→ Fun(Catst∞,An)

induces an equivalence between the full subcategories of Karoubi-localising functors
on both sides.

Versions of this result have long been known, again going back to the work of
Blumberg, Gepner and Tabuada. The precise version above will appear as part of
[7], and we shall not discuss its proof any further in this note. It implies existence
of a unique Karoubi-localising functor K : Catst∞ → Sp, non-connective algebraic
K-theory, with Ω∞K(C) � K(C�) for stable categories C. It is this functor which is
mostly used in the modern study of algebraic K-groups and spectra, since it (or
more precisely the restriction X �→ K(Dp(X)), Dp(X) being the perfect derived
category of any scheme X) satisfies Zariski descent for nice enough schemes (as
does any Karoubi-localising functor), while K: Catst∞ → Sp does not.

We now turn to the proof of 7.1.

First proof. The first proof we give is based on the construction K(C) � Ω|Cr Q(C)|
and the analysis made for the localisation theorem. From 2.7 applied to |Cr Q−|,
we obtain a fibre sequence

|Cr Q A| −→ |Cr QB| −→ ||Cr Q FunA([−],B)||
and by inspection

Cr Q FunA([−],B) � Cr FunQ A([−],Q B)

as bisimplicial animae. As in § 6, we can identify

|Cr FunQn A([−],Qn B)| � |N Qn(B)Qn(A)| � |Qn(B)Qn(A)|.
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But if A→ B is dense, so is Qn(A)→ Qn(B). Thus, Qn(B)/Qn(A) � 0. As
explained in 6.7, this gives that |Qn(B)Qn(A)| is discrete with components
K0(Qn(B))/K0(Qn(A)). By direct inspection, one finally finds that K0(Q(C)) is
the edgewise subdivision of Bar(K0(C)), so that in total

||Cr Q FunA([−],B)|| � |Bar(K0(B)/K0(A))|

is an Eilenberg–Mac Lane space in degree 1. Looping the fibre sequence from the
start of this proof now gives the claim. �

The second proof of 7.1 we provide rests solely on the universal property of
K : Catst∞ → An. To emphasise this, we give it in the generality of an arbitrary
additive functor F : Catst∞ → An that admits a group completion (i.e. an initial
functor F grp under F that is group-like additive); as mentioned this is the case for
any additive F but we neither prove nor make use of this fact. The reader may
safely consider only F = Cr and F grp = K if they wish.

Definition 7.4. We call a map f : N →M of E∞-monoids (in An) cofinal if

(i) f is an inclusion of a collection of path components, and

(ii) for each x ∈ π0(M) there is x′ ∈ π0(M) such that x+ x′ ∈ π0(N). We call
such a cofinal map dense if in addition,

(iii) an element x ∈ π0(M) belongs to π0(N) already if there exists y ∈ π0(N) such
that x+ y ∈ π0(N).

The last condition is easily seen to be equivalent to the condition that the
sequence of monoids

0→ π0(N)→ π0(M)→ π0(M)/π0(N)→ 0

(which might generally fail to be exact in the middle) is indeed exact.

Lemma 7.5. If f : N →M is a cofinal map of E∞-monoids, then its cofibre M/N
(in the category of E∞-monoids) is a discrete group.

Before proving this lemma, let us derive the cofinality theorem. Recall that every
additive functor F : Catst∞ → An automatically refines to a functor with values in
E∞-monoids.

Definition 7.6. We call an additive functor F : Catst∞ → An Karoubian if

(i) every dense inclusion of stable ∞-categories A→ B induces a dense map
F (A)→ F (B) of E∞-monoids, and
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(ii) F preserves pullback squares

in Catst∞ whose (say) vertical maps are dense.

The groupoid-core functor is indeed Karoubian: The second condition holds
because Cr commutes with all limits and for the first condition, we note that the
map of E∞-monoids Cr(A)→ Cr(B) is clearly cofinal; furthermore, if b is an object
in B and a is an object of A such that b⊕ a lies in the essential image of A, then
so does b = fib(b⊕ a→ a). Thus, the following version of the Cofinality theorem is
indeed a generalisation of 7.1.

Theorem 7.7. Let F : Catst∞ → An be an additive and Karoubian functor and
F grp be a group completion of F . For every dense inclusion A→ B of stable
∞-categories, the canonical map

F (B)/F (A)→ F grp(B)/F grp(A)

of cofibre E∞-monoids is an equivalence. Hence, F grp induces isomorphisms

πnF
grp(A)

∼=−→ πnF
grp(B), n > 0,

and a short exact sequence

0→ π0F
grp(A)→ π0F

grp(B)→ π0F (B)/π0F (A)→ 0

of abelian groups, where the last term denotes the quotient in the category of discrete
commutative monoids.

