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Primitivity testing of finite nilpotent linear groups

Tobias Rossmann

Abstract

We describe a practical algorithm for primitivity testing of finite nilpotent linear groups over
various fields of characteristic zero, including number fields and rational function fields over
number fields. For an imprimitive group, a system of imprimitivity can be constructed. An
implementation of the algorithm in Magma is publicly available.

1. Introduction

Let G6 GL(V ) be an irreducible linear group over a field K. If there exists a non-trivial
decomposition V = U1 ⊕ · · · ⊕ Ur of vector spaces such that G permutes the Ui, then G is
imprimitive; otherwise, G is primitive. A common strategy in the theory of linear groups is to
first reduce problems to irreducible and then to primitive groups. Given an irreducible group G,
consider the task of algorithmically deciding whether G is primitive. In the case where G is
found to be imprimitive, we also want to construct a decomposition V = U1 ⊕ · · · ⊕ Ur as
above. We refer to these combined tasks as primitivity testing of G.

In [15], the author has obtained an algorithm for irreducibility testing of finite nilpotent
linear groups over a range of fields of characteristic zero. In the present paper, we continue
this research by developing a practical algorithm for primitivity testing in the same class of
linear groups. To the author’s knowledge, an effective method for primitivity testing in any
non-trivial class of linear groups has so far only been obtained over finite fields [8].

The algorithm described in this paper can test primitivity of arbitrary finite nilpotent linear
groups defined over a field K of characteristic zero such that the following conditions (see [15,
Section 1]) are satisfied.
(F1) We can algorithmically factorise univariate polynomials over K.
(F2) For any extension of K of the form E =K(ζ2j + ζ−1

2j , ζq ), where ζi denotes a primitive
ith root of unity, we can decide solvability of the equation α2 + β2 =−1 in E and we
can find a solution of such an equation whenever it exists.

As has been explained in [15], both of these conditions are satisfied if K is a number field or
a rational function field over a number field. An implementation of the author’s algorithm for
primitivity testing over these two families of fields is publicly available in the package finn [16]
for Magma [1]. We note that finn also provides an implementation of the algorithm [15] for
irreducibility testing of finite nilpotent linear groups.

We may use a simplified version of the algorithm described here to decide primitivity of
finite nilpotent linear groups non-constructively (that is, without constructing a decomposition
V = U1 ⊕ · · · ⊕ Ur as above). For this purpose, in (F2) we still have to assume that we can
decide solvability of α2 + β2 =−1, but we no longer need to be able to find a solution.
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2. Overview

Unless explicitly stated otherwise, in this paper we always assume that K is a field of
characteristic zero such that conditions (F1) and (F2) are satisfied. We always let V be a
non-trivial K-vector space of finite dimension |V :K|.

Let G6 GL(V ) be an irreducible finite nilpotent linear group. The algorithm for primitivity
testing of G described in this paper is based on the following. First, the case that G is abelian
can be easily treated (Section 5), so let G be non-abelian. Next, using algorithms from [15],
we can either exhibit that G is imprimitive, or we can prove that all abelian normal subgroups
of G are cyclic (Section 6). Let us therefore assume that we are in the latter case.

The finite nilpotent groups all of whose abelian normal subgroups are cyclic are well
understood (see Theorem 6.2 below). We use this to study the enveloping algebras of G
(Section 7) and the maximal subgroups of G (Section 8). In this way, we are able to either
find a maximal subgroup H <G which fixes a subspace U < V that belongs to a system of
imprimitivity for G, or we can prove that G is primitive. For three important families of ground
fields K, we obtain simplifications (§§ 8.4–8.5); these fields are (i) number fields, (ii) rational
function fields over number fields, and (iii) fields containing

√
−1. A summary of the algorithm

is given in Section 9. Finally, in Section 10, we report on the implementation in Magma and
provide sample run-times.

As in [15], the first major step is to attempt to construct a non-cyclic abelian normal
subgroup. This approach is taken from [4, Section 3], where an algorithm for irreducibility
and primitivity testing of nilpotent linear groups over finite fields was developed. However,
subsequent steps of the present method differ considerably from [4].

3. Preliminaries and notation

We collect basic notions from the theory of linear groups (see [19, Section 1] and [18,
Section 14]) and establish some notation.

Let K be any field. The enveloping algebra K[G] of a linear group G6 GL(V ) is the
subalgebra of End(V ) generated by G. We say that G is completely reducible (respectively
homogeneous) if K[G] is semisimple (respectively simple). It follows that G is completely
reducible if and only if V is a direct sum of irreducible K[G]-submodules. Furthermore, G is
homogeneous if and only if G is completely reducible and the K[G]-composition factors of V are
all isomorphic. By Maschke’s theorem, finite linear groups in characteristic zero are completely
reducible. If G is abelian, then it is homogeneous if and only if K[G] is a field.

