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Abstract. We study which algebraic integers A >: 1 arise as the growth rate of a
mapping class of a surface and give conditions that are necessary and perhaps
sufficient. Flow equivalence and twisted Lefschetz zeta functions are used to generate
families of A's. Examples and open problems are included.

0. Introduction
One can associate to a homeomorphism h:1.+2 of a compact surface 2 a number
A > 1 that measures the exponential rate at which elements of the fundamental group
ITI2 can grow under the action of h. From Thurston's work we know that A is an
algebraic integer with certain special properties [Tl]. These are developed in § 1
where we ask whether the set of A's is characterized by its known properties.

§ 2 develops the machinery of flow equivalence and zeta functions that we will
use to generate large families of surface homeomorphisms and to calculate their
corresponding growth rates. We give examples in §§ 5,6 to show that the numbers
A are not constrained algebraically in ways one might expect. In particular A can
have odd degree or A can have conjugates on the unit circle. Odd degree examples
were also found by Arnoux and Yoccoz [AY] using interval exchange maps. So
they passed to one-dimensional maps whereas we use three-dimensional flows.

§ 3 presents the twisted zeta function for a map of a graph. In § 4 we indicate
how blowing up points can greatly increase the size of a flow equivalence class and
we relate our methods to the problem of classifying Anosov flows. § 7 contains more
material about flow equivalence including a 'flow-free' description of it and a
generalization to other group actions.

In §§ 1,7 we raise questions concerning the behaviour of growth rates in analogous
situations involving higher dimensional spaces or abstract groups. We include in
§ 1 the first example of a finitely presented group with an endomorphism whose
growth rate is not an algebraic integer.

1. Growth rates
Before defining growth rates for surface homeomorphisms we must recall some
geometric group theory [FS].

Let G be a finitely generated group and S a finite set of generators for G. Given
geG one calls the shortest length of a factorization of g as a product of terms
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540 D. Fried

s*\seS, the word length ls(g). If a: G->G is a homomorphism then there is an
M > 1 such that:

(*) the numbers ls(otpg)/(ls(g)Mp) are bounded, over all ge G,p> 1.
For instance the maximum length of the image of a generator clearly suffices. We
define the growth rate X (a) to be the infimum of the Af's such that (*) holds (many
authors refer to log A as the growth rate).

If another finite generating set S' is used then there is a C > 0 so that ls'(s) s C,
ls(s')<C, for all s'eS',seS. One sees that the numbers /s-(g)//s(g), ge G, are
bounded away from 0 and oo. So condition (*) is independent of the choice of finite
generating set and the growth rate A depends on a alone.

Example I. Let G be free abelian on generators su...,sn. Then for S =
{su . . . , sn}, ls(g) is the 1-norm of g. If a: G-» G is a homomorphism, A(a) is the
spectral radius of a.

Example 2. Let N = Z[y, y~!] be the integral finite Laurent series in an indeterminate
y as an additive group. Let G be the semidirect product of N by an infinite cyclic
group {t'\ieZ} where t conjugates elements of N by the rule tyT1 = y'+i. Clearly
G is generated by S = {t, 1}.

One sees that ls{y') = ls(t' • 1 • t"') < 2|i| +1. On the other hand if n = 2 ay* e N,
then we can estimate ls(n) from below as follows. We pass to multiplicative notation
and write x, for y\ so txtt~

l = xi+l and all the X;'s commute. In any factorization of

one has X £>•= 0 so one can rewrite this as

n4
Clearly Z lflil — £,- |Cfl- Varying the factorizations of n, we find Y.\ai\ — h(")- Putting
these upper and lower estimates together, we have

(**) | | f i | | s / s ( f i ) < ( 2 d ( f i ) + l)||fi||,
where d(n) = sup {|j|||a,| #0} is a sort of generalized degree and ||n|| =£ |a,| is the
1-norm of n.

Let a: G-» G be an endomorphism that fixes f and preserves N,a(N)cz N. Clearly
A(o) = lim sup ls(a"(l)y/p. We see that a(y') = a(t> • 1 • r ' ) = f 'a( l ) r ' = y'a(l) so
that a acts on N by multiplication by the fixed element q = a(l) e N. Iterating a,
we see that ap(l) is just the pth power qp of q.

Note that the degrees d(qp) grow at most linearly in p. It follows from (**) that

To evaluate A (a) more explicitly, we use the following algebraic result (it could
also be proved using operator theory).

LEMMA 1. Suppose P(z) is a polynomial over C. Then

lim\\Pk\\l/k = \\P\U
where ||P||oo is the sup of the values of P on the unit circle.
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Proof of the lemma. The inequality > is trivial. For the other inequality, let / = Pk

in Cauchy's estimate

and sum over n. This gives

As d(Pk) grows linearly in k, one can take fc'th roots and pass to the limit. •

So multiplying q by a suitable power of y to get a polynomial P, we see that

A(«) = Hqjlco, where <? = a(l).

In example 1, there is an eigenvalue u of an integer matrix so that A = \fuH. Since
the characteristic polynomial of this matrix is monic with integer coefficients, u is
an algebraic integer and hence so is A.

In example 2, on the other hand, A need not be an algebraic integer. To evaluate
A = ||g||oo, note that at the maximum of \q\ on S\ q'(z)z/q(z) e R. We compute this
maximum in the case where q is quadratic, say q(z) = az2+ bz + c, a ^ 0, a, b, c e Z.
At an extremum of \q(z)\ for z = x+iy, xe[-l, 1],>>2 + X2 = 1, one finds y{ab + bc +
4acx) = 0. At y = 0 the values of q are integral, so we will take x0 = (-4ac)~\ab + be),
c T* 0, and choose a, b,c so |xo| < 1. One computes

In order that x0 be a maximum we need ac < 0. We find

A2 = (a - c)2+ b2 + (-4ac)-\ab + be)2.

So if \ab + bc\ < —4ac and 4ac\ (ab + be)2', A is not an algebraic integer in example
2. For example q(z) = z2+ z-2 has this property. It is clear from this computation,
however, that the A's of example 2 are algebraic numbers.

This raises the possibility that A (a) is transcendental for some G, a. Even with
G as in example 2, if one considers a's with a(t) = t2 then it is not clear whether
A (a) must be algebraic. On the other hand we pose:

Problem 1. Show that the growth rate A (a) for an endomorphism a of a finitely
generated free group G is an algebraic integer.

This ought to be accessible to a direct combinatorial approach. As will shortly be
seen, it holds whenever a arises as the action of a homeomorphism of a surface on
17V In particular it holds for G with <2 generators since then any automorphism
can be realized on a punctured torus [MKS].

Definition. Let 2 be a compact manifold and h:1^ a map. Let a = h%: TT,2<=> and
A = A(a). Then we write A = k(h), the irx growth rate of h.

We here use the usual convention where TTX of a disconnected manifold is the direct
sum of TTI of its components. We have also suppressed considerations of basepoint
here: for more details to justify this see [FS].
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542 D. Fried

Clearly A (ft) is a homotopy invariant. Se we may speak of the Trx growth rate
A(c) of an isotopy class of homeomorphisms.

For dim 2 = 2 and any c, Thurston showed that A (c) is an algebraic integer. There
are two arguments for this, each based on his theory of pseudo-Anosov homeomorph-
isms. We must summarize, then, this theory. We begin by denning measured foli-
ations.

