
The Journal of Symbolic Logic

Volume 89, Number 1, March 2024

AN INCOMPLETENESS THEOREM VIA ORDINAL ANALYSIS

JAMES WALSH

Abstract. We present an analogue of Gödel’s second incompleteness theorem for systems of second-
order arithmetic. Whereas Gödel showed that sufficiently strong theories that are Π0

1-sound and Σ0
1-definable

do not prove their own Π0
1-soundness, we prove that sufficiently strong theories that are Π1

1-sound and
Σ1

1-definable do not prove their own Π1
1-soundness. Our proof does not involve the construction of a

self-referential sentence but rather relies on ordinal analysis.

§1. Introduction. The motivation for this project come from two sources: Gödel’s
second incompleteness theorem and Gentzen’s consistency proof of arithmetic.
These results are complementary in many ways. In the first place, they jointly
form a complicated and ambiguous resolution of Hilbert’s problem of proving
the consistency of arithmetic. Moreover, Gentzen’s proof refines Gödel’s result by
exhibiting the first example of a non-meta-mathematical arithmetic statement—
namely, the statement that ε0 lacks primitive recursive descending sequences—that
is not provable from the Peano axioms. Though Gödel’s result is highly general,
his proof relies on self-reference, rendering it opaque and mysterious [6, 15, 16].
By contrast, Gentzen’s proof is concrete but his results are specific to the case of
Peano arithmetic. In this paper we prove a version of the second incompleteness
theorem that is general like Gödel’s but with a proof that is concrete like Gentzen’s; in
particular, we use the methods of ordinal analysis and do not rely on diagonalization
or self-reference.

Let’s start by giving a typical statement Gödel’s second incompleteness theorem:

Theorem 1.1 (Gödel). No consistent and recursively axiomatizable extension of
elementary arithmetic proves its own consistency.

Recursive axiomatizability is equivalent to Σ0
1-definability by Craig’s Trick.

Moreover, consistency is provably equivalent (in elementary arithmetic) to Π0
1-

soundness. Hence, we may restate Gödel’s Theorem as follows:

Theorem 1.2 (Gödel). If T is a Π0
1-sound and Σ0

1-definable extension of elementary
arithmetic, then T does not prove its own Π0

1-soundness.

We prove the following analogous result for systems of second-order arithmetic:

Theorem 1.3. If T is a Π1
1-sound and Σ1

1-definable extension of Σ1
1-AC0, then T

does not prove its own Π1
1-soundness.
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Π1
1-soundness is a strictly stronger condition than Π0

1-soundness. However, Σ1
1-

definability is a strictly weaker condition than Σ0
1-definability. Hence, Theorem 1.3

is neither weaker nor stronger than Gödel’s Theorem but incomparable with it.
Let’s take a brief look at the ideas motivating the proof. In what follows WF(≺)

is a sentence expressing the well-foundedness of ≺:

WF(≺) := ∀X
(
∃x ∈ X → ∃x ∈ X ∀y ∈ X ¬y ≺ x

)
;

RFNΠ1
1
(T ) is a sentence naturally expressing the Π1

1-soundness of T :

RFNΠ1
1
(T ) := ∀ϕ ∈ Π1

1

(
PrT (ϕ) → TrueΠ1

1
(ϕ)

)
;

and the proof-theoretic ordinal |T |AN of a theory T is the supremum of the ordinals
α for which there is some Σ1

1 presentation ≺ of α such that T � WF(≺).
Assuming that T is Π1

1-sound and Σ1
1-definable, Spector’s Σ1

1-bounding theorem
implies that |T |AN is strictly less than �CK

1 , whence |T |AN has some Σ1
1 presentation.

For any Σ1
1-presentation ≺ of |T |AN, the following is true by definition:

T � WF(≺). (1)

We then need to show that there is at least one Σ1
1-presentation ≺ of |T |AN such that:

T � RFNΠ1
1
(T ) → WF(≺). (2)

For then, from claims (1) and (2), we infer that T � RFNΠ1
1
(T ).

