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The interaction between porous structures and flows with mean and oscillatory
components has many applications in fluid dynamics. One such application is the
hydrodynamic forces on offshore jacket structures from waves and current, which have
been shown to give a significant blockage effect, leading to a reduction in drag forces. To
better understand this, we derived analytical expressions that describe the effect of current
on drag forces from large waves, and conducted experiments that measured forces on a
model jacket in collinear waves and currents. We utilised symmetry and phase-inversion
techniques, relying on the underlying physics of wave structure interaction, to separate
Morison drag and inertia-type forces and to decompose these forces into their respective
frequency harmonics. We find that the odd harmonics of the drag force mostly contain the
loads from waves, while even harmonics vary much more rapidly with the current speed
flowing through the jacket. At the time of peak force, these current speeds were estimated
to be 40 % of the undisturbed current and 50 % of the industry-standard estimates, a result
that has significant implications for design and re-assessment of jackets. At times away
from the peak force, when there are no waves and only current, the blockage effects are
reduced. Hence, the variation in blocked current speeds appears to occur on a relatively
fast time scale similar to the compact wave envelope. These findings may be generalisable
to any jacket-type structure in flows with mean and high Keulegan–Carpenter number
oscillatory components.
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1. Introduction
Jackets are commonly used as support structures for offshore oil and gas platforms and,
more recently, for offshore wind turbines and sub-stations. They are fixed, bottom-founded
steel structures, comprising numerous slender cylindrical members and assembled
as a spaceframe. Efficient jacket design is contingent on accurate estimates of the
hydrodynamic forces from waves and currents. However, the impact of combined waves
and current on these hydrodynamic forces is not fully understood even now. In current
design standards (ISO 2020; API 2000), wave and current forces are treated with a
Morison-type approximation (Morison et al. 1950) of the general form

F = (· · · )∂uw(t)

∂t︸ ︷︷ ︸
Inertia

+ (· · · ) (uw(t) + ucs) |uw(t) + ucs |︸ ︷︷ ︸
Drag

. (1.1)

This approximation assumes the fluid loading comprises an inertia term that results from
the acceleration of the irrotational flow around a structure, and a drag term that results
from shed vorticity (Lighthill 1986). The wave-induced horizontal fluid velocity that varies
in time t is denoted uw, and ucs is the mean fluid velocity through the jacket from a
steady current (referred to in this paper as the blocked current). The form of (1.1) is only
indicative of the full expression to highlight the role of waves and current on force. The
inertia and drag coefficients (implicit in the (· · · ) terms) are assumed independent of
the amplitude and period of uw(t) (i.e. no Keulegan–Carpenter (KC) number effects),
which is appropriate for large KC number regimes like large waves on jacket structures.
The complete inertia term also contains convective derivative terms (e.g. the higher-order
Faltinsen, Newman & Vinje (FNV) model; see Kristiansen & Faltinsen (2017)), which are
ignored here but are revisited in § 5.2.1. In present design standards, uw is approximated by
its value if the structure was not present, while ucs is reduced from the undisturbed current
speed uc by accounting for simple current blockage, a flow effect where the presence
of the jacket acts as an obstacle array, reducing local fluid velocities and accompanying
drag forces in the absence of waves (Taylor 1991). For design wave loads on jackets, drag
forces generally dominate over inertia forces as the width of structural members are small
compared with the incident wavelength and are of the order of the wave amplitude or
smaller. These drag-dominated conditions hold in general for porous structures subjected
to high Keulegan–Carpenter number oscillatory flows. Actuator disc models, which
represent the bulk flow interaction with porous structures, actually disregard the inertia
forces as they give zero mean force over an oscillation period and are therefore assumed
to have no effect on the flow field (see e.g. Taylor et al. 2013; Archer et al. 2024a).

Although jackets may not be what one usually imagines when they think of porous
structures, they have been described this way since Taylor (1991) first proposed current
blockage. Similarly, propellers and turbines have been characterised this way for much
longer (e.g. Taylor 1944). While we frame our discussion with regard to offshore jacket
structures, our methods may be applicable to other porous structures in similar flow
regimes, with recent work (e.g. Cicolin et al. 2024; Seol et al. 2024) confirming the
ongoing interest in drag loads on porous structures in multiple contexts.

The Morison-based force estimation (1.1) does not account for the additional effects
that arise from the combined action of waves and currents, namely a flow effect called
‘wave-current blockage’ where the blocked current ucs is further reduced from combined
waves and current compared with the reduction from current alone. This effect confounded
early attempts to simply interpret the results of jacket tests in combined wave and current
(e.g. Allender & Petrauskas 1987), until the theory was updated by Taylor et al. (2013).
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Wave-current blockage is driven by the additional mean drag force acting over a wave
period, which has been studied in previous experiments that tested in-line currents
combined with regular waves (Santo et al. 2014; Archer et al. 2024b) and combined with
focused wave groups (Santo et al. 2018a,b). Most of these studies tested scale models
of structurally dense offshore oil and gas jackets, which elicit stronger blockage effects
than the lightweight, structurally sparse jackets supporting individual wind turbines, but
Archer et al. (2024b) showed that these effects are still significant for lightweight jackets.
Moreover, most offshore wind farms have an additional jacket supporting an offshore
electrical substation; these jackets are dense (like oil and gas jackets), with very high deck
loads to be supported and many J-tubes housing electrical cables. Therefore, improving
jacket design standards to account for wave-current blockage is important as it will lead
to a reduction in estimated drag loads and hence a reduction in costs of offshore wind
farms. However, modelling wave-current blockage presently requires computational fluid
dynamic solvers that are time consuming to set up and run and difficult to validate (and still
rely on additional assumptions as the flow around individual structural members cannot
be fully resolved in the flow regimes relevant at full scale).

In this paper, we analyse the forces from combined waves and current and assess them
for evidence of wave-current blockage. These forces act at a range of frequencies, including
higher harmonics (above the linear wave frequency range) that can coincide with the
natural frequency of a real jacket (typically designed to be > 2−3 times the incident wave
frequency). We hypothesise that the blocked current ucs is significantly reduced during the
loading from large waves, and that the effects of this blocked current are mostly contained
in even drag force harmonics. Comparatively, odd harmonics mainly contain drag forces
from only waves. The theory supporting this hypothesis is outlined in § 2. To assess this,
we analysed experimental force measurements of two model jackets in combined waves
and currents. Our broader aim is to investigate if wave-current blockage effects can be
accurately estimated without needing computational fluid dynamic solvers; the work in
this paper is a step towards this aim.

The paper follows the following structure. In § 2 we derive expressions which indicate
the contribution of current to different drag force harmonics. We then present the
experimental set-up in § 3, an overview of the quality of the measurements in § 4 and
further analysis in § 5. Within this analysis, we attempt to separate drag and inertia force
contributions in § 5.2, we estimate the reduction in local current speeds due to wave-
current blockage effects in § 5.3 and we use these estimates to recreate the total force
time histories in § 5.4. We draw conclusions in § 6.

2. Contribution of current to drag force harmonics in large waves
The Morison drag term in (1.1) contains force components from purely waves (uw ×
uw), from waves and current (uw × ucs) and from purely current (ucs × ucs), but the
contribution from each of these components to force harmonics at different frequencies is
not clear. To demonstrate this complexity, we define the nonlinear wave-driven horizontal
fluid velocity uw, which can be written to third order in wave steepness (Stokes 1847) as

uw = u11 + u20 + u22 + u31 + u33 + . . . . (2.1)

The terms on the right-hand side of the expression follow the structure ui j , where
the subscript i denotes the order of each term given by the power of the linear wave
amplitude, and the subscript j denotes the harmonic in frequency given by the multiplier
of the linear ( j = 1) frequency. The expansion of terms follow the general property of
a Stokes expansion, that for a given i , j = i, i − 2, i − 4, . . . so long as j ≥ 0. In the
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Figure 1. Comparison of exact forms of Morison drag (solid lines) with the approximations derived in this
paper (dashed lines), for a regular wave case where uw/ucs = 4. In (a), the full form in (1.1) is compared with
the approximation (2.2). In (b), the drag force harmonic approximations in table 2 (which account for variations
in wave kinematics with depth and variations of the free surface) are compared with numerically evaluated
solutions for the force on a vertical member spanning the full depth of the water column and protruding above
the free surface.

Morison equation, this Stokes structure (i.e. the relationship between the order i and
the harmonic j) is maintained for the inertia term but no longer holds for the drag term
because the function u|u| is non-analytic. Perfect separation of wave and current drag
force components in frequency is therefore not possible, but an approximate separation
may be. We explore this possibility here.

To attempt to separate wave and current drag force components in frequency, we
consider the flow regime where wave kinematics are much larger than the blocked current
(uw � ucs), which is true for large design waves for offshore structures in the region
close to the free surface where the wave kinematics are largest. In this regime, we can
approximate the Morison drag expression in (1.1) as

Drag ≈ (· · · )
(

uw(t)|uw(t)| + 2|uw(t)|ucs + sgn(uw)u2
cs

)
, (2.2)

where sgn(uw) is a sign function, equal to 1 when uw > 0 and –1 when uw < 0. The
approximation was first given in Haritos (2007) (but without the sgn(uw)u2

cs term)
to model the interaction between waves and structural motion. It was used by Santo
et al. (2018a) to estimate the drag forces on a dynamically responding jacket, showing
good agreement with experimental data and with more complex numerical models. The
approximation can be (partially) explained by expanding the full Morison drag form in
(1.1) at wave crests and troughs. Combining the expanded expressions at wave crests,
u2

w + 2uwucs + u2
cs , and at troughs, −u2

w − 2uwucs − u2
cs , gives (2.2). However, this does

not explain why the approximation performs so well as uw varies across a wave period,
with only very localised poor agreement near zero force – see figure 1(a), which compares
the approximation with the full form in (1.1) for a regular wave case with uw/ucs = 4
(similar to the regimes we test experimentally). Hence, (2.2) is more of an empirical
observation. As the aim of this analysis is to approximate forces from large waves, the very
localised poor agreement near zero force is of secondary importance. We are primarily
concerned with peak forces, for which the approximation works well.