Let i? be the line field on C denned by Im (z) = constant. Let k > 3 and consider
the inverse image of j? under zk/2. It is a well-defined line field for z # 0 with a
singularity at z = 0 that we call a prong singularity of order k. By blowing up such
a prong, one obtains k singular points on the boundary circle which we will also
call prong singularities. A measured foliation (3F, fi) on a compact surface 2 is a
foliation, possibly with prong singularities, equipped with a holonomy invariant
transverse measure that is positive on every transverse interval.

Suppose 3FU 3F2 are such measured foliations and that they have the same interior
singularities. Suppose that the configuration at each interior singular point p is that
obtained by pulling back the transverse foliations Im z = constant and Re z =
constant under zfc/2, fc = fc(p)2 3. At regular interior points suppose ZFU 3P2 are
transverse in the ordinary sense. At boundary curves suppose the configuration is
like that obtained by blowing up a prong singularity. We then say &u 2F2 are
transverse.

Definition. A homeomorphism ft: 2 -* 2 of a compact surface 2 is pseudo-Anosov if
there are measured foliations &u 3F2 on 2 and a A e (1, oo) so that

(1) 3FU $F2 are transverse;
(2) each SFi is preserved by ft;
(3) the transverse measures /u., scale under ft by A*1, namely

= A *fi2.

The archetypal example of such an ft is a linear toral automorphism with eigenvalues
«i, a2 off the unit circle. One chooses ^ parallel to the a, eigendirections of ft:
these foliations are transverse (in the usual sense, as they have no singularities) and
measured (indeed uniquely ergodic). One has h^fil = \a2\ix2 and h^/j. = |a,|/t2- So,
possibly relabelling our foliations, we see that ft is pseudo-Anosov.

By considering how curves on 2 grow under iteration of ft, Thurston showed that
the expansion constant A is the same as the growth rate. He also showed that a
given isotopy class c could be decomposed along a certain system of disjoint closed
curves into a disjoint sum of isotopy classes of subsurfaces, each of which is either
periodic or pseudo-Anosov. In this decomposition the growth rate of c is the largest
of the growth rates of the pieces. Since periodic pieces have growth rate A = 1, we
may as well suppose, when studying A, that ft is a pseudo-Anosov that cyclically
permutes the p components of a given surface. We have the first reduction of our
problem.

LEMMA 2. A > 1 is a growth rate of a surface homeomorphism <$ for some p > 0, Ap

is the expansion constant of a pseudo-Anosov homeomorphism ft of a connected surface.
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The backward implication is proved by taking the p'th root of h, i.e. letting p copies
of the connected surface by cyclically permuted so that h is induced on each
component at the p'th iterate.

We turn now to the first proof of integrality. There is a Markov partition for h
with an associated transition matrix A with non-negative integer entries. The
expansion constant A is an eigenvalue of A corresponding to a certain explicit
positive eigenvector denned using the transverse measures [FLP]. This shows A is
an eigenvalue of an integer matrix, hence integral.

The fact that the entries of A are non-negative gives more. Suppose for simplicity
that 2 is connected. Then h is topologically mixing and so A is mixing (i.e. some
power of A has positive entries). This implies by a result of Perron & Frobenius
that the eigenvalues a of A, a ^ A, satisfy \a\ < A.

The second proof of integrality is simpler. Let us consider the case of a pseudo-
Anosov/ on a connected X with both the stable and unstable orientations orientable
(this orientability can be arranged by passing to a suitable branched cover). Then
each transverse measure can be regarded as a closed Alexander 1-cochain <u,. Since
/*«( = ±\±l(oh we see that ±A, ±A~' are eigenvalues of/*: H\M; R)<=>. But as /*
preserves the integral cohomology lattice, this shows ±A, ±A-1 are algebraic integers.
We have almost shown:

THEOREM 1. Ifk is the growth rate of a surface homeomorphism then A is an algebraic
unit (i.e. A and A'1 are algebraic integers). Some power Ap is the expansion constant
of a pseudo-Anosov h on a connected surface and so the algebraic conjugates a of \p

satisfy

with at most one conjugate on a given boundary component of this annulus.

Remark. If A"1 is algebraically conjugate to A (it isn't always) then this follows
from the estimate |a|<A above.

The uniqueness in the lemma depends on the Lefschetz formula and symbolic
dynamics. As 2 is connected h is topologically mixing, so Bowen's argument shows
that #Fix(/i")/A"->l as n^oo (cf. the lemma in [F8]). We want to show
|Trace h*"\/\n -» 1, in order to rule out the existence of other eigenvalues of h* of
modulus A. It suffices to show that #Fix (h") and |Trace hn\ have a bounded
difference.

But L(h") = 2 ind (A", p) by the Lefschetz formula, where p varies over Fix (h")
and ind denotes the Lefschetz index. The contributions of H°, H2 to the left hand
side and of the singular periodic points to the right hand side are bounded over n.
Moreover all the nonsingular points in Fix(/i") have the same fixed point index
since 1 is connected and the foliations are orientable. •

It appears from examples such as those given in §§ 5,6 below that A satisfies no
other algebraic constraints. So we ask:

Problem 2. Suppose /3 is an algebraic unit, /? > 1, all algebraic conjugates of /3 lie
in the annulus A(P) = {\z\e[f}~1,/3]} and at most one lies on either boundary. Is
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there a power /3P, p = 1, 2 , . . . that is the expansion constant of a pseudo-Anosov
homeomorphism ?

An affirmative answer would solve the problem of which A's arise as growth rates
of surface homeomorphisms.

We summarize this section by saying that growth rates of surface homeomorphisms
frequently arise as eigenvalues of the induced maps on first homology.

Remark. If one studies the case A = 1 more closely, one can assign a polynomial
growth rate to a surface homeomorphism with subexponential growth. The poly-
nomial growth is either constant or linear, in fact. This gives examples of free group
automorphisms that cannot be represented by surface homeomorphisms [F7]. The
constraints on A in theorem 1 give other examples of this sort with A > 1.

2. Zeta functions and flow equivalence
We will develop in this section a method for producing large families of pseudo-
Anosov expansion constants. Before explaining why the method works we will give
an example (developed further in coming sections) of how it works.

Consider the polynomial in two variables

By substituting t" for rj and tb for f one obtains a family of 'polynomials'

pab(t) = l-(4+ta + ra)tb + t2b, a,bel.

Properly speaking, pab is a finite Laurent series in / as non-negative exponents may
occur. However if \a\ < b then all terms (other than 1) have positive exponent. We
will show that for any b > \a\, the largest zero of pab(t) is a pseudo-Anosov expansion
constant.

To explain this, recall that a cross-section to a flow <p on a compact 3-manifold
M is a compact surface K transverse to the flow that meets every flowline and that
relates to dM in the usual way: K is transverse to dM and 8K = K n dM. We call
(p circular if it admits cross-sections. To K there corresponds a homeomorphism
r.K^K called the monodromy or the return map.

