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Abstract
We consider a collection of statistically identical two-state continuous time Markov chains (channels). A controller
continuously selects a channel with the view of maximizing infinite horizon average reward. A switching cost is
paid upon channel changes. We consider two cases: full observation (all channels observed simultaneously) and
partial observation (only the current channel observed). We analyze the difference in performance between these
cases for various policies. For the partial observation case with two channels or an infinite number of channels, we
explicitly characterize an optimal threshold for two sensible policies which we name “call-gapping” and “cool-off.”
Our results present a qualitative view on the interaction of the number of channels, the available information, and
the switching costs.

1. Introduction

Many scenarios in mining, finance, telecommunications, medical research, and other fields involve a
situation where the reward collected from a resource fluctuates over time in a stochastic manner. For
example, the yield obtained from mineral resource extraction varies as digging persists; the returns
from financial investments vary based on many random market effects; the communication bit rate of
communication channels varies based on physical conditions; and the findings in medical trials vary
over time. Such a theme of randomly varying rewards, or a randomly modulated reward rate, reappears
in multiple application areas. Hence designing, managing, and controlling such uncertain situations
has been a focal point of stochastic operations research in a variety of contexts. The theory of restless
bandits presents one general paradigm for dealing with such problems. See, for example, Gittins et al.
[8], Whittle [21], and Weber and Weiss [20] for the general restless bandits problem. The main theme
in such research is the efficient selection of channels/projects/arms over time.

In this paper, we add to the body of literature by considering problems with switching costs. Switching
costs have been considered in Agrawal et al. [3], Banks and Sundaram [6], and Dusonchet and Hongler
[7] in the context of multi-armed bandit processes, but to the best of our knowledge have not been
studied as we do here. The general problem which we discuss is one in which a resource yields random
rewards over time, with some known average reward rate and a maximal reward rate. One way to improve
performance is to introduce additional independent instances of this resource and to consider a situation
where at any time we use a resource of our (dynamic) choice. By doing so, we are potentially able to
increase the obtained reward rate from the average reward rate towards the maximal reward rate.

As alluded to above, dynamic resource allocation problems span a variety of applications. However,
one key area in which decisions often need to be made at the millisecond or second timescale is
communication networks. Specifically dynamic resource allocation problems dealing with opportunistic
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scheduling as in Aalto et al. [1] and further in [2] have recently attracted attention. In such a setting,
wireless cellular systems utilize random channel quality variations to minimize the flow-level holding
costs. Some of this research has utilized the restless bandits formulation, as in Jacko and Villar [9] (and
further in [1,2] ). Related is the continuous time paradigm with impulsive control as in Ayesta et al. [5].
Switching costs often need to be taken into account and this is the key contribution of our current paper
since the aforementioned works did not take switching costs directly into account.

Other related work in the context of communication networks is in the domain of handover problems.
See, for example, the survey Wang et al. [18] as well as Mezzavilla et al. [17] where general problems
dealing with handover and their solution via Markov Decision Processes (MDPs) are formulated. A key
aspect of this domain is the potential lack of information with regard to channel quality. This introduces
interesting problems and has attracted much work for which a survey describing contributions up to
2015 is in Kuhn and Nazarathy [11]. In more recent years, several additional notable works in which
channel information is not fully available are Kaza et al. [10], Larrnaaga et al. [12], and further in
Larrañaga et al. [13]. See also recent work dealing with minimizing the age of information as Maatouk
et al. [15] and Meshram and Kaza [16].

As an abstract example of a communication link, assume a link that yields an average bit rate of
4 Mbit/s and a maximal bit rate of 10 Mbit/s where the actual instantaneous bit rate varies stochastically
over time and achieves the maximal bit rate for random finite durations. By introducing multiple
instances of such a link and allowing the system to switch between the instances without constraint,
we are able to get an effective average bit rate that exceeds 4 Mbit/s and potentially nears the maximal
bit rate of 10 Mbit/s. The key is clearly to use the right instance of the channel at “the right time,” so
as to on-average use channels that do better than the average bit rate. At the extreme positive case, by
introducing an increasing number of instances and assuming their stochastic behavior is independent
between instances, we can get arbitrarily close to the 10 Mbit/s bit rate. The other extreme is not switching
between channels at all and settling for the average bit rate of 4 Mbit/s, obtained from a single channel.

While the usage of such redundant channels can be of benefit, it is clearly not without cost. First,
there are the structural costs of setting up additional channels. The exact nature of these costs depends on
the application and is not our focus. Then there are costs associated with setting up systems for gaining
information about the instantaneous state of all channels. Finally, there are dynamic instantaneous
switching costs involved when switching between channels. In this paper, we study the tradeoffs and
costs associated with this problem using the simplest example model that we could consider. The
elegance of our simple model is that it captures the value of real-time information and at the same time
allows us to compare how the addition of more channels to the system increases rewards. Real systems
are bound to be more complex than the model which we present; however, the results from our model
capture the essential tradeoffs that one can expect.

After reparameterization, our model is that each of 𝑛 channels yields instantaneous rewards of either
0 or 1 where switching between the reward states is according to a two-state continuous time Markov
chain. The long-term average reward obtained by a channel is 𝛾 ∈ (0, 1) and the instantaneous cost of
switching between channels is 𝑐. We distinguish between a case of full observation where the state of
all channels is observable, and a case of partial observation where only the state of the current channel
is available. For each of these cases, we suggest parameterized channel selection policies, and we are
able to analyze and optimize the parameters of these policies in certain situations.

An illustration of the performance of such a model for the case of 𝛾 = 0.4 is in Figure 1. There are
two threshold values at 𝛾 = 0.4 and at 𝛾2 = 0.16. We see that in the full observation case, when 𝑐 > 𝛾,
it is not worthwhile to use additional channels and otherwise the total rewards increases in an affine
manner as 𝑐 → 0. Further, we see that in the partial observation case, usage of redundant channels is
only worthwhile if 𝑐 < 𝛾2. In this case, the total reward rate increases in a nonlinear manner as 𝑐 → 0.
In this case, we compare two policies that are described in the sequel, namely call-gapping and cool-off.
While we do not have optimality proofs for these policies within the class of all policies, we show that
these policies agree in performance for 𝑛 = 2 and 𝑛 → ∞. We further obtain explicit results for the
case of 𝑛 = 2 and at 𝑛 = ∞. Note that in all cases, as the number of channels increases, the achievable
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Figure 1. The optimal average reward for a 𝛾 = 0.4 system with a varying number of channels 𝑛. The
red curves are for a case of full observation. The green curves are for a case of partial observation with
a cool-off policy. The blue curves are for the case of partial observation with a call-gapping policy.
Note that for 𝑛 = 2 and 𝑛 = ∞, both of the latter policies are identical.

reward rate increases towards the maximal reward for small switching costs 𝑐. Our results in this paper
help understand the tradeoffs between the number of channels, switching costs, information, and policy
qualitatively.

The remainder of the paper is structured as follows: In Section 2, we present the model and summarize
the main results. In Section 3, we further study the full observation case by considering simple steady
state results, the Whittle Index, and the optimality. In Section 4, we derive results associated with the case
of partial observations. In Section 5, we present numerical results, and finally, we conclude in Section 6.

2. Model and summary of results

We consider 𝑛 statistically identical channels 𝑖 = 1, 2, . . . , 𝑛, with state 𝑋𝑖 (𝑡) ∈ {0, 1}, evolving
independently according to a continuous-time, time-homogenous, two-state Markov chain model with
generator

𝑄 =

[
−𝜆 𝜆
𝜇 −𝜇

]
,

where 𝜆, 𝜇 > 0.
At any given time, the controller may only use one of the channels. The controller’s choice is

indicated through 𝑈 (𝑡) ∈ {1, . . . , 𝑛}, where 𝑈 (𝑡) = 𝑖 means that channel 𝑖 is being used at time 𝑡. There
is a fixed switching cost of 𝜅 ≥ 0 for every instant at which 𝑈 (𝑡) is changed; that is, every time 𝑡 where
𝑈 (𝑡−) ≠ 𝑈 (𝑡), an additional cost of 𝜅 is incurred.
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When 𝑋𝑖 (𝑡) = 𝑥 ∈ {0, 1}, the reward rate of that channel is denoted by 𝑟 (𝑥), a function assumed
identical for all channels. The goal of the controller is then to maximize the average reward,

𝑔 = lim inf
𝑡→∞

E

[∫ 𝑡

0 𝑟 (𝑋𝑈 (𝑠) (𝑠)) 𝑑𝑠
]
− 𝜅𝑁 (𝑡)

𝑡
,

where 𝑁 (𝑡) denotes the number of channel changes during the time interval [0, 𝑡].
By observing that ∫ 𝑡

0
𝑟 (𝑋𝑈 (𝑡) (𝑡)) 𝑑𝑡 = 𝑡 𝑟 (0) + (𝑟 (1) − 𝑟 (0))

∫ 𝑡

0
𝑋𝑈 (𝑠) (𝑠) 𝑑𝑠,

w.l.o.g., we are able to set 𝑟 (0) = 0 and 𝑟 (1) = 𝜁 > 0. Further, by rescaling time by a factor of 𝜂 = 𝜆−1

and setting 𝜁/𝜂 to be 1, we parameterize the channel model only by 𝛾 = 𝜆/(𝜆 + 𝜇) (the stationary
probability of a channel being in state 1) and 𝑐 = 𝜅/𝜂.

