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1. Introduction

Let f be any Maass cusp form (cf. [6]) over the congruence subgroup Γ0(N) ⊂ Γ =
SL2(Z) with Δf =

(
1
4 + ν2

)
f , where Δ is the non-Euclidean Laplacian operator

Δ = −y2

(
∂2

∂2x
+

∂2

∂2y

)
.

Since the Laplacian is self-adjoint, any eigenvalue associated with Δ must be a
positive real number, and therefore ν is either real or of the form it with t real and
−1/2 < t < 1/2.

We denote the Fourier coefficients of f at cusp infinity by λf (n) :

f(z) = y1/2
∑
n�=0

λf (n)Kiν(2π|n|y)e(nx)
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normalized by setting λf (1) = 1. Here λf (n) is then the nth Hecke eigenvalue of
f , Kiν is the modified Bessel function of second kind, z = x + iy and e(x) = e2πix.
The Maass cusp form f is said to be primitive if it is normalized cusp form which
is a Hecke eigenform of all the Hecke operators.

The Ramanujan conjecture asserts that |λf (n)| = O(nε) for any positive ε. In
this direction, to the best our knowledge, the best known bound for the Fourier
coefficients was given by Kim and Sarnak [14], which is

|λf (n)| = O
(
n7/64+ε

)
(1.1)

for any positive ε.
Let ρ : H → H be the antiholomorphic involution given by ρ(x + iy) = −x + iy.

We call a Maass cusp form f even if f ◦ ρ = f and odd if f ◦ ρ = −f . We may
attach an automorphic L-function associated with the primitive Maass cusp form
f over Γ0(N) as

L(s, f) :=
∞∑

n=1

λf (n)
ns

, Re(s) > 1. (1.2)

It has an Euler product of the form (cf. [2, p. 208])

L(s, f) =
∏
p

(
1 − λf (p)

ps
+

χ0(p)
p2s

)−1

(1.3)

for Re(s) > 1, where χ0 denotes the principle character modulo N . The L-function
L(s, f) can be analytically continued to the entire complex plane. The completed
L-function associated with f can be defined as

Λ(s, f) = L∞(s, f)L(s, f),

where

L∞(s, f) := π−sΓ
(

s + ε + iν

2

)
Γ
(

s + ε − iν

2

)
. (1.4)

Here ε takes the value 0 for f even and 1 for f odd. The completed L-function
Λ(s, f) satisfies the functional equation [2, p. 208]

Λ(s, f) = εfN1/2−sΛ(1 − s, f), (1.5)

where εf is a complex number of modulus 1. The non-trivial zeros of L(s, f) lie
in the critical strip 0 < Re(s) < 1 and, by the grand Riemann hypothesis, are con-
jectured to be on the critical line Re(s) = 1/2. The goal of this article is to obtain
a transformation formula involving the non-trivial zeros of L(s, f) and to find an
equivalent criterion of the grand Riemann hypothesis for L(s, f).

In the classical case, the problem was initiated by Ramanujan. He showed an
elegant transformation formula to Hardy involving an infinite series of the Möbius
function [16, p. 312], during his stay at Trinity. Later, the identity was corrected
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by Hardy and Littlewood in [12, p. 156, § 2.5], which precisely states that for α
and β being two positive real numbers with αβ = π, the following identity holds:

√
α

∞∑
n=1

μ(n)
n

e−α2/n2 −
√

β

∞∑
n=1

μ(n)
n

e−β2/n2
= − 1

2
√

β

∑
ρ

Γ
(

1−ρ
2

)
ζ ′(ρ)

βρ, (1.6)

provided the infinite series on the right-hand side of the above equation converges
where the sum is running over the non-trivial zeros ρ of the Riemann zeta function
with an assumption that the non-trivial zeros are simple. For more details, one can
look into [4, p. 467–468].

The series on the right-hand side of (1.6) converges if we bracket the terms of
the series in such a way that the terms for which

|Im(ρ) − Im(ρ′)| < exp
(
−c

Im(ρ)
log(Im(ρ))

)
+ exp

(
−c

Im(ρ′)
log(Im(ρ′))

)
are included in the same bracket (cf. [20, p. 220]) but the convergence of the series
is still unknown unconditionally.

The identity (1.6) leads Hardy and Littlewood [12] to obtain an equivalent crite-
rion of the Riemann hypothesis for ζ(s), which precisely states that for the function
P (y) :=

∑∞
n=1

(−y)n

n!ζ(2n+1) , the bound P (y) = O(y−1/4+δ) as y → ∞ for any positive
δ is equivalent to the Riemann hypothesis. This equivalent criterion for the Rie-
mann hypothesis is sometimes known as Riesz-type criterion since Riesz [17] was
the first mathematician to find a similar result around the same time.