The approximation (2.2) separates wave × wave, wave × current and current × current
drag force terms. To analyse each of these terms, we assume uw is driven by a regular wave
in water depth h
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z
x

uw ucs
z = a cos φ

h

Figure 2. Assumed variation of horizontal kinematics of wave uw and blocked current ucs with depth. The
jacket is represented as a stick, slender compared with the wavelength, as assumed by Tromans et al. (1992).
The free surface at the jacket is taken as a point estimate of z = a cos (φ). Note that ucs actually acts within the
jacket, but here we separate it for clarity. To approximate the total Morison drag force acting on the jacket, we
split the vertical domain into two regions, a free surface region ( ) from z = 0 to z = a cos (φ), and a mean
depth region ( ) from z = 0 to z = −h.

uw(t) ≈ ωa
cosh (k(z + h))

sinh (kh)
cos (φ), (2.3)

where ω is the angular frequency, a is the wave amplitude, k is the wavenumber, z is
the vertical coordinate axis, defined as positive upward with z = 0 the mean free surface,
and φ is the phase angle (φ = kx − ωt). Here, we make the simplification of omitting all
second- and higher-order contributions to uw (i.e. we only consider the linear contribution,
u11 in (2.1)). This simplification should be reasonably accurate for cases of interest, as
in deep water the second-order super-harmonic contribution to the velocity potential is
absent for regular waves and is small for wave groups. Moreover, in Appendix B, we
show that the relative force amplification from the addition of a current is well predicted
using linear kinematics. See figure 2 for a representation of the variation in uw and ucs
with depth, with ucs assumed to be constant. In reality, ucs varies with depth, partially
because currents are often stratified in the ocean, and partially because ucs will increase
(i.e. become less blocked) with depth as uw decays. Because of this, ucs can be thought
of as an ‘effective’ blocked current and is more representative of the current speeds near
the free surface which contribute to the majority of the drag loading. Using (2.3), we
define two vertical integrals, one over the mean water depth from the seabed at z = −h
to the mean free surface at z = 0, and one over the varying free surface from z = 0 to
z = a cos (φ). Starting with the wave × wave drag force term, the mean depth integral
from z = −h to z = 0 gives∫ 0

−h
uw(t)|uw(t)| dz = ω2a2

2k
D cos (φ)| cos (φ)|, (2.4)

where D = (kh + (1/2) sinh (2kh))/ sinh 2(kh) ≈ 1 for deep water. The phase component,
cos (φ)| cos (φ)|, can be approximated by the Fourier series

cos (φ)| cos (φ)| = 8
3π

[
cos (φ) + 1

5
cos (3φ) + 1

35
cos (5φ) + . . .

]
, (2.5)

which consists of an infinite summation of only odd harmonics (see e.g. Orszaghova
et al. (2021) for the fully expanded form). Note that these integral limits assume the
jacket extends to the sea bed, which is always true practically but is not the case for our
experimental set-up, see § 3. In Appendix A, we repeat the analysis with adjusted integral
bounds to account for this.
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Wave × current, 2|uw(t)|ucs

Mean depth integral 2
ωa

k
| cos (φ)|ucs (2.8)

phase | cos (φ)| = 2
π

[
1 + 2

3
cos (2φ) − 2

15
cos (4φ) + . . .

]
(2.9)

Free surface integral 2ωa| cos (φ)|ucs × a cos (φ) (2.10)

phase (2.5)

Current × current, sgn(uw)u2
cs

Mean depth integral sgn(uw)u2
cs × h (2.11)

phase sgn(uw) ≈ 4
π

[
cos (φ) − 1

3
cos (3φ) + 1

5
cos (5φ) + . . .

]
(2.12)

Free surface integral sgn(uw)u2
cs × a cos (φ) = a| cos (φ)|u2

cs (2.13)

phase (2.9)

Table 1. Expressions for the mean depth and free surface integrals, with Fourier series of the associated phase
components, for the wave × current and current × current terms in (2.2). See figure 2 to visualise the bounds
of these integrals.

The free surface integral from z = 0 to z = a cos (φ) can be approximated as∫ a cos (φ)

0
uw(t)|uw(t)| dz ≈ (ωa)2 cos (φ)| cos (φ)| × a cos (φ). (2.6)

The phase component in (2.6) can be approximated by the Fourier series,

cos2(φ)| cos (φ)| = 4
3π

[
1 + 6

5
cos (2φ) + 6

35
cos (4φ) + . . .

]
, (2.7)

which consists of only even harmonics.
The same analysis is repeated for the wave × current and for the current × current drag

force terms in (2.2), integrating each term up the vertical water column,
∫ 0
−h(· · · ) dz, and

up to the varying vertical free surface height,
∫ a cos (φ)

0 (· · · ) dz. The resulting expressions
are summarised in table 1, including expressions (2.8)–(2.13).

The wave × wave, wave × current and current × current drag force terms ((2.4), (2.6),
(2.8), (2.10), (2.11) and (2.13)) can be summed and grouped into those acting at each
frequency harmonic using the Fourier series defined in (2.5), (2.7), (2.9) and (2.12). The
resulting expressions for the first three frequency harmonics, including the second har-
monic difference term which contains force components close to zero frequency, are given
in table 2. These expressions agree well with numerical evaluations of the exact form – see
figure 1(b). For brevity, we will refer to the linear harmonic as (1), the second harmonic
difference as (2−), the second harmonic sum as (2+) and the third harmonic sum as (3+).

To show the effect of current, each drag force harmonic expression in table 2 is
written in the form: a pure wave force term × [a current multiplier]. Within this current
multiplier, the blocked current ucs is non-dimensionalised by the phase speed c = ω/k.
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Odd frequency harmonics

First harmonic (1) 4
3π

ω2a2

k
D

[
1 + 1

D

(
4

ucs

c
+ 3

kh

(ka)2

(ucs

c

)2
)]

cos (φ) (2.14)

Third harmonic sum (3+) 4
15π

ω2a2

k
D

[
1 + 1

D

(
4

ucs

c
− 5

kh

(ka)2

(ucs

c

)2
)]

cos (3φ) (2.15)

Even frequency harmonics

Second harmonic difference (2−) 4
3π

ω2a3
[
1 + 3 (ka)−2 ucs

c

]
(2.16)

Second harmonic sum (2+) 8
5π

ω2a3
[
1 + 5/3 (ka)−2 ucs

c

]
cos (2φ) (2.17)

Table 2. Drag force frequency harmonic expressions.

The magnitudes of the u2
cs terms in the first and third harmonics are small and are only

non-negligible for very fast currents. Even harmonic drag forces also have contributions
from u2

cs , but these contributions are negligible and hence are omitted from (2.16) and
(2.17). As the u2

cs terms are small in (2.14) and (2.15), the size of each odd harmonic
predominantly scales linearly with current, but this scaling is small as the ucs terms are
small compared with the pure wave force (as c � ucs). In contrast, even harmonics have
much larger linear modifications from current due to their dependence on the inverse of
wave steepness (ka) squared (and ka < 1), indicating that wave-current blockage effects
are primarily contained in the (2−) and (2+) harmonics.

Not only do the drag force expressions in (2.14)–(2.17) indicate the relative importance
of current for each harmonic, they actually enable estimates of the blocked current ucs ,
given accurate force measurements. These estimates do not require knowledge of the drag
coefficient of the structure, just an assumption of the basic structure of wave kinematics,
the Morison form of the drag force and the approximate decomposition of Morison drag
(2.2). In Appendix A, we show that the numerical scaling factors of the current contribu-
tion to odd and even harmonics are slightly affected by the finite height of the jacket model
in the experiments, but the basic structure of the solutions does not change. In Appendix B,
we validate the accuracy of these expressions in estimating ucs by comparing with Stokes’
fifth-order wave theory (Fenton 1990). Although the assumption of linear kinematics in the
decomposition is relatively inexact, the relative amplification from the addition of a current
is well predicted. Therefore, we expect that the basic structure of these results should hold
in real waves, and hence, estimates of the blocked current, accurate enough for engineering
analyses, can be obtained. To obtain such estimates of the blocked current, results from
physical experiments were analysed. The set-up of these experiments is described next.

3. Experimental set-up and methods
Physical experiments were carried out in the Kelvin Hydrodynamic Laboratory towing
tank at the University of Strathclyde, Glasgow. The tank is 76 m long, 4.6 m wide and
has a 1.8 m operating water depth. At one end of the tank are four Edinburgh Designs
Ltd. hinged flap wavemakers with force feedback control, and at the other end is a sloping
beach that acts as a passive absorber. A self-propelled carriage runs along the length of
the tank in both directions.
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Figure 3. Left photograph shows the carriage with the jacket model suspended underneath, viewed in a down-
wave direction. Photo inset is a close-up view of the interface between the jacket mounting frame and the force
transducer. Right image shows a three-dimensional computer-aided design (CAD) model of the jacket.

We tested the same jacket model used previously in Santo et al. (2018b), a 1:80 scale
model of a second generation North Sea platform. The density of structural members in
the model is also representative of an offshore wind electrical substation jacket. Figure 3
shows the jacket and its relevant dimensions. It stands at 1.74 m tall and is rectangular when
viewed end on but tapered when viewed broadside. Cylinders of 38.2 mm diameter make
up the four jacket legs, 16 mm diameter cylinders are used for the 24 vertical conductors
and for diagonal bracing and 20 mm square tubing forms horizontal support frames. The
jacket was oriented end on with its front rectangular face normal to the direction of current
and wave propagation.