In what follows, we write 𝐼 (𝑡) = 𝑋𝑈 (𝑡) (𝑡), which denotes the state of the selected channel at time 𝑡.
Then, the average reward 𝑔 corresponding to the parametrization just outlined is expressed as:

𝑔 = lim inf
𝑡→∞

(𝜁/𝜂)
∫ 𝑡

0 �̃� (𝑢) 𝑑𝑢 − (𝜅/𝜂)𝑁 (𝑡)

𝑡
= lim inf

𝑡→∞

∫ 𝑡

0 �̃� (𝑢) 𝑑𝑢 − 𝑐𝑁 (𝑡)

𝑡
,

where �̃� (𝑡) = 𝐼 (𝜂𝑡) and 𝑁 (𝑡) = 𝑁 (𝜂𝑡).
Hence our model parameters are 𝛾 ∈ (0, 1) and 𝑐 ≥ 0 with a rescaled generator

𝑄 =

[
−1 1

1/𝛾 − 1 −(1/𝛾 − 1)

]
.

We distinguish two situations:

Full Observation (Case I): The controller fully observes {𝑋1(𝑡), . . . , 𝑋𝑛 (𝑡)}.
Partial Observations (Case II): When 𝑈 (𝑡) = 𝑖 the controller only observes 𝑋𝑖 (𝑡).

In considering this partial observation case, it is useful to consider belief states for 𝑖 = 1, . . . , 𝑛, via

𝜔𝑖 (𝑡) = P(𝑋𝑖 (𝑡) = 1 | All information observed up to time 𝑡),

and in constructing the belief states, it is useful to denote the last time in channel 𝑖 via,

T𝑖 (𝑡) = sup{𝑡 ′ ≤ 𝑡 : 𝑈 (𝑡 ′) = 𝑖}.

This allows the construction of the belief state of channel 𝑖 via

𝜔𝑖 (𝑡) = 𝑝(𝑡 − T𝑖 (𝑡) ; 𝑋𝑖 (T𝑖 (𝑡))),

where 𝑝(𝑡; 𝑥) := P(𝑋𝑖 (𝑡) = 1 | 𝑋𝑖 (0) = 𝑥) which can be represented explicitly as

𝑝(𝑡; 𝑥) =
{
𝛾(1 − 𝑒−𝑡/𝛾), 𝑥 = 0,
𝛾 + (1 − 𝛾)𝑒−𝑡/𝛾 , 𝑥 = 1. (1)

Observe that if 𝑈 (𝑡) = 𝑖 then T𝑖 (𝑡) = 𝑡 and then 𝜔𝑖 (𝑡) = 𝑋𝑖 (𝑡) which is either 0 or 1.
Control policies: We consider several policies all of which limit channel switching to times 𝑡 when

𝑋𝑖 (𝑡) = 0. This means that in the partial observation case (II), the belief state at any time 𝑡 for 𝑖 ≠ 𝑈 (𝑡)
is strictly monotonically increasing in time according to the first expression in (1). In both case I and
case II, one trivial policy denoted 𝜋 (𝑠) is the policy of never switching channel. Further, in case I, there
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is the policy 𝜋 (𝑎) which switches to an arbitrary channel 𝑗 ≠ 𝑈 (𝑡) if 𝑋 𝑗 (𝑡) = 1 and 𝑋𝑈 (𝑡) = 0. That is,
this policy ensures that the current channel is in state 1 if such a channel exists, and further this policy
does not switch excessively if not needed.

In case II, in addition to the policy 𝜋 (𝑠) , we consider a call-gapping policy, 𝜋 (𝜏) , and a cool-off policy
𝜋 (𝜎) . In brief, call-gapping does not switch out of a channel prior to a call-gapping duration, parameter
𝜏 > 0. Such a policy was analyzed in a different context in Lin and Ross [14] where it was termed
call-gapping. Further, in brief, cool-off does not switch into a channel prior to a cooling-off period,
parameter 𝜎 > 0.

Like all our policies, call-gapping does not switch out of a good channel; however, if the current
channel 𝑈 (𝑡) is in bad state, i.e. 𝑋𝑈 (𝑡) = 0 then this policy switches to the channel with the highest
belief state as long as the time since the last switch is not less than 𝜏. That is, at time 𝑡 denote the last
switching time via,

T ℓ (𝑡) = sup{𝑡 ′ ≤ 𝑡 : 𝑈 (𝑡 ′−) ≠ 𝑈 (𝑡 ′)},

then the call-gapping policy switches only if 𝑋𝑈 (𝑡) = 0 and 𝑡 − T ℓ (𝑡) ≥ 𝜏. Note that in our context,
since the channels are homogenous and 𝜔𝑖 (𝑡) is monotonically increasing, when the call-gapping policy
yields a switch then it is to a channel that was not used for the longest duration. This naturally yields
round-robin behavior as w.l.o.g., we switch from channel 𝑖 to channel 𝑖 + 1 (modulo 𝑛).

As with the call-gapping policy, the cool-off policy does not switch out of a good channel and once
switching occurs we switch with a round-robin manner, i.e. to the channel that has been visited longest
ago. However, in contrast to the call-gapping policy, we choose to switch into a channel only if it has
not been visited for a time that is at least the cool-off parameter 𝜎. This essentially means that the
cool-off policy considers the belief states of all channels and switches into a channel 𝑖 only if 𝑈 (𝑡) = 0
and 𝜔𝑖 (𝑡) exceeds the threshold 𝑝(𝜎 ; 0). Note that unlike the call-gapping policy, the cool-off policy
may potentially incur multiple instantaneous switches. Also note that when 𝑛 = 2, the call-gapping and
cool-off policies are identical. Both the call-gapping and cool-off policies ensure a strict upper limit on
the switching costs, 𝑐𝑁 (𝑡)/𝑡, as with these policies, almost surely,

lim sup
𝑡→∞

𝑐
𝑁 (𝑡)

𝑡
≤

𝑐

𝜏
, and lim sup

𝑡→∞

𝑐
𝑁 (𝑡)

𝑡
≤

𝑛𝑐

𝜎
.

Our results for these policies are as follows. First for case I, the performance of the system under 𝜋 (𝑠)

and 𝜋 (𝑎) is tractable, for any value of 𝑛. This also allows us to characterize, when each of these policies
is preferable as a function of the switching cost 𝑐 and the parameter 𝛾.

In contrast, for case II, analysis is more difficult. When 𝑛 = 2, we are able to characterize the optimal
call-gapping parameter 𝜏∗. For finite 𝑛 > 2, we have not found such an analytic characterization.
However, we can consider systems with large 𝑛. For this, we construct an approximate model, that we
label with 𝑛 = ∞. Such a system has only two channels, say 𝑖 = 1 and 𝑖 = 2. When 𝑈 (𝑡) = 1, then 𝑋2(𝑡)
is assumed to be in the steady state. Similarly when 𝑈 (𝑡) = 2 then 𝑋1(𝑡) is assumed to be in the steady
state. That is, the current channel 𝑋𝑈 (𝑡) behaves normally; however, at the moment of switching to the
other channel, the state of that channel is drawn from the steady state distribution [(1 − 𝛾) 𝛾], and the
evolution continuous. Under a round-robin-based policy such as our 𝜋 (𝜏) and 𝜋 (𝜎) , with large 𝑛, the
𝑛 = ∞ model approximates the system because we can expect the next channel in the round-robin to be
at approximate steady state.

The nature of our analytic results is in comparing the different policies (and their parameters) for
Case I, and Case II, and for different values of 𝑛. That is, for Case I, we determine when 𝜋 (𝑠) is preferable
to 𝜋 (𝑎) and vice versa. We also determine the value of the long-term reward 𝑔. Similarly, for Case II
(under 𝑛 = 2 and 𝑛 = ∞), we compare 𝜋 (𝜏) , 𝜋 (𝜎) , and 𝜋 (𝑠) , determine the optimal parameters for 𝜏 (or
𝜎), and obtain expressions for 𝑔.

The following two theorems are proved in Sections 3 and 4, respectively.
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Theorem 2.1. In Case I, the optimal choice between 𝜋 (𝑎) and 𝜋 (𝑠) is given by:

𝜋∗ =

{
𝜋 (𝑎) , 𝑐 < 𝛾,

𝜋 (𝑠) , 𝑐 ≥ 𝛾.

Further, under 𝜋∗, the optimal expected average reward is given by:

𝑔∗ =

⎧⎪⎪⎨⎪⎪⎩
1 − (1 − 𝛾)𝑛 − 𝑐

1 − 𝛾 − (1 − 𝛾)𝑛

𝛾
𝑐 < 𝛾,

𝛾 𝑐 ≥ 𝛾.

Moreover, for 𝑛 = 2, the policy 𝜋∗ is an optimal policy.

We also conjecture that in Case I, 𝜋∗ is the optimal policy for any 𝑛. However, we are only able
to prove this using computer algebra systems (such as Mathematica) for small 𝑛 by doing symbolic
computations. Additionally, as we show in Section 3, 𝜋∗ also corresponds to the Whittle Index-based
policy.