The polynomial />(£ rj) is a zeta function attached to a certain such circular flow
(p. The cross-sections to <p (strictly speaking, the isotopy classes of cross-sections)
correspond to the pairs a, b with \a\ < b. Each return map rab is pseudo-Anosov and
preserves the stable and unstable orientations. The polynomial pab(t) is a factor of
the characteristic polynomial of the linear map induced by rab on first homology.
As we saw in § 1, the largest zero of this characteristic polynomial is the expansion
constant of rab. So we have, to some extent, explained the above example.

The further explanation involves two things. One is the equivalence relation on
surface homeomorphisms defined by rl ~ r2 if some circular cp has cross-sections
Ku K2 with return maps respectively equal to r,, r2. We say [I] rt and r2 are flow
equivalent. Many qualitative dynamical properties are preserved by flow equivalence,
but quantitative ones vary. The second idea involved is the zeta function of <p.
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It will turn out that this zeta function explains how Lefschetz numbers vary under
flow equivalence.

When studying the action ht: H,(2; Q)^> of a homeomorphism h: 2 ^ of a compact
surface on homology it is convenient to use the Lefschetz zeta function defined by

det (I-thj
I C(K t)

It can be viewed as a rational function of t or, expanding the denominator, as a
power series in t with constant term 1. In fact I is a generating function for the
sequence of Lefschetz numbers L(hn) since

This formula follows formally from the definition

L(h") = Trace K -Trace h" + Trace h"2

and the formal power series expansion for log 1-fj.t by letting /t vary over the
eigenvalues of the /i,'s [Frl-

Before developing the analogous zeta function for circular flows, we will recall
how one associates a cohomology class uK to a cross-section K, uKe H\M; Z).
We need to associate a number uK(S) to each closed loop in an additive way. The
rule is to isotope S to be transverse to K and then to count the points of intersection
with weight of +1 if the loop S passes through K in the same direction as the flow
ip, - 1 if it passes in the opposite direction. In particular uK(S)>0 if S is a closed
orbit of (p, oriented by <p in the obvious way.

We next present the zeta function of a circular flow <p, assuming that the closed
orbits y of <p are all isolated. Choosing a prime orbit y and a point p e y we build
a small transverse disc D at p and construct the local return map ry: £)'-» D where
D' is a smaller disc containing p and ry(q) is the first point on the positive trajectory
through q that again lies in D. The germ of ry at p is determined by y above and
we have supposed that p is an isolated fixed point of r" for all n > 1. So we can
discretize the local topology at y by forming the sequence of Lefschetz indices
ind (p, r")eZ and the local Lefschetz zeta function

&(r) = exp I -1" • ind (p,r"y).
»>i n

The zeta function of <p will be a suitable combination of these fr's and the homology
class [y] of the -y's. Here we will take [y] to be in the group H = / / , (M; Z)/torsion =
image (H,(M; Z) -> H,( A/; Q)). We choose an integral basis xx,...,xp for /f, which
we view as a multiplicative group, and we choose a cross-section K for <p. Since
" K [ ' ) ' ] > 0 » the power series £r([y]) in the variables xf1 makes good sense formally.
Since each value of uK [ y] occurs for only finitely many y (the return map rK has
only finitely many points of each period and the period of y for rK is Card (y n K) =

we can formally multiply these terms over all y. So we have:
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Definition. The twisted Lefschetz zeta function of cp is

where y varies over the prime closed orbits of <p.

The relationship between the zeta functions of <p and its return maps, and hence
the behaviour of Lefschetz numbers under flow equivalence, is given by:

PROPOSITION 1 [F4]. Let a, = uK (*,-), i = 1 , . . . , /3. Then the substitution xt -* ta' changes
£{(p) to £(r, t), where r is the return map for K.

The proof of this proposition is easy, and depends only on the Lefschetz formula
for the iterates of r. One checks simply that each y contributes the same to £(r, t)
and to f(<p)|X|=(

ai. It is now clear that changing the cohomology class uK of the
cross-section is liable to change the Lefschetz zeta function of the return map, since
the substitution xt -* t"' will vary. One could also see this from the fact that a given
closed orbit y for tp contributes to £(r, t) according to its period, but this period is
exactly uK(y).

One of the main reasons that these algebraic techniques apply to our problem
is that anything flow equivalent to a pseudo-Anosov is also pseudo-Anosov. This
was shown in [F2]. It is clear that if h is pseudo-Anosov and preserves stable and
unstable orientations then the corresponding stable and unstable foliations of <p will
be oriented. So on any cross-section K to <p, the induced foliations will be oriented
and the pseudo-Anosov return map r: K-* K will preserve these orientations. We
call a circular flow <p pseudo-Anosov if some (hence all) return maps for <p are
pseudo-Anosov.

We can summarize this situation as follows:

PROPOSITION 2. Let <p be a circular pseudo-Anosov flow with oriented stable and
unstable foliations. If there is a cross-section K with uK{xt) = at, i = 1 , . . . , /?, then the
largest zero of the rational function £(<p)\x, = tai is the expansion constant of the return
map rK:K^K.

In order to apply the proposition, one must be able to construct such <p's and to
identify those classes in H1(M; Z) that are dual to cross-sections. The first problem
is easy: any given pseudo-Anosov /»:£-»£ has a suspension flow (p-(ph with h as
monodromy. One takes M to be the mapping torus Mh obtained as the orbit space
of 2 xR under the Z action generated by g(h(x), t) = (x, t + l). The flow <p is induced
by translation along the IR factor.

The problem of identifying the cohomology classes of sections was solved in [Fl].
It was shown there that the closed orbits of a pseudo-Anosov tp determine the
cross-sections in the sense that w e H1(M; Z) is dual to a cross-section <=>n(y) > 0
for all closed orbits y. This latter condition defines an open cone in Hl{M; U) that
we denote *#,,. Cross-sections determine points in c$<pnH1(M;Z) and this sets up
a 1-1 correspondence between isotopy classes of cross-sections and such lattice
points.

To compute with this scheme, it is necessary to know how to identify £((p) in the
case of a suspension flow <p = (ph. The computation of C{<p) uses the twisted chains

https://doi.org/10.1017/S0143385700003151 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700003151


Growth rate of surface homeomorphisms 547

of h: 2 -» 2, i.e. the chains of a certain covering space 2 of 2. Here 2 is the abelian
covering of 2 whose deck transformation group G = G(fc) is the image of H,(2; Z)
in Hx{Mh\ Q). By the Wang sequence, G is the torsionfree quotient of the cokernel
of lijj —id:Hi(5); Z)<3, i.e. G is the largest torsionfree abelian quotient of TTI2 on
which h acts trivially. Then h lifts to h: 2-»2 and £ commutes with G. Choosing
some cell decomposition for 2 and lifting it to 2, one can deform £ equivariantly
to a cellular map and form the associated chain maps F,: C,(2; Z)-> C,(2; Z) on
the twisted chain complex C*(2; Z). These maps F; commute with the free action
of G on chains and so the Ff's are morphisms of modules over the group ring ZG.
Lifting the cells of 2 to 2 in some fixed way, and ordering them, we can identify
the F,'s with matrices over ZG. We now form the rational function (over ZG)

which we call the twisted Lefschetz zeta function of h [F5]. Changing the choice of
lift h only affects £G by substitutions of the form x -» g • x, where g e G is fixed. The
following proposition explains how to compute £(<p) from a cross-section and it
shows that £(<p) is the power series expansions of a rational function.