The jacket was suspended below the carriage from a stiff mounting frame via a double
pendulum arrangement, allowing the total in-line horizontal force to be measured by a
6 degree of freedom piezoelectric-type force transducer – see figure 3. The free surface
was measured by resistance-based wave probes, both at the jacket by a probe mounted on
the carriage between the jacket and the tank wall, and at three fixed locations along the
tank, including at the longitudinal tank centre – see figure 7(a) for these fixed positions.
All measurements were sampled at 137 Hz and then interpolated to 100 Hz. The distance
from the base of the jacket to the still water level was 1.33 m, leaving 0.41 m of the jacket
remaining above the water to ensure that the largest wave crests did not hit the mounting
frame, and leaving a 0.47 m gap between the base of the jacket and the tank floor to allow
the jacket to be towed.

The jacket was towed at constant speed uc of −0.28, −0.14, −0.07, 0, 0.07, 0.14 and
0.28 m s−1 in otherwise still water, representing currents with a uniform depth profile.
The fastest ±0.28 m s−1 speeds correspond to extreme 2.5 m s−1 currents at field scale.
We define positive current speeds as acting in the same direction as wave propagation,
realised by towing the jacket towards the wavemaker. Positive currents add to the positive
wave kinematics in a crest, and negative currents add to the negative kinematics in a
wave trough.
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Figure 4. Shapes of the input JONSWAP power spectrum compared with the measured linear free surface
amplitude spectrum with no current (linearised using the two-phase combination method (5.1)). The shapes
of these should theoretically match, as a focused wave group (or NewWave) is the auto-correlation function in
shape at focus (Tromans et al. 1991). The good shape match therefore indicates that the intended JONSWAP
power spectrum was realised in experiments.

All current speeds were run in combination with NewWave-type focused wave groups
which are based on the average shape of a large crest in a random sea (Tromans et al. 1991;
Walker et al. 2004). The focused wave groups had 0.257 m crest amplitudes at focus, and
were generated according to a Joint North Sea Wave Project (JONSWAP) power spectrum
truncated at 1 Hz with a peak frequency of 0.52 Hz and a gamma of 3.3. Figure 4 shows
that the intended shape of the JONSWAP power spectrum was realised in experiments.
Both crest-focused (0◦ phase) and trough-focused (180◦ phase shifted) wave groups were
generated – see figure 5(a,b) for the shape of the wave groups at focus. The trough-focused
wave groups were achieved by simply adding 180◦ to the phase of each Fourier component
of the paddle signal, replacing a crest-focused wave group by a trough-focused one. All
wave groups were programmed to focus at the longitudinal tank centre where the fixed
wave gauge was positioned. The starting position of the carriage was set for each towing
speed such that the jacket always reached the centre of the tank at the time of focus.

In the experiments, a mean linear crest amplitude at focus of 0.213 m was realised, which
represents an extreme wave of 17 m linear amplitude and 16 s peak period in 106.4 m
water depth, Froude-scaled down to 1:80 laboratory scale. For context, the maximum
significant wave height for a 100 year return period in the North Sea is 13.8 m, and
the most probable maximum individual wave height scales by 1.17 for every factor of
10 increase in return period (i.e. going from 100 to 1000 years), according to the data in
table 1 of Santo et al. (2016). The experimental tests therefore represent a 1 in ∼ 2000
year extreme wave condition. This is a sensible risk level to test, more severe than the 1
in 10,000 year design condition for unmanned low-consequence structures, but not quite
severe enough for some permanently manned structures that are designed to withstand 1 in
10,000 year wave loads. This extreme wave test regime is characterised by high Keulegan–
Carpenter numbers, KC = 2πa/d ≈ 35−80 near the mean free surface (here, d is the
diameter of a jacket member). Because KC numbers are high, we expect that the drag
behaviour is similar to that for steady flow (or, in other words, we do not expect there to be
significant KC effects that are associated with small KC numbers). Physically, the wave-
induced oscillations are very large compared with the jacket members’ diameter, so when
the shed vortices from a wave crest are swept back through the jacket in the subsequent
wave trough, any coherent structures in the wake would have mixed out. This wake mixing
would be further enhanced by the complex interactions between the vortices shed off each
of the many jacket members. This wake mixing behaviour implies that (a) the model
jacket maintains the same drag coefficient at different current speeds, (b) the specific
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Figure 5. Time series measurements of crest-focused wave groups (left panels) and trough-focused wave
groups (right panels). (a,b) Free surface recorded by the fixed wave gauge at the longitudinal tank centre,
averaged over all tests. (c,d) Free surface recorded by the carriage-mounted wave gauge at different current
speeds, averaged over repeat tests. (e,f) Total force recorded at different current speeds, averaged over repeat
tests. All time series are lowpass filtered at 3 Hz.

arrangement of structural members is unimportant (and does not vary much in jackets
anyway) and (c) the same qualitative observations should hold for all high-KC number
extreme wave conditions with combined in-line current.

4. Free surface and total force results
The experimental measurements were highly repeatable, as demonstrated by measure-
ments of the free surface by the fixed wave gauge at the longitudinal tank centre in
figure 5(a,b). Free surface and force measurements for repeat tests at each current speed
have very little deviation from the mean with respective root-mean-square errors below
0.002 m and 1.3 N (< 2 % of the peak).

Towing the carriage along the tank to represent a current changes the wave encounter
frequency due to the Doppler effect – see the dilation of the time axis for different current
speeds in figure 5(c–f ). Different tow speeds will also cause small differences in the spatial
location of the jacket, and hence in the encountered wave form, either side of the focused
peak (t = 0). However, we expect that this effect is negligible near the focused peak, which
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Figure 6. (a,b): Total force measurements of crest-focused (a) and trough-focused (b) wave groups, lowpass
filtered at 3 Hz. The time axis has been scaled to account for the Doppler effect, and the mean drag force from
current (which is represented as dashed horizontal lines on either side of the focused wave group) has been
removed. These current-only forces are plotted again in (c), and are shown to scale linearly with uc|uc|.

is our primary concern. Hence, we assume that wave kinematics are not influenced by
towing the carriage. For clarity of comparison, the time axis of subsequent figures (e.g.
figure 6) will be scaled to partially account for the Doppler effect. This scaled time is
τ = t (1 + uc/c), where c is the phase speed of the spectral peak wave frequency observed
in a stationary reference frame, and uc is the carriage speed (i.e. the undisturbed current).
While this time scaling does not fully remove the Doppler effect as waves of different
frequency travel at different speeds, it is good enough to help with clarity of comparison.

Force measurements are shifted vertically by the different mean forces from different
current speeds – see figure 5(e,f ). This mean force in current only, shown as horizontal
dashed lines in figure 6(a,b) and as dots in figure 6(c), scales linearly with uc|uc|,
confirming the appropriateness of the Morison drag form used in simple current blockage.
This simple current blockage force (equations 7 and 8 in Taylor 1991) is

Fcurrent only = 1
2
ρ Cd A u2

scb,

where uscb = uc

⎛
⎜⎜⎝ 1

1 + Cd A

4A f

⎞
⎟⎟⎠ .

(4.1)
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The drag coefficient inferred from measurements is Cd = 0.7, A = 1.12 m2 is the summed
solid area of all structural members normal to the incident flow, and A f = 0.55 m2 is the
frontal area bounding the entire structure. A vaue of Cd of 0.7 is a plausible number at
laboratory scale on smooth cylinders at relatively high Reynolds number (Re = ud/ν ≈
104 near the mean free surface, where u is the total fluid velocity and ν is the kinematic
fluid viscosity). Note that we do not need Cd to estimate wave-current blockage effects,
only the measured forces with and without current (see § 2). As this paper is concerned
with the force behaviour in combined waves and current, we removed this current-only
force from the measured force, as shown in figure 6(a,b). This current-only force is
revisited in § 5.3.

Error waves are freely propagating waves spuriously generated by a wavemaker when
low-order wavemaker theory is used for motion control. Moreover, reflections off the
beach represent an additional source of potential contamination of measurements. For our
tests, second- and higher-order error waves could be present as the wavemakers were run
without second-order correction (Schäffer 1996). To check for potential contamination, we
analysed data from three fixed wave probes, which measured the free surface at different
positions in the tank – see figure 7(a) for their positions and figure 7(b) for the free surface
measurements. The free surface measurements have been separated into their frequency
harmonics using the two-phase combination method (5.1) (see § 3a of Fitzgerald et al.
2014). The scale of the vertical free surface disturbance is captured by the left-hand
vertical axes, and the horizontal position of the measurement point along the tank is
represented by the right-hand vertical axes. Figure 7(b i) (i.e. the linear signal) shows the
main focused wave group evolving in time and space; it is generated at the wavemakers
at t = −21 s, propagates along the flume at the linear group velocity (represented by the
lines) and reaches the beach at approximately t = 20 s. All other free surface harmonics
(figure 7b ii–iv) have bound wave components that propagate with the focused wave
group, but they also have free error waves released from the wavemaker. These free error
waves propagate at different speeds to the main focused wave group: the (2−) error wave
(represented by the lines) travels faster, at the shallow water phase speed, while the
(2+) and (3+) error waves travel slower. The mathematical expressions for each of these
propagation speeds is given in the caption of figure 7. Near the point of wave focus at
the longitudinal centre of the tank (represented by the line) at t = 0, the error waves
propagating from the wavemakers do not contaminate measurements: the (2−) error wave
arrives well before t = 0 and the (2+) and (3+) error waves arrive long after. However,
we estimate that the (2−) error wave reflected off the beach arrives back at the tank
centre t ≈ 1.5 s after wave focus, which would contaminate the second half of the (2−)
force measurements. Although the free surface disturbance from this (2−) error wave
is very small (largely undetectable in figure 7b ii), it may be associated with more
considerable wave kinematics which would have a measurable effect on force. We also
note that towing the carriage to represent current has only a small effect on the arrival
time of the reflected (2−) error wave (arrival time only changes by ∼ 0.2 s between the
fastest negative and positive currents), as the speed of the carriage is much slower than
the error wave propagation speed. So in summary, the focused wave group measurements
have minimal contamination from error waves, except for perhaps part of the (2−) force
measurements. This relatively clean experiment is made possible by using focused wave
groups, which allow an extreme wave to be tested deterministically and over a short time
frame.