Proof. The second statement follows from the first and lemma 7.5: The cofibre
sequence of E∞-groups

F grp(A)→ F grp(B)→ F (B)/F (A)

(with last term discrete) is a fibre sequence of animae, with last map π0-surjective,
and the functor

π0 : MonE∞(An)→ CMon

commutes with colimits, since it admits the discrete inclusion as a right adjoint.
Let us prove the first statement. The chain of dense inclusions

A→ B→ A� (= B�)

induces a cofibre sequence of E∞-groups

F (B)/F (A)→ F (A�)/F (A)→ F (A�)/F (B)

and similarly with F grp, so it suffices to consider the case B = A�.
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We claim that the functor F ′ : Catst∞ → MonE∞(An) given by the formula

F ′(A) := F (A�)/F (A)

(quotient of E∞-monoids) represents the quotient (F ◦ (−)�)/F in the category of
additive functors Catst∞ → MonE∞(An). To see this, it will suffice to prove that F ′

is additive. Since F ′ is group-like, we can combine 2.4 and 2.5 with the splitting
lemma to see that it suffices to prove that F ′ sends the (split) Verdier sequence
A→ Ar(A) t−→ A to a (split) fibre sequence. In view of lemma 7.5, we only need to
show that it induces a short exact sequences of abelian groups

0→ π0F
′(A)→ π0F

′(Ar(A))→ π0F
′(A)→ 0.

For this, we note that short exact sequences of monoids are in particular cofibre
sequences of monoids. Since F and F ◦ (−)� are additive, we see by commuting
quotients that the sequence in question is a cofibre sequence (of abelian monoids
or of abelian groups), and hence right exact. Also, the first map is (split) injective,
so the sequence is indeed short exact.

Similarly, (F grp)′ is additive and so represents the quotient of (F grp ◦ (−)�)/F grp

in the category of additive functors Catst∞ → GrpE∞(An): The short exact sequence

0→ πn(F grp)′(A)→ πn(F grp)′(B)→ πn(F grp)′(C)→ 0

is proven for n = 0 as above, and for n > 0 follows from the equivalence

Ω(G/H) � fib(H → G)

valid for any map of E∞-groups.
Next, we note that the canonical map F ◦ (−)� → F grp ◦ (−)� is a group com-

pletion: This follows from the fact that the endofunctor (−)� of Catst∞ admits
the minimalisation (−)min as a left adjoint (a simple consequence of Thomason’s
theorem): This adjunction induces an adjunction on Fun(Catst∞,An) so we have
equivalences

nat(F ◦ (−)�, G) � nat(F,G ◦ (−)min)�nat(F grp, G ◦ (−)min)�nat(F grp ◦ (−)�, G)

for every group-like additive functor G.
Thus, comparing universal properties, we see that the map F ′ → (F grp)′ is a

group completion of F ′: But F ′ is already group-like, so it is an equivalence. �

The careful reader may have noticed that the second condition of being Karoubian
has not been used so far, nor has density (as opposed to cofinality) for the map
induced by a dense inclusion. These extra conditions generally ensure that F grp ◦
(−)� is Karoubi-localising, as we will now show. We start by observing:

Corollary 7.8. If F : Catst∞ → An is an additive and Karoubian functor, then so
is any group completion F grp of F .
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Proof. It follows from the cofinality theorem that F grp sends dense functors to dense
maps of E∞-monoids (with the last two conditions being automatic for group-like
functors). It remains to prove that F grp preserves pullback squares

in Catst∞ whose vertical maps are dense.
By assumption, this is true for F and since π0F (A′)→ π0F (B′) is injective, we

see that also π0(F ) sends the square to a pullback square. From density we then
deduce that the map of quotient monoids

π0F (B′)/π0F (A′)→ π0F (B)/π0F (A)

has kernel zero. But by the cofinality theorem, this identifies with the corresponding
map for π0(F grp), so we deduce that π0(F grp) also sends the square to a pullback
square. Applying the cofinality theorem again, we see that F grp sends the square
to a pullback square of animae. �

From 2.13 we now immediately obtain the following generalisation of 7.2:

Corollary 7.9. Let F : Catst∞ → An be additive and Karoubian, and let F grp be a
group completion of F . If F grp is Verdier-localising, then

F grp ◦ (−)� : Catst∞ → An

is Karoubi-localising.