This proof is analogous to a folklore proof of a different version of the second
incompleteness theorem, namely, that no Π0

2-sound and Σ0
1-definable theory T proves

its own Π0
2-soundness. In this folklore proof one first defines a recursive function

fT that is not provably total in T by diagonalizing against the set of provably total
recursive functions of T ; one then shows that the totality of fT is T-provably
equivalent to the Π0

2-soundness of T. See [3] for a detailed proof. Just as the
class of the provably total recursive functions of T is the canonical “invariant”
measuring the Π0

2-strength of T, the proof-theoretic ordinal of T is the canonical
“invariant” measuring the Π1

1-strength of T. And just as the non-provability of
Π0

2-soundness is derived by defining a total recursive function in terms of the
canonical Π0

2-invariant, we derive Theorem 1.3 by defining a well-ordering in terms
of the canonical Π1

1-invariant.
A slight modification of our proof of Theorem 1.3 delivers a stronger result:

Theorem 1.4. There is no sequence (Tn)n<� of Π1
1-sound and Σ1

1-definable
extensions of Σ1

1-AC0 such that for each n, Tn � RFNΠ1
1
(Tn+1).

To see that Theorem 1.4 implies Theorem 1.3, note that if T were a counter-
example to Theorem 1.3 then we would get a counter-example to Theorem 1.4 by
letting T = Tn for each n. Theorem 1.4 extends earlier work [8, 9] of Pakhomov and
the author, who proved the following:

Theorem 1.5 (Pakhomov–W.). There is no sequence (Tn)n<� of Π1
1-sound and

Σ0
1-definable extensions of ACA0 such that for each n, Tn � RFNΠ1

1
(Tn+1).
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Pakhomov and the author proved Theorem 1.5 to provide an explanation for
the apparent pre-well-ordering of natural theories by proof-theoretic strength; see
[17] for a discussion of this phenomenon. Theorem 1.4 extends this explanation to
the new setting of Σ1

1-definable theories. Whereas the proof of Theorem 1.5 appeals
to the second incompleteness theorem and makes no mention of proof-theoretic
ordinals, our proof of Theorem 1.4 uses ordinal analysis and does not appeal to any
version of the second incompleteness theorem. Note that Theorem 1.4 is neither
stronger nor weaker than Theorem 1.5; the former requires the stronger hypothesis
that T extend Σ1

1-AC0 but only the weaker hypothesis that T be Σ1
1-definable.

The main tool that we use to derive Theorems 1.3 and 1.4 is Spector’s Σ1
1-bounding

theorem. Though the standard proofs (e.g., [14, Chapter 1, Corollary 5.5]) of
Spector’s theorem rely on diagonalization, there is an alternate diagonalization-
free proof due to Beckmann and Pohlers [2]. This latter proof derives Σ1

1-bounding
from an analysis of cut-free infinitary derivations. In particular, Σ1

1-bounding is
derived from a result known as “the boundedness theorem,” which roughly states
that for arithmetically definable well-orders≺, the order-type of≺ cannot exceed the
depth of the shortest proof of the well-foundedness of ≺ in �-logic. Versions of the
boundedness theorem are already implicit in Gentzen’s proof [5] that PA does not
prove the primitive recursive well-foundedness of ε0. Note that Gentzen’s proof of
this independence result does not appeal to Gödel’s second incompleteness theorem
and does not rely on self-reference but rather involves a combinatorial analysis of
proofs in PA.

We also rely on a formalized version of Spector’s theorem. Roughly, the formalized
version says that for any Σ1

1 predicate H, if ACA0 proves “H is a set of recursive
ordinals,” then for some e, ACA0 proves “e is a recursive ordinal but ¬H (e).” The
standard proof of the formalized version of Σ1

1-bounding uses the recursion theorem
to define a recursive function. Though this is not exactly the construction of a self-
referential sentence, definitions using the recursion theorem share the opacity of
constructions of sentences using the fixed point lemma. Accordingly, we provide
a new proof of this formalized version of Spector’s theorem. The new proof uses
the same techniques Gentzen used to prove the boundedness theorem and that
Beckmann and Pohlers used to prove the Σ1

1-bounding theorem. Thus, we do not
rely on self-reference or diagonalization in any form.

Here is our plan for the rest of the paper. In Section 2 we cover some preliminary
material, including definitions and notation; we also discuss two folklore results that
we use to prove the main theorems. In Section 3 we provide proofs of Theorems 1.3
and 1.4. In Section 4 we provide an alternate proof using infinitary derivations of
the formalized version of Spector’s Σ1

1-bounding theorem. Finally, in Section 5 we
present some open problems concerning the optimality of Theorem 1.3.