PROPOSITION 3. Choose an integral basis x2,...,xp for G and extend it to a basis
xu x2,...,Xp for H so that uK (xx) > 0. For a proper choice of the lift h (depending on

It is clear that £G depends only on the homotopy class of h. As we will be considering
surfaces with boundary, we will study the special case of maps of 1-complexes in
the next section.

It is also valuable to be able to recognize ^ from the readily computable zeta
function £> If the stable and unstable foliations are orientable this can be done.
One reduces £G to lowest terms, say £G = P(x)/ Q(x) where P and Q are polynomials
over ZG with constant term 1. We define the non-trivial support Supp' ( P ) c H to
be those h ̂  1 that occur in P with non-zero coefficient. Then by a trivial modification
of the argument in [F3, § 3] one finds:

PROPOSITION 4. "#,, = {u\u(h)>0 for all fie Supp' PuSupp' Q}.

The argument in [F3] was for a circular basic set and twisted Artin-Mazur zeta
function, but the finitely many singular orbits have no serious effect and our
orientation hypotheses assure that no harmful cancellations take place. So altogether
we have shown:

THEOREM 2. Let h: 2 -» 2 be a pseudo-Anosov diffeomorphism that preserves stable
and unstable orientations. Let Ca(K x) be the twisted Lefschetz zeta function ofh and
x2,..., xp an integral basis for

G = (H^M, Z)// ,y = y)/ torsion

as a multiplicative abelian group. Let H = {gx'\i e Z, g G G}.
Suppose that in lowest terms Ca(Kx) has the form P(x)/Q(x). Then for any

homomorphism u:H->Z with u positive on the finite set Supp' (P) u Supp' (Q)<^ H,
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the substitution t"ih) for h sends £G(h, x) to the Lefschetz zeta function £(r, t) for some
pseudo-Anosov rflow equivalent to x. The expansion constant \(r) is the largest zero
ofi(r, t).

Only the last statement needs some amplification. The action of r on the Oth and
2nd homology has finite order. As A ( r )> 1, it is a zero of the numerator of £(r, t)
and not of the denominator.

We have justified the example at the beginning of this section, up to finding an
h as in the theorem with £o = 1 - (4+17 + 7?~')£ + £2. Such an h will be found in § 4.

We mention that the G of theorem 1 could be replaced by any abelian quotient
of H,(X; Z) on which / acts and acts trivially. G is the maximal torsionfree group
of this sort and so the zeta functions of the entire flow equivalence class can be
obtained from Ca- But intermediate covers are easier to compute with.

3. The twisted zeta function for a 1-complex
In this section we will show how to compute the twisted chain maps for a map
f:T-*T where F is a connected finite complex of dimension 1. Such maps arise
frequently in the study of surface homeomorphisms, under the guise of branched
1-manifolds or train tracks [Tl]. In our examples later on we will take F to be the
1-skeleton of a certain cell complex structure on a torus. We will see that the covering
space that appears in the definition of lQ need not be known explicitly in order to
compute it and an algorithm is particularly simple to describe in the 1-dimensional
situation.

We suppose, by a preliminary homotopy, that / preserves the set of vertices
V c T,/( V) c V. Then the image of an edge e runs through the edges of F in some
way, beginning and ending at a vertex. By another homotopy we may suppose / is
straight, i.e. that the path f\e does not reverse direction in the middle of an edge.
Thus e is the union of a finite number of non-overlapping intervals that correspond
homeomorphically to edges u n d e r / unless f\e is constant. If e is oriented then we
can form a formal product of oriented edges to describe the behaviour of / on e.
We justify this natural algebraic description of / as follows.

We associate to F its edge-path category EP whose objects are the vertices of F
and whose morphisms are certain concatenations of oriented edges of F. A morphism
from vt to v2 is an edge path from u, to v2, i.e. a sequence of oriented edges eu...,em

naO, where the back vertex of e^ is vu the front vertex of e, is the back vertex of
ei+u 1 = 0 , . . . , « - 1 and where the front vertex of en is v2. Taking n = 0 gives the
identity morphism at vx = v2. Composition is defined by concatenation:

e-i • • • en ° en+l • • • em = e , • • • em.

A straight / : F -* F gives a map from the set of vertices of F to itself and the image
of an oriented edge e determines a morphism eu...,en in the obvious way, where
n is the number of edges in the image of f(e), counted with multiplicity. This
extends to a product preserving map of EP that sends an identity morphism to
another identity morphism, i.e. a functor from EP to itself. This functor which we
denote Af is the natural algebraic object underlying /
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As an example, suppose F has only one vertex v. Then any two morphisms can
be composed. If we orient the edges eu...,em of F and denote the oppositely
oriented edges by ex,..., em then EP is the free semigroup on the e/s and e,'s. To
obtain TT\Y one adjoins the relations e,e, = e,e; = ido; to obtain H^F; Z) one adjoins
further relations to say that e&j = e,e,, all i,j. In each case Af induces an algebraic
operation that gives the induced map on TT, or H,. One can turn an arbitrary F into
such a graph by collapsing a maximal tree T <= F to a point. This gives the usual
way to compute 7r,F. Such collapsing, however, complicates the computation of the
action of / on twisted chains so we will proceed a little differently.

To each oriented edge e we associate an indeterminate weight *,_ We let H be
the abelian group generated by the xe's with the relations:'xei • • • xCn = 1 whenever
e,, . . . , en is an edgepath from a vertex v e Vto itself. Clearly H is just a multiplicative
copy of HX(T; Z). There is a natural map TT: EP-» H sending an oriented edge e to
n(e) = xe. The functor Af induces a map /*: H by the rule: if Af(e) = ex • • • em then
/*(xJ = *«,••• xem. This /* is the usual induced map on H^T; Z). Let R = ZH be
the integral group ring of H.

Recall that there is a covering space FH of F with deck transformation group H
called the universal abelian cover of H. The map / : F«=> lifts to FH (the commutator
subgroup of TI^F is characteristic) and one can easily construct an explicit representa-
tion for the algebraic part Af of such a lift. This in turn determines the action of
/ on the chain complex C% = C0(FH:Z)© C,(FH; Z) from which one can compute
twisted zeta functions. It is not necessary explicitly to know FH (or even HI).

Let us first illustrate this process. Let F be a wedge of 3 circles with preferred
orientations, x, y, and z. Then EP(F) is the free monoid with generators x, x, y, y, z
and z. Let / : F<=> be a map with

Af{St) = xy,

Af{y) = xyxzy,

Af(z) = y, Af(z) = y.

If is not hard to identify H with {a'bjck\i,j, keZ} and TH with the 1-complex of
all points in R3 with 2 or more coordinates in Z. We choose a fundamental domain
D = TH n [0,1)3. We denote the vertices and oriented edges in D by vH, xH, xH, etc.
and we denote the translation by (i,j, k)eZ3 by aibick = g. The category EP(FH)
has as objects all gvH, geG and its morphisms are generated by gxH, gxH, etc. We
will l i f t / t o / H : F H ^ so that/Ht;H = vH (this specifies the lift). One can check that
AfH satisfies

AfH{vH) = vH;

AfH{xH) = yH- a~lbxH;

AfH O H ) = yH • bzH • bcxH • abcyH • b2cxH;

In brief the pattern of x's, x's etc. is as for Af: only weights from H have been
inserted in a cumulative way. To check these weights, note that the rule 'front of
one is back of the next' holds and that the three edgepaths all start at A/H(UH), as
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they should. The free end of these edgepaths are, respectively, a~*bvH, b2cvH, and
bvH. This corresponds to the map <f> = / # on first homology H induced b y /

To compute the action of fH on C%(rH) it is enough to specify it on the preferred
/?-basis by

/H'VH = vH;

fH'XH = yH-a~lbxH;

fH*yH = yH + bzH + bcxH + abcyH - b2cxH;

/ H * Z H = yH\

and to note the rule fH*(g • m) = <t>(g)f*{m), m e C ^ F H ) .