A similar partial result is found in Case II: for any 𝑛, if 𝑐 > 𝛾2 then the optimal policy is 𝜋 (𝑠) when
compared against 𝜋 (𝜏) and 𝜋 (𝜎) . We now have,

Theorem 2.2. For Case II, we consider two scenarios. Firstly, restrict the policy space to be the set of
call-gapping policies and denote the optimal policy therein by 𝜋∗𝐶 . Secondly, restrict the policy space to
be the set of all cool-off policies and denote the optimal policy therein by 𝜋∗𝐷 . Then we have for 𝑛 ≥ 2:

𝜋∗𝐶 =

{
𝜋 (𝜏∗) , 𝑐 < 𝛾2,

𝜋 (𝑠) , 𝑐 ≥ 𝛾2,
𝜋∗𝐷 =

{
𝜋 (𝜎∗) , 𝑐 < 𝛾2,

𝜋 (𝑠) , 𝑐 ≥ 𝛾2.

When 𝑐 < 𝛾2 and 𝑛 = 2, the optimal call-gapping time, 𝜏∗ is the unique non-negative solution of the
equation

𝑒2𝜏∗/𝛾 (𝛾2 − 𝑐)(𝛾 − 2) + 2𝑒𝜏∗/𝛾𝛾(𝛾 − 𝜏∗(𝛾 − 1)) − 𝛾(𝛾2 − 𝑐) = 0. (2)

The optimal cool-off level is given by 𝜎∗ = 𝜏∗. When 𝑐 < 𝛾2, 𝑛 = ∞,

𝜎∗ = 𝜏∗ = 0.

Further with 𝜋∗𝐶 or 𝜋∗𝐷 , the optimal expected average reward is given by:

𝑔∗𝐶 = 𝑔∗𝐷 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝐴1(𝛾, 𝜏

∗) − 𝑐𝐴2(𝛾, 𝜏
∗)

𝐴3(𝛾, 𝜏∗)
𝑐 < 𝛾2, 𝑛 = 2,

1 − 𝑐(1 − 𝛾)/𝛾2 𝑐 < 𝛾2, 𝑛 = ∞,

𝛾 𝑐 ≥ 𝛾2,

where,

𝐴1(𝛾, 𝜏) = 𝑒2𝜏/𝛾 ((𝜏 − 1)𝛾3 − (3𝜏 − 2)𝛾2 + 2𝜏𝛾) − 2𝑒𝜏/𝛾𝛾2(1 − 𝛾)2 + 2𝛾4 + (𝜏 − 3)𝛾3 − 𝜏𝛾2,

𝐴2(𝛾, 𝜏) = (𝛾 − 1)(𝑒2𝜏/𝛾 (𝛾 − 2) + 𝛾),

𝐴3(𝛾, 𝜏) = 𝛾3 + (𝜏 − 2)𝛾2 − 𝜏𝛾 − 𝑒2𝜏/𝛾 (𝛾3 − (𝜏 + 2)𝛾2 + 3𝜏𝛾 − 2𝜏).

Note that the expression for 𝑔∗𝐶 or 𝑔∗𝐷 as in Theorem 2.2 can be used to evaluate the performance
for 𝑛 = 2 for any value of 𝜏 (alt. 𝜎), by replacing 𝜏∗ in the expression with 𝜏 (alt. 𝜎). Also note that
empirical evidence, see Figure 1, suggests that when 2 < 𝑛 < ∞ the optimal cool-off policy has a better
expected average reward than the optimal call-gapping policy.
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3. On the Whittle index and optimality for case I

We now prove Theorem 2.1 in two parts; first the expression for 𝑔∗ is derived by using a continuous-
time birth and death process. Then we prove that 𝜋∗ is the optimal policy for 𝑛 = 2, describe symbolic
computations for proving it is optimal for higher order 𝑛, and conjecture it is optimal for any 𝑛. We then
move on to the Whittle index associated with Case I.

Proof of correctness of g* expression for Theorem 2.1. We consider the process {𝑀 (𝑡), 𝑡 ≥ 0} on the
state space {0, 1, . . . , 𝑛} where,

𝑀 (𝑡) =
𝑛∑
𝑖=1

𝑋𝑖 (𝑡).

The fact that the channels are independent and satisfy the same probability law, implies that 𝑀 (𝑡) is a
birth and death continuous time Markov chain, with birth and death rates

𝜆𝑖 = 𝑛 − 𝑖, 𝜇𝑖 = 𝑖

(
1
𝛾
− 1

)
, (3)

for 𝑖 ∈ {0, . . . , 𝑛 − 1} and 𝑖 ∈ {1, . . . , 𝑛}, respectively. Such a birth and death process is known as an
Ehrenfest model with binomial stationary distribution,

𝜚𝑖 =

(
𝑛

𝑖

)
𝛾𝑖 (1 − 𝛾)𝑛−𝑖 𝑖 = 0, . . . , 𝑛.

Under the policy 𝜋 (𝑎) , a reward rate of 1 is accrued at times 𝑡 during which 𝑀 (𝑡) > 0. Further,
switching costs are incurred at certain transition times of 𝑀 (𝑡). Specifically at times 𝑡 when 𝑀 (𝑡−) = 0
and 𝑀 (𝑡) = 1, a switching cost 𝑐 is incurred with probability (𝑛 − 1)/𝑛. This is the probability that the
channel that changes to ‘good’ is not the currently selected channel and therefore an immediate channel
change takes place. Similarly, at times 𝑡 when 𝑀 (𝑡−) = 𝑘 ≥ 2 and 𝑀 (𝑡) = 𝑘 − 1, a cost of 𝑐 is incurred
with probability 1/𝑘 . This is the probability of the current channel turning ‘bad’ and hence requiring
a switch. Now considering the reward as a Markov reward process, we have that average under policy
𝜋 (𝑎) is,

𝑔 = (1 − 𝜚0) − 𝑐
𝑛 − 1
𝑛

𝜆0𝜚0 − 𝑐
𝑛∑

𝑘=2

1
𝑘
𝜇𝑘 𝜚𝑘

= 1 − (1 − 𝛾)𝑛 − 𝑐
1 − 𝛾 − (1 − 𝛾)𝑛

𝛾
,

where the second line follows from the structure of the birth and death rates (3). Further with 𝜋 (𝑠) , we
have that 𝑔 is trivially 𝛾. Hence 𝜋 (𝑎) is preferable only when 𝑐 ≤ 𝛾. �

To consider the optimality of 𝜋∗, the processes {𝑋𝑖 (𝑡)}
𝑛
𝑖=1 and 𝑈 (𝑡) can be transformed to 𝑊 (𝑡) and

𝑆(𝑡) where 𝑊 (𝑡) = 𝑋𝑈 (𝑡) (𝑡) is the state of the current channel and,

𝑆(𝑡) =
∑

𝑖≠𝑈 (𝑡)

𝑋𝑖 (𝑡),

is the number of other channels that are in the good state. The process

X̃(𝑡) = (𝑊 (𝑡), 𝑆(𝑡)),

can then be represented as part of a continuous time MDP with singular controls, similar to the framework
used in Ayesta et al. [5]. The state space is {0, 1} × {0, . . . , 𝑛 − 1}. The action process {𝐴(𝑡)} takes
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values in the action space {0, 1} where 𝐴(𝑡) = 0 indicates staying on a channel at time 𝑡. Further at
singular time points, 𝑡 in which 𝐴(𝑡) = 1, an instantaneous channel switch is made (and immediately
at 𝑡+, 𝐴(𝑡+) = 0) . In the construction of this process, we assume that if a switch is made and there is
another channel available of a different state to 𝑊 (𝑡), then we switch into such an arbitrary channel and
this implies state change. Otherwise (in the border cases in which a switch is made and there is not a
different channel), the state is not changed.

To construct the continuous time MDP with singular controls, we use 𝐼 (𝑎) (𝑤, 𝑠) as an indicator if
transitions out of state (𝑊 (𝑡), 𝑆(𝑡)) = (𝑤, 𝑠) are singular or not for action 𝑎 ∈ {0, 1}. If 𝐼 (𝑎) (𝑤, 𝑠) = 0
then we define transition intensities, 𝑞 (𝑎) ((𝑤, 𝑠), ·). Alternatively if 𝐼 (𝑎) (𝑤, 𝑠) = 1 then there are
transition probabilities, 𝑝 (𝑎) ((𝑤, 𝑠), ·). In our case, it is simply that 𝐼 (𝑎) (𝑤, 𝑠) = 𝑎 and hence for action
𝑎 = 0 (do not switch), we have transition intensities and for action 𝑎 = 1 (switch), we have transition
probabilities. These are constructed via,

𝑞 (0) ((𝑤, 𝑠), (𝑤, 𝑠 + 1)) = 𝜆𝑠 for 𝑠 ∈ {0, . . . , 𝑛 − 2},
𝑞 (0) ((𝑤, 𝑠), (𝑤, 𝑠 − 1)) = 𝜇𝑠 for 𝑠 ∈ {1, . . . , 𝑛 − 1},

𝑞 (0) ((0, 𝑠), (1, 𝑠)) = 1 for 𝑠 ∈ {0, . . . , 𝑛 − 1},

𝑞 (0) ((1, 𝑠), (0, 𝑠)) =
1
𝛾
− 1 for 𝑠 ∈ {0, . . . , 𝑛 − 1},

where

𝜆𝑠 = 𝑛 − 1 − 𝑠, 𝜇𝑠 = 𝑠

(
1
𝛾
− 1

)
,

and 𝑞 (0) ((𝑤, 𝑠), ·) = 0 otherwise. Further,

𝑝 (1) ((0, 𝑠), (1, 𝑠 − 1)) = 1 for 𝑠 ∈ {1, . . . , 𝑛 − 1},
𝑝 (1) ((1, 𝑠), (0, 𝑠 + 1)) = 1 for 𝑠 ∈ {0, . . . , 𝑛 − 2},