To analyse free surface and force harmonics, it is instructive to transform the crest-
and trough-focused time series into power spectra in the frequency domain. Smoothed
spectra in figure 8 were produced using a 4-point moving average, equivalent to a window
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Figure 7. Three fixed wave probes measured the undisturbed free surface (i.e. without the jacket) at different
positions along the tank: ( ) at the wave focus location at the longitudinal tank centre, ( ) closer to the
wavemaker and ( ) closer to the beach. Their positions are shown in (a), and the measured time histories
of the free surface harmonics (obtained using the two-phase combination method (5.1)) are shown in (b). The
dashed lines represent the propagation speed of different wave packets: ( ) cg, f p , ( ) cshallow , ( ) cg, 2 f p
and ( ) cg,3 f p , where cshallow = √

gh is the shallow water phase speed, and cg = ω/k(1/2 + kh/ sinh (2kh))

is the group velocity at different multiples of the peak frequency f p .
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(top panels) and total force variance density spectra S(F) (bottom panels) for (a,c) crest-focused wave groups
and (b,d) trough-focused wave groups, with different current speeds. The frequency axis fτ relates to the
Doppler-scaled time τ .

of ∼ 0.05 Hz. Crest-focused force power spectra (figure 8c) are sorted by current speed
at frequencies near 1 Hz (at ∼ 2× the linear frequency), indicating a dependency with
current, while trough-focused spectra (figure 8d) show a partial cancellation close to 1 Hz
for all current speeds. We concentrated our analysis on the first three harmonics (so 2−, 1,
2+, 3+) with frequency ranges up to ∼ 2 Hz, which give good signal-to-noise ratios and
are the most relevant for the design of offshore structures.

The first longitudinal mode of vibration of the jacket on its support is at 5.5 Hz, as
confirmed by a dynamic push test. Although this is ∼ 10 × the peak wave frequency,
we expect that this mode of structural vibration gives some force amplification effects
for the frequency range of interest. Assuming a simple mass-spring-damper system with
a damping ratio of 0.09 (estimated from the dynamic push test data), we estimate that
forces at 2 Hz are amplified by roughly 15 %, but forces at the peak wave frequencies are
amplified by less than 1%. This possible small force amplification does not impact the
analysis of wave-current blockage effects, which, as described in the following sections,
relies on the relative difference between measured forces with and without current, rather
than on their absolute values. We note that changes in wave encounter frequency caused
by towing the carriage have negligible impact in this respect, with differences in estimated
force amplifications between tests with no current and with the fastest currents being (at
most) 2 % at higher frequencies, and negligible nearer to the peak wave frequency.

To summarise, we have shown that the experimental results are highly repeatable, with
minimal contamination from free error waves (besides perhaps for the latest part of the
(2−) force time history). Structural vibration may cause small amplifications in measured
forces at higher frequencies near 2 Hz, but we do not expect this to affect the analysis
of blockage effects. In the next section, we analyse the data further to investigate the
behaviour at different frequency harmonics, the relative contribution of Morison drag and
inertia forces and wave-current blockage effects.
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5. Force harmonics results and discussion

5.1. Harmonic decomposition of total force
To decompose the free surface and force time histories into their linear and higher
harmonics, we used the two-phase combination method (Fitzgerald et al. 2014), which
combines the crest-focused time series F0◦ and the trough-focused time series F180◦ to
separate odd and even harmonics

Odd harmonics = 1
2
(F0◦ − F180◦)

Even harmonics = 1
2
(F0◦ + F180◦).

(5.1)

Note that (5.1) defines the odd and even force harmonics, but the same formula applies for
free surface. After applying (5.1), the first three harmonics were separated from other odd
or even harmonics by digital filtering, where the frequency bands for each harmonic were
estimated by Stokes wave theory (see appendix A of Walker et al. 2004), and then manually
adjusted to both maximise the spectral energy within the frequency band and minimise the
spectral energy in adjacent harmonics. The resulting free surface and force harmonic time
series are shown in figure 9. The odd and even terms of the first three harmonics are
well separated in frequency, so we are confident that the two-phase combination method
extracts the harmonics with good accuracy.

To independently analyse the effect of current on drag loads, the tested wave must
be similar for all current speeds. We assessed this similarity by comparing free surface
harmonic time series – see left panels of figure 9. The linear free surface is very similar
for all current speeds. There are differences in higher free surface harmonics, which
could be caused by the spatial and temporal differences in the position of the jacket or
from experimental variability, but these differences are small (note the small vertical axis
scales). The (2−) terms show a free surface set down as the focused wave group passes
through, which is reasonably consistent with second-order wave theory (e.g. Dalzell 1999).
Overall, we conclude that the encountered wave forms are similar for all current speeds.

Forces (figure 9, see right panels) are highly nonlinear; while the amplitudes of higher
free surface harmonics are collectively (i.e. (2−) + (2+) + (3+)) roughly 25 % of the
linear free surface amplitude, higher harmonic force amplitudes are collectively up to 85 %
of the linear force amplitude, hence emphasising their importance for jacket design. Linear
forces show a small dependency with current, with the fastest positive current speed of
0.28 m s−1 represented by the right hand having a notably higher peak force. Similar to
the linear forces, the amplitudes of the (3+) forces have little variation with current, with
only the higher negative current speeds having reduced amplitudes near the focused peak.
In contrast to these odd harmonics, the amplitudes of the even (2−) and (2+) terms are
highly dependent on current and are neatly sorted; the largest negative current speed gives
the smallest amplitude and the largest positive current speed gives the largest amplitude.
This general behaviour is predicted by the drag force harmonic expressions in table 2.

The force harmonics shown in figure 9 are the total force, so in a Morison-type force
approximation the harmonics contain both drag and inertia force components. In this
approximation, drag forces are symmetric about wave crests, while inertia forces are 90◦
phase shifted ahead of wave crests and so are skew symmetric (positive first, then negative,
wave by wave). The exception to this rule is the (2−) inertia force, which will also be close
to skew symmetric but will be negative first, being mostly driven by the acceleration of the
(2−) return flow beneath the wave group. The (2−) forces also vary on the time scale of
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Figure 9. Harmonic time series of free surface recorded by the carriage-mounted wave probe (left panels) and
total force (right panels). The mean drag force from current has been removed from the (2−) force (d) for
clarity of comparison.

the wave group envelope, not wave by wave. Applying these symmetry arguments to the
force harmonics in figure 9, it can be seen that the (1), (2+) and (3+) forces are roughly
symmetric about the free surface peak at τ = 0, which suggests they are drag dominated.
In contrast, the (2−) force is asymmetric; forces vary with the envelope of the wave group,
but the forces measured well before the focused peak are larger than the forces the same
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time after. This asymmetric shape is opposite to the theoretical shape of the (2−) inertia
term, which is negative before the focused peak and positive after. Logically, if this inertia
term could be removed, the asymmetry would only increase in severity, suggesting that
the (2−) force is also drag dominated. We assume the asymmetry is a drag-related fluid
memory effect, where the viscous flow generated from past wave loading events persists
over a period of time and affects the drag forces from future wave loads. Unfortunately, the
(2−) forces measured after τ = 0 may be contaminated by an error wave (see figure 7(bii)),
which may contribute to this asymmetry and explain why the peak of the (2−) force with
zero current occurs slightly after the focused peak. As the effect from the error wave cannot
be isolated, we cannot comment more on the presumed asymmetric drag behaviour, but
note that it could be a topic of further study.

Although the measured forces appear to be mostly drag, inertia forces will still make a
small contribution to the peak measured forces. To apply the wave-current blockage theory
developed in § 2 (which only applies to drag forces), it is important to separate the drag
and inertia forces. Next, we will attempt to separate these force components through a
symmetry/skew-symmetry argument.

5.2. Harmonic decomposition of drag and inertia forces
To separate drag and inertia force components, we used a method proposed by Santo et al.
(2014), which relies on symmetry about wave crests and assumes that drag forces are
in phase with crests and inertia forces are 90◦ phase shifted (which is consistent with a
Morison-based force approximation). The method combines the total force F(t) and its
time-reversed signal F(−t) to give

Drag = 1
2
(F(t) + F(−t))

Inertia = 1
2
(F(t) − F(−t)).

(5.2)

This method assumes the free surface is symmetrical about t = 0, which is approximately
true for both crest- and trough-focused wave groups – see figure 5. Nonlinear inertia
contributions share the same skew-symmetric shape around the focused peak as linear
inertia, so the drag/inertia separation method should hold for most higher force harmonics.
The one important exception to this is the (2−) force, which may have some asymmetric
drag loading and hence is not compatible with these symmetry arguments.

After applying the drag and inertia separation method, we then applied the same two-
phase decomposition method (5.1) and subsequent digital filtering to isolate each drag
and inertia force harmonic. The results are shown in figure 10. Although the (2−) force
separation may not be valid, we chose to show these results as they give a rough indication
of the small contributions from inertia relative to drag. For the (1), (2+) and (3+)
forces, the separation of drag and inertia terms appears to work well. As expected, the
drag components are comparatively larger (peak first harmonic drag is ∼ 2 × peak linear
inertia), and they contain most of the effects from current.

Now that we have removed the inertia component from the measured force, we can apply
the theory developed in § 2 to the isolated drag forces and hence estimate wave-current
blockage effects. This is discussed in § 5.3.