Let us finally give the postponed

Proof of lemma 7.5. We start by observing that π0(M/N) = π0(M)/π0(N) is a
group by the cofinality assumption. We then need to show that

Ω(M/N) � Ω(Mgrp/Ngrp) � fib(Ngrp →Mgrp)

is contractible. Since π0(Ngrp)→ π0(Mgrp) identifies with the discrete group com-
pletion of π0(N)→ π0(M), it is injective by cofinality, and we are left to show that
the map Ngrp →Mgrp induces an equivalence on the base point components. We
can prove this by showing it is a homology isomorphism because it is a map of
H-spaces.

To show that the map on base point components is injective on homology, it
suffices to prove the same forNgrp →Mgrp itself. By the group completion theorem,
this map is given by the composite

H∗(N)[π0(N)−1]→ H∗(M)[π0(N)−1]→ H∗(M)[π0(M)−1]

where the first map is injective by the first assumption of cofinality (since
localisation is exact), and the second map is an isomorphism by the second
assumption.
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To show surjectivity on the base point component, we first consider the chain of
maps in the homotopy category of spaces

M →Mgrp →Mgrp
0

mapping an E∞-monoid M into the base point component of its group completion,
where the first map is the canonical one and the second one subtracts x in the
component of x. On homology, these maps are given by base-change along the
canonical ring homomorphisms

Z[π0M ]→ Z[π0M
grp]→ Z

in view of the group completion theorem and the commutativity of M for the
left map and the decomposition Mgrp � π0M

grp ×Mgrp
0 (natural in the homo-

topy category of An) for the right map. We conclude the existence of a natural
isomorphism

H∗(M
grp
0 ) ∼= H∗(M)/π0(M)

where in the target we take the quotient of the monoid action in the category of
graded abelian groups.

Thus we need to show that the map N →M becomes surjective in homology
after modding out the π0(M)-action in the target. So let a ∈ H∗(M) where we may
assume that a is defined in a single path component Mx of M , for some x ∈ π0(M).
By the second condition of cofinality, we may assume as well that x ∈ π0(N), in
which case a lifts to H∗(N) by the first condition of cofinality. �

8. The connection to the relative Q-construction

Finally, we briefly explain a connection between our version of Waldhausen’s fibra-
tion theorem, i.e. theorem 2.7, and the relative Q-construction. In particular, this
approach generalises the statement to arbitrary exact functors instead of just
Verdier inclusions.

Definition 8.1. For f : C→ D an exact functor between stable categories, we
define the relative Q-construction Q(f) : Δop → Catst∞ by requiring

to be cartesian.
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There is a canonical map D→ Q0(f) whose components are given by

D −→ Null0(D) and D −→ Q0(C)

d �−→ (0← d→ 0) d �−→ 0.

Furthermore, the inclusion

[n] ⊂ [0] ∗ [n] −→ TwArr([0] ∗ [n])

i �−→ (0l < ir)

induces a functor

Qn(f) −→ Fun([n],D) −→ Fun([n],D/im(f))

whose image lands in the constant functors. Since it is natural for n ∈ Δ we obtain
a map

Q(f) =⇒ constD/im(f).

We shall prove the following two statements, which together imply 2.7 once more:

Proposition 8.2. For every group-like additive F : Catst∞ → An and exact f : C→
D, the sequence

F (C) −→ F (D) −→ |F (Q(f))|

is a bifibre sequence of E∞-groups.

Proposition 8.3. If i : C→ D is fully faithful and exact, then there is an
equivalence

FunC([−],D)esd � Q(i)

of simplicial categories, such that

commutes.

We shall prove the two statements above in turn.
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Proof of proposition 8.2. By the equifibrancy lemma the square

is cartesian, since the map F Null(D)→ F Q(D) is equifibred as shown in the proof
of 5.2. In other words,

|F Q(f)| −→ |F Q(C)| −→ |F Q(D)|
is a fibre sequence (the case C = 0 gave F (D) � Ω|F Q(C)| in 5.2, since Q(0→ D) �
constD by inspection). Rotating the fibre sequence above twice to the left therefore
gives us the desired fibre sequence

F (C) −→ F (D) −→ |F Q(f)|.
To see that it is also a cofibre sequence, it suffices (by the long exact sequence) to
check that π0|F Q(C)| = 0. But the functor

Q0(C) = C −→ Q1(C)

c �−→ (0← 0→ c)

induces a homotopy between the 0 and identity maps of π0|F Q(C)|, which gives
the claim. �

Proof of proposition 8.3. We shall realise both Qn(i) and FunC([n] ∗ [n]op,D) as the
following full subcategory Pn of Fun(TwArr([0] ∗ [n] ∗ [n]op ∗ [0]),D): A functor F
lies in Pn if under the identification [0] ∗ [n] ∗ [n]op ∗ [0] ∼= [1 + n] ∗ [1 + n]op,

(i) all squares in the ‘left half’ of TwArr([1 + n] ∗ [1 + n]op) go to cartesian
squares, i.e.

whenever j � m (where ε ∈ {l, r} and iε denotes the i-th element of the left
respectively right factor of [1 + n] ∗ [1 + n]op),

(ii) F vanishes on the ‘right half’ of TwArr([1 + n] ∗ [1 + n]op), i.e. we have F (il �
kr) = 0 = F (ir � kr) whenever i � k, and

(iii) F vanishes on the lower left corner of TwArr([1 + n] ∗ [1 + n]op), i.e. F (0l �
0l) = 0, and
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(iv) F takes values in C on all spots not of the form (0l � kε).