Later, several analogues and generalizations have been investigated in different
directions. For instance, a similar problem involving an extra complex variable
was considered in [11]. The problem in the setting of Dirichlet L-function and
Dedekind zeta function has been studied in [8] and [9] respectively. In [10], Dixit et
al. have obtained an identity analogous to (1.6) for holomorphic Hecke eigenforms
and found the similar criterion of the Riemann hypothesis for the associated L-
function. Recently, in [1], one variable generalization of (1.6) have been studied in
different direction.

We next provide the analogues of (1.6) for the non-holomorphic primitive Maass
cusp form over the congruence subgroup Γ0(N) ⊂ Γ. The reciprocal of L(s, f) for
Re(s) > 1 can be written as

1
L(s, f)

=
∞∑

n=1

λ̃f (n)
ns

.

where

λ̃f (n) =

{
μ(d)χ0(D)λf (d) if n = dD2, (d,D) = 1 and d,D squarefree
0 otherwise.

(1.7)

The above expression of λ̃f (n) can be derived mainly from the Euler product of
L(s, f)−1, which follows from (1.3) that

∞∑
n=1

λ̃f (n)
ns

=
∏
p

(
1 − λf (p)

ps
+

χ0(p)
p2s

)
. (1.8)
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The multiplicativity of λ̃f (n) and (1.8) together implies that for pm|n with m �
3, we have λ̃f (n) = 0. Therefore, from the fact that both λf (n) and χ0(n) are
multiplicative, we obtain (1.7).

We next define two functions

Pfo
(y) :=

∞∑
n=1

λ̃f (n)
n2

Kiν

(
2πy

n

)
(1.9)

and

Pfe
(y) :=

∞∑
n=1

λ̃f (n)
n

[
2Kiν

(
2πy

n

)
− Γ(iν)

(πy/n)iν
− Γ(−iν)

(πy/n)−iν

]
. (1.10)

In the following theorem, we obtain transformation formulas involving the non-
trivial zeros of L(s, f).

Theorem 1.1. Let f be a normalized primitive Maass cusp form over the con-
gruence subgroup Γ0(N) with eigenvalue 1/4 + ν2. Let L(s, f) be its associated
L-function as defined in (1.2). Let εf be the complex number of modulus 1 appeared
in (1.5). If α and β are any positive numbers with αβ = 1/N . If the multiplicity of
a non-trivial zero ρ of L(s, f) is nρ, Then

(a) for f odd, we have

α3/2Pfo
(α) − εfβ3/2Pfo

(β)

= − εf

4π

∑
ρ

1
(nρ − 1)!

lim
s→ρ

dnρ−1

dsnρ−1

{
(s − ρ)nρL∞(1 − s, f)βs− 1

2

L(s, f)

}
, (1.11)

(b) for f even, we have

√
αPfe

(α) − εf

√
βPfe

(β) =
εfπiνΓ(−iν)
L(−iν, f)

β
1
2+iν +

εfπ−iνΓ(iν)
L(iν, f)

β
1
2−iν

− εf

∑
ρ

1
(nρ − 1)!

lim
s→ρ

dnρ−1

dsnρ−1

×
{

(s − ρ)nρL∞(1 − s, f)βs− 1
2

L(s, f)

}
, (1.12)

provided the series on the right-hand of (1.11) and (1.12) converge where ρ runs
through the non-trivial zeros of L(s, f). In particular, if all non-trivial zeros of
L(s, f) are simple,

(a) for f odd, we have

α3/2Pfo
(α) − εfβ3/2Pfo

(β) = − εf

4π

∑
ρ

L∞(1 − ρ, f)
L′(ρ, f)

βρ− 1
2 , (1.13)
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(b) for f even, we have

√
αPfe

(α) − εf

√
βPfe

(β) =
εfπiνΓ(−iν)
L(−iν, f)

β
1
2+iν +

εfπ−iνΓ(iν)
L(iν, f)

β
1
2−iν

− εf

∑
ρ

L∞(1 − ρ, f)
L′(ρ, f)

βρ− 1
2 . (1.14)

The next theorem provides an equivalent criterion of the grand Riemann
hypothesis for L(s, f) when f is odd, motivated from the above theorem.

