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Abstract

We consider Euclidean first passage percolation on a large family of connected random
geometric graphs in the d-dimensional Euclidean space encompassing various well-
known models from stochastic geometry. In particular, we establish a strong linear growth
property for shortest-path lengths on random geometric graphs which are generated by
point processes. We consider the event that the growth of shortest-path lengths between
two (end) points of the path does not admit a linear upper bound. Our linear growth
property implies that the probability of this event tends to zero sub-exponentially fast if
the direct (Euclidean) distance between the endpoints tends to infinity. Besides, for a wide
class of stationary and isotropic random geometric graphs, our linear growth property
implies a shape theorem for the Euclidean first passage model defined by such random
geometric graphs. Finally, this shape theorem can be used to investigate a problem which
is considered in structural analysis of fixed-access telecommunication networks, where
we determine the limiting distribution of the length of the longest branch in the shortest-
path tree extracted from a typical segment system if the intensity of network stations
converges to 0.
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1. Introduction

We investigate a first passage percolation model on a large class of connected, stationary, and
isotropic random geometric graphs, where the edge-passage times are given by the Euclidean
lengths of the edges. The classical first passage percolation model due to Hammersley and
Welsh [15] considers shortest-path lengths on a randomly weighted lattice, where the edge
weights form a sequence of independent and identically distributed (i.i.d.) nonnegative random
variables. More recently, the analysis of the asymptotic behaviour of such shortest-path lengths
has been extended to geometrically irregular random geometric graphs, such as Poisson–
Delaunay graphs; see Figure 1 for an illustration. While [28], [32], and [33] considered the
classical scenario of i.i.d. edge weights, such connected random geometric graphs give rise also
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Figure 1: Realisation of a Delaunay graph generated by a homogeneous Poisson point process (cutout).

to another natural first passage percolation model, where the edge weights are determined by
the Euclidean length of the edge [1]–[3], [5].

In this paper, building on the work of [1], [3], and [12], we show that not only the Poisson–
Delaunay graph, but in fact a considerably larger class of connected random geometric graphs
satisfies a strong linear growth property. To be more precise, considering the event that the
growth of shortest-path lengths between two (end) points does not admit a linear upper bound
in the Euclidean distance between the endpoints, we show in Theorem 1 that its probability
tends to zero at least sub-exponentially fast as this distance tends to ∞.

We continue to elaborate a variety of further implications of the strong linear growth property
stated in Theorem 1. First, for a rather general class of stationary and isotropic random geometric
graphs in Rd , we show that this growth property implies a shape theorem for the Euclidean first
passage model defined by such random geometric graphs (Theorem 2). In particular, we extend
the classical shape theorem, which has been derived in [19] for first passage percolation on the
lattice Zd (with i.i.d. edge weights), to a framework involving geometrically complex random
graphs with nonindependent edge lengths. Furthermore, in a two-dimensional setting, the
growth property stated in Theorem 1 can be used to deduce the almost sure (a.s.) boundedness of
cells defined by planar random geometric graphs (Theorem 3). In this way, the a.s. boundedness
of cells of the creek-crossing graphs (Gn)n≥2 introduced in [16] can be shown.

We also show how Theorem 2 can be used to investigate a problem which is considered
in structural analysis of (wired) fixed-access telecommunication networks. In those networks,
access points are located along the roads of urban or rural regions and each access point is
dedicated to providing a service to all users in some bounded region of the plane, which is
referred to as its serving zone. Physical links from network users to access points are deployed
along the shortest Euclidean path in the road graph, thus giving rise to a shortest-path connection
tree representing the subgraph inside a serving zone; see, e.g. [14], [34]. Cost estimation of the
telecommunication network requires knowledge of the structural properties of this tree. In this
paper we show how our shape theorem stated in Theorem 2 (in conjunction with an asymptotic
distributional result due to Calka [8]) can be used to determine the limiting distribution of the
length of the longest branch in the shortest-path tree associated with a randomly chosen serving
zone as the intensity of access points converges to 0 (Theorem 4).
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This paper is organised as follows. First, in Section 2 we state our main results and introduce
some general conditions on the considered random geometric graphs and the underlying point
processes, which are used later in the proofs of our results. In Section 3 we show that these
conditions are satisfied for various well-known classes of random geometric graphs and point
processes from stochastic geometry. Then in Section 4 we provide a proof for the strong linear
growth property stated in Theorem 1. Section 5 is devoted to the proof of the shape theorem
and the boundedness of cells stated in Theorems 2 and 3, respectively. Finally, we conclude
the paper with Section 6, where a proof of Theorem 4 is presented.

2. Main results

2.1. Random geometric graphs based on point processes

In classical models of first passage percolation, one considers shortest-path lengths in
independently marked lattices, but more recently also first passage percolation on the Poisson–
Delaunay graph has received considerable attention. While [28], [32], and [33] consider
the scenario of independently marked edges, in [1] a spatially dependent marking using the
Euclidean edge length is investigated not only for the Poisson–Delaunay graph, but in fact
for a more general class of connected random geometric graphs whose vertices are given by
a homogeneous Poisson point process in R2. However, even in two dimensions important
examples of connected random geometric graphs, such as the Poisson–Voronoi tessellation, are
not based on a Poisson point process of vertices. Therefore, in this paper, we state our results
using the following general notion of random geometric graphs.

Denote by M the family of all line segments in Rd . This family forms a topological space
in the Fell topology [31] and we denote by M the Borel σ -algebra on M generated by this
topology. We write G for the family of all simple counting measures ϕ on Rd × M such that
ϕ(B × M) is finite for every bounded Borel set B ⊂ Rd . Furthermore, we denote by G the
σ -algebra on G that is generated by the evaluation maps ϕ �→ ϕ(B ×M), where B ⊂ Rd is a
Borel set in Rd and M ∈ M. Random variables with values in G are called random segment
processes or random geometric graphs. It will be convenient to identify elements ϕ ∈ G with
their support, so we can represent ϕ as ϕ = {(xn, un)}n≥1 for some xn ∈ Rd and un ∈ M.

In order to deal with a large variety of commonly used connected random geometric graphs,
we do not need the notion of random segment processes in its entire generality, but it is
convenient to introduce a more specific and restricted subclass. To be more precise, we consider
random geometric graphs that are obtained from point processes in a deterministic way. For
instance, the edge set of the Delaunay tessellation forms a geometric graph in Rd whose vertices
are given by a point process and whose edges are constructed by applying a deterministic
connection rule. This observation also applies to the creek-crossing graphs (Gn)n≥2 introduced
in [16] which form a class of subgraphs of the Delaunay tessellation approximating the minimal
spanning forest. Similarly, the Voronoi graph is defined as the edge set of a tessellation which
is constructed from a given point process of cell centres by a deterministic rule.

All these random geometric graphs have two important attributes in common. On the one
hand, local changes in the underlying point process typically lead to local changes in the structure
of the random geometric graph and, on the other hand, the resulting random geometric graphs
consist of a single connected component with probability 1. We show that for such random
geometric graphs, shortest-path lengths along the edges grow at most linearly in the Euclidean
distance of the endpoints of the paths.
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Denote by N the family of all locally finite sets in Rd . In the following, we consider random
geometric graphs in Rd of the type G = g(X), where X denotes a point process in Rd which
is stationary, isotropic, and m-dependent, and g : N → G is a measurable mapping which is
motion-covariant. In other words, we have g(α(ψ)) = α(g(ψ)) for all ψ ∈ N and all rigid
motions α : Rd → Rd . Note that since g is motion-covariant, the random geometric graph G
inherits from X the properties of stationarity and isotropy.

In the arguments used in this paper, we need to make further suitable assumptions on G. In
the following, it will be convenient to think of an element {(xn, un)}n≥1 of G as the subset of Rd

formed by the union
⋃
n≥1(un + xn). First, we need a certain growth condition allowing us to

control the total length of the random geometric graph G inside cubic sampling windows (the
total length in big windows should be positive and not too large, with high probability (w.h.p.).
Formally, the standard length of a line segment can be measured using the one-dimensional
Hausdorff measure ν1. Furthermore, the random geometric graph G = g(X) should satisfy a
suitable stability condition with respect to X so that the configuration of G inside a bounded
sampling windowW ⊂ Rd does not depend on the configuration ofX far away from the setW .
Finally, we require a strong connectivity condition in the sense that any two points on G ∩W
can be connected by a path onGwhich is contained in a suitable neighbourhood of the sampling
window W . In order to state these additional assumptions on G more precisely, we use the
following notion of occurrence w.h.p. Let (Aa)a>1 be a family of events in a certain probability
space (�,F ,P), which is assumed to be complete. We say that the events Aa occur w.h.p. if

lim inf
a→∞

log(−log(1 − P{Aa}))
log a

> 0.

Note that the latter inequality is equivalent to the existence of constants c1, c2 > 0 such that
1 − P{Aa} ≤ c1 exp(−ac2) for all a > 1. Furthermore, we use the following notation. For
x ∈ Rd and r ∈ (0,∞] we denote byQr(x) = [−r/2, r/2]d + x the cube of side length r and
centre x.

In the following, the existence of a suitable radius of stabilisation for the construction rule g
will be crucial. Putting Z+,∞ = ((0,∞) ∩ Z) ∪ {∞} and denoting by o the origin in Rd , a
radius of stabilisation is defined to be a measurable function b : N → Z+,∞ such that with
probability 1, it holds that

g(X) ∩Q1(o) = g((X ∩Qb(X)(o)) ∪ ψ) ∩Q1(o) (1)

for all locally finite ψ ⊂ Rd \Qb(X)(o), and that

min{b(X), n+ 1} = min{b(X ∩Qn(o) ∪ ψ), n+ 1} (2)

for all n ∈ [1,∞) ∩ Z and locally finite ψ ⊂ Rd \ Qn(o). While (1) guarantees that the
intersection g(X) ∩Q1(o) depends only on the point process X in the window Qb(X)(o), we
use (2) in order to ensure that for n ≥ 1 the event {b(X) ≤ n} depends only on the point
process X in the window Qn(o). Now, assume that

(G1) the events A(1)a = {G ∩ Qa(o) �= ∅} ∩ {ν1(G ∩ Q1(o)) ≤ a} occur w.h.p. (growth
condition),

(G2) the events A(2)a = {b(X) ≤ a} occur w.h.p. (stability condition),

(G3) the events A(3)a = {G ∩Qa/2(o) is contained in a connected component of G ∩Qa(o)}
occur w.h.p. (connectivity condition).
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In Section 3, we verify that these conditions are satisfied for the previously discussed
examples of random geometric graphs. Note that conditions (G2) and (G3) are modifications
of the asymptotic essential connectedness property introduced by Aldous [1]. Furthermore, the
Borel–Cantelli lemma shows that condition (G3) implies a.s. connectivity of G.