§2. Preliminaries. One of the central concepts in proof theory is that of a proof-
theoretic ordinal. To say what proof-theoretic ordinals are, we must say what a
presentation of an ordinal is.

Definition 2.1. For a syntactic complexity class Γ, a Γ presentation of an ordinal
α is a Γ formula that defines an ordering of order-type α over the standard structure(
N,P(N)

)
.

https://doi.org/10.1017/jsl.2022.64 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2022.64


AN INCOMPLETENESS THEOREM VIA ORDINAL ANALYSIS 83

We now present two definitions of “proof-theoretic ordinal,” both of which are
necessary for our proof.

Definition 2.2. Let |T |RE be the supremum of the ordinals α for which there is
some Σ0

1 presentation ≺ of α such that T � WF(≺).

Definition 2.3. Let |T |AN be the supremum of the ordinals α for which there is
some Σ1

1 presentation ≺ of α such that T � WF(≺).

TheAN in the notation |T |AN means analytic. Indeed, |T |AN is the supremum of the
T-provably well-founded analytic linear orders, where analytic means lightface Σ1

1.
By definition, |T |RE � |T |AN � �CK

1 . However, we can say more about the
relationship between these three values if we make some assumptions about T. In the
following subsections we will describe these results, which belong to mathematical
folklore.

2.1. The first folklore result. If T is Π1
1-sound and Σ1

1-definable, we can say more
about the relationship between |T |AN and �CK

1 .

Theorem 2.4 (Folklore). If T is Π1
1-sound and Σ1

1-definable, then |T |RE < �CK
1 .

Theorem 2.4 follows immediately from Spector’s Σ1
1-bounding theorem:

Theorem 2.5 (Spector). For any Σ1
1 presentation ≺ of an ordinal, otyp(≺) < �CK

1 .

Standard proofs of Spector’s Σ1
1-bounding appeal to the fact that Kleene’s O

is not Σ1
1-definable. Note that the latter is typically proved using an ordinary

diagonalization argument; see, e.g., [14, Chapter 1, Theorem 5.4].
However, there is an alternate proof due to Beckmann and Pohlers [2] of

Spector’s Theorem that does not use diagonalization. The Beckmann–Pohlers proof
proceeds by analyzing the structure of infinitary cut-free derivations. Beckmann and
Pohlers derive Σ1

1-bounding a result known as “the boundedness lemma,” which
they claim is essentially implicit in Gentzen’s proof of the PA non-derivability of
ε0-induction. Accordingly, when we appeal to Theorem 2.4, we are appeal to a
result that has a Gentzen-style non-diagonalization proof.

2.2. The second folklore result. We can say more about the relationship between
|T |RE and |T |AN for all Π1

1-sound T that extend Σ1
1-AC0. Recall that Σ1

1-AC0 is the
theory whose axioms are those of ACA0 plus each instance of the schema:

∀n∃Xϕ(n,X ) → ∃Y∀nϕ
(
n, (Y )n

)
,

where ϕ(n,X ) is a Σ1
1 formula in which Y does not occur and where

(Y )n = {i | (i, n) ∈ Y}.

Theorem 2.6 (Folklore). If T is a Π1
1-sound extension of Σ1

1-AC0, then |T |RE =
|T |AN.

The main tool for proving Theorem 2.6 is a formalized version of Spector’s
theorem. To state this formalized result, we first introduce some notation.

Definition 2.7. LetRec := {e ∈ N | e is an index of a total recursive function}.
With each e ∈ Rec there is an associated relation ≺e where

n ≺e m :⇔ {e}(〈n,m〉) = 0,
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where 〈, 〉 is a primitive recursive pairing function.

Definition 2.8. Let WRec := {e ∈ N | e ∈ Rec ∧WO(≺e)}.

In [13] (see Proposition 2.19), Rathjen derives Theorem 2.6 from the following
lemma, which is a formalized version of Spector’s Σ1

1-bounding theorem:

Lemma 2.9 (Rathjen). Suppose H (x) is a Σ1
1 formula such that:

ACA0 � ∀x
(
H (x) → x ∈ WRec

)
.

Then, for some e ∈ Rec,
ACA0 � e ∈ WRec ∧ ¬H (e).