Let G be completely reducible and let (Ui)i∈I be representatives of the isomorphism classes
of irreducible K[G]-submodules of V . Define Vi to be the sum of all K[G]-submodules of V
that are isomorphic to Ui. Then each Vi is a maximal homogeneous K[G]-submodule of V ,
called a homogeneous component, and V =

⊕
i∈I Vi is the homogeneous decomposition for G.

If G is completely reducible and N / G, then G permutes the homogeneous decomposition for
N by Clifford’s theorem.

If V is irreducible as a K[G]-module, then G is called irreducible. Suppose that G is
irreducible. A system of imprimitivity for G is a set U = {U1, . . . , Ur} of subspaces 0< Ui < V
such that (i) V = U1 ⊕ · · · ⊕ Ur and (ii) G permutes U in its natural action on subspaces. Note
that the permutation action of G on U is necessarily transitive by irreducibility of G. The
elements of U are blocks and the subgroups StabG(Ui) are block stabilisers for G. If G admits
a system of imprimitivity, then G is imprimitive; otherwise, G is primitive. Note that we only
apply these notions to irreducible groups.

Let K have characteristic zero. We denote by ζn a primitive nth root of unity, where we
assume that all the ζn are contained in some algebraic extension of K. We write En = Q(ζn).
If a group G acts by automorphisms on a field F , we let FG be the fixed field of this action.
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4. Basic facts regarding imprimitivity

We collect some known and elementary facts; K can be arbitrary in this section.

Lemma 4.1. Let G6 GL(V ) be irreducible and let U < V .
(i) U is a block for G if and only if |V :K|/|U :K|= |G : StabG(U)|.
(ii) If U is a block for G, then StabG(U) acts irreducibly on U .

Proof. See [18, Theorem 15.1(iii)] and [18, Theorem 15.3].

Lemma 4.2. Let G6 GL(V ) be irreducible and let H <G. Then H is a block stabiliser for
G if and only if there exists an irreducible K[H]-submodule U < V with |V :K|/|U :K|= |G :
H|. In this case, H = StabG(U) and U is a block for G.

Proof. The ‘only if’ part follows from Lemma 4.1. Let U < V be a K[H]-submodule with
|V :K|/|U :K|= |G :H|. Then

∑
g∈G Ug = V by irreducibility of G. The number of distinct

Ug is |G : StabG(U)|6 |G :H|. Hence, H = StabG(U) and U is a block for G.

Lemma 4.3. Let G6 GL(V ) be irreducible and let H <G with |G :H|= 2.
(i) If U < V is an irreducible K[H]-submodule, then U is a block for G.
(ii) H is a block stabiliser for G if and only if H is reducible.

Proof. Let g ∈G \H. Given an irreducible K[H]-submodule U < V , we have U 6= U +
Ug = V by irreducibility of G. Both U and Ug are distinct irreducible K[H]-submodules,
whence U ∩ Ug = 0. This proves (i); part (ii) then follows immediately.

Lemma 4.4. Let G6 GL(V ) be an irreducible nilpotent group. If G is imprimitive, then
G admits a system of imprimitivity of prime size.

Proof. Let U be a system of imprimitivity for G, say |U|= r. A primitive permutation
representation of G has prime degree [18, Lemma 5.1]. Since an imprimitive action of G on U

yields a smaller system of imprimitivity for G, the result follows by induction on r.

Given a system of imprimitivity for G of composite size, we may use standard permutation
group algorithms [7, Chapter 4] to construct one of prime size. This will become relevant for
estimating the computational difficulty of constructing a block; see § 8.3.

Corollary 4.5. Let G6 GL(V ) be an irreducible nilpotent group. Then G is imprimitive
if and only if some prime index subgroup of G is a block stabiliser for G.

5. Primitivity testing of abelian groups

Primitivity of irreducible finite abelian linear groups in characteristic zero can be easily tested.
It is worthwhile to discuss this in detail since, in Section 8, primitivity of a certain type of
non-abelian group G6 GL(V ) will be shown to be connected to that of an irreducible abelian
normal subgroup of G. For a group G and n> 1, we write Gn = 〈gn : g ∈G〉.

As is well known, a finite irreducible abelian group G6 GL(V ) is cyclic; indeed, G is a sub-
group of the multiplicative group of the field K[G]. The maximal subgroups of G are precisely of
the form Gp, where p is a prime divisor of |G|. The following is now immediate from Lemma 4.2.