The asymptotic behaviour of shortest-path lengths is a recurring theme in first passage
percolation and is also the content of the main result of this paper. This result deals with the
sub-exponential decay of the probability that such path lengths along the edges of G increase
superlinearly in the Euclidean distance of their endpoints. To formulate it precisely, we put
e1 = (1, 0, . . . , 0)
 and q(x) = argminy∈G|x − y| for any x ∈ Rd . If this is not unique, we
take the lexicographically smallest point on G with this property. Furthermore, for x, y ∈ Rd

we denote by �(x, y) the length of the shortest Euclidean path between q(x) and q(y) on G.

Theorem 1. Let G denote a random geometric graph in Rd of the form G = g(X) satisfying
conditions (G1)–(G3). Then there exists u0 ≥ 1 with

lim inf
ur→∞
u≥u0,r≥1

log(−log P{�(o, re1) ≥ ur})
log(ur)

> 0. (3)

The proof of Theorem 1 is postponed to Section 4. Note that this theorem is an extension
of a similar result which was derived by Aldous for a class of planar graphs; see [1] and [3].
Before we move on, we also remark that Theorem 1 contains two interesting special cases.
On the one hand, we may fix r and consider the asymptotic behaviour of the tail probabilities
P{�(o, re1) ≥ ur} as u → ∞. In this case, Theorem 1 yields sub-exponential decay of the
tail function of the length of the shortest path between two points at predefined locations of
distance r , i.e. there exist constants c1, c2 > 0 such that P{�(o, re1) ≥ ur} ≤ c1 exp(−uc2) for
all u > 1. On the other hand, we can also fix u ≥ u0 and let r → ∞. Then as r → ∞ the
shortest-path length between points at distance r grows, at most, linearly in r w.h.p.

We believe that Theorem 1 is useful for future research, since the issue of existence of short
paths in random geometric graphs occurs in rather diverse contexts, such as the nontriviality of
Bernoulli percolation on the Gabriel and relative neighbourhood graphs [6], [7] or the transience
of random walks on random geometric graphs [30]. Furthermore, note that the framework of
Theorem 1 can be extended to include also random geometric graphs generated by curved
fibres, such as the dead leaves model or the Johnson–Mehl tessellation [18], [24]. However, as
proving Theorem 1 only for random geometric graphs consisting of line segments simplifies
the exposition, we restrict our attention to this special class of random fibre processes.

2.2. A general class of random geometric graphs

It turns out that the strong linear growth property (3) is satisfied not only by the random
geometric graphs considered in Theorem 1, but also by the isotropic Poisson line tessellation in
R2, which does not fit into the framework of condition (G2); see Section 3.3. Therefore, in this
section we assume that G is an arbitrary stationary, ergodic, and isotropic random geometric
graph in Rd for which (3) holds and which satisfies conditions (G1) and (G3). Theorems 2 and 3,
whose proofs are postponed to Sections 5.1 and 5.2, respectively, provide two implications of
property (3). For r > 0 and x ∈ Rd , we denote by Br(x) the d-dimensional Euclidean ball
with centre x and radius r and, similarly, by BGr (x) = {y ∈ Rd : �(x, y) ≤ r}, we denote the
ball of radius r and centre x in the metric induced by the shortest-path lengths �(x, y).

Theorem 2 supports the intuition that the notion of distance defined by the shortest-path
lengths �(x, y) behaves asymptotically as a scalar multiple of the ordinary Euclidean metric.
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This result can be regarded as a shape theorem for the first passage percolation model in which
the passage time of an edge inG is given by its length. We refer the reader to [19, Theorem 1.7]
for the classical statement in the situation of i.i.d. weights on the lattice Zd .

Theorem 2. There exists a constant (the time constant) ξ ≥ 1 such that for all ε > 0

P{B(1−ε)r (o) ⊂ BGξr(o) ⊂ B(1+ε)r (o) for all sufficiently large r} = 1.

The second implication of property (3) deals with the a.s. boundedness of cells defined by
random geometric graphs in R2, where for a planar random geometric graph G in R2 we call
the connected components of R2 \G the cells of G.

Theorem 3. Let d = 2. Then, with probability 1, all cells of G are bounded.

2.3. An application to shortest-path trees in spatial telecommunication networks

Last but not least, for d = 2 we provide an application of Theorem 2 to a problem which
is considered in structural analysis of fixed-access telecommunication networks. In particular,
we show how Theorem 2 can be used to determine the limiting distribution of the length of the
longest branch in a typical shortest-path tree if the intensity of access points converges to zero.

We start by recalling some notation and definitions related with this kind of problem and
refer the reader to [25] for details. Let G be a stationary, isotropic, and ergodic random
geometric graph in R2 satisfying (3) and conditions (G1) and (G3) of Section 2.1. We write
γ = Eν1(G ∩ [0, 1]2) > 0 for its length intensity, where E is the expectation, and G∗ stands
for the Palm version of G with respect to ν1(· ∩ G). Recall that G∗ is a random geometric
graph whose distribution is determined by

Eh(G∗) = 1

γ
E

∫
G∩[0,1]2

h(G− x)ν1(dx),

where h : G → [0,∞) is any G-measurable function. By Xλ we denote a Cox process on G∗
whose random intensity measure is given by λν1(· ∩ G∗), for some linear intensity λ > 0.
Denote by
0,λ the zero-cell of the Voronoi tessellation onXλ ∪ {o} and write S∗ = 
0,λ ∩G∗
for the typical segment system within 
0,λ. Since shortest paths do not contain cycles, they
induce a natural tree structure on the set of points of G∗ for which the shortest path to o is
unique. This tree is sometimes referred to as the shortest-path tree.

For practical applications to telecommunication networks it is desirable to have knowledge
about a variety of distributional properties of typical segment systems. Such properties could
help to find useful approximate simulation algorithms (deduced from limit theorems) that allow
for a rapid creation of such graphs without having to implement concepts of stochastic geometry.
In the following, we denote by Z(λ) = supx∈S∗ �(o, x) the length of the longest shortest path
among all shortest paths emanating from the origin o and ending at an element of S∗. Although
there is only little hope to obtain an explicit analytical equation for the distribution of Z(λ)
when considering general values of λ ∈ (0,∞), we show how Theorem 2 in conjunction with a
distributional result due to Calka [8] on the circumradius of typical Poisson–Voronoi cells can
be used to obtain an explicit asymptotic equation in the case when λ → 0.

Theorem 4. Let R be the radius of the smallest circle centred at the origin and containing
the zero-cell of the Voronoi tessellation on Y ∪ {o}, where Y is a homogeneous Poisson point
process with intensity γ . Then

√
λZ(λ)

d−→ ξR as λ → 0, where ξ = limn→∞ E�(o, ne1)/n

is the time constant appearing in Theorem 2 and ‘
d−→’ denotes convergence in distribution.
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The proof of Theorem 4 will be provided in Section 6. To go further in the analysis of
connection trees, it seems promising to consider not only the longest shortest path in a typical
serving zone, but, for example, also the joint distribution of the lengths of the main branches
in each of the two subtrees rooted at the origin. They may be considered as backbones of the
entire connection tree. This problem is considered in [17] and [26] in greater detail from a
theoretical and practical point of view, respectively.

Moreover, for practical applications to telecommunication networks, it is important not
only to know the behaviour of the longest shortest path as λ → 0, but also to have some
information about its length for arbitrary values of λ > 0. Since it seems rather unlikely
that there exists an explicit analytical equation for the distribution of the longest shortest-
path length Z(λ), parametric density functions are fitted to simulated data [26]. However,
these approximate densities rely on Monte Carlo simulations, which become increasingly time
consuming as one approaches the asymptotic setting. Hence, our result is useful for certain
parameter constellations, where standard Monte Carlo simulations are not feasible.

3. Examples of connected graphs

In this section, we show that many well-known connected random geometric graphs satisfy
the growth, stability, and connectivity conditions (G1)–(G3) introduced in Section 2.1. We
consider the Delaunay graph, the family of creek-crossing graphs (Gn)n≥2 introduced in [16],
and the Voronoi graph in arbitrary dimensions. Finally, we show that the (two-dimensional)
isotropic Poisson line tessellation has property (3). Note, however, that the Poisson line tessella-
tion does not fit naturally into the framework of point-process-based random geometric graphs
described in Section 2.1 and also exhibits long-range dependencies which are incompatible
with the stability condition (G2) of Section 2.1.

3.1. Delaunay graph Del and the creek-crossing graphs Gn, n ≥ 2

For ϕ ⊂ Rd locally finite and B ⊂ Rd a Borel set, we denote the number of elements of
ϕ in B by ϕ(B) = #(ϕ ∩ B). In the following we assume that X is a stationary, isotropic,
and m-dependent point process in Rd satisfying the following additional conditions. Suppose
that

(D1) for a > 1 the events {X ∩Qa(o) �= ∅} ∩ {X(Q1(o)) ≤ a} occur w.h.p., and

(D2) the second factorial moment measure of X is absolutely continuous with respect to a
2d-dimensional Lebesgue measure, and its density ρ(x, y) is bounded from above by
some constant c > 0.

The homogeneous Poisson point process in Rd with intensity λp > 0 obviously satisfies the
above conditions.

Recall that for any ϕ ⊂ Rd locally finite, the Delaunay graph Del(ϕ) denotes a graph with
vertex set ϕ, where two vertices x, y ∈ ϕ are connected by an edge in Del(ϕ) if there exists
a ball B ⊂ Rd such that x, y ∈ B but ϕ ∩ intB = ∅. Here intB denotes the topological
interior of B. Furthermore, for any ϕ ⊂ Rd locally finite, Gn(ϕ) denotes a graph with vertex
set ϕ, where two vertices x, y ∈ ϕ are connected by an edge in Gn(ϕ) if there do not exist an
integer k ≤ n and vertices x0 = x, x1, . . . , xk = y ∈ ϕ such that |xi − xi+1| < |x − y| for all
i ∈ {0, . . . , k − 1}; see [16]. To begin with, we state an easy result for the maximum length of
the edges in Del(X) that intersect a given bounded set. SinceGn(X) ⊂ Del(X), this also yields
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useful information for the creek-crossing graphs Gn(X), n ≥ 2. For c1, c2 > 0 we define

bc1,c2(ϕ) = inf{n ≥ c2 : ϕ ∩Qn,i �= ∅ for all i ∈ {1, . . . , �nc1�d}}, ϕ ∈ N, (4)

where Qn,1, . . . ,Qn,�nc1�d denotes a subdivision of Qn(o) into �nc1�d congruent subcubes.
Note that bc1,c2 satisfies (2).

