
Learning by doing? The relationship
between effort, learning effect and
product quality during hackathons of
novice teams
Nuno Miguel Martins Pacheco 1, Mara Geisler 2, Medina Bajramovic 3,
Gabrielle Fu 1, Anand Vazhapilli Sureshbabu 1, Markus Mörtl 1 and
Markus Zimmermann 1

1TUM School of Engineering and Design, Technical University of Munich, Munich, Germany
2TUM School of Management, Technical University of Munich, Munich, Germany
3Department of Statistics, Ludwig-Maximilians-Universität München, Munich, Germany

Abstract
Design education prepares novice designers to solve complex and challenging problems
requiring diverse skill sets and an interdisciplinary approach. Hackathons, for example, offer
a hands-on, collaborative learning approach in a limited time frame to gain practical
experience and develop problem-solving skills quickly. They enable collaboration, proto-
typing and testing among interdisciplinary teams. Typically, hackathons strongly focus on
the solution, assuming that this will support learning. However, building the best product
and achieving a strong learning effect may not be related. This paper presents the results of
an empirical study that examines the relationship between product quality, learning effect
and effort spent in an academic 2-week hackathon. Thirty teams identified user problems in
this course and developed hardware and mechatronic products. This study collected the
following data: (1) effort spent during the hackathon through task tracking, (2) learning
effect through self-assessment by the participants and (3) product quality after the hacka-
thon by an external jury. The study found that the team effort spent has a statistically
significant but moderate correlation with product quality. The correlation between product
quality and learning effect is statistically insignificant, suggesting that for this setting, there is
no relevant association.
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Project-based learning

1. Introduction
The importance of design in driving economic performance has been increas-
ingly recognized by employers (Shute & Becker 2010; Matthews &Wrigley 2017;
Sheppard et al. 2018). Beyond designers’ ability to develop effective solutions to
ill-structured problems (Jonassen, Strobel, & Lee 2006; Chen, Kolmos, &
Du 2021), the landscape has evolved to encompass increasingly complex and
intertwined systems, processes and contextual factors (Friedman 2019; Meyer &
Norman 2020). Equally significant is the challenge designers face in operating
within sociotechnical systems, where they must responsibly address societal and

Received 28 June 2023
Revised 17 March 2024
Accepted 19 March 2024

Corresponding author
Nuno Miguel Martins Pacheco
martins.pacheco@tum.de

© The Author(s), 2024. Published by
Cambridge University Press. This is
an Open Access article, distributed
under the terms of the Creative
Commons Attribution licence (http://
creativecommons.org/licenses/by/
4.0), which permits unrestricted
re-use, distribution and
reproduction, provided the original
article is properly cited.

Des. Sci., vol. 10, e9
journals.cambridge.org/dsj
DOI: 10.1017/dsj.2024.9

1/34

https://doi.org/10.1017/dsj.2024.9 Published online by Cambridge University Press

https://orcid.org/0000-0002-2198-7823
https://orcid.org/0009-0002-0925-5336
https://orcid.org/0009-0001-0360-610X
https://orcid.org/0000-0002-1119-052X
https://orcid.org/0000-0001-8143-8714
https://orcid.org/0000-0002-4122-1307
https://orcid.org/0000-0002-6666-3291
mailto:martins.pacheco@tum.de
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/licenses/by/4.0
http://journals.cambridge.org/dsj
https://doi.org/10.1017/dsj.2024.9
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/dsj.2024.9&domain=pdf
https://doi.org/10.1017/dsj.2024.9


environmental concerns (Friedman 2019; Meyer & Norman 2020). Despite this
growing interest and the evolving demands placed on designers, the literature
points out that education systems and corporate cultures often fail to impart these
critical skills to novice designers (Lawson 2005; Anthony 2014; Norman 2016;
Meyer &Norman 2020). Novice designers are new to the design field and possess
limited experience designing products or systems (Deininger et al. 2017; Menold
et al. 2018; Flus & Hurst 2021a). This designation may apply to young engineers
in companies and engineering students. Inmany cases, these young designers end
up learning on the job (Meyer & Norman 2020) what they were initially expected
to acquire through their formal education.

Design education emerges as a compelling solution to this paradox, equipping
novice designers with the knowledge and skills demanded by the industry (Tu, Liu,
& Wu 2018; Porras et al. 2019; Meyer & Norman 2020). However, traditional
design education has historically placed significant emphasis on skill-based train-
ing, with a primary focus on acquiring technical skills as the cornerstone of the
education of novice designers (Norman 2016; Meyer &Norman 2020; Lin, Huang,
& Lin 2021). While technical proficiency undeniably holds significant importance,
it is crucial to recognize that achieving excellence in design extends beyond skill
refinement. It entails gaining a comprehensive understanding of the design pro-
cess, fostering teamwork skills and applying technology in a human-centered
context. At its core, the discipline of design revolves around the acts of creation
and execution (Norman 2016; Meyer & Norman 2020) and as such, the design
project plays a pivotal role in the education of novice designers (Meyer & Norman
2020). Therefore, design education often takes the form of problem- and project-
based learning (PBL) due to its anticipated advantages in enhancing students’
academic performance and developing transferable skills, effectively preparing
students for the complexities of real-world design work (Kolmos, Fink, & Lrogh
2004; Lawson 2005; Norman 2016; Meyer & Norman 2020; Chen et al. 2021).

One prevalent form of design education in universities is hackathon-like
events or seminars that claim to reflect the real professional world (Lawson
2005; Flus & Hurst 2021a). A literature review by Flus & Hurst (2021a) encom-
passing 39 studies on design research at hackathons revealed various themes in
educational hackathon research, including the experiences of participants
(Olesen, Hansen, & Halskov 2018) and the impact of interdisciplinary teams
on team performance (Legardeur et al. 2020). Furthermore, numerous papers
have shared qualitative insights and anecdotes from hackathons as design edu-
cational formats (Artiles & Wallace 2013; Artiles & LeVine 2015; Lewis et al.
2015; Fowler 2016; Nandi &Mandernach 2016; Page et al. 2016; Gama et al. 2018;
Kos 2019). Remarkably, among the 39 papers examined, merely 10 employed
quantitative methods, exposing a gap in the quantitative research of hackathons
as educational formats.

By bridging this gap, we have the opportunity to lay the groundwork for amore
comprehensive exploration of the effectiveness of hackathons as a pedagogical tool
in design education. Such research could provide a data-driven foundation that
offers evidence-based recommendations, ultimately enhancing design education
practices within hackathon events. This, in turn, holds the potential to significantly
improve learning outcomes for novice designers. Therefore, the primary objective
of this study is to investigate the efficacy of hackathons as an educational instru-
ment for novice designers.
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2. Hackathons
Hackathons are project-based events exposing participants to design (Komssi et al.
2015; La Place et al. 2017). Since the term “hackathon” (a combination of “hack”
and “marathon”) was first coined in 1999 (Briscoe & Mulligan 2014; Kollwitz &
Dinter 2019), the popularity of these events has multiplied. As the number of
hackathon events increased, so did new terms (e.g., game jam, code fest, design
sprints and makeathon) and classifications. This has created a situation where
there is no widely accepted definition of a hackathon (Briscoe & Mulligan 2014;
Komssi et al. 2015).

In the context of this paper, hackathons are defined as intensive, time-limited,
collaborative events where participants from diverse disciplinary backgrounds
develop innovative solutions, typically in the form of functional prototypes, to
address specific challenges. These events emphasize the synthesis of creative
thinking, problem-solving and technical skills and interdisciplinary collaboration
within a constrained time frame.

Although hackathons vary greatly in their objectives and implementation, they
share common characteristics and a consistent structure. In general, hackathons
are defined as brief and fixed-duration events in which small, interdisciplinary
teams collaborate to develop functional software or hardware prototypes (Briscoe
& Mulligan 2014; Komssi et al. 2015; Flores et al. 2018; Taylor & Clarke 2018;
Lifshitz-Assaf, Lebovitz, & Zalmanson 2021; Flus & Hurst 2021a).

Hackathon events typically follow a set schedule (Briscoe & Mulligan 2014;
Komssi et al. 2015). The event begins with a kick-off presentation outlining the
goals, schedule and prizes. Participants then form teams if they still need to do
so. After the teams have come together, the actual hack begins. Teams explore the
problem space, ideate, build prototypes and often work long hours. At the end of
the event, the ideas are presented to an audience, often competing for a price. Due
to this emphasis on creating and presenting a tangible output, hackathons usually
focus on the final product (Briscoe & Mulligan 2014).