Proposition 5.1. Let G6 GL(V ) be a finite irreducible cyclic group and let p be a prime
divisor of |G|. Then Gp is a block stabiliser for G if and only if |K[G] :K[Gp]|= p. If this is
the case, then any one-dimensional K[Gp]-subspace of V is a block for G.
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Remark 5.2. Let G and p be as in Proposition 5.1. Then |K[G] :K[Gp]|= |EnK :
En/pK|6 |En : En/p|= ϕ(n)/ϕ(n/p), where ϕ is Euler’s function and n= |G|. Thus, if p2 - n,
then |K[G] :K[Gp]|6 p− 1. Consequently, if Gp is a block stabiliser for G, then p2|n. The
converse holds for K = Q but not in general; for example, 〈ζp2〉6 GL1(Ep2) is primitive.

Remark 5.3. If K/Q is finitely generated, then a homogeneous finite abelian K-linear
group of degree d has order O(d1+ε) for any ε > 0; see [15, Lemma 5.4]. Hence, |G| is ‘small’ in
Proposition 5.1 and it is feasible to test primitivity of G by looping over all primes p with p2||G|
and testing if |K[G] :K[Gp]|= p for any of them. In practice, we will know a generator, g say,
of G. The relative degree |K[G] :K[Gp]| can then be effectively computed using the degrees of
the minimal polynomials of g and gp.

6. Non-cyclic abelian normal subgroups

The following well-known consequence of Clifford’s theorem is the basis of the algorithm for
primitivity testing developed in this paper.

Lemma 6.1. Let G6 GL(V ) be irreducible. If A / G is finite, non-cyclic, and abelian, then
A is inhomogeneous. Hence, the homogeneous components of V as a K[A]-module constitute
a system of imprimitivity for G.

Proof. Since A is non-cyclic, K[A] cannot be a field.

As in [15, § 4.1], we define an ANC group to be a finite nilpotent group all of whose abelian
normal subgroups are cyclic. In [15], practical algorithms for the following tasks have been
developed.
• Given a finite nilpotent group G, either construct a non-cyclic abelian normal subgroup

of G or prove that G is an ANC group [15, Algorithm 4.3].
• Given a finite abelian A6 GL(V ), construct the homogeneous decomposition of V as a
K[A]-module [15, Algorithm 5.2].

Primitivity testing of finite nilpotent linear groups over K is thus reduced to the case of non-
abelian ANC groups. The structure of these groups is well understood. Denote by D2j , SD2j ,
and Q2j the dihedral, semidihedral, and generalised quaternion groups of order 2j , respectively.
For a finite nilpotent group H, denote by Hp and Hp′ the Sylow p-subgroup and p-complement
of H, respectively.

Theorem 6.2 [14, Lemma 3]. A finite nilpotent group G is an ANC group if and only if:
(i) G2 is cyclic or isomorphic to Q8 or to D2j , SD2j , or Q2j (j > 4); and
(ii) G2′ is cyclic.

7. ANC groups and their enveloping algebras

In this section, K can be arbitrary of characteristic 6= 2. We refer to [10, Chapter III] for
details of the following. Recall that a quaternion algebra over K is a central simple four-dimen-
sional algebra over K. A quaternion algebra A over K splits if A∼= M2(K); otherwise, A is
a division algebra. Equivalently, A splits if and only if the (unique) irreducible A-module has
K-dimension two. For a, b ∈K×, define (a, b|K) to be the K-algebra with basis (1, i, j, k)
and multiplication i2 = a, j2 = b, ij = k =−ji. Then (a, b|K) is a quaternion algebra [10,
Proposition III.1.1]; it splits if and only if ax2 + by2 = 1 for some x, y ∈K [10, Theorem III.2.7].

For certain ANC groups G6 GL(V ), including all the primitive ones, we can give a
precise description of K[G] as a quaternion algebra. As in [15, § 6.1], for an ANC group G
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define ϑ(G) = 1 if G2 is dihedral or semidihedral and ϑ(G) =−1 if G2 is generalised quaternion.
In addition, define δ(G) = 1 if G2 is dihedral or generalised quaternion and δ(G) =−1 if G2

is semidihedral. As shown by Lemmas 7.1 and 7.3 below, these numerical invariants occur
naturally in the study of the enveloping algebras of linear ANC groups.

Lemma 7.1 (Cf. [14, Section 4]). Let G6 GL(V ) be a non-abelian ANC group which
contains a homogeneous cyclic subgroup A of index two. Write Z = Z(K[G]). Then Z =K[A]G

and K[G]∼= (ϑ(G),−1|Z) as Z-algebras. In particular, |K[G] :K[A]|= 2.

