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A CHARACTERISATION OF CLOSED
SUB ALGEBRAS OF 98 (H)

P. G. DIXON
(Received 30th April 1975)

We show that the class of Banach algebras A isomorphic with norm-
closed (non-self-adjoint) subalgebras of 3S(H) is characterized by the
condition that the norms of polynomials in A be dominated by the norms
of the same polynomials in 38(H).

Definition 1. If if is a Hilbert space, dB(H) denotes the Banach
algebra of all bounded operators on H. A Banach algebra which is bi-
continuously isomorphic with a closed subalgebra of 98(H), for some
Hilbert space H, will be called an R-algebra, and an IR-algebra if the
isomorphism is isometric. If X is a compact Hausdorff space, then C(X)
denotes the Banach algebra of all continuous complex-valued functions on
X, with the sup norm. A uniform algebra is a closed subalgebra of some
C(X). A Q-algebra is a Banach algebra A which is bicontinuously
isomorphic with the quotient of a uniform algebra by a closed ideal, and A
is an IQ-algebra if the isomorphism is isometric.

Definition 2. Unless otherwise qualified, the word "polynomial" will
mean a polynomial in several non-commuting variables, without constant
term. If p(Xly..., Xn) is such a polynomial, A a Banach algebra and 8 > 0,
then we define

IIPlU* = sup %>(*» ••-, xH)\\: x, G A, ||x,||« S (1 « i « »)}.

We have separate notations for two important special cases: ||p||,» for ||p||C-i,
where C denotes the complex numbers, and \\p\\v for ||p||»(W),i, where H is,
say, a separable Hilbert space; (any other infinite-dimensional Hilbert
space H produces the same norm).

We recall the main results about Q-algebras and their relation to
R-algebras.

Theorem (Craw; see (2)). A commutative Banach algebra A is a
Q-algebra if and only if there exist M, 8 > 0 such that ||p|U,« =s M||p||. for all
polynomials p. Further, A is IQ if and only if this condition holds with
M = 8 = 1.

Theorem (Cole; see (2)). Every Q-algebra is an R-algebra.

Theorem (Varopoulos (4)). Not every commutative R-algebra is Q-
algebra.

215

https://doi.org/10.1017/S0013091500026298 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500026298


216 P. G. DIXON

Our theorem is a sort of non-commutative analogue of Craw's result,
though, by Varopoulos' theorem, it reduces to something different in the
commutative case (see Corollary).

Theorem. A Banach algebra A is an R-algebra if and only if there exist
M,S > 0 such that \\p\\A,s *= Af||p||,, for all polynomials p. Further, A is IR if and
only if this condition holds with M = S = 1.

Proof. That every R-algebra satisfies the stated condition, with M =
8 = 1 for an IR-algebra, is clear. The proof of the converse parallels that
of Craw's theorem, using S8(H) instead of C. Thus, we let A =
{a GA:||a||=s8}, A = {z G 28(H):||z|« 1}, and X the Cartesian product
AA. Let B(X, 98(H)) denote the C*-algebra of all bounded functions <£ :X->
28(H), with the sup norm: ||c/>|| = sup{||^»(x)||:x £X} . For each a £ A , we
define £fl G B(X, 98(H)) by £,(*) = x(a) (x G X). Let Uo be the subalgebra
of B(X, B(H)) generated by {£,: a G A}, and let U be the closure of Uo. Let
77 be the homomorphism of Uo onto A defined by

-n-(p(£fll, • • •. £•„)) = P(ai, ••-,«„)

for all polynomials p(Xu ..., Xn) and all n-tuples ( a , , . . . , an) of distinct
elements of A. Since \\£a\\ = 1 («GA), the given condition ||p|U,« ^M||p||n

ensures that IT is continuous, with norm at most M. Therefore IT extends to
a homomorphism of U onto A. Thus A is bicontinuously isomorphic with a
quotient of the closed subalgebra of U of the C*-algebra B(X, 38 (H)).

The remainder of the proof is a non-commutative analogue of Cole's
theorem, due to Bernard.

Theorem (Bernard (1)). Let T be a C*-algebra with identity. Let U be a
closed subalgebra of F containing the identity, and let I be a closed ideal of U.
Then U/I is an IR-algebra.

The provisos concerning the identity may clearly be dropped, by ad-
joining the identity to U if it is not already in U. Applying Bernard's
theorem to our situation shows that A is an R-algebra.

If M = S = 1, then the isomorphism induced by IT is an isometry, and
the isometric nature of Bernard's theorem completes the proof that A is
IR.

For the commutative version, we define ||p||, for a polynomial
p(Xi,..., Xn) in commuting variables by

the supremum being taken over all n -tuples (T , , . . . , Tn) of commuting
contractions on a separable Hilbert space.
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Corollary 1. A commutative Banach algebra A is an R-algebra if and
only if there exist M, 8>0 such that \\p\\A,s ^IIPIIU for all polynomials
p(X, , . . . , Xn) in commuting variables X , , . . . , Xn and without constant term.
Further, commutative IR-algebras are characterised by this condition with
M = 5 = 1.

The main force of the theorem is that there is some condition on the
norms of polynomials which characterises R-algebras. Of course, the
function || • H, is not easily calculated, and there is a need for more usable
conditions. However, the fact that there is a condition of this form is of
some help. By methods similar to those used by Davie ((3) pp. 38-39) to
construct Arens regular, non-Q algebras, we may prove:

Corollary 2. There exist commutative, Arens regular, non-R algebras.
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