3. Design education and hackathons
Design education has traditionally placed a strong emphasis on skill-based train-
ing, primarily aimed at honing the technical abilities of novice designers (Norman
2016; Meyer & Norman 2020; Lin et al. 2021). This lays the foundation for lower-
level educational objectives, encompassing tasks such as memorization, descrip-
tion and interpretation of information corresponding to the “remember” and
“understand” levels in Krathwohl’s (2002) revised taxonomy of Bloom (1979).
Nevertheless, this conventional approach falls short of reaching higher-level
educational goals (Fernando et al. 2019).

Over the past 50 years, higher design education has recognized the need to
bridge this gap between knowledge acquisition and practical skill application,
which has led to the integration of more pragmatic PBL formats into the
curriculum (Kolmos et al. 2004; Chen et al. 2021). PBL, a student-centered
pedagogy, aligns with the attainment of higher educational objectives, including
“apply”, “analyze”, “evaluate” and “create” as outlined in Bloom’s (1979) revised
taxonomy (Sasson, Yehuda, & Malkinson 2018; Fernando et al. 2019). This
transformation in educational methodology is underpinned by three
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fundamental principles (Kolmos, de Graaff, & Du 2009). The first principle
centers around cognitive learning, where students engage with authentic, real-
world problems for their learning journey. This process encourages collaboration
among peers and stakeholders to develop prototypes of viable solutions within
defined timeframes (Kolmos et al. 2009; Savin-Baden 2014; Kokotsaki, Menzies,
& Wiggins 2016; Boelt, Kolmos, & Holgaard 2022). The second principle under-
scores the importance of team-based learning, redefining education as a social
event (Kolmos et al. 2009; Savin-Baden 2014; Boelt et al. 2022). Within this
context, students not only engage in self-directed learning but also actively
participate in the sharing and organization of knowledge. This collaborative
dynamic naturally transitions into the third principle: interdisciplinary learning,
as team members often bring diverse subject backgrounds to the table (Kolmos
et al. 2009; Savin-Baden 2014; Boelt et al. 2022). PBL equips novice designers with
critical insights into design processes, collaboration and principles of good design
(Kokotsaki et al. 2016; Meyer & Norman 2020). In fact, it has been linked to
improved retention rate as well as skill and knowledge development (Norman &
Schmidt 2000; Dochy et al. 2003; Strobel & van Barneveld 2009; Sasson et al.
2018).

One widely recognized example of PBL is design studios, dedicated classes
where students work separately on projects with guidance by an instructor
(Cennamo 2016; Ferreira, Christiaans, & Almendra 2016; Emam, Taha, & ElSayad
2019; Brosens et al. 2023). This teacher-centered learning approach leads to
students engaging in an iterative process to find solutions for open-ended, project-
based problems, known as design briefs (Cennamo 2016; Emam et al. 2019;
Brosens et al. 2023). Throughout this creative journey, the instructor assumes a
pivotal role by steering students through the design process and providing periodic
feedback on their designs, which they use to refine their work (Cennamo 2016;
Emam et al. 2019; Brosens et al. 2023). This aims to replicate a real-world studio
environment within an educational context (Ferreira et al. 2016). Critics of studio-
based learning, however, contend that this teacher-centered approach fosters
dependency on instructors, diverting students’ focus from honing their skills
(Belluigi 2016; Souleles 2017). Consequently, we conclude that studio design
education may hinder the attainment of the educational objective “evaluate” from
Bloom’s revised taxonomy, which involves the ability to make informed judg-
ments. Souleles (2017) even goes so far as to argue that an over-reliance on teacher-
centered instructional strategies impedes the development of competencies
required for practices like participatory design, co-design, design activism, disrup-
tive design, critical design and other human-centered design strategies. Moreover,
as higher education institutions grapple with space constraints due to the prolif-
eration of higher education (Micklethwaite &Knifton 2017; Corazzo 2019; Brosens
et al. 2023), it becomes imperative to reimagine design studios as collaborative
learning environments (Micklethwaite & Knifton 2017; Brosens et al. 2023).
Alternatively, there is a growing trend in design education to shift away from
traditional studio-based learning activities toward PBL approaches that immerse
students more deeply in the design process and transform the role of the teacher
from an “all-knowingmaster” into a mentor who facilitates learning (Brosens et al.
2023).

In contrast to design studios, which typically follow a teacher-centered
approach to PBL, hackathons embrace a student-centered approach (Horton
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et al. 2018), prioritizing collaborative and hands-on problem-solving in a time-
limited and high-pressure environment. Unlike traditional design studio courses
that extend over an entire semester, hackathons offer short yet intense projects,
enabling students to fully immerse themselves in their design projects. The
inherent nature of hackathons makes them exceptionally well-suited for design
education as they closely mimic real-world, innovative environments (Lawson
2005; Flus &Hurst 2021a). During hackathons, students are encouraged to nurture
their analytical problem-solving abilities and collaborate actively, relying less on
continuous guidance.

These events share several characteristics (see Table 1) and make hackathons
an excellent platform for design education, as they offer participants an oppor-
tunity to gain practical experience with the entire design process in a short period
and develop valuable skills for new product development (Lawson 2005; Flus &

Table 1. Characteristics of a hackathon

Characteristics Description

Interdisciplinary teams Hackathon participants come from diverse backgrounds with varying
degrees of expertise (Briscoe & Mulligan 2014; Komssi et al. 2015; Flus &
Hurst 2021b), which mimics the cross–functional teams in realistic
environments (Cooper 2019).

Decision–making Kannengiesser & Gero (2019) apply Daniel Kahneman’s model of human
cognition (type 1: fast and intuitive vs type 2: slow and effortful) to design.
Hackathon participants are required to make quick and intuitive (type 1)
decisions (Briscoe & Mulligan 2014; Komssi et al. 2015; Flus & Hurst
2021a; Flus & Olechowski 2023), much like the decision–making process
in realistic design environments (Ball & Christensen 2019; Flus & Hurst
2021a; Flus & Olechowski 2023) as experienced designers exhibit more
type 1 design thinking (Hurst et al. 2019; Kannengiesser & Gero 2019).

Motivation Hackathon participants are intrinsically motivated by intellectual
engagement, networking opportunities, skill development and the thrill of
competition (Komssi et al. 2015, Taylor & Clarke 2018). Participants are
extrinsically motivated by potential prize winnings (Komssi et al. 2015)
and career–advancing networking opportunities (Medina Angarita &
Nolte 2019). New product development research indicates that intrinsic
motivation in employees is vital for fostering innovation in complex and
demanding creative tasks (Burroughs et al. 2011, Fischer, Malycha, &
Schafmann 2019, Herd & Mehta 2019). Yet, research also indicates that
combining creativity training with extrinsic rewards can enhance intrinsic
motivation (Burroughs et al. 2011, Fischer et al. 2019).

Process and methodology Flus &Hurst (2021a) found in their literature review that the design process
employed at hackathons closely mirrors those in real–world design tasks,
typically adhering to the Double Diamond process (Design Council 2023).
Teams first enter the problem phase, exploring the problem space in a
period of divergence (discover) and then converge to decide on an idea
(define). Subsequently, they move to the solution phase, where they
diverge again during the prototyping period (develop) and finally
converge to present their design (deliver) (Design Council 2023).
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Hurst 2021a). Instructors can easily tailor the hackathon format and content to
align with participants’ academic level and educational objectives (Hurst, Litster,
& Rennick 2020). Hackathons, as informal learning platforms, foster learning-
by-doing, peer learning and creativity among students in design education
(Nandi & Mandernach 2016; Flus & Hurst 2021a). Moreover, hackathons can
lead to the creation of finished products with genuine business value, making
them effective idea-generation platforms (Komssi et al. 2015; Page et al. 2016).
Prior research has indicated that greater learning during projects enhances team
performance by avoiding problem-solving errors and promoting innovative
combinations of knowledge (Huang & Li 2012; McKay & Ellis 2014). Addition-
ally, investing more effort has been associated with greater learning and
improved academic achievements in academic settings (Hagger & Hamilton
2019; Putwain et al. 2019). These findings not only contribute to the entrepre-
neurial environment within institutions but also highlight the significance of
hackathons in education. As a result, different universities have extensively
implemented hackathons in educational settings such as: THINK. MAKE.
START., ME310, XTech, Integrated Product Development, Multidisciplinary
Group Project and Advanced Embodiment Design.