Suppose one wishes to compute the action of/ on some other connected abelian
cover f of F. One has f = YH/S where S is a subgroup of H. In order for / to lift
to f, one must have <£(S) *= S. Then the group Q = H/S is the deck transformation
group for F over F and 4> induces a map i/>: Q-» Q so that the lift /= (/H modulo S).
Formulae just like those above hold if one replaces the subscript H by a superscript
~ throughout and interprets a, b, c as generators of Q subject to the extra relations
in S.

For example let S be the subgroup generated by b and c. Visibly it is (^-invariant.
Q is infinite cyclic with generator 17 corresponding to a (mod S). We compute the
action of / :F-»F on chains from the /?'-basis v, x,y, z, where R' = ZQ, by the rule

= q~lf#(m) and the table

f*(v) = v, f^(x) = -rj

The cover corresponding to Q is shown in figure 1.

FIGURE 1

To continue the above computation, note that the square of ip is the identity on
Q. This means that j \ = F% commutes with Q and so defines a homomorphism of
the /?'-module C^. Relative to the preferred bases v for Co and x, y, z for Ct we have

fl 0

https://doi.org/10.1017/S0143385700003151 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700003151


Growth rate of surface homeomorphisms 551

as can be seen by iterating the above computation of / Applying the definition of
the twisted Lefschetz zeta function, one finds

Note that this is exactly the polynomial p(g, 77) of § 2.
We now return to the general situation. To compute AfH, one fixes a maximal

tree T (the vertex in the above example), a basepoint peVnT, and a preferred
orientation for the edges of F. This gives a fundamental domain D in FH, determined
(up to translation) by the property that D contains a connected lift f of T and
those edges of FH whose back vertex (in the preferred orientation lifted from F)
lies in f. One chooses the lift fH to send the vertex vH in f over v into f. Then
one inducts outward from v in T and inductively defines AfH: there is always a
unique way to insert weights in H into the terms in the formula for Af so as to
define an edge path in FH with the initial vertex given by earlier steps in the
induction. This will be illustrated in § 6.

To compute a zeta function it may be necessary to work in an intermediate abelian
cover T = TH/S where / lifts to F and / commutes with the deck transformation
group Q= H/S. The above scheme works here just as well: Af has weights deter-
mined uniquely by the same inductive process. Here Af determines a chain map
that is linear over Z<? and describable by finite matrices Fo, F, over ZQ. Fo has one
non-zero entry in each column, and that is an element of Q. F, is obtained by
abelianizing Af. Then £ is computed, from the definition, as det (J-xF,)/det ( J -

4. Blowing up
We consider a pseudo-Anosov h on an oriented connected compact surface X such
that h preserves orientation. If F c £ is a finite invariant set, a new 2' and h' with
these same properties can be produced by blowing up the subset F. We compute
the effect of this on the group G(h) of § 2.

PROPOSITION 5. If F contains d orbits, 2 has no boundary and G(h) is finite then
rank G(h') = d - 1 .

This means that by blowing up periodic orbits of h we can increase the number of
variables in the zeta function f(<p) and so broaden the collection of expansion
constants produced in § 5.

We will omit the elementary proof, but we will illustrate this proposition. First,
let A be the toral automorphism induced by

We will take 2 = T2,

• •"•G *)•
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F = Fix (A) = {(0,0), (5,5)} and 2', h' as above. The proposition gives rank G(h') = 1,
since 2 is closed, F has 2 orbits and

(4 2\
<2 0/

is finite. By theorem 2 there is a twisted Lefschetz zeta function in two variables
associated to h' that determines all the expansion constants in its flow equivalence
class. Note that what we are doing is suspending the total automorphism h, blowing
up a pair of closed orbits and forming new cross-sections, new return maps and
new expansion constants.

To compute this zeta function, we compute the action of h' on ir,(2', p) = IT. We
choose the basepoint p to be the point on 32' over (0,0) e 2 that corresponds to
the eigendirection in the first quadrant. Then IT is freely generated by the paths
x, y, z of figure 2. One computes A'^: n^> IT as

FIGURE 2

One can identify 2' up to homotopy with a wedge of 3 circles and so pass from h'
to the example / of § 4. Recalling the computation of £Q {f2, %) in that setting, we find

where 77 is the class of x in G'(h') = (//,(£'; Z)/y = z = 0) = Q. So the polynomial
p(r), £) is the zeta function of a pseudo-Anosov as promised in § 2.

We remark that in the example above, the cover 1.'G is not at all related to the
cover of 2 by R2. The maximal abelian cover 1.'H has rank 3 and the map 0: H -» H
induced by h' splits over Q as a ^-dimensional fixed subspace and a 2-dimensional
subspace that transforms by the matrix

Thus the obvious Z2 cover of 2' is complementary to the Z cover we use. Whenever
a hyperbolic toral automorphism is blown up on a set of fixed points and used in
theorem 2, this will be the case.
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We observe that when h: T2^> is a hyperbolic toral automorphism, any finite
invariant set F consists of points with rational coordinates [BR]. Thus, regarding
T2 as an additive group, there is an n > 0 with n • F = 0. The subset Fn of all points
in T2 of order dividing n is a subgroup of n2 elements that is invariant by h. For
our purposes, one may always blow up more points (no expansion constants will
be lost and some may be gained) so we can always work with an Fn as F. We will
take n = 2 in § 6.

This blowing up device has an application to the study of Anosov flows. If <p is
a transitive Anosov flow on a closed 3-manifold M then a finite set of closed orbits
can be blown up so that the new flow has a cross-section [F9]. It would be interesting
to know if by blowing up enough orbits one can choose this cross-section to have
genus 1. This is known to be possible for the geodesic flow on a closed negatively
curved surface [B], [F9]. As in the proposition, further blowing up can only increase
the size of the flow equivalence class. The existence of a genus one section implies
that <p is a surgered version of a suspended toral automorphism.

5. Expansion constants of odd degree
We saw in § 4 that there is a pseudo-Anosov /i':S'^> with £a(h', €)=p(ri, £). As
noted in § 2, the substitution f) = ta,$=tb with |a| < b gives a Lefschetz zeta function
for a pseudo-Anosov r=rab: Kab^>. If a, b are relatively prime then Kab is connected.

We can rewrite p(r\, f) = (1 - f ) 2 - ( l + T?)2^"1^.
 I f a a n d b n a v e t n e s a m e Parity,

then £(r,t) is a difference of two squares and so will factor. We take a = \,
b = 2m + \, m>\. Then

C(r, t) = (t2m+1 - r+ 1 - r - i)(t2m+1+r+1 + r-1).