Proof. Let g ∈G with G= 〈A, g〉 and g2 = ϑ(G) · 1V . Define F =K[A]. Then K[G] =
F + gF but F 6= gF so that K[G] = F ⊕ gF . Hence, K[G] is the cyclic algebra (F/FG, σ, ϑ(G)),
where σ ∈Gal(F/FG) is conjugation by g; see [12, Chapter 30] for background. In particular,
K[G] is simple, Z = FG, and |K[G] : Z|= 4. If ϑ(G) = 1, then K[G]∼= M2(Z)∼= (1,−1|Z). Let
ϑ(G) =−1. If h ∈A has order four, then h 6∈ Z. Since |F : Z|= 2, we obtain F = Z[h]. Thus,
K[G] = Z[G2] = Z[H], where H = 〈g, h〉 ∼= Q8. Clearly, Z[H]∼= (−1,−1|Z).

We say that G6 GL(V ) is split homogeneous if K[G] is simple and split. Hence, G is split
homogeneous if and only if the centre Z of K[G] is a field and K[G] is a full matrix algebra
over Z.

Corollary 7.2. Let G6 GL(V ) be a non-abelian ANC group and let A / G be irreducible
and cyclic of index two. Then G is split homogeneous.

Proof. We have |V : Z|= 2 and thus K[G]∼= M2(Z), where Z =K[A]G, by Lemma 7.1.

The field Z in Lemma 7.1 can be easily determined explicitly as follows.

Lemma 7.3. Let G6 GL(V ) be a non-abelian ANC group. Let A / G be homogeneous and
cyclic of index two, say A2 = 〈x〉 and A2′ = 〈y〉. Then Z(K[G]) =K[x+ δ(G)x−1, y].

Proof. Write Z = Z(K[G]) and δ = δ(G). Since G/A∼= C2 acts via x 7→ δx−1 on A2, we
see that K[x+ δx−1, y]⊆ Z. As Z =K[A]G, we have |K[A] : Z|= 2. Since x is a root of
T 2 − (x+ δx−1)T + δ in (K[x+ δx−1, y])[T ], we obtain |K[A] :K[x+ δx−1, y]|6 2.

For n= 2jm with m odd, define E+
n = Q(ζ2j + ζ−1

2j , ζm).

Corollary 7.4. Let G6 GL(V ) be a non-abelian ANC group of order 2n. Suppose that
G contains a homogeneous cyclic subgroup of index two.

(i) If ϑ(G) = 1, then G is split homogeneous.
(ii) If ϑ(G) =−1, then G is split homogeneous if and only if −1 is a sum of two squares in

E+
nK.

8. Primitivity testing of ANC groups

In this section, we describe how primitivity of an irreducible non-abelian ANC groupG6 GL(V )
can be tested. By Corollary 4.5, it suffices to test if some maximal subgroup of G is a block
stabiliser. The maximal subgroups of G are easily described (§ 8.1). In § 8.2, we will see that
in order to test if some maximal subgroup H <G is a block stabiliser, it is not necessary to
construct an irreducible K[H]-submodule of V . We also describe the construction of a block for
G in the case that H is found to be a block stabiliser. In the important cases that K is a number
field, a rational function field over a number field, or

√
−1 ∈K, we describe simplifications in

§§ 8.4–8.5.
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Throughout this section, G6 GL(V ) is an irreducible non-abelian ANC group and A / G
is cyclic with |G :A|= 2. We assume that A is irreducible; otherwise, we obtain a system of
imprimitivity for G via Lemma 4.3. In practice, A can be found as in [15, § 6.1].

8.1. Maximal subgroups of G

We have G= 〈a, g〉, where A= 〈a〉 and g2 = ϑ(G) · 1V . In practice, such elements can be found
as in [15, § 6.1]. Write a= a2 · a2′ according to A=A2 ×A2′ . The two subgroups of index two
in G (distinct from A) are H1 = 〈a2, g〉 and H2 = 〈a2, a2g〉. If p is an odd prime divisor of
|G|, then Gp = 〈ap, g〉 is the unique subgroup of index p in G. We see that if K/Q is finitely
generated, then it is feasible to loop over all maximal subgroups of G; recall from Section 5
that |A|, and hence also |G|= 2|A|, is ‘small’ in terms of |V :K|. Also note that if H <G is
any maximal subgroup of G, then H is itself an ANC group.

Lemma 8.1. Let H <G be a maximal subgroup with A 6=H, say |G :H|= p. Then
|H :Ap|= 2. Moreover, Ap = CH(Ap) unless G2

∼= Q8 and p= 2; in the latter case, H ∼=A
is irreducible.

Proof. If p is odd or G2 6∼= Q8, then the claim follows from the above description of the
maximal subgroups of G; note that H is then non-abelian. Let G2

∼= Q8 and p= 2. Since A2

is irreducible but non-central, X2 + 1 is irreducible over E =K[G2′ ], so that |V : E|= 2. It
follows that H2

∼= C4 is irreducible over E, whence H is irreducible over K.

Corollary 8.2. Every maximal subgroup of G is homogeneous.