Despite the benefits above, there are concerns about the extent to which
hackathons replicate realistic innovation environments. One criticism is the lack
of genuine customers providing problem statements for teams to work on
(Lawson 2005). Instead, teams begin the hacking by exploring various problem
spaces, hastily seeking input from users and customers (Flus & Hurst 2021a).
The emphasis on speed in hackathons can lead participants to rush through
certain design phases, such as requirements elicitation and code maintenance
(Gama 2017). This tendency is driven by the pressure to showcase a final
prototype to the audience at the event’s conclusion (Briscoe & Mulligan 2014;
Porras et al. 2019). Consequently, participants may become excessively pre-
occupied with their solution, neglecting sufficient reflection on their design
process (Lawson 2005; Gama 2017; Flus & Olechowski 2023). A recent study by
Thomson & Grierson (2021) confirms concerns expressed by researchers
regarding the predominant focus on solutions in hackathons. The study revealed
that students assigned increased importance to the stages associated with
designing the solution after participating in a design project. Another criticism
is the need for hackathons to accurately mirror the decision-making environ-
ment of realistic innovation settings (Flus & Olechowski 2023). Real-world
settings often involve cross-functional teams (Cooper 2019), whereas students
frequently lack formal exposure to such projects (Kelland, Brisco, & Whitfield
2022). Furthermore, hackathons are characterized by their fast-paced and
dynamic nature (Briscoe & Mulligan 2014;Komssi et al. 2015; Flus & Hurst
2021a), which can create ambiguity and uncertainty (Böhle, Heidling, & Schoper
2016; Flus & Hurst 2021a), calling for slow design thinking (Kannengiesser &
Gero 2019; Flus & Olechowski 2023). However, due to time constraints, parti-
cipants are often required to adopt a rapid design thinking approach, potentially
limiting exploration of design alternatives (Flus & Olechowski 2023). Experi-
enced designers also exhibit fast design thinking due to their expertise, allowing
them to design intuitively and effectively (Hurst et al. 2019; Kannengiesser &
Gero 2019).
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In conclusion, hackathons are viewed positively as both idea-generation plat-
forms and teaching tools. They facilitate collaboration, knowledge exchange and
the creation of innovative solutions for complex problems (Komssi et al. 2015; Flus
& Hurst 2021a). However, it is crucial to acknowledge that hackathons’ solution-
focused nature has also received criticism in design education (Lawson 2005; Gama
2017; Flus & Olechowski 2023). While the quality of the product concepts
produced is undoubtedly significant, it should not be the sole measure of success.
Factors such as participants’ learning outcomes, efficient resource allocation and
the proper use of agile methodologies are crucial for overall educational success.
This raises the question of the efficacy of hackathons as instruments for design
education, particularly in terms of participants’ learning outcomes and the quality
of the resultant products. Remarkably, these crucial aspects have not, to the best of
our knowledge, been examined in conjunction with the effort invested by students
in the design project.

4. Research objectives
This study aimed to investigate the relationship between effort invested in
product development, learning effect and product quality in educational hacka-
thons involving teams of novice designers, which are referred to as novice
teams. The research question guiding this investigation was: What is the
relationship between time spent on product development, product quality
and learning effect? Four hypotheses were formulated and tested to address
this question.

Based on the outcome-focused nature of hackathons (Briscoe & Mulligan
2014; Porras et al. 2019; Flus & Olechowski 2023), the first hypothesis posited a
significant correlation between the total hours invested in product development
and product quality. We expected that greater time investment by participants
would lead to improved final product quality. This hypothesis aligns with the
notion that effort predicts academic achievements (Lee 2014; Hagger &Hamilton
2019; Putwain et al. 2019), although its applicability to hackathons, characterized
by intense time pressure and collaborative innovation, remains unexplored.
Therefore, the present study sought to investigate whether the number of hours
invested in the development phase would be associated with higher product
quality in hackathons.

H1: The number of hours a team invests into developing a product during a
student-based hackathon correlates with the product quality at a moderate to high
level (∣ρ∣ ≥. 3).

The second hypothesis proposed a significant correlation between the number of
hours a team spends in the problem/solution phase and the resulting product
quality. We expected that greater time investment during the problem phase
would positively impact product quality. During this phase, teams conduct
research, observations and interviews to understand and define the problem
they intend to solve. This leads to a clear problem definition that guides the
subsequent solution phase. Prior research suggests that effective problem explor-
ation enables designers to generate a broader range of solutions and potentially
more innovative outcomes (Daly et al. 2018; Studer et al. 2018; Murray et al.
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2019). Additionally, it was anticipated that the hours invested in the solution
phase would also positively influence product quality. This aligns with hacka-
thons’ emphasis on generating solutions and producing a high-quality final
prototype (Briscoe & Mulligan 2014; Porras et al. 2019; Thomson & Grierson
2021; Flus & Olechowski 2023).

H2: The number of hours a team invests in the problem/solution phase in
developing a product during a student-based hackathon correlates with the prod-
uct quality at a moderate to high level (∣ρ∣ ≥. 3).

The third hypothesis of this study examined the relationship between total effort
and the learning effect in hackathons. The learning effect refers to the improve-
ment in self-assessed knowledge after completing the course compared to before
starting it. The hypothesis proposed that greater total effort invested by partici-
pants would lead to a stronger learning effect. This hypothesis was derived from
previous literature suggesting that increased effort promotes learning (Huang & Li
2012; McKay & Ellis 2014).

H3: The number of hours a team invests into developing a product during a
student-based hackathon correlates with the learning effect at a moderate to high
level (∣ρ∣ ≥. 3).

The fourth hypothesis of this study investigated the relationship between the
learning effect and product quality in hackathons. The hypothesis suggested that
the learning effect influences the quality of the final solution. This hypothesis was
based on previous research highlighting the significant role of learning in achieving
project success within teams and organizations (Zwikael et al. 2008; Huang & Li
2012; McKay & Ellis 2014).

H4: The learning effect a team experiences during a student-based hackathon
correlates with the product quality at a moderate to high level (∣ρ∣ ≥. 3).

This study is significant for understanding the effectiveness of hackathons as
a pedagogical tool for novice designers. Effective pedagogy, as understood by the
authors, encompasses an approach to learning that not only successfully equips
novice designers with essential skills for real-world problem-solving, such as
collaboration and analytical skills, but also imparts practical skills in crafting
high-quality products. It provides practical recommendations for designing and
implementing hackathon events in design education to enhance their effective-
ness. By exploring the relationship between effort, learning effect and product
quality in educational hackathons, this study contributes to the development of
more effective pedagogical strategies for teaching design skills. It offers practical
recommendations for the design and implementation of hackathon events within
design education, aimed at enhancing their effectiveness as a means to prepare
novice designers for the complexities of real-world problem-solving and the
creation of products that align with the principles of desirability, viability and
feasibility.

The rest of this paper is organized as follows. First, we present the methods
utilized in the study and the results. Finally, we delve into the implications of our
discoveries within the context of our theoretical framework and accompany this
discussion with recommendations for educators and future research.
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5. Method

5.1. Participants

The participants were 151 novice designers from different disciplines (e.g., engin-
eering, computer science, design, business, entrepreneurship) enrolled in a product
development course during the academic years 2022–2023. Novice designers were
graduate students with limited experience in solving product development chal-
lenges and wanted to develop foundational skills and knowledge in development
principles and techniques (Deininger et al. 2017; Menold et al. 2018; Flus & Hurst
2021a). Out of the 151 participants in the course, 37 participated in batch
1, 51 participated in batch 2 and 63 participated in batch 3. The participants
applied for the following roles: (1) business role (BR; e.g., responsible for business
attributes), (2) problem role (PR; e.g., responsible for customer attributes) and
(3) tech role (TR; e.g., responsible for technical attributes) (Martins Pacheco et al.
2020).