𝑝 (1) ((0, 0), (0, 0)) = 1,
𝑝 (1) ((1, 𝑛 − 1), (1, 𝑛 − 1)) = 1,

and 𝑝 (1) ((𝑤, 𝑠), ·) = 0 otherwise.
This continuous time MDP with singular controls can be converted to a continuous time MDP

without singular controls using the same approach as in Ayesta et al. [5]. Further, we can uniformize
with a uniformization rate of 𝑛/𝛾 to obtain a standard discrete time MDP with the same state space and
action space. In this MDP, we denote the state process via

X(𝑘) = (𝑊 (𝑘), 𝑆(𝑘)), 𝑘 = 0, 1, 2, . . .

and the action sequence denoted {𝐴(𝑛)} takes values in {0, 1}. The transition probabilities for this MDP
are,

𝑝 (0) ((𝑤, 𝑠), (𝑤, 𝑠 + 1)) = 𝜆𝑠 for 𝑠 ∈ {0, . . . , 𝑛 − 2},
𝑝 (0) ((𝑤, 𝑠), (𝑤, 𝑠 − 1)) = 𝜇𝑠 for 𝑠 ∈ {1, . . . , 𝑛 − 1},

𝑝 (0) ((0, 𝑠), (1, 𝑠)) =
𝛾

𝑛
for 𝑠 ∈ {0, . . . , 𝑛 − 1},

𝑝 (0) ((1, 𝑠), (0, 𝑠)) =
1 − 𝛾

𝑛
for 𝑠 ∈ {0, . . . , 𝑛 − 1},
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𝑝 (0) ((𝑤, 𝑠), (𝑤, 𝑠)) =
(𝑤 + 𝑠)𝛾 + (𝑛 − 𝑤 − 𝑠)(1 − 𝛾)

𝑛
for 𝑠 ∈ {0, . . . , 𝑛 − 1},

𝑝 (1) ((0, 𝑠), (1, 𝑠)) = 𝜆𝑠−1 for 𝑠 ∈ {1, . . . , 𝑛 − 1},
𝑝 (1) ((0, 𝑠), (1, 𝑠 − 2)) = 𝜇𝑠−1 for 𝑠 ∈ {2, . . . , 𝑛 − 1},

𝑝 (1) ((0, 𝑠), (0, 𝑠 − 1)) =
1 − 𝛾

𝑛
for 𝑠 ∈ {1, . . . , 𝑛 − 1},

𝑝 (1) ((0, 𝑠), (1, 𝑠 − 1)) =
𝑠𝛾 + (𝑛 − 𝑠)(1 − 𝛾)

𝑛
for 𝑠 ∈ {1, . . . , 𝑛 − 1},

𝑝 (1) ((1, 𝑠), (0, 𝑠 + 2)) = 𝜆𝑠+1 for 𝑠 ∈ {0, . . . , 𝑛 − 3}, (∗)

𝑝 (1) ((1, 𝑠), (0, 𝑠)) = 𝜇𝑠+1 for 𝑠 ∈ {0, . . . , 𝑛 − 2},

𝑝 (1) ((1, 𝑠), (1, 𝑠 + 1)) =
𝛾

𝑛
for 𝑠 ∈ {0, . . . , 𝑛 − 2},

𝑝 (1) ((1, 𝑠), (0, 𝑠 + 1)) =
(𝑠 + 1)𝛾 + (𝑛 − 𝑠 − 1)(1 − 𝛾)

𝑛
for 𝑠 ∈ {0, . . . , 𝑛 − 2},

where,

𝜆𝑠 = 𝛾
𝑛 − 1 − 𝑠

𝑛
, 𝜇𝑠 = (1 − 𝛾)

𝑠

𝑛
,

and 𝑝 (𝑎) ((𝑤, 𝑠), ·) = 0 otherwise. Note that the transition above marked via (∗) only occurs for systems
with 𝑛 ≥ 3.

The rewards of this uniformized MDP are,

𝑟 (0) (𝑤, 𝑠) =
𝛾

𝑛
𝑤,

𝑟 (1) (𝑤, 𝑠) =

{𝛾
𝑛
− 𝑐 if (𝑤 = 0 and 𝑠 > 0) or (𝑤 = 1 and 𝑠 = 𝑛 − 1),

−𝑐 otherwise.

We are now able to prove that the optimal policy for this MDP is 𝜋∗ in the case of 𝑛 = 2.

Proof of optimality of 𝜋* for n= 2 in Theorem 2.1. We carry out policy evaluation for this MDP under
𝜋∗ and this yields a relative value function, 𝑉∗ : {0, 1} × {0, 1} → R, interpreted as,

𝑉∗ (𝑤, 𝑠) = lim
ℓ→∞
E

[(
ℓ−1∑
𝑘=0

𝑟 (𝐴(𝑘)) (𝑊 (𝑘), 𝑆(𝑘))

)
− ℓ𝑔∗(𝑤,𝑠) |𝑊 (0) = 𝑤, 𝑆(0) = 𝑠

]
,

where,

𝑔∗(𝑤,𝑠) = lim
ℓ→∞
E

[
1
ℓ

ℓ−1∑
𝑘=0

𝑟 (𝐴(𝑘)) (𝑊 (𝑘), 𝑆(𝑘)) |𝑊 (0) = 𝑤, 𝑆(0) = 𝑠

]
.

Note that this MDP is a uni-chain and thus 𝑔∗(𝑤,𝑠) does not depend on the initial state and can be
denoted as 𝑔∗. Now we carry out explicit policy evaluation (under the policy 𝜋∗) where we constrain
𝑉∗ (0, 0) = 0. This is done separately for 𝑐 < 𝛾 (where 𝜋∗ = 𝜋 (𝑎) ) and 𝑐 ≥ 𝛾 (where 𝜋∗ = 𝜋 (𝑠) ). The
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resulting expressions for the relative value function and gains are,

𝑉∗ (0, 1) =
(𝑐 − 𝛾)(𝛾 − 2)

2
,

𝑉∗ (1, 0) =
𝛾(𝑐 − 𝛾 + 2)

2
,

𝑉∗ (1, 1) =
3𝛾 − 𝑐

2
+ 𝑐𝛾 − 𝛾2,

𝑔∗ =
𝛾(1 − (1 − 𝛾)2 − 𝑐(1 − 𝛾))

2
,

for 𝑐 < 𝛾,

and
𝑉∗ (0, 1) = 0,
𝑉∗ (1, 0) = 𝛾,
𝑉∗ (1, 1) = 𝛾,

𝑔∗ =
𝛾2

2
,

for 𝑐 < 𝛾.

Note that as expected, taking 𝑛 = 2, we have that 𝑔∗ = (𝛾/𝑛)𝑔∗, where 𝑔∗ is as in Theorem 2.1.
We now consider the Bellman equation for the MDP,

𝑉 + 𝑔 1 = max{𝑟 (0) + 𝑃 (0)𝑉︸��������︷︷��������︸
𝑅0

, 𝑟 (1) + 𝑃 (1)𝑉︸��������︷︷��������︸
𝑅1

}, (4)

where 1 is a vector of ones, 𝑉 and 𝑟 ( ·) are the appropriate vectors and 𝑃 ( ·) is the appropriate transition
probability matrix (using the lexicographic ordering of the state space). Using 𝑉 = 𝑉∗ from above,
expressions for the vector difference 𝑅1 − 𝑅0 are as follows:

𝑐 for (𝑤, 𝑠) = (0, 0),
𝑐 − 𝛾

2
for (𝑤, 𝑠) = (0, 1),

3𝑐 + 𝛾

2
for (𝑤, 𝑠) = (1, 0),

𝑐 for (𝑤, 𝑠) = (1, 1),

for 𝑐 < 𝛾,

and
𝑐 for (𝑤, 𝑠) = (0, 0),
𝑐 − 𝛾 for (𝑤, 𝑠) = (0, 1),
𝑐 + 𝛾 for (𝑤, 𝑠) = (1, 0),
𝑐 for (𝑤, 𝑠) = (1, 1),

for 𝑐 ≥ 𝛾.

The respective signs of these entries are (+,−, +, +) for 𝑐 < 𝛾 and (+, +, +, +) for 𝑐 ≥ 𝛾. These signs
agree with 𝜋∗ meaning that the only case for switching is in state (0, 1) when 𝑐 < 𝛾. Hence,𝑉∗ is indeed
an optimal solution of (4) because it was computed for 𝜋∗ which agrees with these signs. Hence 𝜋∗ is
an optimal policy. �

We note that using computer algebra systems (Mathematica in our case), we are able to explicitly
carry out policy evaluation and obtain expressions for 𝑉∗ for 𝑛 = 2, 3, 4, . . . , 8 in both the 𝑐 < 𝛾 and
𝑐 ≥ 𝛾 cases.1 In all these cases, we can also compute 𝑅1 − 𝑅0 and see that the signs of the entries agree
with 𝜋∗ and hence 𝜋∗ is optimal. Note that these computations also involve finding an expression for the
gain, 𝑔∗. In all cases, we obtain 𝑔∗ = (𝛾/𝑛)𝑔∗ (𝑔∗ is as in Theorem 2.1), similarly to the case 𝑛 = 2 in
the proof above .