Theorem 1.2. If f is an odd normalized primitive Maass cusp form over the
congruence subgroup Γ0(N) with eigenvalue 1/4 + ν2. Then the bound Pfo

(y) =
O(y−3/2+δ) as y → ∞ for every positive δ is equivalent to the grand Riemann
hypothesis for L(s, f).

Now we consider the remaining case when f is even. In obtaining the criterion
of the grand Riemann hypothesis for L(s, f) for f even, we need to consider the
derivative of the function Pfe

(y), unlike to the case when f is odd. The reason
behind the above fact is technical, which is mainly due to the poles coming from
the gamma factors involved in the functional equation (1.5) of L(s, f). Let Qfe

(y)
be the derivative of the function Pfe

(y). Thus it follows from the derivative of the
K-Bessel function [5, p. 36, Formula 1.14.1.1] that

Qfe
(y) = π

∞∑
n=1

λ̃f (n)
n2

[
2K1+iν

(
2πy

n

)
+ 2K1−iν

(
2πy

n

)

− Γ(1 + iν)
(πy/n)1+iν

− Γ(1 − iν)
(πy/n)1−iν

]
. (1.15)

Theorem 1.3. Let f be an even normalized primitive Maass cusp form over the
congruence subgroup Γ0(N) with eigenvalue 1/4 + ν2. Then

(a) The bound Qfe
(y) = O(y−3/2+δ) for any δ > 0 implies the grand Riemann

hypothesis for L(s, f).

(b) If the grand Riemann hypothesis for L(s, f) is true, then as y → ∞,

Qfe
(y) = −π

[y1−ε]−1∑
n=1

λ̃f (n)
n2

{
Γ(1 + iν)

(πy/n)1+iν
+

Γ(1 − iν)
(πy/n)1−iν

}
+ O

(
y−3/2+δ

)
(1.16)

and

Pfe
(y) = −

[y1−ε]−1∑
n=1

λ̃f (n)
n

{
Γ(iν)

(πy/n)iν
+

Γ(−iν)
(πy/n)−iν

}
+ O

(
y−1/2+δ

)
.

The article is organized as follows. The next section is devoted to obtaining the
transformation formulas of L(s, f). We prove the criterion for the grand Riemann
hypothesis for L(s, f) for both odd and even case in § 3 and § 4, respectively.
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2. Transformation formula involving the non-trivial zeros of L(s, f)

In this section, we obtain an analogous result of (1.6) in the setting of primitive
Maass cusp form. In the following lemma, we provide a lower bound for L(s, f)
which will be used to prove theorem 1.1.

Lemma 2.1. For a sequence of positive numbers T as T → ∞ through values such
that |T − γ| > exp(−A1γ/ log γ) for every ordinate γ of a zero of L(s, f), where A1

is sufficiently small positive constant, the bound

|L(σ + iT, f)| � e−A2T

holds for σ ∈ [−1/2, 3/2], where 0 < A2 < π
4 .

Proof. The key ingredients to prove the above lemma are followed from [13, p. 102,
Formula 5.24] and [18, Lemma 3.6]. One can therefore apply a similar argument as
in [20, p. 219, § 9.8] or [9, p. 6] to complete the proof. �

We next provide the proof of theorem 1.1 only for the case when f odd since the
proof for f even goes along the similar direction.

2.1. Proof of theorem 1.1

The inverse Mellin transform of the modified Bessel function Kμ(x) [19, p. 253,
Formula 10.32.13] is given by

Kμ(x) =
1

2πi

∫
(c)

2s−2Γ
(

s − μ

2

)
Γ
(

s + μ

2

)
x−s ds, (2.1)

which is valid for any c > ±Re(μ). Here and throughout the article,
∫
(c)

denotes the

integral
∫ c+i∞

c−i∞ . Replacing s by s + 1 in (2.1) and letting x = 2πα/n and μ = iν,
we have

4πα

n
Kiν

(
2πα

n

)
=

1
2πi

∫
(c)

L∞(s, f)
(α

n

)−s

ds, (2.2)

for − 1
2 < c < − 7

64 , where L∞(s, f) is defined in (1.4) for f odd. We next insert
(2.2) into (1.9) to obtain

4παPfo
(α) =

∞∑
n=1

λ̃f (n)
n

1
2πi

∫
(c)

L∞(s, f)
(α

n

)−s

ds =
1

2πi

∫
(c)

L∞(s, f)
L(1 − s, f)

α−s ds,

(2.3)
where in the last step we have interchanged the order of summation and integration.
The functional equation of L(s, f), as in (1.5) thus yields