Proof. If A 6=H <G is maximal, then K[H] is simple by Lemmas 7.1 and 8.1.

8.2. A characterisation of block stabilisers

Let A 6=H <G be a maximal subgroup of index p. We derive conditions for H to be a block
stabiliser for G. In view of Lemma 8.1, if G2

∼= Q8, then we also assume that p is odd.

Lemma 8.3. H is a block stabiliser for G if and only |K[A] :K[Ap]|= p and H is split
homogeneous.

Proof. By irreducibility of A, we have |V :K[A]|= 1. Let U 6 V be an irreducible K[H]-
submodule. Since H is homogeneous by Corollary 8.2, it acts faithfully on U . Lemma 7.1
shows that |U :K[Ap]|= 2λ, where λ= 0 or λ= 1, depending on whether H is split
homogeneous or not. Thus, it follows from Lemma 4.2 that H is a block stabiliser for G if
and only if |G :H|= |V :K|/|U :K|. This is equivalent to p= 2−λ|K[A] :K[Ap]|; note that
|K[A] :K[Ap]|6 p.

It remains to decide if the various maximal subgroups H <G are split homogeneous. Among
the two subgroups H1 and H2 of index two in G (see § 8.1), we may ignore H2 by the
following.

Lemma 8.4. If H2 is a block stabiliser for G, then so is H1.

Proof. Note that the condition |K[A] :K[A2]|= 2 in Lemma 8.3 is the same for H1 and
H2. The result follows since if H1 is not split homogeneous, then ϑ(H1) = ϑ(G) = ϑ(H2) =−1,
whence H2 is not split homogeneous by Corollary 7.4(ii).
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We can therefore test primitivity of G by using Lemma 8.3 and Corollary 7.4 to test if H1

or any of the subgroups Gp (where p is an odd prime divisor of |G|) is a block stabiliser. Note
that in order to merely decide primitivity of G without constructing a block, we do not need
to actually solve any of the equations α2 + β2 =−1 in Corollary 7.4(ii).

8.3. Constructing a block

Setup. Let G= 〈a, g〉 be as in § 8.1. Suppose that H <G is a maximal subgroup of index
p which is a block stabiliser for G. By Lemma 8.4, we may assume that ϑ(G) = ϑ(H) and that
H = 〈b, g〉, where b= ap.

We now consider the construction of a block for G which is stabilised by H. Since H is
homogeneous (Corollary 8.2), this is equivalent to constructing an irreducible K[H]-submodule
of V (Lemmas 4.1 and 4.2). What follows is essentially an application of the general method
for irreducibility testing of ANC groups described in [15, Section 6].

Dihedral and semidihedral cases. First, let ϑ(G) = 1 (and so ϑ(H) = 1). Since g is not
scalar but g2 = 1, there exists 0 6= x ∈ V with xg =±x. It follows that x ·K[H] = x ·K[b] is
irreducible as a K[b]-module and hence also as a K[H]-module.

Generalised quaternion case. Now let ϑ(G) =−1. Let |G|= 2n. Define F =K[b], Z =
Z(K[H]), F ′ = En/pK, and Z ′ = E+

n/pK. Lemma 7.3 gives us an explicit isomorphism between
the towers F/Z/K and F ′/Z ′/K. Since H is split homogeneous (Lemma 8.3), −1 is a sum of
two squares in Z (Corollary 7.4(ii)). Now c= bn/(4p) is not central in H and |F : Z|= 2, whence
F = Z[c] and F ′ = Z ′(

√
−1). Hence, the pairs (α, β) ∈ Z × Z with α2 + β2 =−1 correspond

one to one to the elements f ∈ F with NormF/Z(f) =−1.
It is easily verified that every K[H]-submodule of V of F -dimension two satisfies the

assumptions on V in [15, Lemma 6.1]; note that H is reducible since it is a block stabiliser.
It follows that finding an irreducible K[H]-submodule of V is equivalent (up to solving systems
of linear equations) to finding f ∈ F with NormF/Z(f) =−1 as follows. Given f ∈ F with
NormF/Z(f) =−1, the map g − f is singular, and non-trivial elements in its kernel generate
irreducible K[H]-submodules. Conversely, if x ·K[H] is an irreducible K[H]-submodule of V ,
then xg = xf for a unique f ∈ F and then NormF/Z(f) =−1 holds.

As we remarked in Section 4, given any system of imprimitivity for G, we may construct
one of prime size. We conclude that for an irreducible imprimitive ANC group G6 GL(V )
with G2

∼= Q2j such that a cyclic subgroup of index two in G is irreducible, finding a system
of imprimitivity is equivalent to solving α2 + β2 =−1 in one of the fields Z corresponding to
a maximal subgroup H <G which is a block stabiliser. Note that there may in general be
different possible choices for H and hence for Z.