Lemma 1. Let β ∈ (0, 1) be an arbitrary fixed number and write bβ instead of b1−β/2,c. Then
there exists c′ > 1 such that for all c > c′ for a > 1 the events {bβ(X) ≤ a} occur w.h.p.
Furthermore, with probability 1 it holds that |X1 −X2| < bβ(X)

β or [X1, X2]∩Q1(o) = ∅ for
all locally finite ψ ⊂ Rd \Qbβ(X)(o) and X1, X2 ∈ (X ∩Qbβ(X)(o)) ∪ ψ such that [X1, X2]
forms an edge in Del((X ∩Qbβ(X)(o)) ∪ ψ).

Proof. For n > 1 subdivide Qn(o) into k = �n1−β/2�d congruent cubes Qn,1, . . . ,Qn,k

of side length n/�n1−β/2�. Next, observe that there exists c > 1 such that for all n ≥ c, any
ball which intersectsQ1(o) and whose diameter is at least nβ contains at least one of the cubes
Qn,1, . . . ,Qn,k . Furthermore, ifX1, X2 ∈ (X∩Qn(o))∪ψ are such that [X1, X2]∩Q1(o) �=
∅, where |X1 −X2| ≥ nβ and X1, X2 are connected by an edge in Del(X ∩Qn(o)∪ψ), then
there exists a ball B of diameter at least nβ satisfying (X ∩Qn(o) ∪ ψ) ∩ intB = ∅. Finally,
note that for every a > 1 we have P{bβ(X) > a} ≤ ∑k

i=1 P{X ∩Q�a�,i = ∅}, so condition
(D1) implies that for a > 1 the events {bβ(X) ≤ a} occur w.h.p.

We now verify conditions (G1)–(G3) of Section 2.1 for the graphs Del(X) and Gn(X),
respectively.

Lemma 2. Letn ≥ 2 be an arbitrary fixed number. Then for a > 1 the eventsGn(X)∩Qa(o) �=
∅ and, therefore, also the events Del(X) ∩Qa(o) �= ∅ occur w.h.p. Moreover, for a > 1 the
events ν1(Del(X)∩Q1(o)) ≤ a and, therefore, also the events ν1(Gn(X)∩Q1(o)) ≤ a occur
w.h.p. In other words, for G = Del(X) and G = Gn(X) the events A(1)a in condition (G1)
occur w.h.p.

Proof. As X ⊂ Gn(X) ⊂ Del(X), the first assertion follows from condition (D1). Due
to the subgraph relation Gn(X) ⊂ Del(X), it suffices to prove the second claim when G =
Del(X). Observe that by Lemma 1 w.h.p. the length of any edge intersecting Q1(o) is at most
a1/(2d+3). Furthermore, by condition (D1) we have X(Q3a1/(2d+3) (o)) ≤ a(d+1)/(2d+3) w.h.p.,
so ν1(Del(X) ∩Q1(o)) ≤ √

da(2d+2)/(2d+3) ≤ a w.h.p.

Lemma 3. LetG = Del(X). Then there exists c > 1 such that the function b3/4,c : N → Z+,∞
introduced in (4) satisfies (1) and such that for a > 1 the events {b3/4,c(X) ≤ a} occur w.h.p.

Proof. We can use similar arguments as in the proof of Lemma 1. Forn > 1, subdivideQn(o)

into k = �n3/4�d congruent subcubes Qn,1, . . . ,Qn,k of side length n/�n3/4�. Next, observe
that there exists c > 1 such that for all n ≥ c, any ball of diameter at least

√
n intersecting

Q1(o) contains at least one of these subcubes. Furthermore, if ψ ⊂ Rd \ Qb3/4,c(X)(o) and
X1, X2 ∈ (X∩Qn(o))∪ψ are such that [X1, X2]∩Q1(o) �= ∅ and [X1, X2] forms an edge in
exactly one of the two graphs Del(X∩Qn(o)) and Del(X∩Qn(o)∪ψ), then there exists a ball
B ⊂ Rd intersecting bothQ1(o) and Rd\Qn(o) such thatX∩B = ∅. Finally, note that for every
a > 1 we have P{b3/4,c(X) > a} ≤ ∑k

i=1P{X ∩Q�a�,i = ∅} ≤ �a3/4�dP{X ∩Q�a�,1 = ∅},
so condition (D1) implies that for a > 1 the events {b3/4,c(X) ≤ a} occur w.h.p.

https://doi.org/10.1239/aap/1435236978 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1435236978


336 C. HIRSCH ET AL.

Lemma 4. Let G = Gn(X) for some n ≥ 2. Then there exists c > 4(n + 1)2 such that the
measurable function b(n) = b3/4,c satisfies (1) and for a > 1 the events {b(n)(X) ≤ a} occur
w.h.p.

Proof. Indeed, suppose we could find ψ ⊂ Rd \ Qb(n)(X)(o) locally finite and X1, X2 ∈
X∩Q√

b(n)(X)
(o) such that |X1 −X2| ≤ √

b(n)(X) and [X1, X2]∩Q1(o) �= ∅, where [X1, X2]
forms an edge in exactly one of the two graphsGn(X ∩Qb(n)(X)(o)) andGn(X ∩Qb(n)(X)(o)∪
ψ). However, since |X1 − X2| ≤ √

b(n)(X), the existence of an edge between X1 and X2
depends only on the X ∩ Q

2(n+1)
√
b(n)(X)

(o) ⊂ X ∩Qb(n)(X)(o). This contradiction implies

that b(n) satisfies (1), so an application of Lemma 2 completes the proof.

Again let G = Gn(X) for some n ≥ 2. Our next goal is to show that for a > 1 the events
A
(3)
a occur w.h.p. To prove this claim, we need a result on generalised descending chains. This

notion is introduced in [16] and is closely related to the concept of descending chains discussed
in [9]. Let b > 0 and ϕ ⊂ Rd be locally finite. We say that a finite sequence x1, . . . , xk ∈ ϕ
forms a finite b-bounded generalised descending chain in ϕ if there exists an ordered set
I = {i1, . . . , ik′ } ⊂ {1, . . . , k} with the properties |ij+1 − ij | ≤ 2 for all j ∈ {0, . . . , k′ − 1},
0 < |xi − xi+1| ≤ b for all i ∈ {1, . . . , k − 1}, and |xij+1 − xij | < |xij−1+1 − xij−1 | for all
j ∈ {2, . . . , k′}, where we use the convention i0 = 0.

Lemma 5. Let A : Rd × [0,∞)2 × N → {0, 1} denote the function with the property that for
b, r > 0, ϕ ⊂ Rd locally finite, and x ∈ ϕ, it holds that A(x, b, r, ϕ) = 1 if and only if there
exists a b-bounded generalised descending chain in ϕ starting at x and leaving the ball Br(x).
Then for b > 1 the events {A(η, b, 4db2d+3, X) = 0 for all η ∈ X ∩Q1(o)} occur w.h.p.

Proof. Let p ∈ (0, 1) and consider Bernoulli site percolation on the lattice with a set of
sites Zd and edges given by {{x, y} ⊂ Zd : |x − y|∞ ≤ 1}, where |z|∞ = maxi∈{1,...,d} |zi | for
z = (z1, . . . , zd) ∈ Rd . By Peierl’s argument (see, e.g. [27, Lemma 9.3]) the probability that
the open cluster at the origin contains at least k sites can be bounded from above by (23d−1p)k .
We choose p such that γ = 23d−1p < 1 and define suitable site percolation models. Let b > 0
be an arbitrary fixed number. For k ≥ 0, ε > 0, and w ∈ Zd , we say that w is (k, ε)-open if
there exists η ∈ Q4b(4bw) ∩X with X(Bk,ε,η) > 0, where Bk,ε,η = B(k+1)ε(η) \ Bkε(η). For
ε = b−2d , and k ≥ 1 with kε ≤ b, the probability that an arbitrary site w ∈ Zd is (k, ε)-open
can be bounded from above in the following way. Let νd be the Lebesgue measure in Rd . Then
the probability that w is (k, ε)-open is at most

E
∑
η∈X

∑
η′∈X\{η}

1{Q4b(4bw)}(η) 1{Bk,ε,η}(η′) ≤ c

∫
Q4b(4bw)

νd(Bk,ε,u) du,

and the latter expression is bounded from above by

c(4b)dκdε
d((k + 1)d − kd) ≤ 23dcκdεb

d(kε)d−1 ≤ 23dcκdb
−1,

where 1 is the indicator fraction and κd denotes the volume of the unit ball in Rd . A similar
upper bound can be deduced for k = 0. Thus, we see that by choosing b sufficiently large
(independent of w and k), the probability of a site being open can be made as small as
desired. Furthermore, for sufficiently large b these site percolation models are 2-dependent.
In particular, by [21, Theorem 0.0], if b is chosen sufficiently large, then the site percolation
model of (k, ε)-open sites can be dominated from above by an independent Bernoulli site
percolation model at probability p chosen as above. Now, assume the existence of η1 ∈
X ∩ Q1(o) such that A(η1, b, 4db2d+3, X) = 1. Then there exists a b-bounded generalised
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descending chain η1, η2, . . . , ηn with ηn �∈ B4db2d+3(η1). Define a map f : {1, . . . , n} →
Zd × {0, . . . , �b2d+1�}, i �→ (z, j), where z is determined by ηi ∈ Q4b(4bz) and j =
�b2d |ηi − ηi+1|� if i ∈ I and j = �b2d |ηi+1 − ηi+2|� otherwise. Note that the composition of
f and the projection π2 to the second argument defines a monotonously decreasing function.
Furthermore, the image of the composition of f with the projection π1 to the first component is
of size at least b2d+2 (otherwise we could not reach Rd \ B4db2d+3(η1) fromQ1(o)). Thus, we
conclude the existence of at least one j ∈ {0, . . . , �b2d+1�} satisfying #π1((π2◦f )−1({j})) ≥ b,
so that

P{A(η, b, 4db2d+3, X) = 1 for some η ∈ X ∩Q1(o)}

≤
b2d+1∑
j=0

P{Qdb2d+2(o) contains a (j, b−2d)-open cluster of size at least b}

≤
b2d+1∑
j=0

∑
z∈Q

db2d+2 (o)∩Zd

P{the (j, b−2d)-open cluster at z has size at least b}.

Since the latter expression is at most (b2d+1 + 1)(db2d+2)dγ b, this completes the proof.

Furthermore, we need the following auxiliary results; see also [1, Lemmas 10–12].

