A CHARACTERISATION OF CLOSED SUBALGEBRAS OF $\mathcal{B}(H)$

P. G. DIXON

(Received 30th April 1975)

We show that the class of Banach algebras A isomorphic with norm-closed (non-self-adjoint) subalgebras of $\mathcal{B}(H)$ is characterized by the condition that the norms of polynomials in A be dominated by the norms of the same polynomials in $\mathcal{B}(H)$.

Definition 1. If H is a Hilbert space, $\mathcal{B}(H)$ denotes the Banach algebra of all bounded operators on H. A Banach algebra which is bicontinuously isomorphic with a closed subalgebra of $\mathcal{B}(H)$, for some Hilbert space H, will be called an R-algebra, and an IR-algebra if the isomorphism is isometric. If X is a compact Hausdorff space, then C(X) denotes the Banach algebra of all continuous complex-valued functions on X, with the sup norm. A uniform algebra is a closed subalgebra of some C(X). A Q-algebra is a Banach algebra A which is bicontinuously isomorphic with the quotient of a uniform algebra by a closed ideal, and A is an IQ-algebra if the isomorphism is isometric.

Definition 2. Unless otherwise qualified, the word "polynomial" will mean a polynomial in several non-commuting variables, without constant term. If $p(X_1, \ldots, X_n)$ is such a polynomial, A a Banach algebra and $\delta > 0$, then we define

$$||p||_{A,\delta} = \sup \{||p(x_1,\ldots,x_n)||: x_i \in A, ||x_i|| \le \delta \ (1 \le i \le n)\}.$$

We have separate notations for two important special cases: $||p||_{\infty}$ for $||p||_{C,1}$, where C denotes the complex numbers, and $||p||_{\eta}$ for $||p||_{\mathfrak{B}(H),1}$, where H is, say, a separable Hilbert space; (any other infinite-dimensional Hilbert space H produces the same norm).

We recall the main results about Q-algebras and their relation to R-algebras.

Theorem (Craw; see (2)). A commutative Banach algebra A is a Q-algebra if and only if there exist M, $\delta > 0$ such that $||p||_{A,\delta} \leq M||p||_{\infty}$ for all polynomials p. Further, A is IQ if and only if this condition holds with $M = \delta = 1$.

Theorem (Cole; see (2)). Every Q-algebra is an R-algebra.

Theorem (Varopoulos (4)). Not every commutative R-algebra is Q-algebra.

Our theorem is a sort of non-commutative analogue of Craw's result, though, by Varopoulos' theorem, it reduces to something different in the commutative case (see Corollary).

Theorem. A Banach algebra A is an R-algebra if and only if there exist $M, \delta > 0$ such that $||p||_{A,\delta} \leq M||p||_{\eta}$ for all polynomials p. Further, A is IR if and only if this condition holds with $M = \delta = 1$.

Proof. That every R-algebra satisfies the stated condition, with $M = \delta = 1$ for an IR-algebra, is clear. The proof of the converse parallels that of Craw's theorem, using $\mathcal{B}(H)$ instead of C. Thus, we let $\Lambda = \{a \in A : \|a\| \le \delta\}$, $\Delta = \{z \in \mathcal{B}(H) : \|z| \le 1\}$, and X the Cartesian product Δ^{Λ} . Let $B(X, \mathcal{B}(H))$ denote the C*-algebra of all bounded functions $\phi : X \to \mathcal{B}(H)$, with the sup norm: $\|\phi\| = \sup \{\|\phi(x)\| : x \in X\}$. For each $a \in \Lambda$, we define $\zeta_a \in B(X, \mathcal{B}(H))$ by $\zeta_a(x) = x(a)$ ($x \in X$). Let U_0 be the subalgebra of B(X, B(H)) generated by $\{\zeta_a : a \in \Lambda\}$, and let U be the closure of U_0 . Let u be the homomorphism of u0 onto u1 defined by

$$\pi(p(\zeta_{a_1},\ldots,\zeta_{a_n}))=p(a_1,\ldots,a_n)$$

for all polynomials $p(X_1, \ldots, X_n)$ and all *n*-tuples (a_1, \ldots, a_n) of distinct elements of Λ . Since $\|\zeta_a\| = 1$ $(a \in \Lambda)$, the given condition $\|p\|_{A,\delta} \leq M \|p\|_{\eta}$ ensures that π is continuous, with norm at most M. Therefore π extends to a homomorphism of U onto A. Thus A is bicontinuously isomorphic with a quotient of the closed subalgebra of U of the C*-algebra $B(X, \mathcal{B}(H))$.

The remainder of the proof is a non-commutative analogue of Cole's theorem, due to Bernard.

Theorem (Bernard (1)). Let Γ be a C^* -algebra with identity. Let U be a closed subalgebra of Γ containing the identity, and let I be a closed ideal of U. Then U/I is an IR-algebra.

The provisos concerning the identity may clearly be dropped, by adjoining the identity to U if it is not already in U. Applying Bernard's theorem to our situation shows that A is an R-algebra.

If $M = \delta = 1$, then the isomorphism induced by π is an isometry, and the isometric nature of Bernard's theorem completes the proof that A is IR.

For the commutative version, we define $||p||_{\eta}$ for a polynomial $p(X_1, \ldots, X_n)$ in commuting variables by

$$||p||_{\eta} = \sup ||p(T_1, \ldots, T_n)||$$

the supremum being taken over all n-tuples (T_1, \ldots, T_n) of commuting contractions on a separable Hilbert space.

Corollary 1. A commutative Banach algebra A is an R-algebra if and only if there exist M, $\delta > 0$ such that $||p||_{A,\delta} \leq ||p||_{\eta}$ for all polynomials $p(X_1, \ldots, X_n)$ in commuting variables X_1, \ldots, X_n and without constant term. Further, commutative IR-algebras are characterised by this condition with $M = \delta = 1$.

The main force of the theorem is that there is *some* condition on the norms of polynomials which characterises R-algebras. Of course, the function $\|\cdot\|_{\eta}$ is not easily calculated, and there is a need for more usable conditions. However, the fact that there is a condition of this form is of some help. By methods similar to those used by Davie ((3) pp. 38-39) to construct Arens regular, non-Q algebras, we may prove:

Corollary 2. There exist commutative, Arens regular, non-R algebras.

REFERENCES

- (1) A. BERNARD, Quotients of operator algebras, Seminar on uniform algebras (University of Aberdeen, 1973).
- (2) F. F. BONSALL and J. DUNCAN, Complete normed algebras (Springer, Berlin, 1973).
- (3) A. M. DAVIE, Quotient algebras of uniform algebras, J. London Math. Soc. (2), 7 (1973), 31-40.
- (4) N. TH. VAROPOULOS, Sur une inégalité de von Neumann, C.R. Acad. Sci. Paris 277 (1973), 19-22.

DEPARTMENT OF PURE MATHEMATICS THE UNIVERSITY SHEFFIELD, S3 7RH ENGLAND