1Higher values of 𝑛 can potentially be handled as well with greater computation cost (we did not carry this out).
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Hence for 𝑛 ∈ {2, . . . , 8}, we essentially have a proof of optimality (in addition to the explicit proof
written above for 𝑛 = 2). However, we were not able to distill explicit expressions for 𝑉∗ using a simple
formula and hence we do not have a proof for arbitrary 𝑛. Nevertheless, we conjecture that 𝜋∗ is optimal
in Case I for any 𝑛. See the paper’s associated GitHub repository Wang et al. [19] for the associated
Mathematica code.

3.1. The Whittle index

It is also interesting to consider the system as if controlled by the Whittle index (see [8] for an overview).
As this is a continuous time system with impulsive controls, we use a setup similar to Ayesta et al. [5].

In general, an index-based policy operates as follows. There is an index function I : 𝜒 → R, where
𝜒 is the state space of the channel. The index-based policy continuously monitors the index of each
channel, say I𝑖 for 𝑖 = 1, . . . , 𝑛 by evaluating I(·) on the channel state. It then ensures that the chosen
channel is the channel 𝑖 with the highest index I𝑖 . In our continuous time setup, we assume that the
policy only switches channels if necessary. That is, if there is a tie, there is not a switch.

The Whittle index is one such index function. A key component for the evaluation of the Whittle
index is the one-arm subsidy problem, parameterized via 𝜈 ∈ R. In this problem, instead of considering
the full system of 𝑛 channels we focus on a single channel and assume the controller has a choice
between two actions: 𝑎 = 0 which means not using the channel and receiving a subsidy at rate 𝜈, or
𝑎 = 1 which means using the channel.

In the one-arm subsidy problem for our case, the state space is

𝜒 = {(𝑥, 𝑢) : 𝑥 ∈ {0, 1}, 𝑢 ∈ {0, 1}},

where 𝑥 and 𝑢 are indicators of whether the channel is in a good state and whether the channel is in use,
respectively.

Since we are dealing with impulsive controls, similarly to the 𝑛 channel continuous time impulsive
MDP above, we use 𝐼 (𝑎) (𝑥, 𝑢) as indicators for impulsive control. Here, in the one-arm subsidy problem,
𝐼 (𝑎) (𝑥, 𝑢) = �{𝑎≠𝑢 }. With these, we have transition rates (for state-action pairs without impulsive
controls),

𝑞 (0) ((0, 0), (1, 0)) = 1, 𝑞 (0) ((1, 0), (0, 0)) =
1
𝛾
− 1,

𝑞 (1) ((0, 1), (1, 1)) = 1, 𝑞 (1) ((1, 1), (0, 1)) =
1
𝛾
− 1,

and 𝑞 ( ·) ((𝑥, 𝑢), ·) = 0 otherwise for all other state-action pairs without impulsive control. Further, the
transition probabilities (for state-action pairs with impulsive control) are,

𝑝 (0) ((0, 1), (0, 0)) = 1, 𝑝 (0) ((1, 1), (1, 0)) = 1,
𝑝 (1) ((0, 0), (0, 1)) = 1, 𝑝 (1) ((1, 0), (1, 1)) = 1,

and 𝑝 ( ·) ((𝑥, 𝑢), ·) = 0 otherwise for all other state-action pairs with impulsive control.
In such a one-arm subsidy problem, the continuous time reward is taken as

�̃� (𝑎) (𝑥, 𝑢) = 𝑥𝑢 𝑥 ∈ {0, 1}, 𝑢 ∈ {0, 1}. (5)

Further in adapting the one-arm subsidy problem to our general control problem, we set instantaneous
rewards at transitions where 𝐼 (𝑎) (𝑥, 𝑢) = 1 at a value of −𝑐/2. Here, the factor of 1/2 captures the fact
that a one-arm subsidy problem is not a real problem being used but rather an abstraction of a single
channel vs. all channels together. In the real system, every channel switch would result in a cost of 𝑐
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(reward of −𝑐) and then the one-arm subsidy problem of the current channel “becomes” the problem of
the next channel.

The continuous time MDP with singular controls of the one-arm subsidy problem can now be
converted to a continuous time MDP without singular controls using the same approach as Ayesta et
al. [5] and our analysis above. Further, similar to the MDP above, we can uniformize, now using a
uniformization rate of 1/𝛾. This yields a standard discrete time MDP with the same state space and
action space. The transition probabilities for this uniformized MDP have for every (𝑥, 𝑢) ∈ 𝜒,

𝑝 (0) ((𝑥, 𝑢), (0, 0)) = 1 − 𝛾,
𝑝 (0) ((𝑥, 𝑢), (1, 0)) = 𝛾,

and 𝑝 (1) ((𝑥, 𝑢), (0, 1)) = 1 − 𝛾,
𝑝 (1) ((𝑥, 𝑢), (1, 1)) = 𝛾,

(6)

and 𝑝 ( ·) ((𝑥, 𝑢), ·) = 0 otherwise. Further, the rewards are now,

𝑟 (𝑎) (𝑥, 𝑢) = 𝛾𝑥 − 1{𝑎≠𝑢 }
𝑐

2
.

Observe that the first term captures the uniformized continuous time reward and the second term captures
the impulsive costs.

Now for any fixed 𝜈 ∈ R, consider the Bellman equation for the relative value function 𝑉 𝜈 (𝑥, 𝑢),

𝑉 𝜈 + 𝑔𝜈1 = max{𝑟 (0) + 𝜈1 + 𝑃 (0)𝑉 𝜈︸�����������������︷︷�����������������︸
𝑅𝜈

0

, 𝑟 (1) + 𝑃 (1)𝑉 𝜈︸����������︷︷����������︸
𝑅𝜈

1

}, (7)

where as previously, 1 is a vector of ones, 𝑉 𝜈 and 𝑟 ( ·) are the appropriate 4-vectors and 𝑃 ( ·) is the
appropriate transition probability matrix (using the lexicographic ordering of the state space) using (6),
and 𝑔𝜈 is the (scalar) long-term average reward for the problem parameterized by 𝜈.

It can now be verified that the Whittle index for 𝑐 < 𝛾 is:

𝜈(0, 0) = 0, 𝜈(0, 1) = 𝑐𝛾, 𝜈(1, 0) = 𝑐𝛾 + (𝛾 − 𝑐), 𝜈(1, 1) = 𝛾. (8)

And further, the Whittle index for 𝑐 ≥ 𝛾 is:

𝜈(0, 0) = 0, 𝜈(0, 1) = 𝛾2, 𝜈(1, 0) = 𝛾2, 𝜈(1, 1) = 𝛾. (9)

That is, for each state (𝑥, 𝑢) ∈ 𝜒, 𝜈(𝑥, 𝑢) in (8) or (9) defines a Bellman equation (7) which has a
solution in which 𝑅𝜈

0 (𝑥, 𝑢) = 𝑅𝜈
1 (𝑥, 𝑢) (again using the lexicographic ordering for the vectors 𝑅𝜈

0 and
𝑅𝜈

1 ). This can be verified, also by noting that the associated value function solutions (𝑉 𝜈 , 𝑔𝜈) of (7) are
as follows for 𝑐 < 𝛾:

( [
0

𝑐

2
𝛾 𝛾 +

𝑐

2

]	
, 𝛾2

)
for 𝜈(0, 0) = 0,( [

0 −
𝑐

2
𝛾 − 𝑐 𝛾 −

𝑐

2

]	
, 𝛾2

)
for 𝜈(0, 1) = 𝑐𝛾,( [

0 −
𝑐

2
0

𝑐

2

]	
, 𝛾 − 𝑐 + 𝑐𝛾

)
for 𝜈(1, 0) = 𝑐𝛾 + (𝛾 − 𝑐),( [

0 −
𝑐

2
0 −

𝑐

2

]	
, 𝛾

)
for 𝜈(1, 1) = 𝛾.
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And when 𝑐 ≥ 𝛾 these are,( [
0

𝑐

2
𝛾 𝛾 +

𝑐

2

]	
, 𝛾2

)
for 𝜈(0, 0) = 0,( [

0 −
𝑐

2
0 𝛾 −

𝑐

2

]	
, 𝛾2

)
for 𝜈(0, 1) = 𝛾2,( [

0
𝑐

2
− 𝛾 0

𝑐

2

]	
, 𝛾2

)
for 𝜈(1, 0) = 𝛾2,( [

0 −
𝑐

2
0 −

𝑐

2

]	
, 𝛾

)
for 𝜈(1, 1) = 𝛾.

With these Whittle index expressions at hand, we now observe that a Whittle index-based policy agrees
with 𝜋∗ of Theorem 2.1.

Proposition 1. Consider Case I, and assume the system is controlled via a Whittle index policy, which
ensures that at any time 𝑡 the chosen channel is 𝑈 (𝑡) with the highest index as given by (8) for 𝑐 < 𝛾
or (9) for 𝑐 ≥ 𝛾, and performs switching only when necessary. Then the system operating under this
policy is equivalent to a system operating under 𝜋∗ of Theorem 2.1.

Proof. Observe that both in the 𝑐 < 𝛾 and 𝑐 ≥ 𝛾 cases,

𝜈(1, 0) < 𝜈(1, 1) and 𝜈(0, 0) < 𝜈(1, 1).

Hence the system controlled by a Whittle index policy never switches out of a good channel (𝑋𝑈 (𝑡) (𝑡) =
1).