Lemma 6. Let a > 1 and ϕ ⊂ Rd be locally finite. Furthermore, let η, η′ ∈ ϕ be such that
2n|η−η′| ≤ a, where η, η′ are contained in different connected components ofGn(ϕ)∩Ba(η).
ThenA(η, n|η−η′|, a/2, ϕ) = 1, i.e. there exists an n|η−η′|-bounded generalised descending
chain starting at η and leaving the ball Ba/2(η).

Proof. We construct the desired chain x0, x
′
0, x1, x

′
1, . . . recursively, starting with x0 = η

and x′
0 = η′. This construction will ensure that for all k ≥ 0 the sites xk, x′

k belong to different
connected components ofGn(ϕ)∩Ba(η) and we stop the construction as soon as |y−η| ≥ a/2
for y = xk or y = xk′ . Suppose that xk and x′

k have been constructed. By assumption, we
know that {xk, x′

k} does not constitute an edge in Gn(ϕ) ∩ Ba(η). Thus, there exist z0 =
xk, z1, . . . , zj = x′

k ∈ ϕ with j ≤ n and |zi − zi+1| < |xk − x′
k| for all 1 ≤ i ≤ j − 1. As

2n|η − η′| ≤ a, we conclude that zi ∈ Ba(η) ∩ ϕ for all 0 ≤ i ≤ j . By assumption, there
exists at least one index i0 such that zi0 and zi0+1 belong to different connected components of
Gn(ϕ) ∩ Ba(η). Then we define xk+1 = zi0 and x′

k+1 = zi0+1.

For r > 0 and ϕ ⊂ Rd locally finite, we denote by G(ϕ, r) the graph on the vertex set ϕ,
where x1, x2 ∈ ϕ are connected by an edge if and only if |x1 − x2| < r .

Lemma 7. Let α ∈ (0, 1). Then for a > 1 the graphsG(X ∩Qa(o), a
α) are connected w.h.p.

Proof. Subdivide Qa(o) into k = �(d + 1)a1−α�d subcubes Qa,1, . . . ,Qa,k so that any
points in two neighbouring cubes (i.e. cubes sharing a (d − 1)-dimensional face) are at a
distance at most aα . Thus, if each of these cubes contains at least one element from X, then
G(X ∩Qa(o), a

α) is connected and we obtain

P{G(X ∩Qa(o), a
α) not connected} ≤ P{X(Qa,i) = 0 for some i ∈ {1, . . . , k}},

which is at most kP{X(Qa,1) = 0}. An application of (D1) now completes the proof.

Lemma 8. Let G = Gn(X) for some n ≥ 2. Then for a > 1 the events A(3)a occur w.h.p.
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Proof. If A(3)a does not occur, then we may assume by Lemmas 1 and 7 that there exist
X1, X2 ∈ X ∩Qa/2+√

a(o) such that |X1 − X2| ≤ a1/(2d+4), where X1, X2 are contained
in different connected components of Gn(X) ∩ Ba/4(X1) ⊂ Gn(X) ∩ Qa(o). In particular,
Lemma 6 implies that A(X1, na

1/(2d+4), a/8, X) = 1. An application of Lemma 5 therefore
completes the proof.

Due to the relation Gn(X) ⊂ Del(X), Lemma 8 is also true for G = Del(X).

3.2. Voronoi tessellation

Let ϕ ⊂ Rd be locally finite and define Vor(ϕ) ⊂ Rd to be the geometric graph obtained
by considering the edge set of the Voronoi tessellation with centres in ϕ. To any x ∈ ϕ we can
associate the cell {y ∈ Rd : |x − y| ≤ infx′∈ϕ |x′ − y|}, and we define Vor(ϕ) as the union of
the edges of all such cells. Let X be a stationary, isotropic, and m-dependent point process
in Rd , and let G = Vor(X). Then, in contrast to the random geometric graph considered in
Section 3.1, the point processX does not describe the vertices of the graphG = Vor(X), but the
locations of its cell centres. In this subsection, we make the following additional assumption
on X. Suppose that

(V) for a > 1 the events {X ∩Qa(o) �= ∅} ∩ {X(Q1(o)) ≤ a} occur w.h.p.

To begin with, we verify one part of condition (G1).

Lemma 9. For a > 1 the events ν1(Vor(X) ∩Q1(o)) ≤ a occur w.h.p.

Proof. Subdivide Q(4d+1)a(o) into k = (4d + 1)d congruent subcubes Qa,1, . . . ,Qa,k of
side length a and write Aa = ⋂k

i=1{X(Qa,i) ≥ 1}. Choosing an odd number of subcubes
is convenient as it guarantees that the cube Qa(o) is a member of this decomposition. The
dimension d needs to enter the number of elements in this decomposition, since also the diameter
of the unit cube increases in d . We conclude from condition (V) that for a > 1 the events Aa
occur w.h.p. Furthermore, provided that Aa holds, the following is true:

(i) if a Voronoi cell has a nonempty intersection with Q1(o) then its centre is contained in
Q(4d+1)a(o),

(ii) each edge intersecting Q1(o) is determined by a collection of d adjacent cells.

Indeed, (ii) follows from basic linear algebra and to show (i), we proceed as follows. Let
η ∈ X be such that there exists η′ ∈ Q1(o) contained in the Voronoi cell associated with η. By
assumption, X ∩Qa(o) �= ∅, so |η − η′| ≤ √

da, implying that η ∈ Q(4d+1)a(o). Therefore,
(provided that Aa holds) the number of edges in Vor1(X) = Vor(X) ∩Q1(o) is bounded from
above by X(Q(4d+1)a(o))

d , so ν1(Vor1(X)) ≤ √
dX(Q(4d+1)a(o))

d . Hence,

P{ν1(Vor1(X)) > ad
2+3d}

≤ P{Aca} + P{{ν1(Vor1(X)) ≤ √
dX(Q(4d+1)a(o))

d} ∩ {ν1(Vor1(X)) > ad
2+3d}}

≤ P{Aca} + P{X(Q(4d+1)a(o)) > ad+2},
so that an application of condition (V) completes the proof.

Next, we prove the sub-exponential decay of P{Vor(X) ∩Qa(o) = ∅}, P{b(X) > a}, and
1 − P{A(3)a } as a → ∞. For a > 1 subdivide Qa(o) into k = (8d + 1)d congruent subcubes
Qa,1, . . . ,Qa,k of side length a/(8d + 1) and for ϕ ∈ N let b(ϕ) denote the smallest n ≥ 2
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such that ϕ ∩ Qn,i �= ∅ for all i ∈ {1, . . . , k}. First, note that b satisfies (2). Moreover, as
explained in Lemma 9, it is convenient to consider a subdivision into an odd number of cubes
in the dimension d .

Lemma 10. The function b : N → Z+,∞ introduced above satisfies (1). Moreover, for a > 1
the events Vor(X) ∩Qa(o) �= ∅, {b(X) ≤ a} and A(3)a occur w.h.p.

Proof. We writeAa = ⋂k
i=1{X(Qa,i) ≥ 1} and conclude from condition (V) that the events

Aa and {b(X) ≤ a} occur w.h.p. If Aa holds, then

(i) the centre of any Voronoi cell intersecting Q1(o) is contained in Qa/2(o),

(ii) the centre of any Voronoi cell intersecting Qa/2(o) is contained in Q3a/4(o),

(iii) the Voronoi cell associated with any Xn ∈ X ∩Q3a/4(o) is contained in Qa(o).

We provide a proof of (iii), noting that (i) and (ii) can be proven by similar arguments.
Indeed, let η ∈ Rd \ Qa(o) be arbitrary and denote by P the intersection point of the line
segment [Xn, η] and ∂Qa(o). Let i ∈ {1, . . . , k} be such that P ∈ Qa,i and choose an arbitrary
X0 ∈ X ∩Qa,i . Then

|η −X0| − |η −Xn| ≤ |η − P | + |P −X0| − |η − P | − |P −Xn| ≤ a

(√
d + 1

8d + 1
− 1

8

)
,

which is negative for d ≥ 2, soη is not contained in the cell associated withXn. On the one hand,
(i)–(iii) imply thatb satisfies (1). On the other hand, asA(3)a andVor(X)∩Qa(o) �= ∅ are implied
by the joint occurrence of (ii) and (iii), we see that the events A(3)a and Vor(X) ∩Qa(o) �= ∅

also occur w.h.p.

3.3. Poisson line tessellation

In this subsection we show that the linear growth property (3) holds for the isotropic two-
dimensional Poisson line tessellation. Although conditions (G1) and (G3) could be verified
using similar arguments as in Lemma 11 below, we conjecture that condition (G2) (or some
variant thereof) does not hold due to the long-range dependence inherent to the Poisson line
model. However, as we will see, it is quite simple to check (3) directly. To be more precise, we
consider the planar graph formed by the union of lines in an isotropic Poisson line process, which
is defined as follows. Let {(Rn,Un)}n≥1 ⊂ R×[0, π) denote an independently marked Poisson
point process in R with intensity λ > 0, where the marks are uniformly distributed on [0, π).
Then the system of random lines {�n}n≥1 defined by �n = {(x, y) ∈ R2 : x cosUn+y sinUn =
Rn}, n ≥ 1 is called an isotropic Poisson line process.

Lemma 11. Let G be the edge set of the tessellation induced by an isotropic Poisson line
process. Then property (3) holds.

Proof. For r, u > 1 denote by Er,u the event that there exist four random lines {�ni }1≤i≤4
of the Poisson line process such that they form the extensions of the edges of a quadrilateral 

satisfying {q(o), q(re1)} ⊂ 
 ⊂ Q12ur (o), where the notation q(·)was introduced in Section 2.
Observe that if Er,u occurs, then �(o, re1) ≤ 2

√
2 · 12ur + 4 · 12ur , where the notation �(·, ·)

was also introduced in Section 2. Thus, it suffices to find sub-exponential bounds for P{Ecr,u}.
We denote by E(1)r,u the event that there exists a line �1 of the Poisson line process whose
angle is contained in [π/2 −π/24, π/2 +π/24] and that intersects the ball B√

ur ((r + ur)e1).
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Figure 2: Occurrence of the event
⋂4
i=1 E

(i)
r,K .

Furthermore, we denote by E(i)r,u the event obtained from E
(1)
r,u by applying a rotation of angle

(i − 1)π/2 and centre o. See Figure 2 for an illustration of the event
⋂4
i=1 E

(i)
r,u.

We claim the existence of u0 > 1 such that for all u ≥ u0 and for all sufficiently large
ur the event

⋂4
i=1 E

(i)
r,u implies Er,u. The inclusion {q(o), q(re1)} ⊂ 
 is clear. To prove


 ⊂ Q12ur (o) choose an arbitrary intersection point P1 ∈ �1 ∩ ∂B√
ur ((r + ur)e1). Similarly,

chooseP2 as an intersection point of �2 with the circle ∂B√
ur ((r+ur)e2) and put {Q} = �1∩�2.