4παPfo
(α) =

εf

√
N

2πi

∫
(c)

L∞(1 − s, f)
L(s, f)

(Nα)−s ds. (2.4)

We next shift the line of integration from Re(s) = c to Re(s) = λ where 1 <
λ < 3

2 . Consider the positively oriented contour formed by the line segments
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[λ − iT, λ + iT ], [λ + iT, c + iT ], [c + iT, c − iT ] and [c − it, λ − iT ], where T is
any positive real number. Clearly, the poles of the Gamma factors in L∞(1 − s, f)
are on the right side of the line Re(s) = λ. Thus, the only poles inside the con-
tour are arising from the non-trivial zeros ρ of L(s, f). Therefore, by invoking the
Cauchy residue theorem, we arrive at∫ c+iT

c−iT

L∞(1 − s, f)
L(s, f)

(Nα)−sds =

[∫ λ−iT

c−iT

+
∫ λ+iT

λ−iT

+
∫ c+iT

λ+iT

]

× L∞(1 − s, f)
L(s, f)

(Nα)−s ds − 2πi
∑

|Im(ρ)|<T

Rρ,

(2.5)

where Rρ denotes a residual term at a non-trivial zero ρ of L(s, f). If we assume
the multiplicity of a non-trivial zero ρ of L(s, f) as nρ, then the residual term Rρ

can be calculated as

Rρ =
1

(nρ − 1)!
lim
s→ρ

dnρ−1

dsnρ−1

{
(s − ρ)nρL∞(1 − s, f)(Nα)−s

L(s, f)

}
=

1
(nρ − 1)!

lim
s→ρ

dnρ−1

dsnρ−1

{
(s − ρ)nρL∞(1 − s, f)βs

L(s, f)

}
.

We can bind Γ(s) for s = σ + it, in any vertical strip using Stirling’s formula,
which is given by (cf. [7, p. 224])

|Γ(s)| = (2π)1/2|t|σ− 1
2 e−

1
2 π|t|

(
1 + O

(
1
|t|
))

. (2.6)

Now, lemma 2.1 and (2.6) together implies that as T → ∞,

L∞(1 − s, f)
L(s, f)

(Nα)−s = O
(
e(A2−π

2 )|T |
)

,

where A2 < π/4. Therefore, the horizontal integrals in (2.5) vanishes as T → ∞.
We next concentrate on the vertical integral in (2.5) and denote the vertical integral
as V. Substituting s by 1 − s and applying the relation αβ = 1/N respectively, the
vertical integral V reduces to

V :=
∫ λ+iT

λ−iT

L∞(1 − s, f)
L(s, f)

(Nα)−s ds = β

∫ 1−λ+iT

1−λ−iT

L∞(s, f)
L(1 − s, f)

β−s ds.

Clearly − 1
2 < 1 − λ < 0. Therefore as T → ∞, we can apply (2.3) to evaluate the

vertical integral V as

V = 2πi · 4πβ2Pfo
(β). (2.7)

Combining (2.4), (2.5) and (2.7) together, we have

4πα

εf

√
N

Pfo
(α) = 4πβ2Pfo

(β) −
∑

ρ

Rρ.
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Finally, we multiply both sides of the above equation by εf

√
Nα

4π and invoke the
relation αβ = 1/N to conclude the first part (1.11) of our theorem.

For the second part, when f is even, one can first apply Cauchy residue theorem
in (2.1) by shifting the line of integration from c to λ such that −1 < λ < − 1

2 and
substitute x = 2πα

n , μ = iν to obtain

2Kiν

(
2πα

n

)
−
(πα

n

)−iν

Γ(iν) −
(πα

n

)iν

Γ(−iν)

=
1

4πi

∫
(λ)

Γ
(

s + iν

2

)
Γ
(

s − iν

2

)(πα

n

)−s

ds. (2.8)

Next, one can argue along a similar direction as was shown for part (a) to complete
the proof of (1.12).

In particular, if all the non-trivial zeros of L(s, f) are simple, the term Rρ in
(2.5) can be evaluated as

Rρ = lim
s→ρ

(s − ρ)
L∞(1 − s, f)

L(s, f)
(Nα)−s =

L∞(1 − ρ, f)
L′(ρ, f)

(Nα)−ρ =
L∞(1 − ρ, f)

L′(ρ, f)
βρ,

(2.9)
where in the last step we applied the relation αβ = 1/N . This completes the proof
of the theorem.