5.2.1. A brief aside on the dependency of inertia forces with current
Although this paper is mostly concerned with the effects of current on drag forces, inertia
forces are also affected. The linear inertia forces in figure 10(b) show that more positive
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Figure 10. Force harmonic time series of drag (left panels) and inertia (right panels). The labels of the (2−)
forces are coloured red to indicate that we expect the drag/inertia separation method (5.2) to be less

appropriate.

currents generally give larger peak forces. To understand this dependency, we consider the
complete inertia term for slender cylinders, including the convective derivative terms from
the higher-order FNV model (Kristiansen & Faltinsen 2017) that were initially ignored in
the Morison equation (1.1). This complete inertia term is
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Inertia = (· · · )
(

2
∂u

∂t
+ u

∂u

∂x
+ 2w

∂u

∂z

)
, (5.3)

where (u, w) are the horizontal (x-direction) and vertical (z-direction) total fluid velocity.
The total horizontal fluid velocity u includes the fluid velocity from both waves and
current, so u = uw + ucs . The effect of current on inertia is two fold.

• On the ∂u/∂t term: the Doppler-shift effect caused by the carriage moving at the
undisturbed current speed uc acts to scale the measured time t by (1 + uc/c). This
also has the effect of linearly scaling the ∂u/∂t inertia term by the same factor.

• On the convective derivative terms, u∂u/∂x + 2w∂u/∂z: substituting u = uw + ucs
simplifies to ucs∂uw/∂x , as w∂u/∂z is unaffected by depth-uniform current and as the
wave contributions of each term roughly cancel each other out (as shown by Taylor
et al. (2024)). The resulting ucs∂uw/∂x relates to the blocked current ucs and acts to
decrease inertia forces with an increasingly positive current (as ∂uw/∂x is proportional
to −∂uw/∂t).

To summarise, there is some effect of current on the inertia term linearly, but these effects
are small (figure 10b) so we did not analyse these further. Importantly, all inertia force
components with current still have the same skew-symmetric shape around the focused
peak, so the method of separating drag and inertia forces (5.2) remains valid.

Finally, we remark that the fully nonlinear inertia forces with zero current could
be estimated using the Transformed-FNV model (Taylor et al. 2024) which requires
knowledge of only the linear free surface at the jacket. However, this model assumes the
jacket occupies the entire water column, which ours does not, and it cannot (yet) explain
the effects of current. Future work to extend the Transformed-FNV model to include
current would be of value.

5.3. Estimating wave-current blockage effects in large waves
We now discuss the principal objective of this paper, to estimate the reduction in the
blocked current ucs from the undisturbed current uc, at the point in time that corresponds
to the peak force on the structure (i.e. at t = τ = 0 s). This is key for structural engineers
looking to design or re-assess real jacket structures. Recall that the expressions for drag
force harmonics given in table 2 show that the force with current is equal to a pure wave
force term × a multiplier which depends on ucs . Hence, ucs can be estimated from accurate
force measurements with and without current, and the extent to which ucs is reduced from
the undisturbed current speed indicates the magnitude of wave-current blockage effects.
Importantly, the drag force harmonic expressions only apply to fluid loading regimes
where ucs is small compared with the wave-driven fluid velocity uw, so for extreme waves
where uw � ucs for the majority of the water column. The tested focused wave groups give
an extreme wave crest (or trough) at τ = 0, hence the drag force harmonic expressions in
table 4 (which have been adjusted from the expressions in table 2 to account for the jacket
not reaching the tank floor) can be applied to the measured drag forces at this point in time.

While the (1), (2−), (2+) and (3+) drag force measurements could all be used to
estimate ucs , the (2+) measurements are arguably the most suitable given that they give
good separation in peak forces with current. The (2−) measurements also give good force
separation with current, but are complicated by drag asymmetry, possible error wave
contamination and other factors like the second-order return flow under the focused wave
group which have not been accounted for. Because odd force harmonics (1) and (3+)
have smaller amplification from current, their peak forces are not as well separated for
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Estimated ucs (m s−1)

Undisturbed Simple current
current (m s−1) From (2+) From (2−) From (1) Average blockage (uscb)

0.280 0.065 0.16 0.107 0.11 0.21
0.140 0.024 0.083 0.029 0.045 0.10
0.070 0.017 0.040 0.025 0.027 0.052

−0.070 −0.017 −0.048 −0.025 −0.030 −0.052
−0.140 −0.043 −0.094 −0.075 −0.071 −0.10
−0.280 −0.061 −0.161 −0.148 −0.12 −0.21

Table 3. Estimates of the blocked current, ucs , using the peak measured (2+), (2−) and (1) drag forces in
figure 10(a,c,e) with the corresponding expressions in table 4. The average of these values are compared with
an estimate for ucs using the simple current blockage model (4.1). Note that, although we give some of these
estimates to three significant figures, we do not claim this level of accuracy, rather this is done to minimise
rounding errors when calculating averages.

different currents, hence any errors in experimental variability and in the separation of
drag and inertia forces would translate to larger errors in the estimates of ucs . Despite
these difficulties, we chose to use (1), (2−) and (2+) drag forces, only discarding the
(3+) measurements as the peak forces with positive currents are not well separated and
would hence introduce unacceptably large errors. To estimate ucs for each undisturbed
current speed, we substituted the measured peak drag forces into the expressions in table 4
and solved for ucs – the results are presented in table 3. The additional parameters of the
wave frequency ω and wave amplitude a (and hence the wavenumber k and phase speed
c), were estimated from the spectral peak period of the linear free surface with 0 m s−1

current, giving ω = 3.3 rad s−1 and a = 0.21 m. It is important to note that the choice
of wave period is somewhat arbitrary, and it could be argued that, as we are interpreting
irregular waves with a regular wave model, choosing a wave period closer to the zero-
upcrossing period Tz is more appropriate than the peak period Tp. If instead of using Tp
we used 0.9Tp (which is closer to Tz), the average ucs estimates in table 3 increase by
∼ 20 % (i.e. from 0.11 m s−1 to 0.13 m s−1 for a 0.28 m s−1 undisturbed current). So, while
the estimates are sensitive to the choice of wave period, this sensitivity does not change
the trend in results.

The estimates for ucs using the (2+), (2−) and (1) drag forces presented in table 3
are all considerably lower than both the undisturbed current speed and estimates using
the industry-standard simple current blockage model (4.1). The estimates vary between
drag force harmonics: (2+) give the lowest estimates that are consistently ∼ 20 % of
the undisturbed current, (2−) give consistently higher estimates (but we believe the
structure of these forces are more complex than our derived (2−) expression assumes) and
(1) give estimates in between (2+) and (2−) but with more variability (presumably due
to larger errors). Despite this variability, the important indication of new physics is that
all estimates of ucs are considerably smaller than the undisturbed and the simple blocked
current. These simple blocked current estimates were validated by Archer et al. (2024b)
for the same jacket model in current-only tests (no waves). We therefore conclude that
the extra reduction in the blocked current that we estimate from our experiments can only
come from the addition of the large wave group. This demonstrates a strong wave-current
blockage effect as large waves pass through the structure. It is perhaps surprising that this
extra blockage occurs over relatively fast time scales associated with the compact wave
group – see the last paragraph in § 5.4 for further discussion on this. We contrast this
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Figure 11. Measured ( ) and reconstructed ( ) drag force time histories for (a) crest-focused and (b) trough-
focused wave groups with different undisturbed current speeds using the expressions in table 4 (valid for uw �
ucs ) together with the average ucs estimates from table 3.

reduction in current speed to the wave kinematics – the recent measurements reported in
Archer et al. (2024b) show that the wave kinematics are essentially undisturbed by the
presence of the structure, i.e. are not blocked.

To crudely estimate ucs for each current speed, the estimates using the (2+), (2−) and
(1) drag forces were averaged – see table 3. These averaged estimates are all roughly 40 %
of the undisturbed speed, and are approximately half of the simple blocked currents. In
Appendix D, we estimate ucs using a different lighter-weight jacket (figure 15a), formed
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by removing the array of 24 vertical conductors from the structure. This analysis indicates
that even for a structure that is much less structurally dense, ucs is still substantially
reduced, in this case to ∼ 50 % of the undisturbed current. To validate the appropriateness
of averaging the ucs estimates from (2+), (2−) and (1) drag forces, we reconstructed the
force time histories using these averaged estimates and compared them with measured
drag forces. To reconstruct the drag forces, the wave-only drag force measurements (which
provide the necessary phase information) are scaled by the [multiplier] expressions in
table 4, substituting the averaged ucs estimates in table 3. The resulting forces, shown in
figure 11, are in good agreement with one another at the peak crest/trough. The agreement
between the reconstructed and measured drag forces gets worse for times either side of the
focused peak, which is to be expected as the drag force harmonic expressions only apply
around τ = 0 where wave velocities are much larger than current. Moreover, reconstructing
the full force time history is a more difficult problem as the blocked current ucs , the wave
amplitude a, and to a lesser extent the wave frequency ω, all vary in time – this is discussed
more in § 5.4. To match the vertical shift in forces, we had to add back in the mean force
from current only (the force which was removed in figure 6 and which is described by
simple current blockage). Although the expressions in table 4 are meant to describe the
total drag force (and hence the current-only force should not need to be added at τ = 0), the
expressions assume ucs is constant with depth, where in fact it increases with depth as uw

decays. At depths where ucs is not small relative to uw the expressions are no longer valid,
and the mean current-only force dominates. This effect is only significant for the largest
±0.28 m s−1 currents (which represent an extreme 2.5 m s−1 current at full scale). Despite
these complexities, the good agreement between measured and reconstructed forces at
the peak crest/trough indicates that averaging the ucs estimates from the (2+), (2−) and
(1) drag forces is reasonable.