Using elementary geometry we see that for all sufficiently large ur the angle α = � P2QP1
forms the largest angle in the triangle �P2P1Q and that |P1 − P2| ≤ 4ur; see Figure 2. In
particular, the point Q is contained in Q12ur (o). Since the same is true for �2 ∩ �3, �3 ∩ �4,
and �4 ∩ �1 we see that Er,u holds. Therefore, it remains to prove sub-exponential bounds for
the complement of E(1)r,u . However, by the definition of a Poisson line process the number of
lines with the properties described in E(1)r,u is Poisson distributed with parameter (λ/12)

√
ur .

In particular, P{E(1)r,u} = 1 − exp(−(λ/12)
√
ur).

4. Proof of Theorem 1

To prove Theorem 1, we proceed in three steps, where we use the general method of global
and local paths that has already been successfully applied in the literature; see [1], [2], [4],
[13], and [35]. First, in Section 4.1 we discretise Rd into boxes, allowing us to use results
from percolation theory on lattices. Next, in Section 4.2 we explain how to construct a global
path, i.e. a path that is used to move from a point on G close to o to a point on G close to re1.
Finally, in Section 4.3 we provide a construction for local paths that are used to connect q(o)
and q(re1) to the global path constructed in the previous step.

4.1. Discretisation of the Euclidean space into boxes

In order to prove that the probability P{�(o, re1) ≥ ur} decreases as stated in (3) if ur → ∞,
it suffices to show that w.h.p. we can construct some path of length at most ur connecting q(o)
and q(re1) (because then �(o, re1) ≤ ur). Here, we recall that q(o) and q(re1) denote the
closest points on the graph G to the origin and to re1, respectively. To construct such a path,
we decompose the Euclidean space Rd into congruent d-dimensional subcubes with a certain
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Figure 3: A path (thick) avoiding L-bad cubes (left) and L-bad connected component containing o and
re1 (right).

side lengthL > 0. In particular, our goal is to move only along cubes for which the total length
of the random geometric graph is bounded from above and for which it is possible to pass
directly to neighbouring cubes along the random geometric graph. We call these cubes L-good
cubes/sites in the following, other cubes are called L-bad cubes/sites, see also Definition 1
below. Loosely speaking, L-good cubes describe subregions of Rd , where the graph G has
good properties, which are closely related to the growth, stability, and connectivity conditions
(G1)–(G3) introduced in Section 2.1.

As in [4], we will show that this allows us to construct efficient paths inside connected
components of L-good cubes and also that nonpercolation of L-bad cubes occurs for all
sufficiently large L > 0. For illustrations of the situation in two configurations, see Figure 3,
where L-bad cubes are shaded. For simplicity, only the left figure shows the underlying graph.

More precisely, we introduce the following definition.

Definition 1. Let L > 0, z ∈ Zd and put cL = (5L)dL. Furthermore, let b : N → Z+,∞ be
the function considered in condition (G2) of Section 2.1. A site z ∈ Zd is said to be L-good if
the following items are satisfied:

(i) q(x) ∈ BL/4(x) for all x ∈ Qd ∩QL(Lz) and ν1(G ∩Q5L(Lz)) ≤ cL,

(ii) b((X − z′) ∩QL/2(o)) ≤ L/2 for all z′ ∈ Zd ∩Q5L+1(Lz),

(iii) G ∩Q3L(Lz) is contained in a connected component of G ∩Q5L(Lz).

For a given L > 0, we consider the site percolation model {Yz}z∈Zd of L-good sites, where
for z ∈ Zd the {0, 1}-valued random variable Yz takes the value 1 if and only if z forms an
L-good site. Observe that (due to (ii)) there exists m ≥ 1 such that for all sufficiently large
L > 0 the percolation process defined above is m-dependent. Furthermore, the following
useful results hold, where we say that a subset of Zd is ∗-connected if it is a connected set in
the graph on Zd with edges given by {{x, y} ⊂ Zd : |x − y|∞ ≤ 1}.
Lemma 12. Let� ⊂ Zd be a finite and ∗-connected set ofL-good sites. Then for all z, z′ ∈ �
and all η ∈ G ∩Q3L(Lz), η′ ∈ G ∩Q3L(Lz

′) the points η, η′ can be connected by a path in
G ∩ (L�⊕Q5L(o)) satisfying �(η, η′) ≤ (#�+ 1)cL.
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Proof. Put z = z0, z′ = zk and let γ = 〈z0, z1, . . . , zk〉 ⊂ � be a self-avoiding path of
∗-connected vertices connecting z and z′. Geometrically, the path γ corresponds to a sequence
of vertex-adjacent cubes QL(Lz0),QL(Lz1), . . . , QL(Lzk). By condition (i) of Definition 1,
we have q(Lzi) ∈ G ∩ QL(Lzi) for all i ∈ {0, . . . , k}. Furthermore, by condition (iii), we
conclude that q(Lzi) and q(Lzi+1) can be connected by a path inG∩Q5L(Lzi). By the same
reasoning, we can find corresponding paths from η to q(Lz0) and from η′ to q(Lzk). Finally,
using condition (i), the assertion follows.

Lemma 13. It holds that limL→∞ P{o is L-good} = 1.

Proof. The growth and stability conditions (G1) and (G2) of Section 2.1 immediately imply
conditions (i) and (ii) in Definition 1 of L-goodness. To deal with condition (iii), subdivide
Q3L(o) into k = 6d congruent subcubesQL,1, . . . ,QL,k of side length L/2. The connectivity
condition (G3) introduced in Section 2.1 implies that if QL,i and QL,j are neighbouring
subcubes, then G ∩ QL,i and G ∩ QL,j are contained in the same connected component
of G ∩ Q5L(o) w.h.p. Since the growth condition (G1) implies that G ∩ QL,i �= ∅ for all
i ∈ {1, . . . , k} w.h.p., the proof is completed.

Usingm-dependence in conjunction with Lemma 13 and stationarity allows us to apply [21,
Theorem 0.0]. This means that the family of L-bad sites can be dominated from above by
a Bernoulli site percolation model with arbitrarily small marginal probability, provided that
L is chosen sufficiently large. In particular, we henceforth fix a value of L such that in the
dominating Bernoulli site percolation model the size of the ∗-connected closed component at
the origin (also called cluster size) admits a finite exponential moment.

4.2. Construction of global paths

In this section we elaborate on how to construct an efficient global path, i.e. a path that is
used to move from a point on G not too far from o to a point on G not too far from re1. This
is done by searching for L-good cubes close to o and re1 that are contained in a set of L-good
sites surrounding the L-bad connected components intersecting some cube between o and re1.

For every finite set of sites � ⊂ Zd we can decompose its complement �c into finitely
many connected components, i.e. �c = �c1 ∪ · · · ∪ �ck . Observe that precisely one of these
components, say �c1, is infinite. We define the external boundary of � as

∂ext� = {z ∈ �c1 : |z− z′|1 = 1 for some z′ ∈ �};
see Figure 4. Recall from [29, Lemma 2.1] that the external boundary of any ∗-connected set
is again ∗-connected.

If we consider the site percolation model introduced in Section 4.1, then for any z ∈ Zd

we denote by Cz the ∗-connected L-bad component at z. Furthermore, for n ≥ 0 we define
Vn = ∂ext(

⋃n−1
i=0 (Cie1 ∪ {ie1})) as well as z1,n = supk≤0{ke1 ∈ Vn} and z2,n = infk≥n{ke1 ∈

Vn}. Note that z1,n and z2,n are contained in the same ∗-connected component of L-good sites;
see Figure 5. First, we provide an upper bound on the length of the shortest path connecting
q(Lz1,n) and q(Lz2,n).

Lemma 14. There exists u1 ≥ 1 with

lim inf
un→∞
u≥u1,n≥1

−log P{�(Lz1,n, Lz2,n) ≥ un}
un

> 0.
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Figure 4: Grey squares form external boundary of the set of (filled) black disks.

Figure 5: Global path and the set Vn (dotted pattern, left) and local path (solid) connecting q(o)

respectively q(re1) to the global path (dashed, right).

Proof. First, Lemma 12 implies that �(Lz1,n, Lz2,n) ≤ cL(#Vn + 1) for all n ≥ 1. Further-
more, there exists c > 0 with #Vn + 1 ≤ c(n+ #A), where A = ⋃n−1

i=0 Cie1 denotes the union
of the ∗-connected L-bad components at ie1 for i ∈ {0, . . . , n− 1}. In particular,

P{�(Lz1,n, Lz2,n) ≥ un} ≤ P

{
n+ #A ≥ un

ccL

}
.

Recall that the percolation process ofL-bad sites can be dominated from above by a sub-critical
Bernoulli site percolation process, whose cluster size admits a finite exponential moment; see
the remark at the end of Section 4.1. Furthermore, if we consider the union of the closed
connected components at the sites ie1 for i ∈ {0, . . . , n − 1}, then it has been shown in [12,
Lemma 2.3] that the size of this union is dominated from above by

∑n−1
i=0 Di , where {Di}0≤i≤n−1

is a family of i.i.d random variables whose marginal distributions coincide with the distribution
of the cluster size. By the choice of L, we have exp(a) = E exp(h(D1 + 1)) < ∞ for some
h > 0. In particular, for all u ≥ 2accL/h the Markov inequality yields

P

{
n+ #A ≥ un

ccL

}
≤ P

{n−1∑
i=0

(Di + 1) ≥ un

ccL

}
≤ exp

(
n

(
a − uh

ccL

))
.

Since the latter expression is at most exp(−nuh/(2ccL)), this completes the proof.
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4.3. Construction of local paths

Similar to the approach considered in [1], to prove Theorem 1 we need the existence of
suitable local paths in addition to the global paths constructed in Section 4.2, see Figure 5.

The goal of this subsection is to provide the following bounds on the lengths of such local
paths.

Lemma 15. For r ∈ R let n(r) ∈ Z be the uniquely determined integer n satisfying −L/2 <
L(n− 1)− r ≤ L/2. Then there exist u2, u3 ≥ 1 such that

lim inf
ur→∞
u≥u2,r≥1

log(−log P{�(o, Lz1,n(r)) > ur })
log(ur)

> 0, (5)

and

lim inf
ur→∞
u≥u3,r≥1

log(−log P{�(Lz2,n(r), re1) > ur})
log(ur)

> 0.