During the application process, all applicants were asked to rate their peer
applicants on a scale from 1 to 10 (with one being the least favorable and 10 being
the most favorable). Subsequently, applicants who received the highest average
ratings among the peer students were invited to participate in the course. The
distribution of roles among the participants was as follows: 31 BRs, 35 PRs and
85 TR. The participants formed 30 teams (7 Teams in batch 1, 10 in batch 2 and
13 in batch 3). The teams consisted of 1–2 BRs (8 in batch 1, 10 in batch 2 and 13 in
batch 3), 0–2 PRs (10 in batch 1, 12 in batch 2 and 13 in batch 3) and 2–3 TRs (19 in
batch 1, 29 in batch 2 and 37 in batch 3). Table 2 presents each variable’s mean
(M) and ranges across different batches. The “total” column represents the values
across all the batches.

Table 2. Overview of three hackathon batches (2022–2023)

Batch 1 (n = 7) Batch 2 (n = 10) Batch 3 (n = 13) Total (n = 30)

Variables M Range M Range M Range M Range

Pre–test score 3.06 2.75–3.39 3.09 2.56–3.61 2.90 2.50–3.38 3.00 2.50–3.61

Post–test score 3.29 2.92–3.88 3.37 3.08–3.69 3.50 3.13–3.77 3.41 2.92–3.88

Learning effect 1.08 0.98–1.32 1.10 1.02–1.21 1.21 1.07–1.41 1.14 0.98–1.41

Product quality 6.07 5.56–7.28 5.78 4.24–7.08 6.56 5.00–7.68 6.19 4.24–7.68

Total effort 187.71 75–318 162.80 76–294 290.85 198–371 224.10 75–371

Problem effort 102.43 31–195 73.40 34–122 115.54 47–183 98.43 31–195

Solution effort 85.28 25–164 89.40 42–172 175.31 87–247 125.67 25–247

BR per Team 1.14 1–2 1.00 1–1 1.00 1–1 1.03 1–2

PR per Team 1.43 1–2 1.20 0–2 1.00 1–1 1.17 0–2

TR per Team 2.71 2–3 2.90 2–3 2.85 2–3 2.83 2–3

Size of Teams 5.29 5–6 5.10 4–6 4.85 4–5 5.03 4–6

Note: Pre- and post-test score, knowledge self-assessment; learning effect, ratio between post- and pre-test score; BR, business role; PR, problem
role; TR, tech role; product quality, jury assessment.
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All teams participated in a 2-week hackathon course focusing on the develop-
ment of new hardware or mechatronic products. The student teams had limited
experience collaborating on a shared design project and were referred to as novice
teams. These teamswere composed ofmultiple students who had not beenworking
together before, which we refer to as novice designers (Kiernan, Ledwith, & Lynch
2020).

5.2. Course setting

This study examined a practical 2-week hackathon, where novice designers worked
in interdisciplinary teams of four to six students to develop new hardware or
mechatronic products. During the course, teams were guided through the process
of developing an idea and creating a proof of concept. At the course start, each team
began their problem investigation by engaging in brainstorming sessions to
generate potential ideas or problems. Subsequently, teams defined personas,
performed desk research and conducted preliminary interviews to assess the
feasibility and potential success. The data collection during the hackathon began
only after all teams had firmly established their initial ideas, with all teams starting
from a common point. Teams retained the opportunity to make adjustments to
their ideas at later stages. Throughout the course, the teams worked on the
following steps: (1) identification of a user problem based on interviews,
(2) validation of the problem based on interviews, (3) finding a solution to the
problem and building prototypes to demonstrate the potential solution and
(4) iteration of the prototyping process with further user and expert interviews.
The teams were provided a 400 euro budget for the project, infrastructure, and
access to workshops for prototyping activities. Furthermore, they were supported
by teaching assistants with expertise in engineering, computer science, design,
business and entrepreneurship. At the end of the course, they presented their
products in front of a jury panel composed of experts from industry and research.
The jury evaluated the product quality through a quality scheme (Girotra, Ter-
wiesch, & Ulrich 2010).

The teams were provided with methodological support through (1) a double
diamond process model and (2) an adapted scrum method (see Figure 1, respect-
ively, Figure 2). The Double Diamond process model consisted of four phases
(discover, define, develop and deliver) and served as a road map for the develop-
ment (Design Council 2023).

The Double Diamond was divided into the problem phase (discover and
define), dedicated to understanding user needs and the solution phase (develop
and deliver), focused on developing solutions. The teams started with an idea in the
problem phase, tried to understand the customer needs, tested the prototypes and
concluded the phase by formulating a problem definition (e.g., requirements list).
In the solution phase, teams developed further prototypes to test their solutionwith
stakeholders and concluded the solution phase with a proof-of-concept.

The teams followed scrum-like prototyping cycles (Martins Pacheco et al.
2021) using the plan, do, check and act approach (Deming 1986). Instead of
traditional scrum roles, the teams adopted the course roles: (1) PR, (2) BR and
(3) TR (Martins Pacheco et al. 2020).

Each day, the teams started by planning their prototyping cycle, setting
objectives and “definitions-of-done” for the day. Then, the teams assigned a phase
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in theDouble Diamond for the current prototyping cycle. Next, they assigned tasks
to team members to work on throughout the day, aiming to achieve their previ-
ously set goals. Each time a task was completed, the effort spent (in hours) was
documented. Incomplete tasks were added to the backlog for future work. At the
end of the day, the teams came together to review and reflect on whether their goals
were achieved. Based on their insights, they planned their next prototyping cycle.

The PETRA software tool, specifically developed for this course, was utilized to
facilitate this methodology, allowing for the planning and documentation of
prototyping cycles and tasks. The tool featured a kanban board to visualize
individual tasks within a cycle (Martins Pacheco et al. 2021). At the end of a
prototyping cycle, teams reflected on their cycles by documenting their develop-
ment outcome (incl. documents), key insight and rating in terms of achieved
“definition-of-done”. This tool helped the teaching assistants track team activities
and progress. The teams were introduced to the methods and tools before the
hackathon started and were supported throughout the course.

Data collection was conducted across three course batches, with consistent
course settings, methods and tools used throughout the study.

Figure 1. Double Diamond model adapted from Design Council (2023).

Figure 2. Prototyping cycle adapted from Martins Pacheco et al. (2021).
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5.3. Outcomes

The study measured product quality, effort spent and learning effect as the key
variables. Product quality was the primary dependent variable, while effort spent
was the independent variable. The learning effect acted as both a secondary
dependent and independent variable.

5.3.1. Product quality
Product quality was assessed by a jury consisting of five industry and research
experts on the final day of the hackathon. In batch 1, the jury consisted of a software
developer from a Bavarian OEM, a manager from a research association, a startup
investor and two startup founders (alumni of the course). In batch 2, the jury
consisted of a software developer from a BavarianOEM, amanager from a research
association and three startup founders (alumni of the course). In batch 3, the jury
consisted of a software developer from a BavarianOEM, amanager from a research
association, a startup founder (alumni of the course), a professor specialized in
software development and a makerspace electronics expert. The jury members
were well-equipped to evaluate the student projects thanks to their unique per-
spectives, professional expertise and deep industry knowledge. The jury saw the
products for the first time during a three-minute pitch, which included a product
demo. Subsequently, they had 5 minutes to ask questions and 10 more minutes to
test and discuss the product in detail at a product fair with each team. The product
quality assessment utilized a quality scheme (Girotra et al. 2010) comprising five
metrics, namely: (1) technical feasibility (to what extent is the proposed product
feasible to develop at a reasonable price with existing technology), (2) novelty
(originality of the idea with respect to the unmet need and proposed solution),
(3) specificity (the extent to which the idea included a proposed solution),
(4) demand (reflecting market size and attractiveness) and (5) business value of
the generated product idea (utility of the ideas to a commercial organization that
might develop and sell the products). The jury was asked to rank each category on a
scale from 1 (lowest value) to 10 (highest value). The average scores from the jury
were calculated for each team.

5.3.2. Effort
Effort spent by the teams was measured through task tracking with the PETRA
software tool which was utilized by the teams throughout the course. Upon
completing a task, the team recorded the time spent (in hours) on that task. Each
task completed within the daily prototyping cycle was taken into account, with
each cycle corresponding to a phase in the Double Diamond model. In this study,
effort was defined as the time in hours that teams invested in their work to achieve
specific goals. This definition centered on the quantitative aspect of the effort,
highlighting the allocation of time as ameasure of thework invested by the teams in
completing tasks and progressing through the various phases of the hackathon. It
did not address the qualitative aspects of the work, such as the quality of the
outcomes or the effectiveness of the efforts, which could vary even when teams
invested similar amounts of time.