Theorem 2.6 is straightforwardly derived from Lemma 2.9. Rathjen provides a
proof of Lemma 1.1 in [12]. Note that this proof of Lemma 2.9 makes use of the
recursion theorem. In Section 4 we will present an alternative proof of Lemma 2.9
that does not make any use of the recursion theorem or other diagonalization.

2.3. Remarks. Before continuing, let’s highlight some features of these folklore
results and their relationship to the main theorems.

First, note the role that Σ1
1-bounding plays in the proofs of the folklore results.

We will not mention Σ1
1-bounding explicitly in the proofs of the main theorems, but

we will still rely on it insofar as it is used to prove these folklore results. We feel that
the role of Σ1

1-bounding is so important that it is worth explicitly highlighting where
it is being used.

Second, note that in the proofs of both folklore results, we must appeal to the
Π1

1-soundness of T. We will not appeal to Π1
1-soundness explicitly in the proofs of

the main theorems; we will only rely on it insofar as we invoke these folklore results.
One can find proofs of Theorems 2.4 and 2.6 in [13].

§3. The main theorems. In this section we prove our main theorem, an analogue
of Gödel’s second incompleteness theorem. We start by introducing two formulas
and make a remark about their syntactic complexity. We will use these formulas and
appeal to the remark many times, so it is worth isolating them here.

Definition 3.1. For a binary formula �, let LO(�) stand for the conjunction of
the following clauses:

(1) ¬∃xTrueΣ0
1
(x � x).

(2) ∀x∀y
(
TrueΣ0

1
(x � y) ∨ TrueΣ0

1
(y � x) ∨ x = y

)
.

(3) ∀x∀y∀z
((
TrueΣ0

1
(x � y) ∧ TrueΣ0

1
(y � z)

)
→ TrueΣ0

1
(x � z)

)
.

Definition 3.2. For a binary formula �, let WF(�) stand for

∀X
(
∃x ∈ X → ∃x ∈ X ∀y ∈ X ¬TrueΣ0

1
(y � x)

)
.

Remark 3.3. Note the use of the Σ0
1 truth-predicate in Definitions 3.1 and 3.2.

Thus, for any formula �, LO(�) is arithmetic and WF(�) is Π1
1. Of course, LO(�)

and WF(�) will make the most sense when applied to Σ0
1 formulas or in quantified

statements about Σ0
1 formulas. We shall use it in the latter way.
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3.1. The key lemma. The key to the proofs of Theorems 1.3 and 1.4 is the following
lemma:

Lemma 3.4. If T is Π1
1-sound and Σ1

1-definable, then there is a Σ1
1 presentation ≺T

of |T |RE such that Σ1
1-AC0 � RFNΠ1

1
(T ) → WF(≺T ).

Proof. Let T be Π1
1-sound and Σ1

1-definable. By Theorem 2.4, |T |RE < �CK
1 ,

whence there is some Σ0
1-definable ≺� such that |T |RE = otyp(≺�).

We are now going to define an alternate presentation ≺T of |T |RE. Informally, the
formulaα ≺T � says thatα is less than � in an initial segment of the≺� ordering that
embeds into a Σ0

1-definable linear order � such that T proves the well-foundedness
of �. More formally, we define α ≺T � as the conjunction of

(1) α ≺� � ,

(2) ∃� ∈ Σ0
1 ∃f

(
Emb(f,≺�� �,�) ∧ LO(�) ∧ PrT

(
WF(�)

))
,

where Emb(f,≺�� �,�) stands for

∀x∀y
(

(y � � ∧ x ≺� y) → TrueΣ0
1

(
f(x)�f(y)

))
,

and where LO(�) and WF(�) are as in Definitions 3.1 and 3.2.

Claim. ≺T is Σ1
1-AC0-provably equivalent to a Σ1

1 formula.

Clearly α ≺� � is Σ0
1. Now let’s look at the second conjunct of α ≺T � . Note that

Emb(f,≺�� �,�) and LO(�) are both arithmetic. On the other hand, PrT
(
WF(�)

)
is Σ1

1, since T is Σ1
1-definable. So the conjunction

Emb(f,≺�� �,�) ∧ LO(�) ∧ PrT
(
WF(�)

)
is provably equivalent in Σ1

1-AC0 to a Σ1
1 formula. Thus, the second conjunct of α ≺T

� is given by an existential number quantifier before an existential set quantifier
before a (formula that is Σ1

1-AC0-provably equivalent to a) Σ1
1 formula. It follows

that ≺T is Σ1
1-AC0-provably equivalent to a Σ1

1 formula.