Before we begin the proof of Lemma 15, we extend the definition of Vn introduced in
Section 4.2 to negative values of n in a natural way. For n ≤ −1 and � = ⋃0

i=n+1 Cie1 ∪
{ie1} write Vn = ∂ext� and An = Zd \ �c1, where we recall that �c1 denotes the uniquely
determined infinite component of the complement of � ⊂ Zd . The idea is to consider the
external boundary Vz1,n(r) of the union of L-bad components intersecting one of the sites
o,−e1, . . . , (z1,n(r) + 1)e1, i.e. Vz1,n(r) = ∂ext(

⋃0
i=z1,n(r)+1(Cie1 ∪ {ie1})). We first show in

Lemma 16 that any two paths starting from the domain surrounded by this external boundary,
intersect Vz1,n(r) in a particularly nice way that allows us to efficiently join these two paths
together along the external boundary. In a second step, see Lemma 17 below, we derive for
suitable values of r an upper bound on #V−n(r), which holds w.h.p.

Lemma 16. The points q(o) and q(Lz1,n(r)) are connected by a path in

G ∩ ((LAz1,n(r) ∪ LVz1,n(r) )⊕Q5L(o)).

Proof. As G is connected and stationary, there exists a path γ in G starting at q(o) and
leaving (LAz1,n(r) ∪ LVz1,n(r) ) ⊕Q3L(o). Choose z0 ∈ Vz1,n(r) such that Lz0 ⊕Q3L(o) is the
first cube of the form {Lz ⊕Q3L(o)}z∈Vz1,n(r) that is intersected by γ . Furthermore, we write
η ∈ G∩(Lz0⊕Q3L(o)) for the first intersection point of γ andLz0⊕Q3L(o). Similarly, we can
construct analogous objects γ ′, z′0, and η′ which are obtained when starting from q(Lz1,n(r)).
Since Vz1,n(r) is a ∗-connected set of L-good sites, we conclude from Lemma 12 that η and η′
can be joined by a path inside LVz1,n(r) ⊕Q5L(o).

Lemma 17. For each β > 0 there exists u4 = u4(β) > 0 with

lim inf
ur→∞
u≥u4,r≥1

−log P{#V−n(uβr2β) > u2βr2β}
u2βr2β > 0.

Proof. We can proceed similarly as in the proof of Lemma 14. In particular, there exist
u4, c1 ≥ 1 such that for all u ≥ u4 and r ≥ 1 we have P{#V−n(uβr2β) > n(uβr2β)uβ} ≤
exp(−c1n(u

βr2β)uβ). Furthermore, there exist constants c2(L), c3(L) > 0 such that for all
u ≥ u4 and r ≥ 1 we have c2(L)u

2βr2β ≤ n(uβr2β)uβ ≤ c3(L)u
2βr2β , which proves the

claim.

Finally, we show that |z1,n(r)| is rather small w.h.p.
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Lemma 18. It holds that

lim sup
a→∞

sup
r≥1

1

a
log P{z1,n(r) < −a} < 0.

Proof. Let a > 0 and note that if z1,n(r) < −a, then there exists k ≥ 0 such that Cke1 has
diameter larger than k + a. As discussed in Section 4.1, we choose L sufficiently large so that
this diameter has an exponentially bounded tail. In particular, there exists a constant c > 0
such that the probability P{z1,n(r) < −a} is bounded above by

∞∑
k=0

P{diam(Cke1) > k + a} ≤
∞∑
k=0

exp(−c(k + a)) ≤ (1 − exp(−c))−1 exp(−ca).

Proof of Lemma 15. Using the notation k = n(u1/(6d+12)r1/(3d+6)), by means of Lemma 16
we obtain

P{�(o, Lz1,n(r)) > ur} ≤ P{ν1(G ∩ ((LAz1,n(r) ∪ LVz1,n(r) )⊕Q5L(o))) > ur}
≤ P{z1,n(r) < −k} + P{ν1(G ∩ ((LA−k ∪ LV−k)⊕Q5L(o))) > ur}.

Observe that by the discrete isoperimetric inequality (see, e.g. [12]), #V−k is at least
d−1(#A−k)(d−1)/d . In particular, if t > 0 is sufficiently large and #V−k ≤ t , thenA−k ∪V−k ⊂
Qt3(o). Hence,

P{�(o, Lz1,n(r)) > ur} ≤ P{z1,n(r) < −k} + P{#V−k > t}
+ P{ν1(G ∩QLt3+5L(o)) > ur}

= P{z1,n(r) < −k} + P{#V−k > t}
+ P{ν1(G ∩QLt3+5L(o)) > t3d+6},

where t = (ur)1/(3d+6). Applying the sub-exponential bounds of Lemmas 17 and 18, condition
(G1), therefore, yields (5). The second assertion of Lemma 15 can be deduced by very similar
arguments.

4.4. Combining paths

Finally, we patch together the global and local paths constructed in Sections 4.2 and 4.3,
respectively. For all r ≥ 1 and u ≥ u0 = 3 max{u1, u2, u3},

P{�(o, re1) > ur} ≤ P

{
�(o, Lz1,n(r)e1) >

ur

3

}
+ P

{
�(Lz1,n(r)e1, Lz2,n(r)e1) >

ur

3

}

+ P

{
�(Lz2,n(r)e1, re1) >

ur

3

}
.

The first and third expressions on the right-hand side of this inequality exhibit sub-exponential
decay by Lemma 15 (local path), whereas the second expression exhibits exponential decay by
Lemma 14 (global paths). In this way, we can deduce the desired sub-exponential bound stated
in Theorem 1.

5. Proofs of Theorems 2 and 3

In this section we provide proofs of Theorems 2 and 3, which can be seen as applications of
Theorem 1.
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5.1. Shape theorem

Recall that Theorem 2 can be considered as a shape theorem (in the sense of [19, Theo-
rem 1.7]) for Euclidean first passage percolation on random geometric graphs. Let G be a
stationary, ergodic, and isotropic random geometric graph in Rd for which (3) holds and which
satisfies conditions (G1) and (G3). First, we derive the following preliminary results stated in
Lemmas 19–21 below.

Lemma 19. Let ξ ≥ 1 be an arbitrary fixed number. Then

P{B(1−ε)r (o) ⊂ BGξr(o) ⊂ B(1+ε)r (o) for all sufficiently large r > 0} = 1 (6)

for all ε > 0 if and only if for all ε > 0 it holds that

P{(ξ − ε)|x| ≤ �(o, x) ≤ (ξ + ε)|x| for all x ∈ Rd with |x| sufficiently large} = 1. (7)

Proof. Let ε ∈ (0, 1) be arbitrary and choose a (random) threshold r0 > 0 such that the
inclusions in (6) hold for all r > r0 when using ε′ = ε/(2ξ) instead of ε. Then for x ∈ Rd

with (1 + ε/ξ)|x| > r0, we obtain x ∈ B|x|(o) ⊂ B(1−ε′)(1+ε/ξ)|x|(o) ⊂ BGξ(1+ε/ξ)|x|(o),
which means that �(o, x) ≤ (ξ + ε)|x|. Similarly, choosing r0 > 0 as above, the inequality
�(o, x) < (ξ − ε)|x| for |x| > r0 would imply that

x ∈ BGξ(1−ε/ξ)|x|(o) ⊂ B(1+ε/(2ξ))(1−ε/ξ)|x|(o) ⊂ B(1−ε/(2ξ))|x|(o),

which is a contradiction to |y| < |x| for all y ∈ B(1−ε/(2ξ))|x|(o). Thus, assuming that (6) holds
for all ε > 0, it follows that (7) holds for all ε > 0. The reverse implication can be shown
similarly.

Lemma 20. Let E(1) denote the event that |yn − q(yn)|/|yn| → 0 for all sequences (yn)n≥1
with yn ∈ Rd and |yn| → ∞. Then P{E(1)} = 1.

Proof. Let z ∈ Zd and ε ∈ (0, 1/d) be arbitrary. Subdivide the cube Qε|z|(z) into k =
(4d + 1)d congruent subcubesQz,1, . . . ,Qz,k with side length ε|z|/(4d + 1). We say that z is
ε-good if each of the k subcubes has a nonempty intersection with G. It is easy to check that
if z is ε-good, then q(y) ∈ Q(2

√
d+1)ε|z|/(4d+1)(z) for all y ∈ Qε|z|/(4d+1)(z). In particular,

|y − q(y)|
|y| ≤

√
d(2

√
d + 1)ε(|z|/(4d + 1))

|z| − √
dε(|z|/(4d + 1))

≤ 3dε

4d + 1 − √
dε
.

Furthermore, using stationarity, for any r ≥ 1 we compute

P

{ ⋃
z∈Zd : |z|≥r

{z is ε-bad}
}

≤
∑

z∈Z
d : |z|≥r

P{z is ε-bad}

≤ (4d + 1)d
∑

z∈Z
d : |z|≥r

P{Qε|z|/(4d+1)(o) ∩G = ∅}.

Now, using condition (G1) in conjunction with the Borel–Cantelli lemma shows that with
probability 1 we have only a finite number of ε-bad lattice points and, therefore,

lim sup
n→∞

|yn − q(yn)|
|yn| ≤ 3dε

4d + 1 − √
dε
.

Since ε > 0 was arbitrary this proves the claim.
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Lemma 21. Let α > 0 be arbitrary. If X is a point process satisfying condition (G1), then for
a > 1 the events q(o) ∈ Qaα(o) occur w.h.p.

Proof. Clearly, q(o) ∈ Qaα(o) if Qaα/
√
d(o) ∩G �= ∅. Hence, the proof is completed by

recalling that condition (G1) implies the existence of c1, c2 > 0 such that

P{Qaα/
√
d(o) ∩G = ∅} ≤ c1 exp

(
−

( aα√
d

)c2
)
.

Next, note the following two results.

Lemma 22. Let S̃ ⊂ ∂B1(o) be a fixed countable subset of the unit sphere in Rd . Then there
exists ξ ≥ 1 such that

P

{
limn→∞ �(o, ns)

n
= ξ for all s ∈ S̃

}
= 1.

Proof. By isotropy and the countability assumption, it suffices to prove the assertion for fixed
s = e1. It is easy to check that the family of random variables {�k,n = �(ke1, ne1)}k,n≥0 is sub-
additive. Moreover, it is stationary with respect to the mappings {�k,n}k,n≥0 �→{�k+m,n+m}k,n≥0,
m ≥ 1. Thus, to apply Kingman’s sub-additive ergodic theorem [20] it suffices to verify
E�(o, e1) < ∞. To prove this claim write E�(o, e1) = ∫ ∞

0 P{�(o, e1) > ρ} dρ. Relation (3)
implies that the integrand decays sub-exponentially fast in ρ, so E�(o, e1) < ∞. Finally, the
ergodicity of G implies that limn→∞ �(o, ne1)/n is a.s. constant.