3. Equivalent criterion for grand Riemann hypothesis when f is odd

We first provide a heuristic stemming from theorem 1.1, which motivates us to
get an equivalent criterion of the grand Riemann hypothesis for L(s, f). Invoking
lemma 3.1 in (1.9), we obtain

α3/2Pfo
(α) → 0, (3.1)

as α → 0. We now assume the grand Riemann hypothesis for L(s, f) and the
convergence of the series

∑
ρ

L∞(1−ρ, f)
L′(ρ, f) βρ− 1

2 . Then (1.13) and (3.1) together
conclude

Pfo
(β) = O

(
β−3/2

)
,

as β → ∞.
The heuristic assumes the convergence of the series

∑
ρ

L∞(1−ρ, f)
L′(ρ, f) βρ− 1

2 . It has
been shown in theorem 1.2 that the assumption of the grand Riemann hypothesis
is enough to obtain the bound Pfo

(β) = O(β−3/2+δ), for any δ > 0.
In the following lemma, we provide a bound for the function Pfo

(y) as y → 0.

Lemma 3.1. Let − 1
2 < c < − 7

64 . We have

Pfo
(y) = O (y−1−c

)
,

as y → 0.
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Proof. We first apply both (2.2) and (2.6) to obtain that for − 1
2 < c < − 7

64 ,

1
n

Kiν

(
2πy

n

)
=

1
4πy

1
2πi

∫
(c)

L∞(s, f)
( y

n

)−s

ds � y−c−1

n−c
. (3.2)

Therefore, (1.9) and (3.2) imply that

Pfo
(y) � y−c−1

∞∑
n=1

λ̃f (n)
n1−c

� y−c−1,

where in the last step we used the convergence of the series
∑∞

n=1
λ̃f (n)
n1−c for − 1

2 <
c < − 7

64 . �

We next obtain the Mellin transform of the function Pfo
(y), which plays an

important role to prove theorem 1.2, when f is odd.

Lemma 3.2. For any complex number s with 0 < Re(s) < 1
2 , we have∫ ∞

0

y−sPfo
(y) dy =

πs−1

4
Γ
(

1−s+iν
2

)
Γ
(

1−s−iν
2

)
L(s + 1, f)

.

Proof. Let

φ(s) :=
∫ ∞

0

y−sPfo
(y) dy.

We first make the change of variable y to x/n and then multiply both sides by
λf (n)/n to write the above integral as

λf (n)
ns+1

φ(s) =
∫ ∞

0

x−s λf (n)
n2

Pfo

(x

n

)
dx.

Summing over n from 1 to ∞, we interchange the order of summation and integra-
tion by applying the Weierstrass M-test and the Lebesgue dominated convergence
theorem to obtain

L(s + 1, f)φ(s) =
∫ ∞

0

x−s
∞∑

n=1

λf (n)
n2

Pfo

(x

n

)
dx. (3.3)

It follows from the integral representation of Pfo
(y) as in (2.3) that for any c ∈(− 1

2 , 0
)
, we have

∞∑
n=1

λf (n)
n2

Pfo

(x

n

)
=

∞∑
n=1

λf (n)
n2

n

4πx

1
2πi

∫
(c)

L∞(s, f)
L(1 − s, f)

(x

n

)−s

ds

=
1

4πix

∫
(c)

L∞(s, f)x−s ds,

where in the last step we interchanged the order of summation and integration and
used the series definition of L(s, f). Therefore, substituting α by nx in expression
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(2.2), the above series reduces to
∞∑

n=1

λf (n)
n2

Pfo

(x

n

)
= Kiν(2πx). (3.4)

Finally, we insert (3.4) into (3.3) and apply the Mellin transform of K-Bessel
function for 0 < Re(s) < 1

2 to conclude that

L(s + 1, f)φ(s) =
∫ ∞

0

x−sKiν(2πx) =
πs−1

4
Γ
(

1 − s + iν

2

)
Γ
(

1 − s − iν

2

)
.

This completes the proof of our lemma. �

We are now ready to prove an equivalent criterion of the grand Riemann
hypothesis for L(s, f) when f is odd.