Further, at time 𝑡 if 𝑋𝑈 (𝑡−) (𝑡
−) = 1 and then 𝑋𝑈 (𝑡) (𝑡) = 0 (the state of the current channel turns

from the good state to the bad state), then if for all the other channels 𝑗 ≠ 𝑈 (𝑡), 𝑋 𝑗 (𝑡) = 0, then the
index-based policy chooses to stay with𝑈 (𝑡), since both in the 𝑐 < 𝛾 and 𝑐 ≥ 𝛾 cases, 𝜈(0, 0) < 𝜈(0, 1).

Conversely in such a situation, if there is at least one good channel in the system, say 𝑖 ≠ 𝑈 (𝑡) with
𝑋𝑖 (𝑡) = 1, then the index-based policy chooses to switch to channel 𝑖 (or any other good channel) only
if 𝑐 < 𝛾, and otherwise stays. This is because, 𝜈(0, 1) < 𝜈(1, 0) only if 𝑐 < 𝛾 and 𝜈(0, 1) = 𝜈(1, 0)
when 𝑐 ≥ 𝛾. �

4. Renewal reward analysis for case II

In this section, we prove Theorem 2.2 via a regenerative analysis for 𝑛 = 2 and later for 𝑛 = ∞. We
consider the regenerative structure based on regeneration points where switching has just occurred
into a bad channel (= 0). That is, take the time-axis and consider time points at which the controller
switched (from a bad channel) into a bad channel. These are regeneration points which we denote by
𝑇0 = 0, 𝑇1, 𝑇2, . . .. We can assume that at time 𝑡 = 0 the system starts at such a point because we are
looking at the infinite horizon average cost. Note that between 𝑇𝑘−1 and 𝑇𝑘 it is possible that there were
other switches—namely switches into a channel that is in a good state (= 1).

The net reward obtained during the interval (𝑇𝑘−1, 𝑇𝑘 ], is given by

𝑉𝑘 =
∫ 𝑇𝑘

𝑇𝑘−1

�̃� (𝑢) 𝑑𝑢 − 𝑐(𝑁 (𝑇𝑘 ) − 𝑁 (𝑇𝑘−1)).

That is the total time during the interval when the channel was in a good state less the switching costs.
From the regenerative property of the process, it turns out that the sequence (𝑇𝑘 − 𝑇𝑘−1, 𝑉𝑘 ) is an

i.i.d. sequence. We denote 𝑊 as a generic random variable distributed as 𝑇𝑘 − 𝑇𝑘−1 and 𝑉 as a generic
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random variable distributed as𝑉𝑘 . It then follows from the “Renewal Reward Theorem,” see for example
Theorem 1.2, Chap VI [4], that the average reward is given by

𝑔 =
E[𝑉]

E[𝑊]
. (10)

Note that by construction 𝑊 is non-lattice and both 𝑉 and 𝑊 have a finite mean. Hence our goal is now
to compute the expectation of 𝑉 and 𝑊 under a call gaping policy with parameter 𝜏. For 𝑛 = 2 or 𝑛 = ∞

this is equivalent to the cool-off policy with 𝜎 = 𝜏.
We now construct two generic random variables via their probability distributions that come to aid.

We denote these as 𝑊0 and 𝑊1 and their CDFs by 𝐹𝑊𝑖
(𝑡) for 𝑖 = 0, 1. We have,

𝐹𝑊𝑖
(𝑡) = P(𝑊𝑖 ≤ 𝑡) =

{
0, 𝑡 < 𝜏,

(1 − 𝑝(𝜏; 𝑖)) + 𝑝(𝜏; 𝑖)(1 − 𝑒−(1−𝛾)/𝛾 (𝑡−𝜏) ), 𝜏 ≤ 𝑡.
(11)

These random variables are mixtures of a mass at 𝜏 and a shifted exponential. The random variable 𝑊𝑖

denotes the time of switching under a policy with call-gapping parameter 𝜏 when at time 0 a switch
occurred into a channel in state 𝑖. It is constructed by observing that if at time 𝑡 = 𝜏 the state is 0
we switch with probability 1 − 𝑝(𝜏; 𝑖); otherwise we wait an exponentially distributed duration until
switching. Note that,

E[𝑊𝑖] = 𝜏 + 𝑝(𝜏; 𝑖)
𝛾

1 − 𝛾
. (12)

With the generic random variables 𝑊0 and 𝑊1 at hand, we can analyze a complete regenerative cycle
of duration 𝑊 . For this denote,

𝑊 = 𝑊0 +𝑊1 +𝑊2 + · · · +𝑊𝑀 ,

with 𝑊𝑖 denoting the inter-switching times within the cycle. Here 𝑀 is a random variable with support
0, 1, 2, . . ., denoting the number of times we switch into a good channel within such a cycle. It then
holds by construction that,

𝑊0 =𝑑 𝑊0, 𝑊𝑖 =
𝑑 𝑊1, 𝑖 = 1, 2, . . . .

This follows since our regeneration points are the time points at which the controller switched from a bad
channel into a bad channel. Then each cycle starts with a duration distributed as 𝑊0. It is then followed
by 𝑀 additional durations which are switches from bad states to good states, each distributed as 𝑊1.

The following two lemmas yield explicit expressions for the denominator and numerator of (10).

Lemma 4.1. The denominator of (10) can be represented as,

E[𝑊] = E[𝑊0] +
E[𝑝(𝑊0; 0)]

1 − E[𝑝(𝑊1; 0)]
E[𝑊1]

=
𝑒2𝜏/𝛾 (𝛾3 − (𝜏 + 2)𝛾2 + 3𝜏𝛾 − 2𝜏) − 𝛾3 − (𝜏 − 2)𝛾2 + 𝜏𝛾

(𝛾 − 1)2 (𝑒2𝜏/𝛾 (𝛾 − 2) − 2𝑒𝜏/𝛾𝛾 + 𝛾)
.

Proof. Observe that,

𝑊 =𝑑 𝑊0 + �̃�0𝑊1 + �̃�0𝐼1𝑊2 + · · · + �̃�0 �̃�1 . . . �̃�𝑘−1𝑊𝑘 + · · · ,

where the indicator, �̃�𝑖 , for 𝑖 = 0, 1, 2, . . . is equal to 1 if the jump at the end of the interval associated with
𝑊𝑖 was to a good channel. Note that the random variables �̃�𝑖 for 𝑖 = 1, 2, . . . are identically distributed
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and �̃�0 follows a different distribution. We can now denote generic random variables, 𝐼0 and 𝐼1 satisfying

�̃�0 =𝑑 𝐼0, �̃�𝑖 =
𝑑 𝐼1, 𝑖 = 1, 2, . . . .

For these two random variables, by conditioning on 𝑊𝑖 (for 𝑖 = 0, 1), it holds that

E[𝐼𝑖] = E[E[𝐼𝑖 |𝑊𝑖]]

= E[𝑝(𝑊𝑖; 0)]

= (1 − 𝑝(𝜏; 𝑖))𝑝(𝜏; 0) + 𝑝(𝜏; 𝑖)
∫ ∞

𝜏

𝑝(𝑡; 0)
1 − 𝛾

𝛾
𝑒−( (1−𝛾)/𝛾) (𝑡−𝜏) 𝑑𝑡

= 𝛾 −
𝑒−

𝜏
𝛾 𝛾(𝛾 + 𝑝(𝜏; 𝑖) − 2)

𝛾 − 2
, (13)

where the second step follows because every switch is out of a bad channel and the third step follows
from (11).

Observe that the sequence { �̃�𝑖} is a mutually independent sequence of random variables and for each
𝑖, �̃�𝑖 is independent of 𝑊 𝑗 for all 𝑗 ≠ 𝑖. Based on the fact that E[𝑊𝑖] is same as E[𝑊1] for 𝑖 = 1, 2, . . .,
we have

E[𝑊] = E[𝑊0] + E[𝐼0]E[𝑊1] + E[𝐼0]E[𝐼1]E[𝑊1] + · · · + E[𝐼0] (E[𝐼1])
𝑘−1
E[𝑊1] + · · ·

= E[𝑊0] + E[𝐼0]
1

1 − E[𝐼1]
E[𝑊1] . (14)

After manipulation using (1), (12), and (13), the result follows. �

Lemma 4.2. The numerator, E[𝑉] of (10) can be represented as

E[𝑉] = E[𝑅] − 𝑐(E[𝑀] + 1),

where,

E[𝑅] = E[𝑅0] +
E[𝑝(𝑊0; 0)]

1 − E[𝑝(𝑊1; 0)]
E[𝑅1]

=
𝑒2𝜏/𝛾 ((1 − 𝜏)𝛾3 + (3𝜏 − 2)𝛾2 − 2𝜏𝛾) + 2𝑒𝜏/𝛾𝛾2 (𝛾 − 1)2 − 2𝛾4 + (3 − 𝜏)𝛾3 + 𝜏𝛾2

(𝛾 − 1)2 (𝑒2𝜏/𝛾 (𝛾 − 2) − 2𝑒𝜏/𝛾𝛾 + 𝛾)
,

and,

E[𝑀] =
E[𝑝(𝑊0; 0)]

1 − E[𝑝(𝑊1; 0)]
,

=
𝑒2𝜏/𝛾 (2 − 𝛾) − 𝛾

(𝑒2𝜏/𝛾 (𝛾 − 2) − 2𝑒𝜏/𝛾𝛾 + 𝛾)(𝛾 − 1)
− 1.