Lemma 23. Let δ ∈ (0, 1) be arbitrary. For a > 1 and η ∈ G ∩Qaδ (o) denote by E(2)η,a
the event that �(o, η) ≤ a2dδ . Then there exists a family of events (E(2)a )a>1 such that the
occurrence of E(2)a implies the occurrence of E(2)η,a for all η ∈ G ∩ Qaδ (o) and such that for
a > 1 the events E(2)a occur w.h.p.

Proof. By Lemma 21, we have q(o) ∈ Q3aδ (o) w.h.p., and by condition (G3) for any
η ∈ Q3aδ (o) we know that q(o) and η can be connected by a path in G ∩Q5aδ (o) w.h.p. In
particular, it suffices to show that for a > 1 the events ν1(Q5aδ (o) ∩ G) ≤ a2dδ occur w.h.p.
To show this, we may subdivide Q5aδ (o) into k = �5aδ�d congruent subcubes of side length
at most 1 and apply condition (G1) to obtain that ν1(Q5aδ (o) ∩G) ≤ kaδ ≤ a2dδ holds w.h.p.

Finally, we need one further preliminary lemma. A similar result is also the key ingredient
in Kesten’s original proof; see [19, Lemma 3.6].

Lemma 24. For 0 < ε < 1
4 write E(3)ε for the following event. There exists a random K > 0

such that �(η, η′) ≤ 4u0|η− η′| for all η, η′ ∈ G with |η| ≥ K and ε|η|/2 ≤ |η− η′| ≤ 2ε|η|.
Then P{E(3)ε } = 1.

Proof. First, put Bε|η|,η = {η′ ∈ Rd : ε|η|/2 ≤ |η′ − η| ≤ 2ε|η|}. For every u > 1 and
z ∈ Zd with |z| sufficiently large, we then consider the probability

P{there exist η ∈ G ∩Q1(z) and η′ ∈ G ∩ Bε|η|,η with �(η, η′) ≥ u|η − η′|}.
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Putting D(z, ε) = {z′ ∈ Zd : ε|z|/4 ≤ |z− z′| ≤ 4ε|z|}, we note that it is at most

∑
z′∈D(z,ε)

P

{
there exist η, η′ ∈ G with �(η, η′) ≥ u|z− z′|

2
, η ∈ Q1(z) and η′ ∈ Q1(z

′)
}

≤
∑

z′∈D(z,ε)
P

{
�(z, z′) ≥ u|z− z′|

4

}

+
∑

z′∈D(z,ε)
P{there exists η ∈ G ∩Q|z|1/(4d) (z) with �(z, η) ≥ √|z|}

+
∑

z′∈D(z,ε)
P{there exists η′ ∈ G ∩Q|z|1/(4d) (z′) with �(z′, η′) ≥ √|z|}.

Choosing u = 4u0, and applying Lemma 23 and Theorem 1 in conjunction with the Borel–
Cantelli lemma then completes the proof.

Using these auxiliary results, we may now proceed similarly to [19, Theorem 1.7] to deduce
Theorem 2.

Proof of Theorem 2. Let ε > 0 be arbitrary. Our goal is to show that

−ε + ξ ≤ �(o, y)

|y| ≤ ξ + ε (8)

for all y ∈ Rd with |y| sufficiently large. We assume that we are given a realisation where
the event E(3)

m−1 in Lemma 24 occurs for all m ≥ 1 and where, additionally, the event E(1)

of Lemma 20 occurs. For the sake of deriving a contradiction, we assume that there exists a
sequence yn with |yn| → ∞, yn|yn|−1 → z ∈ ∂B1(o), so (8) is violated for these yn ∈ Rd when
ε is replaced by 8u0ε. Since |q(yn)−yn|/|yn| → 0, we may assume yn = q(yn). Now, choose
an arbitrary countable dense subset S̃ ⊂ ∂B1(o) and an element s ∈ S̃ so ε ≤ |s − z| ≤ 5

4ε.
Then ∣∣∣∣�(o, yn)|yn| − ξ

∣∣∣∣ ≤
∣∣∣∣�(o, yn)|yn| − �(o, �|yn|�s)

|yn|
∣∣∣∣ +

∣∣∣∣�(o, �|yn|�s)|yn| − ξ

∣∣∣∣
≤ �(yn, �|yn|�s)

|yn| +
∣∣∣∣�(o, �|yn|�s)|yn| − ξ

∣∣∣∣.
By Lemma 22, the second expression tends to 0 as n → ∞. Thus, it remains to consider the
behaviour of the first expression. For simplicity write kn = �|yn|� and xn = q(kns), so that
�(yn, kns) = �(yn, xn). Now,

|yn − xn| ≤ kn

(∣∣∣∣ynkn − z

∣∣∣∣ + |z− s| +
∣∣∣∣ s − xn

kn

∣∣∣∣
)
.

By Lemma 20, the third summand is less than ε/8 for all sufficiently large n. Furthermore,
by the definition of z, the same holds for the first summand. As the second summand is at
most 5ε/4, we conclude that |yn − xn| ≤ 3knε/2 ≤ 2|yn|ε. Similarly, as |z − s| > ε, it
follows that |yn − xn| ≥ |yn|ε/2. An application of Lemma 24 thus yields �(yn, xn)/|yn| ≤
4u0|yn − xn|/|yn| ≤ 8u0ε. Since ε > 0 was arbitrary, this completes the proof of Theorem 2.
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We conclude this section by showing that if (7) is satisfied for G then it is satisfied for the
Palm version G∗ of G with respect to ν1(· ∩G).
Proposition 1. Let G be a stationary and isotropic random geometric graph in Rd . If (7) is
satisfied for G then it is also satisfied for G∗.

Proof. For enhanced readability, we write �G for the lengths of the shortest paths onG and
�G∗ for the lengths of the shortest paths on G∗, respectively. We prove only the statement for
the first inequality in (7), the proof of the second one being very similar. First, note that for all
ε > 0 the definition of the Palm version yields

P{(ξ − ε)|x| ≤ �G∗(o, x) for all x ∈ Rd with |x| sufficiently large}
= 1

γ
E

∫
G∩Q1(o)

1{(ξ−ε)|x−y|≤�G(y,x) for all x∈Rd with |x − y| sufficiently large} dy.

In particular, it suffices to prove that for all ε > 0 there exists a (random) threshold r0 > 0
such that for all y ∈ Q1(o) ∩G and all x ∈ Rd with |x − y| ≥ r0 we have (ξ − ε)|x − y| ≤
�G(y, x). Therefore, let ε > 0 be arbitrary and choose a (random) threshold r ′0 > 0 such that
the inequalities in (7) hold for G with ε/4 instead of ε and all x ∈ Rd with |x| ≥ r ′0. Then
we choose r0 > 0 sufficiently large such that r0 ≥ max {2√

dξε−1, r ′0 + √
d} and �G(y, o) ≤

(r0 − √
d)ε/4 hold for all y ∈ G ∩Q1(o). In particular, for all y ∈ Q1(o)∩G and all x ∈ Rd

with |x − y| ≥ r0, we compute �G(y, x) ≥ �G(o, x) − �G(o, y) ≥ (ξ − ε/4)|x| − ε|x|/4 ≥
(ξ − ε)|x − y|. This completes the proof of (ξ − ε)|x − y| ≤ �G(y, x). The second inequality
of (7) can be obtained by a similar reasoning.

5.2. Boundedness of cells

For the convenience of the reader, we recall the statement of Theorem 3. LetG be a stationary
and isotropic random geometric graph in R2 for which relation (3) holds and which satisfies
conditions (G1) and (G3). Then with probability 1, all cells of G are bounded.

Proof of Theorem 3. For r > 0 we write Sr = {z ∈ Zd : |z|∞ = �r�} for the discrete
d∞-sphere in Zd of radius �r� centred at o. Moreover, for z ∈ Sr we denote by zccw ∈ Z2 the
counterclockwise successor of z in Sr . We also denote by Cr the event that q(rz) ∈ Q√

r (rz)

for all z ∈ Sr and that �(rz, rzccw) ≤ 2u0r for all z ∈ Sr . Then, by stationarity, it suffices
to prove the a.s. boundedness of the zero-cell of G. Moreover, the occurrence of Cr implies
the boundedness of the zero-cell, provided that r > 0 is sufficiently large. Hence, it suffices
to prove that the probability that Cr fails for infinitely many integer values of r is 0. Note
that this probability is at most

∑
z∈Sr (P{q(rz) �∈ Q√

r (rz)} + P{�(rz, rzccw) ≥ 2u0r}). The
sub-exponential decay of this sum follows from Lemma 21 and Theorem 1, so the proof is
completed by an application of the Borel–Cantelli lemma.

6. Proof of Theorem 4

The proof of Theorem 4 is subdivided into several steps. First, we recall from [23, Theo-
rem 6.5] that if
,
1, and
2, . . . are random closed sets in R2 with
n

d−→ 
. Then P{
n∩K =
∅} → P{
 ∩ K = ∅} for all compact K ⊂ R2 with P{
 ∩ K = ∅} = P{
 ∩ intK = ∅}.
We begin by considering an elementary convergence property.

Lemma 25. Let 
,
1, 
2, . . . be random compact convex sets in R2 with 
n
d−→ 
.

Furthermore, suppose that o ∈ int
 and P{{
i = ∅} ∪ {o ∈ 
i}} = 1 for all i ≥ 1.
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Then P{
n ⊂ intB} → P{
 ⊂ B} for all compact, convex B ⊂ R2 with o ∈ B and
P{
 ⊂ B} = P{
 ⊂ intB}.

Proof. Observe that 
 ⊂ B if and only if 
 ∩ (B ⊕ intB1(o)) \ B = ∅ and similarly

 ⊂ intB if and only if 
 ∩ (B ⊕ B1(o)) \ intB = ∅. In particular,

lim
n→∞ P{
n ⊂ intB} = lim

n→∞ P{
n ∩ (B ⊕ B1(o)) \ intB = ∅}
= P{
 ∩ (B ⊕ B1(o)) \ intB = ∅},

which completes the proof, since the latter expression equals P{
 ⊂ B}.
Next, we identify the distributional limit of the scaledVoronoi cells

√
λ
0,λ. In the following,

we denote by
0 the zero-cell of the Voronoi tessellation on Y ∪{o}, where Y is a homogeneous
Poisson point process with intensity γ = Eν1(G ∩Q1(o)).

Lemma 26. As λ → 0 the scaled Voronoi cells
√
λ
0,λ converge in distribution to 
0.