3.1. Proof of theorem 1.2

We first prove the sufficient condition of the grand Riemann hypothesis for L(s, f)
and for that we assume that the bound Pfo

(y) = O(y− 3
2+δ) holds for any δ > 0, as

y → ∞. It is already known from lemma 3.2 that the identity

L(s + 1, f)
∫ ∞

0

y−sPfo
(y) dy =

πs−1

4
Γ
(

1 − s + iν

2

)
Γ
(

1 − s − iν

2

)
. (3.5)

holds in 0 < Re(s) < 1
2 . We claim that the identity is also valid inside the region

− 1
2 < Re(s) � 0 under the assumption of the above bound of Pfo

(y).
To prove the claim, we first split the integral in the above identity into two

parts, one from 0 to 1 and another from 1 to ∞. Lemma 3.1 yields the con-
vergence of the first integral inside the region −1

2 < Re(s) � 0. It follows from
the bound Pfo

(y) = O(y− 3
2+δ) that the second integral also converges inside the

same region. Therefore, the result [19, theorem 3.2, p. 30] implies that the integral∫∞
0

y−sPfo
(y) dy represents an analytic function in − 1

2 < Re(s) � 0. The gamma
factors on the right-hand side of (3.5) are also analytic inside − 1

2 < Re(s) � 0 and
L(s + 1, f) is entire. Therefore, the principle of analytic continuation yields our
claim.

Now the right-hand side of (3.5) has no zeros in − 1
2 < Re(s) � 0. On the other

hand, the integral on the left-hand side is analytic inside the same region. Therefore,
L(s + 1, f) does not vanish in − 1

2 < Re(s) � 0 which concludes that the grand
Riemann hypothesis is true.

We next prove the converse part and for that we first assume that the grand
Riemann hypothesis is true. Under the assumption of the grand Riemann hypothesis
for L(s, f), it follows from [13, proposition 5.14, p. 113] that as x → ∞,∑

n�x

λ̃f (n) = O
(
x

1
2+δ
)

,

where δ is any positive real number. Let

M(�, n) :=
n∑

m=�

λ̃f (m)
m

.
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Applying the Euler’s partial summation formula, the above function can be bounded
as

M(�, n) = O
(
�−1/2+δ

)
. (3.6)

Let � = 	y1−δ
. We split the sum Pfo
(y) into two parts as

Pfo
(y) = S1(f, y) + S2(f, y), (3.7)

where

S1(f, y) :=
�−1∑
n=1

λ̃f (n)
n2

Kiν

(
2πy

n

)
,

and

S2(f, y) :=
∞∑

n=�

λ̃f (n)
n2

Kiν

(
2πy

n

)
.

We first estimate S2(f, y). We have

N∑
n=�

λ̃f (n)
n2

Kiν

(
2πy

n

)
=

N−1∑
n=�

M(�, n)

⎛⎝Kiν

(
2πy
n

)
n

−
Kiν

(
2πy
n+1

)
n + 1

⎞⎠
+ M(�,N)

Kiν

(
2πy
N

)
N

,

where the last term vanishes as N → ∞. Therefore, the above equation implies

S2(f, y) =
∞∑

n=�

M(�, n)

⎛⎝Kiν

(
2πy
n

)
n

−
Kiν

(
2πy
n+1

)
n + 1

⎞⎠ . (3.8)

We next estimate the above sum by utilizing the mean value theorem and for that
we define

g(x) :=
Kiν

(
2πy
x

)
x

. (3.9)

Invoking (2.2) into (3.9), we obtain

g(x) =
1

4πy

1
2πi

∫
(c)

Γ
(

s + 1 + iν

2

)
Γ
(

s + 1 − iν

2

)(πy

x

)−s

ds,

where − 1
2 < c < 0. We differentiate g(x) with respect to x and apply Stirling’s

formula (2.6) on the gamma factors to derive that

g′(x) =
1

4πy

∫
(c)

Γ
(

s + 1 + iν

2

)
Γ
(

s + 1 − iν

2

)
s (πy)−s

xs−1 ds � xc−1

yc+1
. (3.10)
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It follows from the mean value theorem that there exists λn ∈ (n, n + 1) such that
g(n) − g(n + 1) = −g′(λn). Therefore, the sum S2(f, y) in (3.8) can be written as

S2(f, y) =
∞∑

n=�

M(�, n)(g(n) − g(n + 1)) =
∞∑

n=�

M(�, n)(−g′(λn)).

Inserting the bounds from (3.6) and (3.10) into the above equation, we arrive at

S2(f, y) � �−
1
2+δ

yc+1

∞∑
n=�

nc−1 � �c− 1
2+δ

yc+1
� y− 3

2+δ, (3.11)

where in the penultimate step we have used the fact that
∑

n>x n−s = O(x1−s) (cf.
[3, p. 55, theorem 3.2(c)]) and in the last step, we put � = 	y1−δ
.