Proof. The proof follows similar lines to the previous proof. We have that 𝑉 = 𝑅 − 𝑐, (𝑀 + 1) with 𝑀
as defined above and the reward 𝑅 being the net time during [0,𝑊] in which a good channel is selected.
As with the analysis of the cycle duration, 𝑊 , we denote,

𝑅 = 𝑅0 + 𝑅1 + 𝑅2 + · · · + 𝑅𝑀 ,

where 𝑅𝑖 is the reward accumulated over the period corresponding to𝑊𝑖 . Similar to the previous analysis,
we construct generic random variables 𝑅0 and 𝑅1 with

𝑅0 =𝑑 𝑅0, 𝑅𝑖 =
𝑑 𝑅1, 𝑖 = 1, 2, . . . .

Probability in the Engineering and Informational Sciences 921

https://doi.org/10.1017/S0269964822000286 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964822000286


The expectations of these can be computed to be

E[𝑅0] =
∫ 𝜏

0
𝑝(𝑡; 0) 𝑑𝑡 + 𝑝(𝜏; 0)

1 − 𝛾

𝛾
= 𝛾(𝜏 − 𝑝(𝜏; 0)) +

𝑝(𝜏; 0)(1 − 𝛾)

𝛾
,

E[𝑅1] =
∫ 𝜏

0
𝑝(𝑡; 1) 𝑑𝑡 + 𝑝(𝜏; 1)

1 − 𝛾

𝛾
= 𝛾(𝜏 − 𝑝(𝜏; 1) + 1) +

𝑝(𝜏; 1)(1 − 𝛾)

𝛾
.

Using �̃�𝑖 as in the previous proof, we observe,

𝑅 =𝑑 𝑅0 + �̃�0𝑅1 + �̃�0𝐼1𝑅2 + · · · + �̃�0 �̃�1 · · · �̃�𝑘−1𝑅𝑘 + · · · ,

where again for any 𝑖, �̃�𝑖 is independent of 𝑅 𝑗 for 𝑗 ≠ 𝑖. Now a similar geometric series to (14) is applied.
The expression for 𝑀 is computed in a similar manner by observing

𝑀 =𝑑 �̃�0 + �̃�0𝐼1 + �̃�0𝐼1 �̃�2 + · · · .

�

We can now prove Theorem 2.2 for 𝑛 = 2.

Proof. Combining and manipulating the explicit expressions from the lemmas above we obtain that
under a policy 𝜋 (𝜏∗) (alt. 𝜋 (𝜎∗) ), the reward as in (10) as a function of 𝜏 (alt. 𝜎) is,

𝑔(𝜏) =
𝐴1(𝛾, 𝜏) − 𝑐 𝐴2(𝛾, 𝜏)

𝐴3(𝛾, 𝜏)
. (15)

where 𝐴𝑖 (·, ·), 𝑖 = 1, 2, 3 are as defined in Theorem 2.2. We consider first the case 𝑐 ≥ 𝛾2. Observe that
at 𝑐 = 𝛾2,

𝑔(𝜏) |𝑐=𝛾2 = 𝛾 −
2𝑒𝜏/𝛾 (𝛾 − 1)2𝛾2

𝐴3(𝛾, 𝜏)
< 𝛾

and hence the 𝜋 (𝑠) policy is preferable to the 𝜋 (𝜏) policy for any finite 𝜏 (note that as 𝜏 → ∞ the
inequality above becomes an equality). Further 𝑔(𝜏) is monotonically decreasing in 𝑐 and hence for
𝑐 > 𝛾2 it remains optimal to use 𝜋 (𝑠) .

Moving to the 𝑐 < 𝛾2 case, we optimize the (continuous and differentiable) function 𝑔(𝜏) over (0,∞)

to obtain Eq. (2) from Theorem 2.2. We do this by representing the derivative as 𝑔′(𝜏) = ℎ(𝜏) 𝑓 (𝜏)
where,

ℎ(𝜏) =
(𝛾 − 1)2(𝑒2𝜏/𝛾 (2 − 𝛾) + 𝛾)

(𝛾((𝛾 − 2)𝛾 + 𝜏(1 − 𝛾)) + 𝑒2𝜏/𝛾 (2 − 𝛾)(𝛾2 + 𝜏 − 𝜏𝛾))2 ,

and,

𝑓 (𝜏) = 𝑒2𝜏/𝛾 (𝛾2 − 𝑐)(𝛾 − 2) + 2𝑒𝜏/𝛾𝛾(𝛾 − 𝜏(𝛾 − 1)) − 𝛾(𝛾2 − 𝑐).

It can be shown that for 𝑐 < 𝛾2 the derivative 𝑓 ′(𝜏) < 0. Now since ℎ(·) > 0 we have that, 𝑔′(𝜏) = 0 if
and only if 𝑓 (𝜏) = 0 and Eq. (2) is 𝑓 (𝜏∗) = 0. Since 𝑓 (0) > 0 and lim𝜏→∞ 𝑓 (𝜏) < 0, it is evident that for
𝑐 < 𝛾2 there is a single root to 𝑓 (𝜏) = 0 and further at the solution 𝜏∗ the second order conditions hold,

𝑔′′(𝜏∗) = 2ℎ(𝜏∗) ((1 − 𝑒𝜏
∗/𝛾)𝛾2 − 𝑐 − 𝑒𝜏

∗/𝛾𝜏∗(1 − 𝛾)) < 0.

�
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Note that at the extremes of 𝜏, the reward 𝑔(𝜏) as in (15) yields the expected results. With zero
switching costs,

lim
𝜏→0

𝑔(𝜏)
���
𝑐=0

= lim
𝜏→0

𝐴1(𝛾, 𝜏)

𝐴3(𝛾, 𝜏)
= 1 − (1 − 𝛾)2,

and further without switching,

lim
𝜏→∞

𝐴1(𝛾, 𝜏) − 𝑐𝐴2(𝛾, 𝜏)

𝐴3(𝛾, 𝜏)
= lim

𝜏→∞

𝐴1(𝛾, 𝜏)

𝐴3(𝛾, 𝜏)
− 𝑐0 = 𝛾.

In the case of 𝑛 = ∞, a similar (yet simpler) analysis to all of the above sections pursues. As described
in Section 2, the system may be viewed as a two-channel system where every transition is always to
a steady state channel. The usage of the transient probabilities 𝑝(𝜏 ; 𝑖) as in (11) is then replaced by
𝛾. This results in correspondently simpler expressions in all the cases where transient probabilities are
used (𝑛 = 2) and can now be replaced by 𝛾. The resulting reward expression is then,

𝑔(𝜏) =
(𝛾 − 1)𝑐 + 𝛾(𝛾 − 𝛾𝜏 + 𝜏)

𝛾2 − 𝛾𝜏 + 𝜏
,

with the derivative,

𝑔′(𝜏) =
(𝛾 − 1)2(𝑐 − 𝛾2)

(𝛾2 − 𝛾𝜏 + 𝜏)2 .

This shows that 𝑔(·) is monotonic decreasing in 𝜏 if 𝑐 < 𝛾2 and monotonic increasing in 𝜏 if 𝑐 > 𝛾2.
Hence for 𝑐 < 𝛾2 the optimal switching parameter is 𝜏∗ = 0 and yields reward as in Theorem 2.2. Further,
since lim𝜏→∞ 𝑔(𝜏) = 𝛾, for 𝑐 > 𝛾2 it is not optimal to use 𝜋 (𝜏) for any finite 𝜏, and 𝜋 (𝑠) is preferable.

5. Numerical results for case II

We now carry out numerical experiments for our system under various policies, focusing on Case II. We
first describe the numerical computations and simulation experiment used for Figure 1 and then expand
with further numerical results.

The Case I curves in the figure are obtained directly from Theorem 2.1. The Case II curves for 𝑛 = ∞

are created directly using Theorem 2.2 and the 𝑛 = 2 curves are created by numerically solving Eq. (2)
of Theorem 2.2 (using the bisection method). The remaining curves for 𝑛 = 3 and 𝑛 = 4 using both the
call-gapping and the cool-off policies are obtained via Monte–Carlo simulation and optimization to find
the optimal 𝜏 and 𝜎 parameters for these policies.

This Monte–Carlo simulation (as well as other code) can be found in the GitHub repository Wang
et al. [19]. We simulated the system over a grid of 𝑐 in the range [0, 𝛾2] where 𝛾2 = 0.16, with a
spacing of 0.005. Then for each value of 𝑐, we simulated both the call-gapping and cool-off policies
over respective grids of 𝜏 and 𝜎 in the range [0, 1.55], each with a spacing of 0.001. In each of these
individual simulation runs we kept a constant seed to reduce variability in the curves using common
random numbers, and simulated for a time horizon of 𝑇 = 105, with an arbitrary fixed initial condition.
We then obtained the average reward 𝑔 using a crude Monte–Carlo estimator over the continuous time
[0, 𝑇] and then plotted the reward for the optimal 𝜏 and 𝜎 in each case.

In addition to the simulations leading to Figure 1, we also carried out extensive additional numerical
experiments for more parameter values. Key results from these experiments are summarized in Table 1.
Our purpose is to compare the cool-off and call-gapping policies for finite 𝑛 > 2. As we observe from
Figure 1, the cool-off policy is able to achieve a slightly higher average reward for 𝛾 = 0.4. We now
considered the system for several additional 𝛾 values and several values of 𝑛.