12/34

https://doi.org/10.1017/dsj.2024.9 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2024.9


5.3.3. Learning effect
The learning effect of teams was evaluated by the ratio of self-assessed familiarity
with course-related topics. Participants completed a knowledge self-assessment
using a 5-point Likert scale ranging from 1 (not at all familiar) to 5 (extremely
familiar) with 15 items. The following items were considered: prototyping, design
thinking, agile development (i.e., scrum, lean), user research, software and hard-
ware development, industrial design, business tools (i.e., business model canvas),
business plan, finance, market analysis, marketing, project management, lean
startup and sprints. An example question asked: “Rate your level of familiarity
according to your experiences on prototyping”. Participants rated their familiarity
before the course (pre-test), which also indicates the level of preexisting knowledge.
The preexisting knowledge is categorized according to the mean and standard
deviation of the pre-test into three groups: (1) low preexisting knowledge,
(2) medium preexisting knowledge and (3) high preexisting knowledge. Table 3
presents each group’smean (M) and range between 25th and 75th percentile across
the different variables. After the course but before the final jury evaluation the
participants rated their familiarity again (post-test). The ratings were then divided
to calculate a ratio. A ratio > 1 indicated improved self-evaluation after the course,
while a ratio < 1 indicated better self-evaluation before the course. A ratio of
1 indicated no change in self-evaluation. The team rating was obtained by aver-
aging the participants’ ratings.

5.4. Statistical analysis

All statistical analyses were performed using R version 4.3.0 (R Core Team 2023).
First, we assessed whether there were any baseline differences between the three

batches in terms of product quality, effort spent and learning effect. The ANOVA
test was used to test significant differences between the batches with a significance
p-value of .05. For the primary dependent variable “product quality”, no significant
differences between the batches were detected (p = .09). For the secondary
dependent variable, “learning effect”, we assessed the variables “pre-test” and
“post-test” for significant mean differences between the batches. We found no
significant differences between the batches for the “pre-test” (p = .21) and the
“post-test” (p = .12). However, significant differences were observed between
batches in the independent variables “total effort” (p = .01) and “solution effort”

Table 3. Overview of preexisting knowledge and its relationship to the variables

Pre-test Post-test Learning effect Product quality Total effort

Group M IQR M IQR M IQR M IQR M IQR

Low 2.60 2.52 (2.66) 3.39 3.31 (3.52) 1.31 1.27 (1.34) 6.15 5.93 (6.58) 261.17 215 (343)

Medium 3.04 2.97 (3.13) 3.38 3.27 (3.51) 1.11 1.07 (1.16) 6.22 5.68 (6.68) 212.65 158 (272)

High 3.43 3.37 (3.44) 3.57 3.45 (3.71) 1.04 1.01 (1.06) 6.09 5.44 (6.71) 225.75 160 (290)

Note: M, mean; IQR, interquartile range between 25th and 75th percentile. The teams were categorized into three distinct groups: “low” for teams with
pre-test scores below the mean minus one standard deviation (n = 6), “medium” for teams with pre-test scores falling within one standard deviation of
the mean (n = 20) and “high” for teams with pre-test scores exceeding the mean plus one standard deviation (n = 4).
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(p = .01) but not in “problem effort” (p = .11). An explanation for the significant
difference could be that the effort varies between batches. This reflects our
experience that teams influence other teams’ ideas and efforts, so time commit-
ment differed across the batches. Subsequently, the data of the three batches were
combined for a bigger sample size.

In this study, we used correlation analysis to examine the relationship between
variables and referred to the mathematical correlation coefficient as ρ. In our
results section, we will refer to ρ as the true correlation coefficient, used to calculate
Spearman’s correlation coefficient, and r as the estimate from data (Pearson’s
correlation coefficient) (see an overview of the hypotheses tested in this study in
Table 4). The data were tested for normal distribution using the Shapiro–Wilk-
Test. The relationships between the variables were examined through correlation
analyses. The total effort, solution effort, product quality and learning effect were
normally distributed. Thus, we applied Pearson’s moment correlation. Problem
effort was not normally distributed, so we used Spearman’s correlation.
The statistical significance of the correlation coefficient was assessed using t-tests.
Scatterplots of the variables were used for visual interpretation. The
correlation coefficients were interpreted according to Cohen (1988), with correl-
ations of ∣ρ∣ <. 30 representing small, .30 ≤ |ρ| <. 50moderate, and ∣ρ∣≥. 50 strong
associations.

5.5. Case-study analysis

A comparative case study analysis was conducted on three teams representing the
highest, middle and lowest product quality scores evaluated by a jury. The study
examined the detailed processes, outcomes and development artifacts of these
teams, documenting the evolution of their design processes. The progression of
effort invested in each prototyping cycle was recorded, and the corresponding
learning effect was examined. The jury evaluations were analyzed in detail,
focusing on the individual elements of each team’s work. This thorough analysis

Table 4. Overview of hypotheses and results

Type Variables Condition ρ,r p-value (H0)

H1 Null Total effort, product quality ∣ρ∣ < .3
.42 .02*

Alternative ∣ρ∣ < .3

H21 Null Problem effort, product quality ∣ρ∣ < .3
.14 .46Alternative ∣ρ∣ < .3

H22 Null Solution effort, product quality ∣ρ∣ < .3
.50 .01**Alternative ∣ρ∣ < .3

H3 Null Total effort, learning effect ∣ρ∣ < .3
.34 .06Alternative ∣ρ∣ < .3

H4 Null Learning effect, product quality ∣ρ∣ < .3
�.04 .84Alternative ∣ρ∣ < .3

*p < .05,
**p < .01.
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aimed to provide concrete examples, reinforcing the findings from the statistical
analysis, thereby enhancing the credibility and comprehensibility of the study. We
adopted a mixed-methods approach to address the limitations associated with
quantitative data analysis by incorporating statistical analyses alongside qualitative
case study analysis of three teams. This approach enhanced our understanding of
the research context and provided a more comprehensive examination of the data.

6. Results
The teams exhibited a high level of commitment within the course, as indicated by
an average total effort ofM= 224.1 (SD = 89.46; range: 75–371). Most of their time
was spent in the solution phase, with an average solution effort of M = 125.67
(SD = 62.49; range: 25–247). Comparatively, the teams spent less time in the
problem phase, with an average problem effort of M = 98.43 (SD = 48.23; range:
31–195). The teams were effective in realizing quality products following the jury
with a mean rating of M = 6.19 (SD = 0.86; range: 4.24–7.68). Furthermore, the
teams exhibited a learning effect, with an average value of M = 1.14 (SD = 0.11;
range: 0.98–1.41). Descriptive values among the batches are presented in Table 2.

6.1. Relationship between total effort and product quality

The aim of this study was to investigate the correlation between the total effort and
the product quality (see Table 4). The normal distribution of both variables was
confirmed through the Shapiro–Wilk test (total effort: W = .93, p = .24; product
quality: W = .91, p = .14).

The results revealed amoderate positive correlation (see Figure 3) between total
effort and product quality (r = .42, p = .02). Thus, the null hypothesis, which
suggests a less than moderate correlation between total effort and product quality,
was rejected. These findings support the hypothesis (H1) of a moderate positive
relationship between total effort and product quality.

Figure 3. Scatterplot of the variables total effort and product quality with its regression line.
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6.2. Relationship between problem/solution effort and product
quality

A correlation analysis investigated the relationship between the number of hours
invested by a team during the problem/solution phase and the product quality,
which corresponds to hypotheses H21 and H22 in Table 4.

The first study examined the correlation between the problem effort, denoted
by the number of hours a team invests in the problem phase of product develop-
ment during a student-based hackathon and the product quality. The Shapiro–
Wilk test failed to provide sufficient evidence for normal distribution of the
variable problem effort (W = .93, p = .03).

The correlation analysis showed a weak positive correlation (see Figure 4);
however, no statistically significant relationship between problem effort and
product quality (ρ = .14, p = .46). Thus, the null hypothesis (H21) of a less than
moderate correlation between problem effort and product quality cannot be
rejected.