The largest zero A > 1 of £(r, t) is a zero of the first factor, which we denote pm(t).
This is obvious as the second factor exceeds pm(t) in this range.

It follows from [L] that pm(t) is irreducible. Thus we have exhibited an expansion
constant of each odd degree. If c, d are relatively prime positive integers of opposite
parity, then the largest root of tc+d — tc — td — 1 is also an expansion constant: choose
i = tc+d, t] = tc~d and use [L] again to get irreducibility.

Let us examine more closely the degree 3 example corresponding to K = K13 and
M e Hl(M; Z) given by u{-q) = 1, M(£) = 3. We would like to know the topological
type of K and the configuration of singularities near the boundary. First we consider
the boundary circle y in 2' corresponding to (0,0) in S. With the positive orientation
for y and the basis x, y, z for 7r,(S', p) as in the previous section, we find that y
represents xy~lzx, and so corresponds to r/2eH. Thus the restriction i*u of u to
the toral boundary component T(y) swept out by y assigns 2 to the meridian curve
y and 3 to the longitude curve represented by the closed orbit S through p. Hence
i*u is irreducible and Ku meets T(y) in a connected 1-manifold, i.e. a circle.
Moreover the boundary component X13n T(y) meets 5 3 times. So, recalling that
5 is one of 4 parallel closed orbits on T(y) corresponding to the 4 fixed directions
at (0,0)e2, we find that K13n T(y) is as shown in figure 3. The map r cyclically
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FIGURE 3

permutes the three heavily shaded prongs that correspond to the stable manifold
of 8.

We will see that the same thing happens at the other boundary component of
Mh: This is the torus T(y') swept out by the circle y' corresponding to ( i j ) e l
The homology class of y' is the opposite of that of y in //,(£'; Z) since y + y'
bounds. This implies that T(y')nX,3 is connected, imitating the preceding argu-
ment. If 5' is the orbit through a fixed point p' e y', we would like to know the
homology class £Sj' of 8'. Clearly k= 1 since 8' cuts 2' once. To find /, one draws
a path e from p to p' and counts the number of occurrences of x in the loop ef(e)~l.
One finds (figure 4)

ef{e)-l = xy-lx-lz-ly-1

so / = 0. Thus 8' has the same homology class £ as 8, and the same computation
applies.

We also know that the degree of the zeta function of r is the negative of the Euler
characteristic of K. So K has x = ~6> two boundary components, and is orientable;
it is a genus 2 surface with two holes. Collapsing these boundary circles gives a
closed genus 2 surface S and a pseudo Anosov f:S-*S with 2 singular points, each
with 6 stable prongs, each prong of period 3 under / The expansion constant A for
/satisfies A3 = A2 + A + 1.

Such an example (same genus, same A, same singular behaviour) was also given
by Arnoux and Yoccoz by a completely different construction. It is not known

FIGURE 4
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whether these two examples are the same, but it seems very probable that they are.
They produced A's satisfying Ad=Ad~1 + - • - + A + 1 for any d > 3 , so only their
d = 3 case agrees with our A's [AY].

Our examples have a different root distribution from theirs. Their A's are Pisot,
i.e. all their non-trivial algebraic conjugates lie in the unit disc. But

PROPOSITION 6. The roots of pm(t) are divided almost equally by the unit circle: m
are on one side, m +1 on the other.

Proof. Fix m. Consider the family qc(t) = t2m+l-c(tm+l + tm)-l,ceU. One sees
that qc(r

1)t2m+i = q~c(t), so the reciprocals of the roots of qc are roots of <?_,, Since
t2m+i_l a n d tm+\ + (m ar£. r e i a t j v e j y prime, qc(t) is relatively prime to q-c(t) for
c5* 0. Thus for c^Ono zero z of qc(t) can be on the unit circle: if \z\ = 1 then z~'
is a root of q_c (by the above) and of qc (as qc is real and z~l = z), which would
give a common factor t-z~x for q_c and <?<.

As the roots of qc{t) vary continuously with c, and as pm(t) = qx{t), it suffices to
see how the roots of qo(t) — t2m+i - 1 move off the unit circle at c = 0.

Fix ke{0,1,.. .,2m} and let z(c) be the solution of qc(t) that equals p =
exp 2mk/{2m +1) at c = 0. As qo(t) has distinct roots, z(c) is differentiate for small
c. Differentiating the identity qc(z(c)) = 0 with respect to c at c = 0 gives

We want to know whether the modulus of z(c) is increasing or decreasing at c = 0,
i.e. whether z'/p has positive or negative real part. We have shown that

2m +
Re(pm).

Letting k vary we see that pm sweeps out all the (2m + l)st roots of unity. Thus as
many roots move out of the unit circle as there are (2m + l)st roots of unity with
positive real part. •

6. A larger example
We will develop here an example of theorem 2 on a 3-manifold with first Betti
number /3 = 4. We will begin by some general considerations concerning the use of
punctured toral automorphisms in flow equivalence.

We will take a hyperbolic toral automorphism a:T2-> T2, blow it up on a finite
invariant set E, suspend and take a new cross-section. We will ensure that a preserves
the stable and unstable orientations, i.e. both its eigenvalues will be positive. One
eigenvalue is A (a), the other is A (a)"1. We may simplify a somewhat by choosing
a good basis for the lattice Z2 whose quotient gives us T2. For a suitable choice of
integral basis for Z2, one may factor a as a (positive) word in the transvections

-GO-
[MKS]. Next one may simplify £ as in § 4, by replacing it by a larger invariant set
En = {x e T2\nx = 0} for appropriate n > 1. Let 1n be the surface obtained by blowing
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up T2 at Fm so £„ has genus 0 and n2 boundary components. The blown up version
of a, call it am can be viewed as a product of blown up transvections <rm rn. This
simplifies the computation of the action of an on the universal abelian cover of £„.
Also one can choose a cell complex Fn of dimension 1 with the same homotopy
type as £„ as follows. Consider the grid F^ = {{x, y) e R2|x e Z or y e Z}. It is a sort
of infinite piece of graph paper with a natural Z2 action. Let Fn = Fco/ n • Z2 be the
quotient by the action of the subgroup of elements divisible by n. We can label the
vertices of Fn as PtJ, and the edges as hy, Vy and where i,j vary over Z/nZ. Here Py
is the point (i,j) (mod «Z2), Vy is the vertical edge {(i, y)\j<y<j + l} and hy is the
horizontal edge {(x,j)\i<x< i+1}. We identify Fn with a subcomplex of £„ as in
figure 5. We can then rectify <rn by the rule

ij) = hi+jJ;

y) = hi+jjvi+j+lj;

FIGURE 5

or, more concisely, 'h-*h, v -> ftu'. Similarly one can define the functor AT by the
symmetrically related scheme AT(/>J,) = /?,,+, and '/i -* vh, v -* v'. With this any an

can be computed using only positive words in h and v. The method of § 3 gives an
algorithm for computing the action of an on the maximal abelian cover of 2n (note
this cover has deck group Hn of rank n2+1), once a maximal tree T and basepoint
p are chosen in 1n. This basepoint poo stands out but there is no natural choice of
T. One may use, say, the comb