Claim. ≺T is a presentation of |T |RE.

otyp(≺T ) � |T |RE: The first conjunct in the definition of ≺T ensures that
otyp(≺T ) � otyp(≺�). To finish the argument, recall that otyp(≺�) = |T |RE.

otyp(≺T ) � |T |RE: Letα < |T |RE = otyp(≺�). We need to see thatα < otyp(≺T ).
Since α < otyp(≺�) and α < |T |RE, there is an embedding of an initial segment

of ≺� that includes the ≺� representation of α into a Σ0
1-definable well-order that

is T-provably well-founded. It is then immediate from the definition of ≺T that
α < otyp(≺T ).

Claim. Σ1
1-AC0 � RFNΠ1

1
(T ) → WF(≺T ).

Reason in Σ1
1-AC0: Suppose that ≺T is ill-founded. Then, by the definition of ≺T ,

there is some infinite descending sequence in ≺� that embeds into a Σ0
1-definable

linear order� such that T � WF(�). Since� embeds an ill-founded linear order,�
is ill-founded. So T proves a false Π1

1 sentence, namely, WF(�). �
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3.2. An incompleteness theorem. We now present a proof of Theorem 1.3, restated
here:

Theorem 3.5. If T is a Π1
1-sound and Σ1

1-definable extension of Σ1
1-AC0, then T

does not prove its own Π1
1-soundness.

Proof. By Lemma 3.4, there is a Σ1
1 presentation ≺T of |T |RE such that

Σ1
1-AC0 � RFNΠ1

1
(T ) → WF(≺T ).

Since T extends Σ1
1-AC0, we infer that

T � RFNΠ1
1
(T ) → WF(≺T ). (3)

Claim. T � WF(≺T ).

Since T extends Σ1
1-AC0, by Theorem 2.6, |T |RE = |T |AN. Moreover, since T

extends Σ1
1-AC0, we infer that ≺T is T-provably equivalent to a Σ1

1 formula. So ≺T
is a presentation of |T |AN that is T-provably equivalent to a Σ1

1 formula, whence
T � WF(≺T ).

It follows immediately from (3) and from the claim that T � RFNΠ1
1
(T ). �

3.3. Well-foundedness. In this subsection we prove a strengthening of Theo-
rem 3.5 that is of independent interest. The following result is proved in [8, 9]:

Theorem 3.6 (Pakhomov–W.). There is no sequence (Tn)n<� of Π1
1-sound and

Σ0
1-definable extensions of ACA0 such that for each n, Tn � RFNΠ1

1
(Tn+1).

Pakhomov and the author proved Theorem 3.6 to provide an explanation of the
apparent pre-well-ordering of natural theories by proof-theoretic strength; see [17]
for a discussion of this phenomenon. In [8, 9], Theorem 3.6 is proved using Gödel’s
second incompleteness theorem. In particular, we show that the theory ACA0 + ϕ,
where ϕ states that Theorem 3.6 is false, proves its own consistency. In [7] it is
claimed that such a result “could be proved by showing that a descending sequence
(Tn)n<� of theories would induce a descending sequence in the ordinals (namely,
the associated sequence of proof-theoretic ordinals).” We now present such a proof
(though for Σ1

1-definable extensions of Σ1
1-AC0 rather than for Σ0

1-definable extensions
of ACA0).

What follows is a restatement of Theorem 1.4:

Theorem 3.7. There is no sequence (Tn)n<� of Π1
1-sound and Σ1

1-definable
extensions of Σ1

1-AC0 such that for each n, Tn � RFNΠ1
1
(Tn+1).

Proof. Suppose that there is such a sequence (Tn)n<� . From Lemma 3.4 we infer
that, for each n, there is a Σ1

1 presentation ≺Tn of |Tn|RE such that

Σ1
1-AC0 � RFNΠ1

1
(Tn) → WF(≺Tn ).

Since each Tn extends Σ1
1-AC0, Theorem 2.6 entails that, for each n, there is a Σ1

1
presentation ≺Tn of |Tn|AN such that

Σ1
1-AC0 � RFNΠ1

1
(Tn) → WF(≺Tn ).
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Since each Tn extends Σ1
1-AC0, for each n,

Tn � RFNΠ1
1
(Tn+1) → WF(≺Tn+1).