8.4. Block stabilisers over number fields

We show that if K is a number field, then, in the majority of cases, the simple condition
|K[A] :K[Ap]|= p already determines if H <G with |G :H|= p prime is a block stabiliser for
G; details will be given in Proposition 8.8 below. For background on number fields and their
completions, we refer to [3].

Proposition 8.5 [5, Theorem 1]. Let F be a number field. Then −1 is a sum of two
squares in F if and only if F is totally imaginary and |Fp : Q2| is even for all primes p above 2
in F .

The following is related to [5, Theorem 3]. For (r, n) = 1, denote the order of r + nZ in
(Z/nZ)× by ord(r mod n); this includes ord(r mod 1) = 1.
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Lemma 8.6. Let F be a number field and p be an odd rational prime. Then −1 is a sum
of two squares in EpaF for some a> 1 if and only if it is a sum of two squares in EpF .

Proof. Let F be a 2-adic completion of F . We may assume that the ζpi lie in some
common extension of F. By [13, Satz II.7.12(i)], we have |F(ζpi) : F|= ord(2f mod pi), where
f is the residue class degree of F. Now (Z/paZ)× =K × C, where K ∼= Z/pa−1Z is the
kernel of the natural map (Z/paZ)×→ (Z/pZ)× and C ∼= Cp−1. We see that ord(2f mod pa)≡
ord(2f mod p) mod 2. Since F (ζpi) is totally imaginary for any i> 1, the claim now follows
from Proposition 8.5.

The following is a simple application of Proposition 8.5.

Corollary 8.7 (See [15, § 8.1]). Suppose that K is a number field. Let m> 1 be odd.
Then −1 is a sum of two squares in EmK if and only if:

(i) K is totally imaginary or m> 1; and
(ii) ord(2 mod m) · |Kp : Q2| is even for all primes p above 2 in K.

Proposition 8.8. Suppose that K is a number field. Let H <G be a maximal subgroup
of index p with ϑ(G) = ϑ(H). Suppose that one of the following conditions is satisfied: p is odd,
ϑ(G) = 1, or |G2|> 32. Then H is a block stabiliser for G if and only if |K[A] :K[Ap]|= p.

Proof. By Lemma 8.3, |K[A] :K[Ap]|= p is necessary for H to be a block stabiliser.
It remains to determine if H is split homogeneous. Let n= |A| and suppose that |K[A] :
K[Ap]|= p. If ϑ(G) = 1, then H is split homogeneous and the result follows. Let ϑ(G) =−1.
Since G is split homogeneous by irreducibility of A (Corollary 7.2), we know that −1 is a sum of
two squares in E+

nK. Write n= pam for p -m. As noted in Remark 5.2, a> 2. Let p be odd. By
applying Lemma 8.6 with F = E+

mK, we see that −1 is a sum of two squares in E+
n/pK. Hence,

H is split homogeneous and thus a block stabiliser for G. Let p= 2. Then a> 4 by assumption.
Now E+

2a is totally real, while E+
nK is totally imaginary. Hence, EmK is totally imaginary. As

a> 4, we have
√

2 ∈E+
n/2 and, since |Q2(

√
2) : Q2|= 2, we conclude from Proposition 8.5 that

−1 is a sum of two squares in E+
n/2K.

Recall that the case G2
∼= Q8 and p= 2 is ruled out by Lemma 8.1. Thus, for a maximal

subgroup H <G of index p, Proposition 8.8 covers all cases but one: G2
∼= Q16 and p= 2. In

this case, Z(K[H])∼= E+
4mK = EmK (where |G|= 16m), and we may apply Corollary 8.7 to

decide if H is split homogeneous.

8.5. Other fields

Function fields. Exactly as in [15, § 8.3], we may apply the results of § 8.4 to rational
function fields over number fields using the following two facts. Let E be a number field and
K = E(X), where X = (X1, . . . , Xt) is algebraically independent. Then −1 is a sum of two
squares in K if and only if it is a sum of two squares in E. If F ⊇ E is another number
field which is contained in some extension of K, then X is algebraically independent over F .
Consequently, Proposition 8.8 and the comments following it remain valid if K is a rational
function field over a number field.

Fields containing
√
−1. Suppose that K is a field of characteristic zero with

√
−1 ∈K and

such that (F1) is satisfied. (Of course, (F2) is then also satisfied.) We now briefly discuss how we
may test primitivity of finite nilpotent linear groups over K under these assumptions. We note
that polynomial factorisation is used to find the homogeneous decomposition for an abelian
group in [15, Algorithm 5.2].
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Given an irreducible finite nilpotent group G6 GL(V ), we can use NoncyclicAbelian
[15, Algorithm 4.3] and either (i) construct a non-cyclic abelian normal subgroup and hence a
system of imprimitivity for G, or (ii) prove that G is an ANC group. It is shown in [15, § 8.1]
that if G is a non-abelian ANC group and A / G is cyclic with |G :A|= 2, then A is necessarily
inhomogeneous if

√
−1 ∈K. It therefore only remains to test primitivity of cyclic groups, which

can be done as in Section 5.