Next, we will concentrate on S1(f, y). Utilizing the asymptotics of Kiν(z) as
z → ∞ [15, Formula 10.40.2, p. 255], we can bound S1(f, y) as

S1(f, y) � e−
2πy

�√
y

�−1∑
n=1

λ̃f (n)
n3/2

.

Therefore, the bound of λ̃f (n), followed from (1.1) and the value � = 	y1−δ
, yields

S1(f, y) � e−
2πy

�√
y

�−
25
64+δ � y− 57

64+δ e−2πyδ

, (3.12)

for any δ > 0. Combining the estimates of S1(f, y) and S2(f, y) as in (3.12) and
(3.11) respectively into (3.7), we can conclude that as y → ∞, Pfo

(y) = O(y− 3
2+δ)

for any δ > 0. This completes the proof of theorem 1.2(a).

4. Equivalent criterion for grand Riemann hypothesis when f is even

In this section, we provide a criterion of the grand Riemann hypothesis for L(s, f)
when f is even, which is motivated from theorem 1.1(b). Under the assumption
of the grand Riemann hypothesis for L(s, f) and the convergence of the series∑

ρ
L∞(1−ρ, f)

L′(ρ, f) βρ− 1
2 , it follows from a similar argument in the beginning of § 3 that

as α → 0, or equivalently, as β → ∞,

Pfe
(β) =

πiνΓ(−iν)
L(−iν, f)

βiν +
π−iνΓ(iν)
L(iν, f)

β−iν + O(β−1/2)

The heuristic is true under the assumption of the convergence of the series∑
ρ

L∞(1−ρ, f)
L′(ρ, f) βρ− 1

2 but without this assumption, it is shown in theorem 1.2 that
the estimate of Pfe

(β) provides the main term of order β|iν| and the error term of
the order β−1/2+δ for any δ > 0. As mentioned earlier in section § 1, we need to
consider Qfe

(β) to find the criterion of the grand Riemann hypothesis for L(s, f).
In order to prove the sufficient condition of the grand Riemann hypothesis, the

following two lemmas are crucial.
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Lemma 4.1. Let − 3
2 < c < − 1

2 . Then for any y > 0,

Qfe
(y) = O (y−c−1

)
.

Proof. We first consider the function

Ων(y, x) := 2K1+iν

(
2πy

x

)
+ 2K1−iν

(
2πy

x

)
− Γ(1 + iν)

(πy/x)1+iν
− Γ(1 − iν)

(πy/x)1−iν
. (4.1)

The above function can be written as

Ων(y, x) = −x

π

d
dy

[
2Kiν

(
2πy

x

)
− Γ(iν)

(πy/x)iν
− Γ(−iν)

(πy/x)−iν

]
= −x

π

d
dy

1
4πi

∫
(c)

Γ
(

s + iν

2

)
Γ
(

s − iν

2

)(πy

x

)−s

ds

=
1

4πi

∫
(c)

sΓ
(

s + iν

2

)
Γ
(

s − iν

2

)(πy

x

)−s−1

ds, (4.2)

where in the penultimate step we have applied (2.8). Invoking Stirling formula for
gamma functions in the above integral, we obtain

Ων(y, x) = O ((x/y)c+1
)
. (4.3)

Therefore, the definition of Qfe
(y) together with (4.3) yields

Qfe
(y) � y−1−c

∞∑
n=1

λ̃f (n)
n1−c

� y−c−1,

where in the last step we used the fact that the series
∑∞

n=1
λ̃f (n)
n1−c converges as

− 3
2 < c < − 1

2 . This proves the lemma. �

In the following lemma, we provide the Mellin transform of Qfe
(y), which plays

an important role to prove the sufficient condition of the grand Riemann hypothesis
for L(s, f), when f is even.

Lemma 4.2. For any complex number s with 1
2 < Re(s) < 3

2 , we have∫ ∞

0

y−sQfe
(y) dy =

πss

2
Γ
(−s+iν

2

)
Γ
(−s−iν

2

)
L(s + 1, f)

. (4.4)

Proof. Proceeding similarly as was done in the proof of lemma 3.2, we can obtain∫ ∞

0

y−s−1Pfe
(y) dy =

πs Γ
(−s+iν

2

)
Γ
(−s−iν

2

)
2L(s + 1, f)

.