By assumption, for each n, Tn � RFNΠ1
1
(Tn+1), so we infer that, for each n,

Tn � WF(≺Tn+1).

Whence |Tn|AN > |Tn+1|AN for each n. Yet |Tn|AN is an ordinal for each n. So
(|Tn|AN)n<� is a descending sequence in the ordinals. �

Note that Theorem 3.7 entails Theorem 3.5. Indeed, if T were a counter-example
to Theorem 3.5 then we would get a counter-example to Theorem 3.7 by letting
T = Tn for each n.

§4. Avoiding diagonalization. Considering the motivations outlined in Section 1,
it is desirable to avoid diagoanlization in the proofs of Theorems 2.4 and 2.6.

As discussed in Section 2.1, the standard proofs of Spector’s Σ1
1-bounding theorem

rely on diagonalization. However, there is already an alternate proof of Spector’s
theorem due to Beckmann and Pohlers [2] that uses Gentzen’s methods and avoids
diagonalization.

Theorem 2.6, on the other hand, relies on Lemma 2.9, which is a formalized
version of Σ1

1-bounding. Rathjen’s proof of Lemma 2.9 uses the recursion theorem to
formalize the standard proof of Σ1

1-bounding. In this section we develop an alternate
proof of Lemma 2.9. Rather than an attempt to formalize the diagonalization proof
of Σ1

1-bounding in a different way, we instead formalize the Beckmann–Pohlers
proof.

4.1. Infinitary derivations. The Beckmann–Pohlers proof of Σ1
1-bounding involves

the analysis of derivations in a cut-free infinitary proof system. We provide here a
standard definition of such a proof system; for other discussion of such proof
systems, see [10, 11]. Note that this proof system is a version of the Tait calculus.
Thus, our proof system deals with formulas within which negation is only appended
to atomic formulas; this is possible due to the normal form theorems available
in classical logic. In what follows, let Diag(N) be the atomic diagram of N in the
signature (0, 1,+,×).

Definition 4.1. We define �α Δ inductively by the following clauses:

(AxM) If Δ ∩ Diag(N) �= ∅, then �α Δ for all ordinals α.
(AxL) If tN = sN, then �α Δ, s /∈ X, t ∈ X for all ordinals α.

(∧) If �αi Δ, Ai and αi < α for i = 1, 2, then �α Δ, A1 ∧ A2.
(∨) If �αi Δ, Ai and αi < α for some i ∈ {1, 2}, then �α Δ, A1 ∨ A2.
(∀) If �αi Δ, A(i) and αi < α for all i ∈ N, then �α Δ,∀xA(x).
(∃) If �αi Δ, A(i) and αi < α for some i ∈ N, then �α Δ,∃xA(x).

The relation �α Δ is to be read that there is an infinite proof tree of
∨

Δ whose
depth is bounded by the ordinal α.

Let’s briefly record two lemmas that we will make use of. First we state the
“monotonicity lemma,” which follows immediately from the definition of �α Δ:

Lemma 4.2. If �α Δ, α � � , and Δ ⊆ Γ, then �� Γ.

https://doi.org/10.1017/jsl.2022.64 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2022.64


88 JAMES WALSH

Second, we state the ∧-inversion rule. For a proof of the ∧-inversion rule, see [10,
Theorem 10.7].

Lemma 4.3. If �α Δ,
∧
{Ai | i ∈ I } then, for all i ∈ I , �α Ai .

The infinitary proof calculus is sound and complete for Π1
1 sentences of arithmetic:

Theorem 4.4. For any Π1
1 sentence ∀ �Xϕ( �X ),

N � ∀ �Xϕ( �X ) ⇔ ∃α < �CK
1 �α F ( �X ).

In fact, there is a sharp restricted version of the completeness half of the theorem
relating consequences of ACA0 and proofs of height less than ε0:

Theorem 4.5. For any Π1
1 sentence ∀ �Xϕ( �X ),

ACA0 � ∀ �Xϕ( �X ) ⇒ ∃α < ε0 �α ϕ( �X ).