The good agreement between measured and reconstructed drag forces in figure 11 also
shows that, despite the scatter in ucs estimates in table 3, our method captures the bulk
physics of the problem. Coupled with the demonstrated accuracy of the method with
Stokes’ fifth-order waves (Appendix B), this agreement shows that our method is valid for
engineering analysis. Importantly, this claim of validity does not imply that the average
ucs estimates in table 3 accurately capture the actual current speeds throughout a jacket
structure – the actual flow structure is far more complex, varying significantly around
each structural member and with depth. For engineering analysis of structural forces,
however, resolving this actual flow structure is unnecessary. For this purpose, the fact
that the ucs estimates give the correct force time histories when fed into a Morison force
model demonstrates the validity of the method. To further substantiate this argument,
we note that the results are in qualitative agreement with a parallel set of experiments
in Archer et al. (2024b), which directly measured (using acoustic Doppler velocimeters)
large reductions in current for combined wave and current tests. Unfortunately, the data
in Archer et al. (2024b) cannot be directly compared with the results here, as the same
focused wave groups were not tested (because the instrumentation and seeding did not
permit acoustic Doppler velocimeter measurements in the large wave tests reported here),
and the blocked current ucs was not measured (only the flow speeds up-wave and down-
wave of the jacket). Nonetheless, as the results in this paper and in Archer et al. (2024b)
demonstrate wave-current blockage effects using two entirely different approaches, based
on measured forces and flow velocity respectively, it strongly suggests that these physical
effects are real. Furthermore, the effects are of practical significance, as they translate to
substantial reductions in peak force estimates (see figure 13a), which should be considered
in the design and re-assessment of offshore jackets.
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To summarise, we have estimated that, for the tested jacket structure and wave condition,
the blocked currents are roughly 40 % of the undisturbed speed at the point in time
that corresponds to the peak force. While different jacket geometry and wave conditions
will yield different reductions in current, our method to estimate this reduction may
be generally valid for all jacket-type structures subjected to a current and high KC
number oscillatory flows. In future work, we will expand this analysis to more test cases
using computational fluid dynamics simulations, which will involve fully nonlinear three-
dimensional wave kinematics and will represent jacket structures as porous blocks (as
in Santo et al. 2015, 2018b). These simulations will serve as further validation of the
analytical model described in this paper, and give insight into the possibility of deriving
a generalised adjustment factor that reduces the simple blocked current to account for the
extra blockage effect from waves.

In this section, we have concentrated analysis on the point in time that corresponds to
the peak force. While this is most important for structural design, from a fundamental
viewpoint we also wanted to find a suitable form that can reconstruct the entire force time
history. This is discussed next.

5.4. Estimating the time-varying effects of combined waves and blocked current
The blocked current ucs has been estimated at two regions, one at the focused wave peak
at τ = 0 where it is the most reduced (which we now denote as u f ull ), and one far away
from the focused peak where there are no waves and only current, for which it is given by
the simple current blockage model (Taylor 1991) and is the least reduced (calculated with
(4.1) and denoted uscb). See table 3 for these estimates at each current speed. Between
these two regions, ucs is unknown but we hypothesise that its variation in time may be
related to the linear wave envelope, i.e.

ucs(τ ) = uscb − (uscb − u f ull)

(
a(τ )

max(a(τ ))

)p

, (5.4)

where a(τ ) = (η2
1 + η2

1H )1/2 is the linear wave envelope where η1 is the linear free surface
and η1H its Hilbert transform (i.e. the harmonic conjugate of η1), and p is an adjustable
parameter which dilates the wave envelope.

For standard engineering force calculations where the full Morison form is used, the
blocked current in the form of (5.4) (if valid) can be added to wave kinematics (which
are estimated from another model, e.g. Stokes’ 5th (Fenton 1990)) to give the total local
flow velocities and hence give the total force time history. However, for our analysis where
we use the approximation of Morison drag (2.2) to decompose frequency harmonics, the
total drag force time history cannot be captured as simply. This is because the drag force
harmonic expressions in table 4 are only valid near τ = 0 around the centre of the large
group, where wave kinematics are much larger than current (i.e. uw � ucs). Near the tails
of the focused wave group where waves are much smaller (i.e. uw < ucs), Morison drag
can be expanded as sgn(ucs) × (u2

w + 2uwucs + u2
cs), and different drag force harmonic

expressions apply. These are derived in Appendix C using the same method as in § 2. As
waves are small, only two terms in these new expressions are non-negligible, the linear
wave × current term (C3) and the (2−) current × current term ((C5), giving Fcurrent only).
The other terms, (C1), (C2), (C4) and (C6), are neglected. The total drag force in this small
wave regime can be approximated as

F = Fcurrent only

(
1 + 2DE

αh
β2 η1

(ucs

c

)−1
)

, (5.5)
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Figure 12. Reconstructed drag force time histories using a switching model, using the uw � ucs expressions
in table 4 when waves are big ( ) and the uw < ucs expression (5.5) when waves are small ( ). These two
models are switched at the free surface zero-crossing near τ = 3.5 s either side of the focused peak. These
reconstructed forces are compared with measured drag forces ( ).

where β = ucs/uscb is the ratio between the blocked current and the simple blocked
current given by (4.1), αh is the depth of the jacket in our experiments, DE = 1 −
sinh (kh(1 − α))/ sinh (kh) and η1 is the linearised free surface.

We now have two drag force models, one that applies in regions where uw � ucs , and
one that applies where uw < ucs . The force time histories can therefore be reconstructed
with a switching model, using the uw � ucs expressions where waves are big and using the
uw < ucs expressions where waves are small. Figure 12 compares measured drag forces
with the reconstructed forces using the switching model. Only the fastest ±0.28 m s−1

currents are shown as these give the largest scaling with current and hence are the most
interesting test cases. These reconstructed forces are evaluated using the time-varying ucs
profile described by (5.4), with p = 1 giving the best fit to measured forces (which suggests
that the variation in ucs matches the wave envelope). The other parameters a, ω and k are
held constant in time, a being the peak of the linear wave envelope, and ω and k given
by the peak wave frequency. The agreement between reconstructed and measured drag
forces are very good at the peak wave crest/trough at −0.5 < τ < 0.5, and are also good
at τ < −3.5 and τ > 3.5 where waves are small compared with current. In between these
regions (where we reconstruct the force assuming uw � ucs), the agreement is poorer,
which is presumably because this region is transitional between uw � ucs and uw < ucs
regimes and hence neither drag force model is valid. Analytical drag force expressions
cannot be defined for these transitional regions. Despite this, the general behaviour is
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still captured well for the total drag force time histories. We again emphasise the good
agreement at the large wave crest/trough at τ = 0, which is of primary importance for
structural design.

The good agreement between total force time histories supports the hypothesised time
variation of ucs in (5.4), and fitting p = 1 suggests that the variation in ucs matches the
wave envelope. This empirical result poses the question of why, from a fundamental fluid
mechanics perspective, the blocked current might vary with the wave envelope, and why
this variation occurs on such fast time scales (associated with the compact wave group).
To begin to answer this question, we recall the wave × current drag force term, 2|uw|ucs
in (2.2), which is dominated by (2−) and (2+) frequency harmonic contributions. For the
slowly varying (2−) term, uw scales with the wave envelope a(τ ), hence the dominant
(2−) drag forcing is ∼ a(τ )ucs . This force on the structure, which (we assume) arises
close to instantaneously on overall timescales because the KC number is always high, has
an equal and opposite reaction force on the fluid in the upstream direction. This fluid force
acts as a distributed force dipole and creates an upstream flow, which one may interpret as
a local reduction in the incoming (downstream) current, hence leading to current blockage.
This fluid force dipole, although arising from drag forces, has a global potential flow effect,
so can be assumed to act instantaneously on the flow field (as all boundary effects do in
potential flow problems). So, as the fluid force scales with the wave envelope, it follows
that the blocked current ucs also instantaneously varies with the wave envelope, hence
justifying the form of (5.4) with p = 1. Finally, note that although we only tested compact
wave groups, if the variation in ucs given by (5.4) is generally applicable, the consequences
for random wave fields are quite striking – the blocked current will be continuously more
reduced (or more blocked) compared with the simple blocked current uscb.

6. Conclusions
In this paper, we derive analytical expressions that estimate the effect of current on drag
force harmonics, which enable an estimate of the blocked current, effective over the
structural volume, using only experimental force measurements. Such measurements were
obtained by testing a model jacket in combined collinear focused wave groups and current.
From analysing these measurements, we conclude that:

(i) Through the use of symmetry and phase inversion to separate Morison drag and
inertia forces, we find that measured forces are drag dominated, and that the effects
of current are mostly contained in even force frequency harmonics (i.e. the mean
and slowly varying second harmonic difference (2−) component, and the second
harmonic sum (2+) component that acts at ∼ 2× the peak frequency).

(ii) The (2−) force differs from the other harmonics in that it is asymmetric about
the focused wave peak. Inertia contributions are estimated to be small, so we
conclude this may be a drag-related fluid memory effect associated with wave-current
blockage, but may also be partially caused by error wave contamination.

(iii) By substituting the measured drag forces into the analytical expressions, we estimate
the effective blocked currents at the time that the peak wave crest/trough passes
through the jacket to be ∼ 40 % of the undisturbed current speed and roughly
half of the estimates using the industry-standard simple current blockage approach.
In Appendix D, we estimate that even a lightweight jacket with roughly half
the hydrodynamic area (more representative of those supporting offshore wind
turbines) blocks ∼ 50 % of the undisturbed current at the peak wave crest. These
estimates were validated by substituting them back into the analytical expressions
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Figure 13. The effect that different assumptions of blocked current have on estimated drag forces. Compared
with measured forces with an undisturbed current of 0.14 m s−1 (for which we estimate a blocked current
ucs at τ = 0 of ucs = 0.045 m s−1), the industry-standard method of simple current blockage (which assumes
ucs = 0.1 m s−1) and no blockage (which assumes ucs = 0.14 m s−1) both dramatically over-estimate peak
forces. The force time histories for simple current blockage and no blockage were estimated by interpolating
measured force time histories, using the estimated time-varying blocked current given by (5.4).

and reconstructing the drag force time histories, showing good agreement with the
peak measured drag forces at each current speed.