Proof. First, we claim that
√
λXλ

d−→ Y as λ → 0. Indeed, observe that for any λ ∈ (0, 1)
the point processXλ can be obtained fromX1 by applying an independent thinning with survival
probability λ. In particular, the claim follows from [10, Exercise 11.3.4] or [22, Theorem 7.3.1].
By the continuous mapping theorem, it suffices to show that the map which assigns to a point
process the zero-cell of its associated Voronoi tessellation has discontinuities only in a null set
with respect to the distribution of Y ∪ {o}. So let ϕ ⊂ R2 be a locally finite set such that the
interior of each of the four quadrants contains at least one point. For such locally finite ϕ we
define Vor0(ϕ) to be the unique cell of the Voronoi tessellation induced by ϕ ∪{o} that contains
the origin. Now, let (ϕn)n≥1 be a sequence of locally finite sets with ϕn → ϕ. We make use of
the characterisation [10, Theorem A2.6.II], where it is shown that this convergence is equivalent
to ϕn(A) → ϕ(A) for all A ∈ B0(R

2) with the property ϕ(∂A) = 0. Our goal is to deduce
Vor0(ϕn) → Vor0(ϕ). First, choose some fixed r ≥ 4 such that Br/4(o) contains Vor0(ϕ) and
such that ∂Br(o) ∩ ϕ = ∅. Then there exists k > 0 with ϕn(Br(o)) = ϕ(Br(o)) = k for all
sufficiently large n. Write ϕ ∩ Br(o) = {P1, . . . , Pk}. Furthermore, choose ε0 > 0 such that
B2ε0(Pi) ⊂ Br(o) for all i ∈ {1, . . . , k} and such that Bε0(Pi) ∩ Bε0(Pj ) = ∅ for all distinct
i, j ∈ {1, . . . , k}. Then again for all sufficiently large n, we have ϕn(Bε0(Pi)) = 1 for all i ∈
{1, . . . , k} so that for all such n there exist unique P (n)1 , . . . , P

(n)
k ∈ ϕn with |Pi − P

(n)
i | ≤ ε0

for all i ∈ {1, . . . , k}. To prove the convergence Vor0(ϕn) → Vor0(ϕ) we use criterion (c)
of [31, Theorem 12.2.2]. So let x ∈ Vor0(ϕ) and ε ∈ (0, ε0) be arbitrary. It is easy to see that
there exist δ > 0 and y0 ∈ Bε(x) with |y0 − Pj | ≥ |y0| + 2δ for all j ∈ {1, . . . , k}. We prove
Bε(x)∩Vor0(ϕn) �= ∅ eventually by showing that for all sufficiently large values of n ≥ 1 we
have infP∈ϕn |y0 −P | ≥ |y0|. To prove this claim, we distinguish two cases. If P ∈ ϕn \Br(o)
then |y0 − P | ≥ r/2 ≥ |y0|. On the other hand, suppose we are given P = P

(n)
j for some

j ∈ {1, . . . , k}. Note that |Pj − P
(n)
j | < δ for all j ∈ {1, . . . , k} provided n is sufficiently

large. In particular, |y0 −P (n)j | ≥ |y0 −Pj |− |Pj −P (n)j | ≥ |y0|+ δ. This completes the proof
of the first item of criterion (c) of [31, Theorem 12.2.2]. Next, suppose we are given a sequence
(ni)i≥1 and xni ∈ Vor0(ϕni ) with xni → x ∈ R2. We want to prove x ∈ Vor0(ϕ). If this claim
was false, we could find δ > 0 and j ∈ {1, . . . , k} with |x| ≥ |x − Pj | + δ. But this implies
that |xni | ≥ |xni − P

(ni)
j | + δ/2 for all sufficiently large values of i, thereby contradicting the

assumption xni ∈ Vor0(ϕni ).
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Next, we note that for small λ and largeK the cell
0,λ is likely to be contained inQK/
√
λ(o).

Lemma 27. It holds that limK→∞ limλ→0 P{
0,λ ⊂ QK/
√
λ(o)} = 1.

Proof. First, observe that P{
0,λ ⊂ QK/
√
λ(o)} = P{√λ
0,λ ⊂ QK(o)} and that Lemma 26

implies the convergence
√
λ
0,λ

d−→ 
0 as λ → 0. Furthermore, it is easy to see that P{
0 ⊂
QK(o)} = P{
0 ⊂ intQK(o)}, so that Lemma 25 yields limλ→0 P{
0,λ ⊂ intQK/

√
λ(o)} =

P{
0 ⊂ QK(o)}.We conclude by observing that limK→∞ P{
0 ⊂ QK(o)} = 1.

Lemma 28. Let α ∈ (0, 1) and K > 0 be arbitrary. Then

lim
s→∞ P{ sup

x∈QKs(o)
|x − q(x)| > sα} = 0.

Proof. Subdivide QKs(o) into k = �√2Ks1−α�2 congruent subsquares Qs,1, . . . ,Qs,k

satisfying diam(Qs,i) ≤ sα for all i ∈ {1, . . . , k}. Then P{supx∈QKs(o) |x − q(x)| > sα} ≤∑k
i=1 P{Qs,i ∩G∗ = ∅} which by condition (G1) tends to 0 as s → ∞.

We write K for the family of convex compact sets in R2.

Lemma 29. Let r > 0 and A be a convex polygon with no two parallel sides and such that no
circle of radius r touches three (or more) sides of A. Then the erosion operation h : K → K ,
A′ �→ h(A′) = A′ � Br(o) is continuous at A.

Proof. Suppose that An → A as n → ∞. To prove the convergence

An � Br(o) → A� Br(o)

we use criterion (c) of [31, Theorem 12.2.2]. Hence, we first suppose that x ∈ A � Br(o),
i.e. Br(x) ⊂ A. By assumption Br(x) is tangent to at most two sides of A and we suppose
that it is tangent to exactly two sides (the other cases are similar, but easier). Write u, v for
the two unit vectors pointing from x in the direction of the two tangent points. Furthermore,
define w = u + v (observe that w �= 0 due to the nonparallelity assumption). It is easy to
check that for all sufficiently small δ > 0 the ball Br(x − δw) has positive distance, say at
least ε = ε(δ) > 0, from all sides of A. Denote by {P1, . . . , Pk} the vertices of the polygon A,
see Figure 6. Then by condition (b1) of [31, Theorem 12.2.2] for all sufficiently large j ≥ 1
we have Aj ∩ intBε/2(Pi) �= ∅ for all i ∈ {1, . . . , k}. Since the convex hull of {y1, . . . , yk}
containsBr(x−δw) for all choices of points yi ∈ intBε/2(Pi), we obtain thatBr(x−δw) ⊂ Aj .
But this is simply a reformulation of x− δw ∈ Aj �Br(o). This verifies condition (c1) of [31,
Theorem 12.2.2].

To check condition (c2) of [31, Theorem 12.2.2], we start from a given a sequence (ni)i≥1
and points xni ∈ Ani �Br(o)with xni → x for some x ∈ R2. Our goal is to deduceBr(x) ⊂ A.
Suppose we could find y ∈ Br(x) \ A. Then there exists ε > 0 with Bε(y) ∩ A = ∅, see
Figure 6(b). By criterion (b2) of [31, Theorem 12.2.2], we then also have Bε(y)∩Ani = ∅ for
all sufficiently large i ≥ 1. Now choose y′ ∈ Bε(y) with |y′ − x| ≤ r − ε. Then we compute

|y′ − xni | ≤ |y′ − x| + |x − xni | ≤ r − ε + |x − xni |.
In particular, y′ ∈ Br(xni ) for all sufficiently large values of i thereby contradicting

xni ∈ Ani � Br(o).

We now have collected all necessary preliminaries to prove Theorem 4.
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Figure 6: Configurations in the proof of Lemma 29.

Proof of Theorem 4. Let δ, ε ∈ (0, 1) be arbitrary. Using Lemmas 27 and 28, for all
sufficiently small λ > 0, we obtain

P{√λZ(λ) ≤ x} = P

{
max

P1∈
0,λ∩G∗ �(o, P1) ≤ x√
λ

}

≤ P

{
max

P∈
0,λ�Bδ/√λ(o)
�(o, q(P )) ≤ x√

λ

}
+ ε,

which is equal to P{
0,λ � Bδ/
√
λ(o) ⊂ BG

∗
x/

√
λ
(o)} + ε. Furthermore, Theorem 2 yields

P{
0,λ � Bδ/
√
λ(o) ⊂ BG

∗
x/

√
λ
(o)} ≤ P{
0,λ � Bδ/

√
λ(o) ⊂ intB(x+δ)/(ξ√λ)(o)} + ε

= P{√λ
0,λ � Bδ(o) ⊂ intB(x+δ)/ξ (o)} + ε

for all sufficiently small λ > 0. By Lemma 29, we obtain the operation · � Bδ(o) is a.s.
continuous at
0. In particular, from

√
λ
0,λ

d−→ 
0 we deduce that
√
λ
0,λ�Bδ(o) d−→ 
0 �

Bδ(o). Using P{
0 � Bδ(o) ⊂ B(x+δ)/ξ (o)} = P{
0 � Bδ(o) ⊂ intB(x+δ)/ξ (o)} and
Lemma 25, we conclude that

lim sup
λ→0

P{√λZ(λ) ≤ x} ≤ P{
0 � Bδ(o) ⊂ B(x+δ)/ξ (o)} + 2ε,

so that letting δ → 0 yields

lim sup
λ→0

P{√λZ(λ) ≤ x} ≤ P{int
0 ⊂ Bx/ξ (o)} + 2ε ≤ P{ξR ≤ x} + 2ε.

In the next step, we prove a similar inequality in the other direction. Let δ, ε > 0 be arbitrary.
Then for all sufficiently small λ > 0, we obtain

P{√λZ(λ) > x} = P

{
max

Q1∈
0,λ∩G∗ �(o,Q1) >
x√
λ

}
≤ P

{
max
Q∈
0,λ

�(o, q(Q)) >
x√
λ

}
,

which equals P{
0,λ �⊂ BG
∗

x/
√
λ
(o)}. Using Theorem 2 we obtain

P{
0,λ �⊂ BG
∗

x/
√
λ
(o)} ≤ P{√λ
0,λ �⊂ intB(x−δ)/ξ (o)} + ε

https://doi.org/10.1239/aap/1435236978 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1435236978


First passage percolation on random geometric graphs 353

for all sufficiently small λ > 0. Hence, by P{
0 ⊂ B(x−δ)/ξ (o)} = P{
0 ⊂ intB(x−δ)/ξ (o)}
and Lemma 25,

lim sup
λ→∞

P{√λZ(λ) > x} ≤ P{
0 �⊂ B(x−δ)/ξ (o)} + ε = P{ξR > x − δ} + ε,

so letting δ → 0 yields lim supλ→0 P{√λZ(λ) > x} ≤ P{ξR ≥ x} + ε. As the distribution
function of R is continuous, this proves the claim.
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