In each case, the cool-off policy is indeed slightly better than call-gapping. The numerical results in
Table 1 report the maximal gap, as well as error estimates, over a range of 𝑐 values between the rewards
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Table 1. Evaluating the difference between the cool-off and call-gapping policy.

System Number of channels Maximal gap Worst cost

𝛾 = 0.2 𝑛 = 3 0.00385 ± 0.00029 𝑐 = 0.0048
𝑛 = 4 0.00823 ± 0.00033 𝑐 = 0.0048
𝑛 = 5 0.01295 ± 0.00045 𝑐 = 0.0056
𝑛 = 6 0.01767 ± 0.00045 𝑐 = 0.0056
𝑛 = 7 0.02188 ± 0.00044 𝑐 = 0.0056
𝑛 = 8 0.02619 ± 0.00047 𝑐 = 0.0064
𝑛 = 9 0.02879 ± 0.00051 𝑐 = 0.0072
𝑛 = 10 0.03136 ± 0.00057 𝑐 = 0.0072
𝑛 = 11 0.03277 ± 0.00047 𝑐 = 0.0072
𝑛 = 12 0.03414 ± 0.0006 𝑐 = 0.008
𝑛 = 13 0.03554 ± 0.00048 𝑐 = 0.008
n = 14 0.03609 ± 0.0006 𝑐 = 0.0088
n = 15 0.03611 ± 0.00072 𝑐 = 0.0096
n = 16 0.03611 ± 0.00061 𝑐 = 0.0104
𝑛 = 17 0.03532 ± 0.00064 𝑐 = 0.0112
𝑛 = 18 0.0339 ± 0.00066 𝑐 = 0.0112
𝑛 = 19 0.0332 ± 0.00064 𝑐 = 0.0112
𝑛 = 20 0.03208 ± 0.0007 𝑐 = 0.0128

𝛾 = 0.3 𝑛 = 3 0.00679 ± 0.00035 𝑐 = 0.009
𝑛 = 4 0.01318 ± 0.00044 𝑐 = 0.009
𝑛 = 5 0.01927 ± 0.00063 𝑐 = 0.018
𝑛 = 6 0.02351 ± 0.00055 𝑐 = 0.0144
𝑛 = 7 0.0268 ± 0.00074 𝑐 = 0.018
𝑛 = 8 0.02829 ± 0.00073 𝑐 = 0.0198
n = 9 0.03012 ± 0.00072 𝑐 = 0.0216
𝑛 = 10 0.02924 ± 0.00056 𝑐 = 0.0216
𝑛 = 11 0.0293 ± 0.00084 𝑐 = 0.0252
𝑛 = 12 0.02798 ± 0.00096 𝑐 = 0.0288
𝑛 = 13 0.026 ± 0.00078 𝑐 = 0.0288
𝑛 = 14 0.02524 ± 0.00078 𝑐 = 0.0306
𝑛 = 15 0.02216 ± 0.00074 𝑐 = 0.027

𝛾 = 0.4 𝑛 = 3 0.00899 ± 0.0005 𝑐 = 0.0224
𝑛 = 4 0.01606 ± 0.00066 𝑐 = 0.032
𝑛 = 5 0.02114 ± 0.00064 𝑐 = 0.0256
𝑛 = 6 0.02289 ± 0.00072 𝑐 = 0.032
n = 7 0.02426 ± 0.00071 𝑐 = 0.0416
𝑛 = 8 0.02294 ± 0.0007 𝑐 = 0.0352
𝑛 = 9 0.0213 ± 0.00074 𝑐 = 0.0448
𝑛 = 10 0.01849 ± 0.00076 𝑐 = 0.0544

𝛾 = 0.6 𝑛 = 3 0.01001 ± 0.00053 𝑐 = 0.0648
n = 4 0.01274 ± 0.00055 𝑐 = 0.0648
𝑛 = 5 0.01267 ± 0.00064 𝑐 = 0.1008

𝛾 = 0.8 n = 3 0.00452 ± 0.00042 𝑐 = 0.1792
𝑛 = 4 0.00389 ± 0.0005 𝑐 = 0.2432
𝑛 = 5 0.00236 ± 0.00035 𝑐 = 0.2048
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Figure 2. Robustness analysis when 𝛾 = 0.4 for Case II and 𝑛 = 2 under call-gapping. The system is
controlled with a perceived value of �̂� and the ratio of the reward and the optimal reward is plotted for
several values of 𝑐.

of the policies. We also present an estimate of the 𝑐 value in which the gap is maximal and highlight
in bold the values of 𝑛 for which the gap is largest.2 As an overarching summary, we see that while the
cool-off policy is slightly better, the difference between the rewards is never high and hence in practice
using the simpler call-gapping policy is probably preferable. As expected from Figure 1, for each value
of 𝛾 there is some finite 𝑛 in which the maximal gap is highest (for 𝑛 = 2 and 𝑛 → ∞ there is no gap
as the policies are identical). It is also evident that for low 𝛾 values, the worst case 𝑛 is higher than
that of higher 𝛾 values. This observation informed our selection of the range of 𝑛 for which to run the
experiments.

The computational experiments required non-negligible compute time because for any system setting
(𝛾, 𝑛, 𝑐) optimization over the best 𝜏 (resp. 𝜎) parameter was required. We thus relied on an empirical
observation associated with the nature of the system. We observed that for any fixed 𝛾 and 𝑐, as 𝑛
increases, the optimal parameter (𝜏∗ or 𝜎∗) decreases with 𝑛 (with the optimal value tending to 0 as
𝑛 → ∞). This allowed us to use Theorem 2.2 to first compute the optimal parameter for 𝑛 = 2 and
use it as an upper bound for the (stochastic) search for the optimal parameter for 𝑛 = 3. Further for
any 𝑛 = 𝑘 ≥ 4, we used the estimated optimal parameter of 𝑛 = 𝑘 − 1 to determine an upper bound.
This allowed to use a fixed size search grid of size 20 for the optimal 𝜏 (resp. 𝜎) of each level 𝑛 ≥ 3.
Other elements of the simulation involved the search grid over 𝑐. For this, after initial experimentation
indicating the location of the maximal gap, we always considered 𝑐 ∈ [0, 𝛾2/2] and searched over
25 points within this grid. Each sample path involved a time horizon of 103 time units, and for each
parameter setting (𝛾, 𝑛, 𝑐), we simulated 100 repetitions, allowing us to obtain 95% error bounds using
a standard normal approximation. The simulation duration was in the order of 24 hours on a standard
laptop using the (compiled) Julia language.

In addition to the simulations, we also carried out a robustness analysis for Case II with 𝑛 = 2. In
this case, the optimal call-gapping (and cool-off) parameter 𝜏 is easily obtained via Eq. (2). However,
we also wish to see how misspecification of the system parameter 𝛾, leading to a misspecification of the

2For 𝛾 = 0.2, the maximal gap is at either 𝑛 = 14, 𝑛 = 15, or 𝑛 = 16 and in considering the error estimates, the exact value is not determined
based on the simulations we ran.
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optimal 𝜏, affects performance. For this, we again consider the case where 𝛾 = 0.4; however, we now
assume that the system is perceived to operate at a potentially different system parameter, namely �̂�. The
controller then optimizes 𝜏 based on (2) and the perceived value, �̂�. We then compare the ratio of the
actual reward, �̂� and the ideal reward, 𝑔 obtained using 𝛾 = 0.4. Both are obtained via the expressions
in Theorem 2.2. The ratio is plotted in Figure 2 where we considered cost values 𝑐 = 0.04, 0.08, 0.12,
and 0.16. As we see in Figure 2, as we might expect, for larger deviations of �̂� from 𝛾 = 0.4 we get
larger relative losses of the reward. However, the relative loss at a few percentage points in most cases.
The plateaus observed on each of the curves are due to values of �̂� during which 𝑐 > �̂�2 in which case
the 𝜋 (𝑠) policy is employed.

6. Conclusion and extensions

Our aim with this study was to obtain a qualitative view on the interaction of the number of channels, the
available information, and the switching costs in a channel selection context. In such a setting, system
designers can consider the value of information as well as the effect of switching costs (the value of
efficient switching) in lieu of various control policies. Through a simple model, we obtained a qualitative
relationship between the various system factors and in certain cases, we were able to explicitly analyze
the system.

The case of full observation is straightforward to analyze; however, for the case of partial observation,
to the best of our knowledge, explicit analysis is only attainable with 𝑛 = 2 and 𝑛 = ∞ as we have done
here. This is for the call-gapping and cool-off policies that we introduced. Further numerical analysis
was carried out for other small finite 𝑛 illustrating that in practice there are only minor efficiency gains
to be had by using cool-off instead of call-gapping. This is despite the fact that call-gapping policy
only requires local information of the current state of the channel while the cool-off policy requires
information for all channels. We complement our analysis with a numerical robustness experiment
hinting that inexact knowledge of system parameters would not hinder performance greatly when using
a call-gapping policy.

Our work did not focus on optimality of the policies discussed within the class of all possible
policies. We conjecture that for 𝑛 = 2 call-gapping (equivalent to cool-off) is optimal in the case of
partial observation. However, proving this remains a challenge for a future study. Further, real systems
will typically exhibit a more complicated structure than two-state Markov chains. For such systems,
adaptations of the call-gapping and cool-off policies may still be employed; however, the analysis is
more complicated. Nevertheless, we believe that our qualitative and quantitative results based on two-
state Markov chains may help serve as a guide for the tradeoffs between information, switching costs,
policy complexity, and the number of channels in a system.
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