(iv) The blocked current appears to vary on a similar time scale to the wave envelope,
smallest (i.e. most reduced) at the time of peak force, and largest in regions where
there are no waves and only current, for which it is given by the simple current
blockage model (Taylor 1991). This claim was substantiated by fitting the entire
drag force time history with two different analytical models, one that is valid when
wave kinematics near the free surface are much larger than current, and one that is
valid when wave kinematics are comparatively small. Reconstructed forces agree well
with most of the measured force time histories, with poorer agreement localised to
intermediate regions where neither analytical model is valid. We explain this current
variation with the wave envelope, and why this variation occurs on relatively fast time
scales associated with the compact focused wave group, by considering the slowly
varying (2−) drag force. This force, which acts as a distributed force dipole on the
fluid, creates an upstream flow which reduces the resultant local current speed. As
the (2−) forces scale with the wave envelope, so too does the current variation.

The core result of this paper, most relevant for structural engineering, is the reduction
in the effective current at the time of peak force. Accounting for this reduced current
translates to much lower estimates of peak drag forces, compared with (incorrectly)
assuming simple current blockage or no current blockage at all. Figure 13 shows this
effect for a 0.14 m s−1 undisturbed current, which represents a 1.25 m s−1 current at field
scale – this can be taken as the associated current for the tested extreme wave with a
return period of 1 in ∼ 2000 years in the central North Sea. While the magnitude of
current and force reduction will change depending on the jacket and wave conditions, the
same behaviour may hold in general for all jacket structures in extreme wave and current
conditions. We substantiate the possible generality to all jacket structures by testing two
jacket configurations, one structurally dense (figure 3) more representative of an oil and
gas jacket or an offshore wind substation, and one structurally sparse (figure 15) more
representative of those supporting offshore wind turbines. The flow resistances of the
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dense and sparse jackets, characterised by the hydrodynamic drag ratio, Cd A/A f in (4.1),
are 1.4 and 0.85, respectively. According to the international design standard for offshore
platforms (API 2000), these flow resistances span a considerable part of the realistic range
of jackets installed in the Gulf of Mexico (with hydrodynamic drag coefficients ranging
from 0.45 to 1.7).

To conclude, we summarise how this work has contributed to wave-current blockage
research, and what gaps still exist. While previous wave-current blockage models rely on
computational fluid dynamics simulations which present a significant barrier to adoption
in offshore design standards, this work is a step towards the aim of deriving a simpler
analytical model. This model may take a form similar to the simple current blockage model
(4.1) by Taylor (1991) which only requires knowledge of the structure’s geometry and flow
resistance, and the incident kinematics. Unlike this idealised model, the analytical expres-
sions derived in this paper require high quality force measurements, which, like computa-
tional fluid dynamics simulations, pose a barrier to adoption. Nonetheless, the findings in
this paper suggest that it may be possible to derive an adjustment factor that reduces the
simple blocked current to account for the extra blockage effect from waves, although more
testing is needed to further investigate this claim. This adjustment factor would be easy to
incorporate into offshore design standards and, if adopted, would have significant impact
on the offshore wind industry – estimated hydrodynamic forces would reduce, so jackets
would cost less to make and offshore wind developments would become cheaper.
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Appendix A. Adjusting drag force harmonic expressions for finite jacket depth
effects
Jackets are bottom-founded structures; the wave velocity depth integrals in § 2 reflect that
the structures extend from the sea bed to above the free surface. In our experiments,
however, we submerged the jacket to a depth of 1.33 m in a 1.8 m deep tank, leaving
a gap between the base of the jacket and the tank floor. This gap was necessary to
prevent the jacket from touching the tank floor whilst being towed. Because the jacket
only extended a portion of the water depth, the wave × wave, wave × current and current
× current drag force terms in (2.2) should be integrated from the base of the jacket at
depth z = −αh to the mean free surface (z = 0), where 0 < α < 1 (α = 0.74 for our tests).
The resulting drag force expressions are given in table 4. These have the same general
structure as the expressions in table 2 but the numerical coefficients for the blocked current

1009 A7-27

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

18
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

http://TIDE.edu.au
https://doi.org/10.1017/jfm.2025.180


A.J. Archer, P.H. Taylor, H. Wolgamot, J. Orszaghova and S. Dai

First harmonic (1) 4
3π

ω2a2

k
DO

[
1 + 1

DO

(
4

ucs

c
+ 3

αkh

(ka)2

(ucs

c

)2
)]

cos (φ) (A1)

Second harmonic difference (2−) 4
3π

ω2a3
[
1 + 3 DE (ka)−2 ucs

c

]
(A2)

Second harmonic sum (2+) 8
5π

ω2a3
[
1 + 5/3 DE (ka)−2 ucs

c

]
cos (2φ) (A3)

Third harmonic sum (3+) 4
15π

ω2a2

k
DO

[
1 + 1

DO

(
4

ucs

c
− 5

αkh

(ka)2

(ucs

c

)2
)]

cos (3φ) (A4)

Table 4. Drag force frequency harmonic expressions, accounting for the jacket only extending a fraction
α of the water depth h. These are of the same form as the expressions in table 2 but the numerical
coefficients are adjusted by DØ = (αkh + (1/2) sinh (2kh) − (1/2) sinh (2kh(1 − α)))/ sinh 2(kh) and DE =
1 − sinh (kh(1 − α))/ sinh (kh).

terms are slightly modified. We used these modified coefficients for the interpretation of
wave-current blockage effects from experiments in §§ 5.3 and 5.4.

Appendix B. The accuracy of drag force harmonic expressions for nonlinear wave
kinematics
In § 2 we derive approximations for drag force harmonics assuming linear wave
kinematics. We argue that, although the assumption of linear kinematics relatively poorly
represents the drag forces from waves (as higher-order kinematics are important here), they
capture the force amplification from current to sufficient accuracy in the relatively low-
order harmonics (≤ 3) as linear wave kinematics dominate the wave × current drag forces.
In this appendix, we test the validity of this argument by comparing our drag harmonic
expressions with the exact Morison drag solutions using nonlinear wave kinematics for
regular waves from Stokes wave theory (Stokes 1847).

Nonlinear wave kinematics were modelled using the full fifth-order Stokes wave
theory given by Fenton (1990). At each time t and depth z, the free surface η(t) and
horizontal wave kinematics uw(t, z) were calculated for a wave with amplitude a = 0.21
m and frequency 0.53 Hz in 1.8 m water depth, hence mirroring the experimental test
conditions at the focused wave peak. The modelled Stokes’ 5th free surface is shown
in figure 14(a). Uniform currents ucs of 0.1, 0.05, −0.05 and −0.1 m s−1 (similar to
the experimental blocked current estimates in table 3) were added to wave kinematics,
u(t, z) = uw(t, z) + ucs , and the exact Morison drag force u(t, z)|u(t, z)| was calculated
at each depth below the free surface. This was then integrated from the base of the jacket
0.47 m above the tank floor to the fifth-order varying free surface to give the total drag
force. Forces were averaged over a 0.15 s moving window to account for the averaging
effect over the jacket’s width (the model jacket is ∼ 0.45 m wide in the down-wave
direction near the mean free surface, which the modelled wave takes ∼ 0.15 s to traverse,
hence the total forces are ‘smeared’ over this time). Finally, the first harmonic (1), second
harmonic sum (2+) and difference (2−), and third harmonic sum (3+) drag forces were
separated from the total force by digital filtering, as all harmonics are well separated in
frequency. The total modelled drag force and its harmonics are shown in figure 14(b).

To test the accuracy of our drag harmonic expressions, we essentially replicate the
method in § 5.3, treating the Stokes’ 5th forces with and without current as experimental
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Figure 14. Free surface (a) and drag forces (b) for a regular wave given by a = 0.21 m, ω = 3.32 rad s−1 in
water depth h = 1.8 m, calculated with Stokes fifth-order wave theory by Fenton (1990). In (b), drag forces
are calculated with a 0.1 m s−1 current. Solid lines represent the exact drag force, while dashed lines represent
the approximated drag forces using the pure wave force × [a current multiplier] for each respective harmonic
in table 4 (with ucs = 0.1 m s−1). Drag forces are scaled by the Morison drag coefficient 1/2 ρ Cd A, with
ρ = 1000 kg m−3, Cd = 0.7 and A = 1.12 m2, so that the magnitudes of forces are similar to experimental
measurements.

Actual (m s−1) Estimates (m s−1) % Difference

From (1) From (2−) From (2+) Average

0.10 0.097 0.093 0.086 0.092 8 %
0.05 0.049 0.046 0.044 0.046 8 %

−0.05 −0.050 −0.045 −0.043 −0.046 9 %
−0.10 −0.094 −0.090 −0.082 −0.089 11 %

Table 5. The accuracy of the drag force harmonic expressions (table 4) in estimating blocked currents. ‘Actual’
uniform currents were added to Stokes fifth-order wave kinematics, then Morison drag forces were computed
and ‘estimates’ of these currents were made using the drag harmonic expressions. The small % difference
between actual and estimated currents demonstrates the accuracy of the method.

force time histories, and using the expressions in table 4 to back calculate the current
ucs . These estimates of ucs , given in table 5, are quite accurate, only under-predicting the
actual currents by ∼ 10 %. This accuracy can also be observed by the good agreement
between the exact and the estimated force harmonics in figure 14(b). The under-prediction
of currents implies that the experimental ucs estimates in table 3 may be slightly
under-predicted, but by a small amount compared with the larger reductions from the
undisturbed and simple blocked current estimates. Moreover, if the experimental ucs
estimates are indeed slightly under-predicted, the fact that the reconstructed peak drag
forces agree well with measured forces in figure 11 indicates that our drag force “recipe”
is slightly conservative, which is acceptable in the context of structural design. Overall,
this demonstrates that the derived drag force expressions, and consequently the estimates
of wave-current blockage effects, are sufficiently accurate for engineering analysis.