This study explored the correlation between the solution effort, defined as the
number of hours a team invests in the solution phase of product development
during a student-based hackathon, and the product quality (solution effort:
W = .93, p = .24; product quality: W = .91, p = .14).

A significant positive correlation (see to Figure 5) was found between solution
effort and product quality (r = .50, p = .01), leading to the rejection of the null
hypothesis (H22) and demonstrating a relationship between solution effort and
product quality.

6.3. Relationship between total effort and learning effect

The correlation between total effort and the learning effect was examined in this
study. This hypothesis corresponds to the hypothesisH3 in Table 4. Both variables,
total effort and learning effect, were confirmed to be normally distributed based on

Figure 4. Scatterplot of the variables problem effort and product quality with its regression line.
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the Shapiro–Wilk test results (total effort:W= .93, p = .24, learning effect:W= .91,
p = .14).

The correlation analysis indicated a nonsignificant moderate correlation (see
Figure 6) between total effort and learning effect (r = .34, p = .06). Since the p-value
exceeded the conventional .05 threshold for statistical significance, the null
hypothesis (H3) of a less than moderately correlation between total effort and
learning effect cannot be rejected. Therefore, it is concluded that there is no
statistically significant relationship between total effort and learning effect.

6.4. Relationship between learning effect and product quality

The current study investigated the correlation between the learning effect of a team
during a student-based hackathon and product quality (see Table 4). The Shapiro–

Figure 5. Scatterplot of the variables solution effort and product quality with its regression line.

Figure 6. Scatterplot of the variables total effort and learning effect with its regression line.
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Wilk test confirmed the normal distribution of both variables (learning effect:
W = .91, p = .14; product quality: W = .93, p = .24).

The correlation analysis revealed a negligible negative correlation (see Figure 7)
between learning effect and product quality (r = �.04, p = .84). The obtained
p-value, which is significantly greater than the .05 threshold, indicates a lack of
statistical significance in the correlation. Therefore, we cannot reject the null
hypothesis of less than a moderate correlation, and conclude that there is no
statistically significant relationship between learning effect and product quality.

6.5. Single-case analysis

This subsection provides a detailed description of the product development
process for three selected teams: Team A (lowest jury score), Team B (average
jury score) and Team C (highest jury score). It includes information on the effort
invested, artifacts produced and assessments by an external jury. An overview of
the raw data of all teams is included in Supplementary Table S1.

6.5.1. Team A – Automated cereal dispenser
Team A, comprised of three TR and one BR, focused on developing an automated
cereal dispenser (see Figure 8).

At the beginning of the problem phase, Team A engaged in product idea
generation and investigating the need for an automated kitchen dispenser. The
team comprehensively analyzed various kitchen dispensers, including existing
products, ongoing development projects and initial design concepts. Comparing
their design concept with existing solutions, they assessed the potential market
value and volume of their proposed solution. The team conducted 10 interviews to
gain deeper insights into user needs and preferences. The results revealed thatmore
than half of the interviewees were willing to pay over 50 euros for the team’s
conceptual product. They also sought feedback from hotels, which helped them
identify specific product requirements. Throughout the problem phase, the team

Figure 7. Scatterplot of the variables learning effect and product quality with its regression line.
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completed five prototyping cycles, with three in the discovery phase and two in the
define phase.

Concluding the problem phase, Team A built a cardboard prototype and
designed basic subsystems for their automated cereal dispenser. Moving into the
solution phase, they conducted an in-depth analysis of their functional prototype
to uncover additional technical requirements. They also focused on enhancing the
system’s functionality and usability by incorporating more components while
assessing its practicality. The team dedicated most of their time to the deliver
phase, spending 34 hours testing the subsystems and components’ feasibility and
finalizing the proof-of-concept for the final presentation. During the solution
phase, the team completed five prototyping cycles, three in the develop phase
and two in the deliver phase.

Team A generated 10 artifacts during the design process. Their total effort of
110 hours was below the average for all teams. However, they exhibited a higher-
than-average learning effect, with a ratio of 1.20. Referring to Table 3, the team can
be assigned to the group with low preexisting knowledge (2,56). Notably, they
demonstrated significant improvement in agile product development, increasing
their knowledge score by 0.75. Despite these advancements, the jury awarded Team
A the lowest score of 4.2 points for product quality among all 30 teams. To
summarize, despite receiving the lowest score for product quality and devoting
fewer hours to the development process than the average, Team A exceeded the
average learning effect.

6.5.2. Team B – Agriculture drone for pesticide use
Team B, consisting of three TR, one PR and one BR, focused on creating an
agriculture drone for pesticide usage (see Figure 9).

Figure 8. Development process overview of Team A.
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Initially, Team B brainstormed two product ideas but realized they lacked
specific user needs and customer value after analysis and consultations with
teaching assistants. Consequently, they explored additional ideas and decided to
address challenges in the agriculture industry by the end of the problem phase.
They completed four prototyping cycles, two in the discovery phase and two in the
definition phase. In the solution phase, they developed a comprehensive design
concept using CAD software, incorporating technical features and stakeholder
suggestions collected in interviews. During the delivery phase, they conducted
various physical tests on their prototypes to confirm functionality and refine their
marketing strategy. They completed six prototyping cycles, four in the develop-
ment phase and two in the delivery phase.

Team B exhibited a learning effect with a ratio of 1.15, similar to the average
learning effect of 1.14 for all teams. Referring to Table 3, the team can be assigned to
the groupwithmediumpreexisting knowledge (2,90). Their knowledge score in user
research increased byone point out of amaximumof five. Regarding product quality,
Team B received an average score among the 30 teams. They invested 203 hours in
the development process, close to the average of 224 hours for all teams.

6.5.3. Team C – Smart manufacturing glove
Team C, comprised of three TR, one PR and one BR, focused on designing a glove
that would improve the efficiency of manufacturing processes (see Figure 10).

Team C began by brainstorming and creating personas for potential product
users while conducting thorough market research, user interviews and technical
feasibility assessments. In the problem phase, the team completed five prototyping
cycles, three in the discovery phase and two in the definition phase. With a total of
88 hours, Team C spent 10 hours less than the team average in the problem phase.

Figure 9. Development process overview of Team B.
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However, they allocated a significant amount of time, 247 hours, to the solution
phase, the highest among all teams and nearly double the average of 125.7 hours.
During this phase, they visited a renowned German automobile OEM production
site to gather insights and evaluate the effectiveness and desirability of their
solution. They focused on building an audio detection device that identifies correct
plug-in click connections during the production process, utilizing machine learn-
ing to enhance their software algorithms. Team C achieved the highest jury score
among all 30 teams, indicating their effective approach and the success of their final
product. They completed five prototyping cycles in the solution phase, three in the
develop phase and two in the deliver phase.

Despite having the highest product quality score and investing themost time in
the development process (335 hours), Team C’s learning effect ratio of 1.07 falls
below the average of 1.14. Referring to Table 3, the team can be assigned to the
group with medium preexisting knowledge (2,93). Notably, their self-assessed
knowledge score in software and hardware development declined by 0.8, respect-
ively, 0.4. However, they improved in design thinking, with an increased know-
ledge score of 0.6 points. In conclusion, while TeamC achieved the highest product
quality score and invested themost time in the development process, their learning
effect fell below average.

7. Discussion
This research aimed to examine the relationship between effort, learning effect and
product quality in educational hackathons. Due to the small sample size, we
expected moderate to strong effects.

Figure 10. Development process overview of Team C.
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7.1. Relationship between total effort and product quality

In this study, we examined the association between total effort and product quality.
The results supported our hypothesis, showing a significant positive correlation
between effort and product quality. This finding aligns with previous research
highlighting the predictive role of effort in academic achievements (Lee 2014;
Hagger&Hamilton 2019; Putwain et al. 2019). The case analyses further supported
our findings. Team A, with the lowest effort, received the lowest product quality
score, while Team C, with the highest effort, achieved the highest score. This
underscores the crucial role of effort in attaining high-quality outcomes in educa-
tional product development settings. It reaffirms that dedicating more time to the
development process can lead to better products.