9. An algorithm for primitivity testing of finite nilpotent linear groups

We may now summarise the main algorithm for primitivity testing. For the reduction to ANC
groups (see Section 2), we let NoncyclicAbelian denote a function, which, given a finite
nilpotent group G6 GL(V ), returns either a non-cyclic abelian normal subgroup of G or fail
if G is an ANC group; see [15, Algorithm 4.3] for a description of such a function. We also
rely on the function HomogeneousDecompositionAbelian, which, given a finite abelian
A6 GL(V ), returns the homogeneous decomposition for A; see [15, Algorithm 5.2]. Finally,
NonzeroElement returns a non-zero vector of a non-zero vector space.

The following is an algorithm for primitivity testing of finite nilpotent linear groups over
any field K of characteristic zero such that (F1)–(F2) are satisfied. For the important case of
number fields, we illustrate how the techniques described in § 8.4 can be applied (see lines 11–
13). To simplify the pseudo-code, for an imprimitive group G we return a block for G instead
of a system of imprimitivity. Clearly, the system of imprimitivity containing a given block can
be obtained using the orbit-stabiliser algorithm [7, § 4.1].

Algorithm 9.1. IsPrimitive(G)
Input: an irreducible finite nilpotent G 6 GL(V )
Output: true if G is primitive, or false and a block for G

1: if G is abelian then
2: if there exists a prime p with p2||G| and |K[G] : K[Gp]|= p then
3: return false, NonzeroElement(V ) ·K[Gp]

4: return true
5: A←NoncyclicAbelian(G)
6: if A = fail then let A be a cyclic subgroup of index two in G

7: if A is inhomogeneous then return false, HomogeneousDecompositionAbelian(A)[1]

8: find ϑ(G) and g 6∈A with g2 = ϑ(G) · 1V as in § 8.1
9: if A is reducible then return false, NonzeroElement(V ) ·K[A]

10: S←
{
p:p is an odd prime with p2||G| and |K[A] : K[Ap]|= p

}
11: if K is a number field then
12: q← ϑ(G) = 1 or |G2|> 32 or

(G2
∼= Q16 and ord(2 mod |G2′ |) · |Kp : Q2| is even for all primes p|2 of K)

13: if |K[A] : K[A2]|= 2 and q = true then S← S ∪ {2}
14: else
15: if G2 6∼= Q8 and |K[A] : K[A2]|= 2 then S← S ∪ {2}
16: if ϑ(G) =−1 then S←

{
p ∈ S :−1 is a sum of two squares in E+

|A|/pK
}

17: if ∃p ∈ S then
18: if ϑ(G) = 1 then b← 1V else find b ∈K[Ap] with b · bg =−1V

19: return false, NonzeroElement(Ker(g − b)) ·K[Ap]

20: return true

Remark 9.2. As explained in § 8.3, solving the norm equation b · bg =−1V in line 18 is
equivalent to solving α2 + β2 =−1 in K[Ap]G ∼=K E+

n/pK, where n= |A|; we can do this since
we assumed that condition (F2) holds for K. In practice, as in the case of irreducibility testing
[15, Section 8], we generally use a norm equation solver for this step. We note that norm
equations for extensions F/F ′ of number fields can be solved algorithmically [6, 17]. However,
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the known algorithms for this purpose rely on the computation of the class group of F , so that
F has to be ‘small’ for such computations to be feasible.

Remark 9.3. Algorithm 9.1 can be simplified if we only wish to decide primitivity of G
without ever constructing a block. As we have seen in Section 8, in this case, we do not have
to actually solve any of the equations α2 + β2 =−1 in line 18. Therefore, condition (F2) on K
from Section 1 can be relaxed to the following: for any n> 1, we may decide if −1 is a sum of
two squares in E+

nK.

Remark 9.4. Because of randomisations employed in [15, Algorithm 4.3], different
applications of IsPrimitive to a given group G may produce different subgroups A in line 5. As
a consequence, repeated calls of IsPrimitive can return different systems of imprimitivity for
the same input group. Further note that a system of imprimitivity obtained using IsPrimitive
will in general be refinable. Repeated application can be used to obtain a non-refinable system
of imprimitivity; cf. [18, Lemma 15.2].

10. The implementation and examples

10.1. Notes on the implementation

The Magma package finn includes an implementation of the above algorithm for primitivity
testing of irreducible finite nilpotent linear groups; finn can handle linear groups defined over
number fields and rational function fields over number fields.