We finally perform the integration by parts and utilize the fact that Qfe
(y) =

d
dyPfe

(y) to conclude our lemma. �
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4.1. Proof of theorem 1.3

We first prove part (a) and for that we assume the bound Qfe
(y) = O(y−3/2+δ)

for any δ > 0. Multiplying both sides of (4.4) with ( s2+ν2

4 ), the identity

L(s + 1, f)
(

s2 + ν2

4

)∫ ∞

0

y−sQfe
(y) dy =

πss

2
Γ
(

1 +
−s + iν

2

)
Γ
(

1 +
−s − iν

2

)
(4.5)

holds for 1
2 < Re(s) < 3

2 . Invoking lemma 4.1 and the bound of Qfe
(y), it can be

shown by a similar argument of the proof of theorem 1.2 that the identity is also
valid inside the region − 1

2 < Re(s) < 3
2 .

Now, the right-hand side of (4.5) has no zeros in − 1
2 < Re(s) < 0. On the other

hand, integral is also analytic inside the same region. Therefore, L(s + 1, f) has
no zeros in − 1

2 < Re(s) < 0. This completes the proof of the grand Riemann
hypothesis.

We next prove part (b) and for that we assume the grand Riemann hypothesis
for L(s, f). The argument to prove the estimates of Pfe

(y) and Qfe
(y) are similar,

we here provide the proof for Qfe
(y).

It follows from [13, proposition 5.14, p. 113] that the grand Riemann hypothesis
for L(s, f) implies ∑

n�x

λ̃f (n) = O
(
x

1
2+δ
)

,

as x → ∞, where δ is any positive real number. Let

M(�, n) :=
n∑

m=�

λ̃f (m)
m2

.

Applying the Euler’s partial summation formula, the above function can be bounded
as

M(�, n) = O
(
�−3/2+δ

)
. (4.6)

Inserting Ων(y, x) from (4.1) into the definition of Qfe
(y) in (1.15), we have

Qfe
(y) = π

∞∑
n=1

λ̃f (n)
n2

Ων(y, n).

Let � = 	y1−δ
. We next split the above sum into two parts as

Qfe
(y) =

�−1∑
n=1

λ̃f (n)
n2

Ων(y, n) +
∞∑

n=�

λ̃f (n)
n2

Ων(y, n)

=: T1(f, y) + T2(f, y). (4.7)

We first evaluate T2(f, y). We have

N∑
n=�

λ̃f (n)
n2

Ων(y, n) =
N−1∑
n=�

M(�, n) (Ων(y, n) − Ων(y, n + 1)) − M(�,N)Ων(y,N).
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Note that the last term in the above equation vanishes as N → ∞, therefore, we
obtain

T2(f, y) =
∞∑

n=�

M(�, n) (Ων(y, n) − Ων(y, n + 1)) . (4.8)

The mean value theorem implies that there exists λn ∈ (n, n + 1) such that

Ων(y, n) − Ων(y, n + 1) = − d
dx

Ων(y, x)
∣∣∣∣
x=λn

. (4.9)

We next find the estimate for the expression on the right-hand side of the above
equation. Differentiating both sides of (4.2) with respect to x, we arrive at

d
dx

Ων(y, x) = − 1
4π2iy

∫
(c)

s(s + 1)Γ
(

s + iν

2

)
Γ
(

s − iν

2

)(
x

πy

)s

ds � y−c−1xc.

(4.10)
The combination of (4.6), (4.8), (4.9) and (4.10) together with � = 	y1−ε
, yields

T2(f, y) � �−
3
2+εy−c−1

∞∑
n=�

nc � y− 3
2+ε, (4.11)

where in the last step we used the fact
∑

n>x n−s = O(x1−s) (cf. [3, p. 55, theorem
3.2(c)]).

We now estimate T1(f, y). Invoking the estimate of Kz(x) from [15, p. 255,
Formula 10.40.2], we arrive at

T1(f, y) = −
�−1∑
n=1

λ̃f (n)
n2

{(πy

n

)iν−1

Γ(1 − iν) +
(πy

n

)−iν−1

Γ(1 + iν)
}

+ O
(

e−
2πy

�√
y

�−1∑
n=1

λ̃f (n)
n3/2

)
.

Therefore, the bound of λ̃f (n), followed from (1.1) and the value � = 	y1−δ
, yields

T1(f, y) = −
�−1∑
n=1

λ̃f (n)
n2

{(πy

n

)iν−1

Γ(1 − iν) +
(πy

n

)−iν−1

Γ(1 + iν)
}

+ O
(
y− 57

64+δ e−2πyδ
)

, (4.12)

for any δ > 0. Thus combining (4.7), (4.11) and (4.12), we conclude (1.16). This
completes the proof of our theorem.
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