7.2. Relationship between problem and solution effort,
respectively, and product quality

We explored the association between problem/solution effort and product quality.
Our results showed no significant correlation between problem effort and

product quality, although a small positive correlation was observed. Problem effort
may have some impact on product quality; however, it is not statistically signifi-
cant. In contrast, a strong significant correlation was found between solution effort
and product quality, emphasizing the critical role of the solution phase in deter-
mining evaluated product quality. The case analyses supported these findings, with
Team A (lowest score) allocating 60% of their total time to the solution phase,
Team B (average score) devoting 67% and Team C (highest score) spending 74%.
These cases further underscored the importance of solution effort in achieving
higher product quality outcomes.

Our findings support the importance of a prompt transition from problem
formulation to solution generation, facilitating iterative design processes involving
idea generation, testing and evaluation (Darke 1979; Lloyd & Scott 1995; Ball &
Christensen 2019; Batliner et al. 2022). Ball & Christensen (2019) argue that teams
should move quickly into the solution space, as speculative solution ideas aid in
formulating design problems. This iterative process helps designers to gain clarity
on the problem at hand and assess ideas’ compatibility with requirements and
constraints by constantly uncovering missing or poorly articulated information. It
prompts further interactions with users for clarification or making feasible
assumptions. Our study builds on this knowledge by emphasizing the contribution
of solution phase efforts to product quality.

Moreover, our study aligns with Batliner et al. (2022) who identified early and
ongoing investment of time in testing as a predictor for project success. While
Batliner et al. (2022) focused specifically on testing, our study explored the overall
solution effort and its association with product quality. By corroborating their
findings in a broader context, our study enhances understanding of the factors
influencing project success in hackathons. It further supports the notion that the
solution-oriented nature of hackathons plays a significant role in determining the
quality of the final product (Briscoe &Mulligan 2014; Porras et al. 2019). However,
it is worth noting that hackathons are typically not only seen as a means to an end
for producing solutions (Lawson 2005; Gama 2017; Flus & Olechowski 2023) but
are also frequently viewed as catalysts of PBL (Horton et al. 2018) and idea
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generation (Komssi et al. 2015; Flus & Hurst 2021a). In addition to developing
solutions, hackathons can serve as platforms for participants to rapidly generate
and validate innovative ideas. This experiential process enables participants to
apply, analyze, evaluate and create new, original work, aligning with Bloom’s
higher educational objectives as outlined in his revised taxonomy (Krathwohl
2002). This multifaceted role underscores the versatility of hackathons in simul-
taneously promoting project success and fostering innovation within the hacka-
thon ecosystem.

Hackathons may not fully replicate realistic environments, as they often
prioritize solution development over a comprehensive design process. This became
evident in the observation by Sadowska & Laffy (2017), where design briefs in
hackathons triggered an emphasis on solution development rather than a design
process and learning. Although our study’s teams independently sought out
problems without a design brief, the deadline for the final presentation of their
solutions may have still led to a significant emphasis on solution development.

7.3. Relationship between total effort and learning effect

This study aimed to examine the impact of total effort on the learning effect in
hackathons, building on previous research indicating effort being a predictor for
learning (Huang & Li 2012; McKay & Ellis 2014).

Contrary to our expectations, the results did not show a significant correlation
between the effort invested and the learning effect. Moreover, the case analyses
revealed that as effort increased, the learning effect decreased. Additionally, the
data presented in Table 3 unveil a significant insight. It appears that teams with
limited preexisting knowledge invested the most time and achieved the highest
level of learning. Surprisingly, teams with the highest preknowledge learned the
least, despite investing more time than teams with moderate preknowledge.

These results challenge conventional assumptions regarding the effectiveness
of hackathon formats in education (Nandi & Mandernach 2016; Page et al. 2016;
Gama et al. 2018; Horton et al. 2018; Rennick et al. 2018). It suggests that teams
with low preknowledge may need to invest more time as they grapple with the
initial skill threshold. The concept of initial threshold describes the need of
attaining a certain skill level to effectively utilize a given medium for product
development (Boa, Mathias, & Hicks 2017; Ranscombe et al. 2020). For instance, a
designer who is a novice in CAD, with a limited skill level in CAD sketching, may
encounter challenges in creating sophisticated designs while they are still in the
process of mastering basic CAD operations (Ranscombe et al. 2020). Conversely,
materials like cardboard or LEGO present prototyping tools that offer a lower
initial barrier to entry, characterized by a low skill threshold (Boa et al. 2017;
Ranscombe et al. 2020). However, the requirement for a functional prototype with
a high skill threshold in the course might have led students with low initial
knowledge to invest extra effort in achieving a functional prototype for the final
presentation. On the other hand, teams with higher preknowledge may not have
the same learning incentives because they might be overly confident about their
skill level. While complete novices lack confidence, learning even a little can boost
their confidence, sometimes surpassing the accuracy of their judgment (Sanchez &
Dunning 2018). Such teams may invest more time in prototype development due
to their overconfidence in their existing skills of evaluating their designs and a
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strong focus on perfecting their prototypes. However, this can result in less active
exploration of new concepts or approaches during the hackathon. This may
suggest that novice designers are less challenged by the hackathon format when
they possess more initial skills and knowledge. In fact, they might even internalize
incorrect design practices as a result.

Further investigation is needed to explore the factors contributing to learning
success. However, research by Sadowska & Laffy (2019) shows that the impact of
learning in hackathons may manifest in the long term, with benefits becoming
apparent years later (Sadowska & Laffy 2019). This may be due to the focus on
developing transferable skills and internalizing these approaches in hackathons
rather than specific subject knowledge. This highlights the broader educational
implications of hackathons and their potential to cultivate skills that extend beyond
the immediate context.

This finding underscores the importance of recognizing the dynamic interplay
between initial knowledge levels, effort investment and learning outcomes in
hackathons. It prompts further inquiry into how to effectively engage andmotivate
participants with varying levels of preknowledge to encourage continuous learning
of all participants.

7.4. Relationship between learning effect and product quality

Finally, this study aimed to examine the relationship between the learning effect
and product quality in hackathons, drawing on earlier literature emphasizing the
importance of (organizational and team) learning for project success (Zwikael et al.
2008; Huang & Li 2012; McKay & Ellis 2014).

Contrary to expectations, the results indicate no statistically significant rela-
tionship between the learning effect and product quality in educational hacka-
thons. The scatterplot suggests a small negative correlation between the two
variables. The case analysis further supports these findings, with the lowest-
scoring team (Team A) exhibiting a relatively higher learning effect compared to
the highest-scoring team (Team C). Additionally, despite investing more time in
improving product quality, the teams in the case studies allocated a decreasing
portion of their time to the problem phase and experienced a decreasing learning
effect. This suggests that teams with a lower learning effect, indicating a higher
preexisting knowledge base, were more efficient in the design process. A higher
level of prior knowledge allowed these teams to allocate their time more effectively
to the solution development, ultimately resulting in the need for less time to achieve
better product outcomes. This phenomenon aligns with the concept of a skill
threshold (Boa et al. 2017, Ranscombe et al. 2020). This observation gains further
support from the data presented in Table 3, which shows that the average learning
effect of teams is most pronounced in groups with low initial skill levels and least
pronounced in groups with high initial skill levels. Interestingly, teams with high
initial skill levels, on average, produce less favorably evaluated products compared
to groups with low skill levels, who also investmore time on average. Consequently,
while groups with low preexisting knowledge expend significantly more effort to
surmount the skill threshold, it appears to yield positive results, enabling them to
compete with their peers while learning. This phenomenon can be partially
explained by Aryana, Naderi, & Balis (2019) and Flus & Hurst (2021a), who
propose that familiarizing participants with the stages of a design process fosters
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learning and encourages adherence to the process, leading to improved outcomes
in hackathons.

Further, our findings align with the idea of individual differences in problem
formulation, as highlighted by Ball & Christensen (2019), who emphasized that
successful designers effectively balance information gathering, goal definition and
solution development. The present study supports the suggestion that excessive
time spent on problem formulation activities may hinder the problem-solving
progress (Ball & Christensen 2019), emphasizing the importance of designers’
experience and their ability to strategically manage problem formulation and
solution development.

Essentially, this implies that while prior knowledge can accelerate solution
development, the relationship between learning effect and product outcome in
hackathons is multifaceted and may not consistently adhere to a linear pattern.
Understanding these dynamics is pivotal for both educators and practitioners
aiming to leverage hackathons effectively in design education and real-world
problem-solving contexts.