Notice that the blocked current estimates in table 5 do not include those using (3+) drag
forces. The reason is that we found positive currents have almost no amplification effect
(i.e. (3+) wave-only forces are almost identical to (3+) forces with a positive current),
hence our method for estimating the blocked current (which relies on this amplification
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factor) has unacceptably large errors. Unlike positive currents, negative currents give
some separation of (3+) drag forces so blocked currents can be estimated, which, like the
estimates from (1), (2−) and (2+) forces in table 5, under-predict actual current speeds
by ∼ 10 %. The null amplification effect on (3+) drag forces from positive currents is
partially captured in the analytical (3+) drag force expression (A4) where the u2

cs term
cancels out the ucs term, and is also partially observed in experimental (3+) drag forces
(figure 10g), but its extent in the Stokes’ 5th model is nonetheless a curious result. The
(3+) force amplification only slightly changes when we perturb parameters like a and k,
suggesting that this effect is not specific to our experimental set-up.

Appendix C. Theoretical drag force harmonics when waves are small compared with
current
The analytical drag force harmonics derived in § 2 and Appendix A assume wave
kinematics are much larger than the blocked current, hence are only valid for large wave
crests/troughs, which for our tests occur at τ = 0. When waves are much smaller, ucs is
larger than uw for most or all of the water column. In our tests, this occurs in the tails
of the focused wave groups and particularly for the fastest ±0.28 m s−1 currents. In these
regions where uw < ucs , Morison drag (i.e. (uw + ucs)|uw + ucs | in (1.1)) can be expanded
as sgn(ucs) × (u2

w + 2uwucs + u2
cs). Then, similar to the approach in § 2, each component

can be integrated across the vertical height of the jacket,
∫ 0
−αh(· · · ) dz, and across the

varying vertical free surface height,
∫ a cos (φ)

0 (· · · ) dz. The resulting expressions are given
in table 6. Considering these expressions apply when wave amplitudes a are small, only
two terms are non-negligible, the wave × current depth integral (C3) which acts linearly
and the mean current × current term (C5). We make a further simplification by assuming
that mean current × current force is equal to the force from current only, Fcurrent only,
which is approximated by simple current blockage (Taylor 1991). The combined Morison
drag force from the two terms is given by (5.5). Note that Fcurrent only depends on the simple
blocked current uscb but the wave × current term depends on the (slightly more reduced)
blocked current ucs . To explain this choice, we remark that ucs in table 6 expressions
is assumed constant with depth, but it actually increases with depth as wave kinematics
decay. As waves are small, wave kinematics become very small compared with current
only a short distance below the free surface, for which ucs ≈ uscb. Hence, the current
× current force, which is roughly evenly distributed across the jacket’s depth, is best
modelled using uscb, while the linear wave × current force, which mostly acts near the
free surface, is best modelled using ucs .

Appendix D. Wave-current blockage effects for a lightweight jacket
Until now, all experimental results presented in this paper were collected using the model
jacket in figure 3. This jacket has a dense array of 24 vertical cylinders that represent
conductors on an offshore oil and gas platform or (more crudely) represent J-tubes on an
offshore wind electrical substation jacket. This cylinder array contains ∼ 1/2 of the total
hydrodynamic area of the jacket, hence significantly contributes to wave-current blockage
effects. Conventional wisdom in offshore engineering is that current blockage effects are
not significant on lightweight jackets such as those supporting offshore wind turbines
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Wave × wave term, u2
w

Mean depth integral ω2a2

4k
DO (1 + cos (2φ)) (C1)

Free surface integral ω2a3

4
(3 cos (φ) + cos (3φ)) (C2)

Wave × current term, 2uwucs

Mean depth integral 2ωa

k
DE ucs cos (φ) (C3)

Free surface integral ωa2 ucs (1 + cos (2φ)) (C4)

Current × current term, u2
cs

Mean depth integral αh u2
cs (C5)

Free surface integral a u2
cs cos (φ) (C6)

Table 6. Expressions for the mean depth and free surface integrals for the wave × wave, wave × current and
current × current Morison drag terms when waves are small compared with current (uw < ucs ), accounting for
the jacket only extending a fraction α of the water depth h. Note that expansions of the phase components are
exact trigonometric expansions rather than being Fourier series representations.

(i.e. jackets without dense structural arrays). In this appendix, we show that this
conventional wisdom is false.

We tested the same lightweight jacket used in Archer et al. (2024b) by removing the
24 vertical conductors – see figure 15(a). Using the measured forces in current only and
the simple current blockage model (4.1), we estimated the drag coefficient Cd to be 0.87,
higher than the denser jacket which has a Cd of 0.7. This increase in Cd may be caused by
the lightweight jacket having less shielding (an effect where structural members which trail
behind leading members experience reduced forces), and also may be caused by the square
horizontal support frame (which has higher Cd compared with cylinders) making up a
larger fraction of the total hydrodynamic area. Our method for estimating wave-current
blockage effects, however, does not explicitly need Cd , only the measured forces with and
without current.

Because of time constraints and different objectives, we only tested undisturbed current
speeds uc of −0.28, −0.14 , 0 , 0.14 and 0.28 m s−1, and we only ran crest-focused (0◦
phase) wave groups. For 0 m s−1 current, we also ran wave groups that were 60◦ and 330◦
phase-shifted. All other aspects of the experimental set-up were the same as in § 3. Like
the results in § 4, the experimental measurements were of high quality.

To estimate wave-current blockage effects in the lightweight jacket, we followed a
similar method to that discussed in § 5, separating drag and inertia forces and then
separating drag forces into its harmonics, to ultimately estimate the blocked current ucs
for each current speed. Because the data are more limited, this method had to be slightly
adjusted. Namely, harmonic decomposition was only possible for 0 m s−1 current for
which we ran 0◦, 60◦ and 330◦ phase-shifted wave groups. Expressions to (partially)

1009 A7-31

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

18
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2025.180


A.J. Archer, P.H. Taylor, H. Wolgamot, J. Orszaghova and S. Dai

100

(i) (ii)

(iii) (iv)

(a) (b)

0.28 m s–1 0.14 m s–1

–0.28 m s–1 –0.14 m s–1

50

0

40

20

0

–20

–40

40

20

0

–20

–40

–4 –2 0 2 4

100

50

0

–4 –2 0 2 4

–4 –2 0 2 4 –4 –2 0 2 4

τ (s) τ (s)

Figure 15. (a) Lightweight jacket model with the array of 24 conductors removed. (b) Comparison of measured
( ) and reconstructed ( ) drag forces. Estimates of ucs given in table 7 were obtained by fitting the peak
reconstructed force to the peak measured force.

separate force harmonics are

−(2 + √
3)F0 − 3F0H + (2 − √

3)F60 + √
3F60H + (3 + √

3)F330

2
= (1) − 2 (3+)

(4 + √
3)F0 + 3F0H − (2 − √

3)F60 − √
3F60H − (3 + √

3)F330

2
= (2−) + (2+)

+ 3 (3+),
(D1)

where the subscript H denotes the Hilbert transform, and the bold terms on the right-
hand side of the equations denote the frequency harmonics. The top equation gives the
linear (1) and 2× the third harmonic sum (3+); the bottom equation gives the second
harmonic difference (2−) and sum (2+), and 3× the third harmonic sum. So, the phases
do not allow clean separation of harmonics (like regularly spaced 0, 120 and 240 degree
phases would), but nonetheless the (2+) and (3+) harmonics can be separated by first
filtering (3+) from (1) and then subtracting this from the signal which contains (2−) and
(2+). After separating harmonics, the forces from a trough-focused (180◦) wave group
can be constructed by addition of harmonics, (2−) + (2+) − (1) − (3+) (i.e. relative
to crest-focused wave groups, even harmonics are unchanged and odd harmonics are
inverted). Then, the drag/inertia separation method (5.2) and subsequently the two-phase
combination method (5.1) can be applied, giving the wave-only drag force harmonics.
Then, estimates of ucs are obtained by fitting the measured peak drag force for each
current speed with the reconstructed force using the expressions in table 4. Finally, the
reconstructed drag time histories are shown in figure 15(b).

Table 7 lists the ucs estimates for the lightweight jacket, and figure 15(b) compares the
resulting reconstructed drag force time histories with measurements. ucs estimates for the
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Undisturbed Estimated ucs (m s−1)

current (m s−1) Lightweight jacket Denser jacket

0.280 0.14 0.11
0.140 0.06 0.045

−0.140 −0.09 −0.071
−0.280 −0.12 −0.12

Table 7. Estimated blocked current ucs for the lightweight jacket model in figure 15(a). Comparisons are
made with the average ucs estimates for the denser jacket given in table 3.

lightweight jacket are ∼ 50 % of the undisturbed current speed, slightly larger than for the
denser jacket (∼ 40 %). We expected this general trend, as lighter-weight jackets should
give less wave-current blockage effects. Still, a reduction of ∼ 50 % of the undisturbed
current speed is significant considering the sparseness of the structure. Because of the lack
of data collected for the lightweight jacket compared with the denser jacket, we are less
confident in these estimates, but they still indicate that (a) blockage effects for lightweight
jackets are still significant and (b) that our methodology for estimating ucs gives sensible
results.
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