In other words, Pn consists of diagrams of the shape

where the lower left corner and the entire right half are zero, the 2n+ 2 objects on
the upper left diagonal marked by empty circles are in D, the objects marked by
filled circles are in the image of C and all squares in the left half are cartesian.

Now consider on the one hand the inclusion

α : TwArr([0] ∗ [n]) −→ TwArr([0] ∗ [n] ∗ [n]op ∗ [0])

induced by the inclusion [0] ∗ [n] ⊂ ([0] ∗ [n]) ∗ ([0] ∗ [n])op. Since its image lies fully
in the ‘left half’, the first and last two conditions guarantee that restriction along
α yields a map

α∗ : Pn → Qn(i),

which is clearly natural in n ∈ Δ.
Similarly, consider the map

β : [n] ∗ [n]op −→ TwArr([0] ∗ [n] ∗ [n]op ∗ [0])

iε �−→ (0l � iε).

The first and last conditions imply that any map in the restriction of some F ∈ Pn
goes to the pullback of some map in C, so in particular to an equivalence modulo
C, we therefore obtain a well-defined map

β∗ : Pn → FunC([n] ∗ [n]op,D),

which is again clearly natural in n ∈ Δ.
As mentioned, the claim will now follow from both these maps α∗ and β∗ being

equivalences. We start with α∗. An inverse is constructed by the following two-
step Kan extension. First, let Tn ⊆ TwArr([0] ∗ [n] ∗ [n]op ∗ [0]) denote the subposet
given as the union of TwArr([0] ∗ [n]) and the ‘right half’ of TwArr([0] ∗ [n] ∗ [n]op ∗

https://doi.org/10.1017/prm.2023.35 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2023.35


36 F. Hebestreit, A. Lachmann and W. Steimle

[0]). Then consider

Fun(TwArr([0] ∗ [n]),D) Lan−−→Fun(Tn,D) Ran−−→Fun(TwArr([0] ∗ [n] ∗ [n]op ∗ [0]),D).

As Kan extensions along fully faithful maps are fully faithful and right inverse
to restriction, it remains only to check that the composite takes Qn(i) ⊆
Fun(TwArr([0] ∗ [n]),D) onto Pn. But from the pointwise formulae, it is easy to
see that the first Kan extension is an extension by 0, and that the pullback con-
dition (i) is equivalent to being right Kan extended from Tn. This in turn implies
immediately that for F satisfying conditions (i) and (ii), condition (iv) is equiva-
lent to F |TwArr([n]) taking values in C, which finishes the claim (since the vanishing
condition in (iii) is also contained in the definition of Qn(i)).

We finally treat β∗: Again the inverse is given by successive Kan extensions.
First add a zero at (0l � 0r) to a functor defined on the image of β by left Kan
extension, and then right Kan extend to add zeros at (0l � 0l) and the ‘right
half’, and finally left Kan extend once more to the whole of TwArr([0] ∗ [n] ∗
[n]op ∗ [0]). Again this process is right inverse to restriction along β on the whole
of Fun([n] ∗ [n]op,D), and it remains to check that it takes FunC([n] ∗ [n]op,D)
onto Pn.

But again it follows trivially from the pointwise formulae that the first two Kan
extensions really are extensions by zero, precisely as required in conditions (ii)
and (iii), and that being in the image of the second left Kan extension is equiva-
lent to the squares in condition (i) being pushouts, so stability implies that these
are equivalent conditions. To finally see that the image of FunC([n] ∗ [n]op,D) also
satisfies condition (iv), note that (as just discussed) the value at (il � kε), with
i < k or i = k and ε = l, of the extension TwArr([1 + n] ∗ [1 + n]op)→ D of some
F : im(β)→ D sits in a cocartesian square

But its right most term is part of the ‘right half’ of TwArr([0] ∗ [n] ∗ [n]op ∗ [0])
(in fact it lies on the middle vertical line) and the upper left pointing map is an
equivalence module C by assumption, so F (il � kε) ∈ C. �
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