7.5. Practical implications

This study offers practical implications for educators and organizations involved in
team-based product development processes.

While hackathons provide valuable opportunities for participants to engage
with design processes, the lack of a significant correlation between effort invested
and learning effect sheds light on their limitations. Consequently, hackathons may
be better suited as platforms for brief exposure to the entire design process rather
than comprehensive representations. Educators should critically examine the
scope and limitations of hackathons in effectively educating novice designers
and supplement their learning experiences accordingly. For instance, alternative
approaches such as structured feedback mechanisms (Nicol & Macfarlane-Dick
2006; Hattie & Timperley 2007), reflection and self-assessment (Boud, Keogh, &
Walker 1985; Zimmerman 2002) and cooperative learning (Johnson & Johnson
2014; Lara & Lockwood 2016) can facilitate learning success. Additionally, imple-
menting partial hackathons with a problem or solution focus could offer a more
balanced representation of the design process, addressing both problem formula-
tion and solution development.

Allocating sufficient time and resources to the solution phase can lead to higher
product quality in student-based hackathons. Educators and team leaders should
emphasize the importance of dedicating adequate time and effort to the solution
phase, providing guidance on effective timemanagement, design requirements and
testing to maximize product quality impact (Aryana et al. 2019). Furthermore, to
support teams with limited initial knowledge, hackathon practitioners might
consider presenting product development tools with a lower skill threshold to
such teams (Boa et al. 2017, Ranscombe et al. 2020). By offering product devel-
opment tools with a lower skill threshold, practitioners level the playing field and
cater to the foundational knowledge and comprehension aspects of Bloom’s (1979)
taxonomy. This approach ensures that participants have the essential tools and
knowledge to engage meaningfully in the hackathon, setting the stage for more
successful learning and problem-solving outcomes.
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In conclusion, educators and organizations should optimize the allocation of
time and resources in team-based product development processes to enhance
product quality and explore alternative learning formats to improve the learning
effect in these contexts.

7.6. Limitations and future research

Two factors constrained the generalizability of this study. First, the limited sample
size of 30 teams participating in a single educational hackathon course raises the
possibility of sample bias. Therefore, applying these findings to other contexts,
such as professional settings or different educational environments, should be done
cautiously. Second, given the unique goals and dynamics of various hackathon
types (Kollwitz & Dinter (2019), caution should be exercised when extending our
results beyond the specific context of our study, focusing on the development of
new hardware and mechatronic products. To overcome these limitations, future
research should aim to replicate our study with larger, diverse samples drawn from
a range of hackathon formats. Furthermore, recognizing that hackathons are
integral to broader educational or professional goals, forthcoming research should
delve deeper into the multifaceted relationships between hackathon outcomes and
these overarching objectives.

While teamwork dynamics and team constellation may have influenced the
performance of the sample teams, exploring these factors fell outside the scope of
this study. Nevertheless, it is essential to recognize several limitations associated
with the sample teams in this research, as addressing these limitations could
notably enhance the ongoing development of knowledge in design pedagogy
research. First, the study did not control for the teams’ varying levels of subject-
related knowledge, which may have influenced their performance and the jury’s
assessment. Thomson & Grierson (2021) highlight variations in design project
performance among students in different academic years, indicating the signifi-
cance of knowledge diversity in such contexts. Additionally, the multidisciplinary
andmultifunctional nature of the sample teams, while potentially influencing their
performance, was not controlled for this study. Existing evidence suggests that
prior experience in various fields within a team can significantly affect group
effectiveness (Brown & Eisenhardt 1995; Edmondson &Nembhard 2009). Thus, it
is imperative that future research extends its focus to explore the influence of
teams’ diverse subject-related knowledge on hackathon outcomes. This explor-
ation can provide valuable insights into the role of prior experience diversity of
multidisciplinary teams in shaping their teamwork. Second, cultural differences
were not taken into account among the participating teams. Considering the
evidence suggesting cultural variations in creative thinking and knowledge appli-
cation (Zhang, Bohemia, & McCardle 2019), future studies should incorporate
these factors to better understand their influence on learning, hackathon perform-
ance and effort allocation.

A jury of five industry and research specialists evaluated the product’s quality.
The subjective nature of this assessment introduces the possibility of individual
biases affecting the scoring and ranking of the products (Stylidis, Wickman, &
Söderberg 2020; Boudier et al. 2023). Biases can be observed, as professionals in the
industry tend to overestimate the significance of attributes they are currently
focusing on (Stylidis et al. 2020). Additionally, experts with similar backgrounds
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might have varying perceptions of ideas (Boudier et al. 2023). Efforts were made to
address this limitation by appointing a diverse jury with individuals from different
backgrounds. The industry experts provided explicit feedback to the teams and
posed questions after their presentations, following the recommendation of Bou-
dier et al. (2023). However, it is essential to acknowledge that biases cannot be
eliminated entirely. Future research exploring the effect of potential biases in the
jury’s judgments and prototype sophistication on jury evaluation could provide
more comprehensive knowledge of what constitutes “quality” in this context.
Examining whether the perceived quality of a product is influenced by its level
of refinement or technical advancement would provide valuable insights regarding
the evaluation process for organizations and educators.

The study focused on the association between total or solution/problem effort
and product quality, ignoring other potential mediators or moderators that could
influence product quality. Future research should be conducted to investigate
additional parameters related to product quality. For instance, future investiga-
tions could categorize effort using alternative frameworks, such as the three lenses
of human-centered design (e.g., desirability, feasibility, viability) or the purpose of
prototypes (e.g., exploration, communication, evaluation), to examine their influ-
ence on product quality.

Next, the ratio of self-assessed familiarity with course-related subjects was used
to assess the learning effect. This self-reported metric may be biased and inaccur-
ate. To give a more trustworthy and valid evaluation of participants’ knowledge,
future research could add objective measures, such as standardized performance
tests before and after the intervention (Gustafsson & Borglin 2013; Shrivastava,
Shah, & Navaid 2018). By addressing these limitations and conducting further
research, educators can optimize learning outcomes in hackathon-based educa-
tional contexts.

A strong emphasis was placed on quantitative data due to its objectivity. While
these data are valuable, it may be advantageous to collect qualitative insights.
Reflections from participants or observational data could add to a more nuanced
picture of the learning process and its consequences.

Moreover, the study presumes a linear relationship between effort, learning
effect and product quality. However, the relationship between these variables could
be more complex and nonlinear. Therefore, the existing linear approach could be
extended to include nonlinear relationships and interactions, which could show
intriguing dynamics like threshold effects.

Finally, the present study found no statistically significant relationship between
the learning effect and product quality. However, the case analyses showed that
teams with lower learning effects demonstrated greater efficiency in the design
process. Future research should explore the impact of sample characteristics, such
as participants’ level of expertise or prior experience, on product design effective-
ness. This investigation could shed light on whether more effective product design
is facilitated by a higher level of the team’s prior design knowledge. Such a study
could also explore whether teams that demonstrated less learning did so due to
possessing more design knowledge prior to the event. This knowledge could have
enabled them to design products more effectively, leading to better evaluation
outcomes. Replication studies with larger sample sizes are needed to confirm and
strengthen these initial findings.
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8. Conclusion
This study explored the relationship between effort, learning effect and product
quality in educational hackathons of novice teams. We discovered a significant
positive correlation between total effort and product quality, emphasizing the
importance of allocating adequate time and resources to product development
for higher-quality outcomes. However, no meaningful relationship was seen
between overall effort and learning effect, calling into question the premise that
effort alone promotes learning success in hackathons. Furthermore, there was not
any significant association between the learning effect and product quality. This
seems like a bold statement and calls into question the very nature of having
hackathons with novice teams in higher education institutions. These findings
provide practical insights for educators and organizations involved in team-based
product development processes, highlighting the importance of prioritizing effect-
ive solution development and exploring alternative learningmethods in hackathon
settings. Furthermore, they have the potential to have a substantial impact on how
hackathons are planned and facilitated, particularly those involving novice teams.
It implies that howwe define andmeasure success in these environments may need
to be reconsidered, with an emphasis not only on the finished output but also on
the learning process. Implementing these insights enhances educational success
and product quality in hackathons with novice teams.

Supplementary material
The supplementary material for this article can be found at https://doi.org/
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