We now specialize to n = 2 and

'5 2

Since
/i n\

(mod 2),
0\
ij

a fixes E2. As in § 4, this implies that G(a2) has rank 3. We choose a fundamental
domain as in § 3 and label its edges as shown in figure 6. The small letters denote
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• b

FIGURE 6

the weights a, b, c,d,ee H2 corresponding to A, B, C, D, E: no weights are needed
on the tree X, Y, Z since H2 is rank 5. Note that a2, r2 also fix E2, so their
representations on T2 fix all 4 vertices. We compute the edgepath functors induced
by cr2 and T2 as in table 1. To construct table 1, the edges were ordered outward
from the origin, starting with those in T. Then all the capital letters in the other
columns were filled in using the v, h symbolic descriptions. For example if one
applies a2 to Y then its back vertex is fixed and since Y is vertical it will go to
'h2v\ Starting at the back vertex of Y, one goes right 2 steps and up one, tracing
through X, A, Y in that order. Finally the weights were filled in: it is here that
ordering the edges was important. For instance, the term Y in o\{ Y) occurs after
an A, so a weight a is put in. The weights accumulate. Since E begins at the end
of Y, the Z in o-\\E) begins with the weight a that Y gave it. Implicit in this table
is another one showing what weights the various vertices pick up. We have not
included it, in order to be concise, and it can easily be deduced from the table. For
instance since the image of E carries a weight a in the first term, the back vertex
of E goes to itself with the weight a.

From table 1 for the chain map F, one could calculate det (/ -xF , ) and det ( / -
xF0) by brute force and so compute £<> It is better to proceed as follows.

TABLE 1

edge 2v, h-*h v, v2h

X
Y
Z

A
B
C
D
E

X
X+A+aY
aZ

A
aB
A+aX + aC
aB + abZ + abD
aZ + aB + abE

Y+E + eX
Y
E + eY+eZ

eC + ecD+ecdA
eD + edC + edcB
eC
eD
E
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First we compute G. In order that the weights be conserved by tr2. one must have
ab = 1. For instance the cycle YE goes to XAYZBE. Equating the corresponding
products of weights gives e = abe, ab = \. This is the only relation imposed by erf,
but T\ gives the relation cde = 1. This gives a rank 3 quotient group G on which
<J\T\ acts trivially. As we know there is a complementary rank 2 group where the
action is hyperbolic, this G is the largest such quotient group. Henceforth we will
regard the weights as in G = (a, b, c, d, e\ab = cde = 1, all generators commute).

Second, the matrix Fo is diagonal, since a2 and T2 fix all vertices. From table 1
one sees that the back vertex of E, for example, scales successively by a and 1, so
a is an eigenvalue of Fo. Altogether one has diagonal entries 1, a, e, ae.

Recall that there is a boundary operator d over R=ZG such that dF, = FQB. Up
to torsion for the integral domain R,d is surjective. For example, d(Y+E) =
(e-1)^. Consider the quotient field L of R. Viewing R as Z[a, a"1, c, c~\ e, e'1],
L is the rational function field Q(a, c, e). The above relation shows (c — l)vx bounds
and so, since e — 1 is invertible in L, v^ bounds too. Altogether, one sees that 1, a, e
and ae are also eigenvalues of F,. So £G is a polynomial of degree four over R.

We will need to compute some coefficients of de t ( / -xF, ) =
l-TlX+T2x

2 +Tsx
s where Tf = Trace A'(F,). Note that A'Fj = A'M-AW

where M is the matrix that represents T2 and N that which represents a2, each
given by the appropriate column in our table. Recalling the usual inner product on
matrices is (a, y3) = Trace afi', we have Tt = (A'M, (AW)'), a simpler expression to
compute since one need not multiply large matrices. We display M and N', relative
to the convenient ordering of our basis as X, A, B, Z: Y, C, D, E in figure 7. It is
clear that M, N' have determinants e4, a4 so Ts= eAaA. Also T, ={M, N') contains
a contribution S = (e+l + a + ae + a + ae + e+l) from the diagonal terms and v =
(l + e + ae + a) = 8/2 from the terms in the 4x4 block lying on its diagonal.

x
A

B

z

e

1

0

0

1

1

0

e

ce

0

1

0

de

e

0

e

e

0

0

1

1

e

e

1

M

Y

C

D

E

FIGURE 7

1

1

a

0

0

1

1

1

0

0

a

0

0

a

a

a

0

0

1

a

a
a

1

1

N'

It will be shown in § 7 that £G is reciprocal, i.e. under the ring automorphism sending
a^> a'1, c-*c~x, e -» e~x, x -» x~\ £a maps to a multiple of itself by a trivial unit of
the form ±gxk, geG,keZ. With these elementary facts we can almost compute £&

We have
(*) 1 - T,x+ T2x

2 = (l-x)(l-xa)(l-xe)(l-xae)ia
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and we know T,, Tg. Computing (*) modulo x2 and writing CG —
1 — kiX + k2x — k3x + k4x

4 we find Tx = kx + v, so kx = 8. Also (*) implies e4a4 =
(ae)2fc4, so k4=e2a2. As fc3 and fc[ must be symmetric around sfk~A= ea, we find
k3 = eaS. Only k2 is not known, but it can be computed from T2.

At first this seems difficult but the matrices M, N' are so sparse that it is not. One
need not, of course, write out A2M and A2N' to take their inner product. One
considers 2x2 blocks and groups them according to the number of diagonal entries
that occur, 0, 1 or 2, so T2 = So+ S,+ S2. Those with zero diagonal entries come
from the 4x4 corner block: one finds its 6 principal minors and only 2 non-principal
ones make a contribution

So = [e(l - a) + ea + (1 - e)a + (e2 - cde2)a + ea + e(a2 - a)]

+ [-ce2- l + -cde- a2].

The contributing terms with 1 diagonal entry must have their opposite entry on the
diagonal of the corner block, thanks to the distribution of the zero entries in M
and N'. Taking the diagonal entries in order gives

S,= e{e + ea + a) + 1(1 + ea + a) + a(l + e + a) + ae(l + e + ea)

One computes S2 as \ the crossterms in S2. Thus

S2 = 2(1 + a)2(l + e) 2 - ( l + a2)(l + e2).

We now compute k2 from the quadratic terms in (*). After simplification one finds

£a = 1 -2vx + (v2 - ce2 - c'1 a2)x2 -2aevx3 + a2e2x4.

Note that, as anticipated, the middle term is symmetric about ae.
We now draw some consequences from this formula. First £G is almost a difference

of squares:

lG = (1 - vx + aex2)2 - x\a + ec)2c~\

So we substitute 172 for c and find the factors

1 - vx + aex2*x(a + e-q2)^'1 = (1 -ax)(l - ex) -x(l ± ar/)(l ± erj"1).

We see from proposition 4 that the cone ^ is defined by u(Supp' fG) > 0- So, in
this example, %!v is defined by {ax, ex, aex2, x, aex, at]x, erj^'x}. Of these 7 points
only aex2 is expressible as a non-negative combination of the others, so ^ has 6
distinct faces. On the other hand <p, the suspension flow of a2,

- G 0-
has only 4 homology classes of singular orbits, corresponding to the 4 boundary
components. So the homology classes of singular orbits do not define ^ In particular
they do not determine the existence of cross-sections nor a face of the unit ball in
Thurston's norm on H1 [F2], [T2]. This answers a question posed in 1977 by
members of the Orsay topology seminar.
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If we take the proper sign in the above factoring and let a = e = 1, x = £ we get
the polynomial p(g, 17) studied above. This is because setting a = e = 1 corresponds
to collapsing the fixed points (0, | ) and (3,0)t returning us to the example of § 5.