Since Algorithm 9.1 shares common ingredients with the method for irreducibility testing
in [15], a function which simultaneously tests irreducibility and primitivity of a finite nilpotent
linear group is provided in finn. This function will thus determine if the input group is
(a) reducible, (b) imprimitive but irreducible, or (c) primitive. In the cases (a) and (b), it
will then proceed to construct a submodule (case (a)) or a system of imprimitivity (case (b)),
unless the user requested to merely decide to which of the three classes (a)–(c) the input group
belongs.

10.2. Run-times over Q

We will now illustrate the practicality of Algorithm 9.1 by providing sample run-times. These
were all obtained using the 64-bit version of Magma V2.16-12 on an Intel Xeon E5440. The
examples below are available from the web page of finn.

Table 1 shows run-times for primitivity testing over the rationals. For each group, we provide
information on the group (‘group’), its degree (‘deg’), and the number of defining generators

Table 1. Run-times for linear groups over the rationals.

Group Deg Gens Num Den Prim? Size Total Decide

G1
∼= 51+2 20 4 7 3 No 5 0.01 0.01

G2
∼=W (2, 7) 42 7 34,387 6204 No 7 0.29 0.01

G3 (order 2553, class 3) 80 4 4.94× 106 1.91× 105 No 2 0.70 0.24

G4
∼=W (5, 2)⊗W (2, 3) 96 11 1 1 No 2 0.36 0.07

G5
∼= Q8 × C11 20 5 7.1× 107 3.34× 106 Yes – 0.02 0.02

G6
∼= Q16 × C7 24 5 3.2× 1011 3.68× 1010 Yes – 0.04 0.04

G7
∼= D16 × C11 40 5 1.26× 1011 2.21× 109 No 2 0.12 0.09

G8
∼= Q16 × C25 160 5 5.6× 107 4.76× 106 No 5 0.82 0.48
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(‘gen’). We also give approximate values for the largest absolute value of any numerator (‘num’)
or denominator (‘den’) among the entries of the defining generators. We indicate whether the
group was found to be primitive (‘prim?’) and, for an imprimitive group, we also give the size
of the system of imprimitivity constructed (‘size’). Two different run-times (all in seconds) of
primitivity testing are given for each group: the first (‘total’) includes irreducibility testing
(see § 10.1) and the construction of a system of imprimitivity in the imprimitive case. We then
repeated the computation without testing irreducibility and without ever constructing a system
of imprimitivity; the resulting run-time is also shown (‘decide’). All the groups considered here
are irreducible; see [15, Section 9] for run-times of irreducibility testing.

The group W (i, p) is Cp o · · · o Cp (i factors) faithfully represented as an irreducible maximal
p-subgroup of GLd(Q), where d= (p− 1)pi−1; see [11, § 4.5]. Apart from G4 (which is taken
from [15]), the generating sets for the groups in Table 1 were obtained from copies of the
‘natural’ ones using two steps of randomisation. First, the product replacement algorithm [2]
was used to obtain new generating sets; the main reason for including this step is that the
natural generating sets often yield extremal run-times (in either direction) for the construction
of a non-cyclic abelian normal subgroup via NoncyclicAbelian. Second, the generators
were replaced by conjugates under partially randomised block matrices; this was meant to
increase the sizes of matrix entries and to hide any obvious imprimitivity evident from the
shapes of the matrices.

The practical limitations of our implementation are the same as for irreducibility testing.
As remarked in [15], explicit solutions of α2 + β2 =−1 in cyclotomic fields are known from
[9, Example 38.13d] whenever they exist; these solutions are used in finn. We did not include
any examples for which a norm equation solver was used to solve α2 + β2 =−1; as we already
indicated in Remark 9.2, such computations are only feasible in small cases.

10.3. Run-times over other fields

In Table 2, we provide run-times for groups over proper extensions of the rationals. All of these
groups are generated by matrices with moderately sized entries so that computations are not
rendered impractical by coefficient explosions. The evident increase in run-times compared to
Table 1 is mostly a consequence of the fact that the underlying linear algebra in Magma is
highly optimised over the rationals.

Table 2. Run-times for linear groups over fields other than Q.

Group Field Degree Gens Prim? Size Total Decide

G9
∼= D16 o C4 Q(

√
2) 8 8 No 2 0.08 0.01

G10
∼= C49 · C49 Q(ζ49) 7 5 No 7 1.00 0.16

G11 (order 340, class 27) Q(
√
−3) 27 9 No 3 1.47 0.12

G12 (order 2355, class 4) Q(X) 40 5 No 5 4.74 0.03

G13
∼= SD16 × C5 Q(

√
−2) 8 5 Yes – 0.04 0.04

G14
∼= SD32 × C5 Q( 4√2) 16 5 No 2 0.43 0.37
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