Other substitutions give quite different A's. For instance, let 77 = a = 1, x = t, e = t2.
Then £ = (1 - i){\ - t3)q(t), where q(t) = l-3t-3t3+t*. Clearly A is a zero of q{t).
Substituting v = t + t~\ one finds t~2q(t) = Q(v) where Q(v) = v2-3v-2. Now Q
is irreducible and has a zero in (-2,2) . Thus q has a zero on the unit circle (see
[F8]). It is not hard to check that q is irreducible, so that the expansion constant
A has an algebraic conjugate on the unit circle. Considering the hyperbolic behaviour
of pseudo-Anosovs, this is surprising behaviour.

The method of computation applied above to a2 would work just as well for
Wl)m(T\)n, m,n>0. For {<T2

2)
m, {r\)n have the same distribution of zeros that led

to a simple computation of the determinant. One could write a closed form expression
for the zeta functions of {cr2mT2n)2, all m, w>0. For examples more complicated
than this it might be wise to use a computer language like MACSYMA that does
symbolic manipulations. The group generated by erf, T2 is identified in [S].

7. Some remarks on flow equivalence
We return to the general situation of a compact 3-manifold M with a circular flow
cp. We will prove a symmetry property for £H{<P)

 and study analytically how the
growth rates of cross-sections vary over ^9. Finally we describe flow equivalence
in a way that makes no direct use of flows.

The symmetry property is:

PROPOSITION 7. For <p as above and M oriented, the involution of ZH that sends
h -> h~x carries £H(<p) to ±h0 • £H{<p), for some ho€ H.

Proof. Choose an integral basis xu...,xp for H. Then consider the homeomorphisms
u.H^Z and the rational functions Ru in one variable t obtained by substituting
/"(Xf) for Xj, i = 1 , . . . , p. If £H(<P) were not reciprocal in the above sense then those
u's such that /?„ is reciprocal would lie in finitely many proper rational subspaces
of Horn (H, Q) = H\M; Q). Now on the open cone ^ Ru is just the Lefschetz
zeta function of the return map r for a cross-section dual to u. To conclude the
argument, we observe that for any orientation preserving surface homeomorphism
r, £(r, t) is reciprocal. For closed surfaces this is immediate from Poincare duality
[Fr]. If there are boundary components then collapsing them only changes £ by
reciprocal factors 1 - t" (cf. [F10]). •

Another proof of this proposition could be based on the Reidemeister torsion of
the abelian covering MH [F4], [M]. We prefer the more dynamic argument in this
situation.

Without using zeta functions, one can see that A varies under flow equivalence.
We have:

PROPOSITION 8. Let <p be a circular pseudo-Anosov flow. The function (log A)"1:
"#„ n Hl(M; Z) -»(0,00) extends to a concave, homogeneous function ^v -* [0,00) that
vanishes on d <6V.
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Proof. For any pseudo-Anosov r, the topological entropy h(r) is log A, where A is
the expansion constant [FS]. The function h(r)'1 was shown to have the desired
properties in [F3]. •

This concavity is not obvious from the zeta function description of growth rates, as
it depends on the description of A using a Markov partition. It is easy to see that
the map l(u) = -x(Ku) is linear in u and positive on ^ [F2]. It was shown in [F2]
that l{u) is positive on the closure <!,,. So we see that the function (log A)~V(«)
is bounded above.

It would be interesting to know whether the concavity property of A holds for
higher dimensions.

Problem 3. Let ip be a circular flow on a compact manifold M. Is the function
(log A)"1: %nH\M; Z)-*(0,oo] concave?

This is a purely group theoretic problem but should probably be dealt with geometri-
cally.

We conclude with a description of flow equivalence that doesn't involve 3-
manifolds. Take f:1-*J. a surface homeomorphism and A c Mf a cross-section to
the suspension flow <p of / The class uAe H1(Mf; Z) dual to A restricts to a class
£eH'(2;Z) that determines a Z-cover 1 of 2. The Wang sequence for 0 shows
/*£ = £ Thus / lifts to t, and the lifts commute with deck transformations. Let / be
such a lift and g the preferred generator for the deck transformation group. We
will show there is a basis (m, n), (a, b) for Z2 such that the elements y=fmg",
h=fagb satisfy:

(i) the group Hy generated by y acts properly discontinuously on 2 with A as
quotient;

(ii) the map of A induced by h is h.
Thus two flow equivalent transformations are obtained from a 2-ended surface £
with a Z2 action by factoring by properly discontinuous Z subactions in two distinct
ways.

Rather than exhibiting (m, n) and (a,b) it is more instructive to construct 2
directly from the geometry. Let M* be the Z2-cover of Mf corresponding to the
pair (M2, MA). Let <p* be the flow on M* which covers <p. The Z-cover SxR of Mf
is obtained by factoring M* by one Z factor. Symmetrically, AxR is also an
intermediate Z-cover. The flow <p* corresponds (up to reparametrization) with the
standard flows onSxR, AxR. So the orbit space € of <p* is a Z-cover of 2 and a
Z-cover of A. Thus C is the space 2 of the preceding paragraph. The Z2 action on
€ is induced from the deck transformations of M* (which commute with <p* since
(f>* was constructed as a lifted flow).

One can describe the entire flow equivalence class of / : 1+* in this way. Let
G= G(f) as in § 2 and form the corresponding cover So Then / lifts to /G:SG<=
and the lift fG commutes with the deck transformation group G. Combining these
lifts and the deck transformations gives the abelian group H of all lifts of all iterates
of / (G is exactly the largest torsionfree quotient of H,(2; Z) such that this H is
abelian). So one has a Zp action with a properly discontinuous cocompact subaction
of Z0"1. For certain other splittings of H as a sum of a rank /? - 1 group G' and a
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rank 1 group {/i'|/eZ}, G' acts properly discontinuously on ~Lo- Then the compact
surface 2' = £ G /G' carries a homeomorphism f induced by h. If the generator h
was chosen properly, / ' is flow equivalent to / and all flow equivalent homeomorph-
isms arise from such splittings of H. This description follows from studying the
orbit space of the lifted flow on the cover MH, i.e. the maximal free abelian cover
of the mapping torus M = Mf.

This suggests a natural way to extend the notion of flow equivalence to actions
of groups other than Z. Let H be a group that acts on a manifold X. Let G, < H,
i" = l,2, be normal subgroups of H such that the action of G, on X is free and
properly discontinuous for i* = 1,2. Then the manifolds y, = X/G, carry induced
actions of F,- = H/ G,. We say that the action of Fi on Yx is cover equivalent to the
action of F2 on Y2. In the case where Fi and F2 are infinite cyclic, appropriate
generators of F1; F2 are flow equivalent. In general, we do not necessarily have F,
isomorphic to F2, even if both Yt are compact. Cover equivalent actions should be
interesting objects of study as topological analogues of the orbit equivalent actions
in ergodic theory.

This research was partially supported by the National Science Foundation and
Sloan Foundation.
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