Note that the definition of infinitary derivations makes use of transfinite recursion
and is beyond the scopeACA0. Nevertheless, there are many methods for formalizing
infinitary derivations in such a way that appropriate versions of Lemmas 4.2, 4.3 and
Theorem 4.5 are provable in ACA0, all without recourse to the fixed point lemma
or recursion theorem. For present purposes, we will need to formalize only those
infinitary derivations whose depth is less than ε0, a rather meager class of infinitary
derivations. We will turn to the specifics in the next subsection.

4.2. Formalizing infinitary derivations. In this subsection we turn to the task of
formalization in ACA0. This task has two components. First, we must describe how
it is that we define infinitary proofs in ACA0. Second, we must describe how it is that
we reason about infinitary proofs in ACA0. A necessary pre-condition for completing
both tasks is fixing an ordinal notation system.

Remark 4.6. We fix a nice ordinal notation system for ordinals up to and
including (at least) 2ε0 + 1. We use the symbols {<,>,�,�} for this ordinal
notation system. In the remainder of this section of the paper, when we use these
symbols we are using them to refer to this fixed ordinal notation system.

The basic idea behind our definition of infinitary proofs in ACA0 is that infinitary
proofs are �-branching trees. Each node in the proof is tagged with a sequent,
ordinal notation, and a rule:

Definition 4.7. Let SEQ be the set of finite sequents, i.e., sets of formulas in
(Tait calculus) normal form in the signature (0, 1,+,×). Let

RULE = {AxM,AxL,∧,∨,∀,∃,CUT,REP}.
We demand that the trees satisfy local correctness conditions. The local correctness

conditions merely say that if a node is tagged with a sequent Δ and rule R, then
the premises of that node are tagged with sequents that are correct for the rule R.
Buchholz essentially introduces these local correctness conditions (changed only
slightly here) in [4, Definitions 2.1–2.3].

Definition 4.8. Let (Δ, R) ⊆ SEQ× RULE and let (Δ)i∈I be a sequence of
sequents (the premises of Δ). We say that (Δ, R) and (Δ)i∈I jointly satisfy the
local correctness conditions if each of the following holds:
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(AxM) If R = AxM then Δ ∩ Diag(N) �= Ø.
(AxL) If R = AxL then there are tN = sN such that s /∈ X, t ∈ X ∈ Δ.

(∧) If R = ∧ then I = {1, 2} and for some A1 and A2:

A1 ∧ A2 ∈ Δ and for all i ∈ {1, 2},Δi ⊆ Δ, Ai .

(∧) If R = ∨ then I ⊆ {1, 2} and for some A1 and A2,

A1 ∨ A2 ∈ Δ and for some i ∈ {1, 2},Δi ⊆ Δ, Ai .

(∀) If R = ∀ then I = N and for some ∀xA(x),

∀xA(x) ∈ Δ and for all i ∈ N,Δi ⊆ Δ, A(i).

(∃) If R = ∃ then I ⊆ N and for some ∃xA(x),

∃xA(x) ∈ Δ and for some i ∈ N,Δi ⊆ Δ, A(i).

(CUT) If R = CUT then I = {1, 2} and for some A,

Δ1 ⊆ Δ, A and Δ2 ⊆ Δ,¬A.

(REP) If R = REP then I = {1} and Δ1 = Δ.

Definition 4.9 (ACA0). An infinitary proof is an �-branching tree where each
node is labeled by a triple (Δ, R, α) consisting of a sequent Δ, rule R, and ordinal
notation α such that:

(1) The ordinal labels strictly descend from the root towards the axioms.
(2) The local correctness conditions from Definition 4.8 are satisfied.

Note that (1) does not force the ordinal tags to be exact but merely to give bounds.
We are particular interested in those infinitary proofs in which the rule CUT is

not applied. We write �αΔ if the sequent Δ has such an infinitary proof wherein the
root has ordinal tag α.

Now we turn to the task of formalizing reasoning about infinitary derivations
in ACA0. One particularly elegant way of formalizing such reasoning is due to
Buchholz [4]. We fix a standard embedding f of proofs of Π1

1 statements in ACA0

into infinitary derivations in �-logic. Using our ordinal notation system < that
includes a representation of ε0, we can define a term system for those infinitary
derivations that arise from f. The term of a proof in this term system encodes the
information in its root, i.e., its sequent, the rule it was inferred with, and an ordinal
bound. The definition of this term system for infinitary derivations uses primitive
recursion but does not use the fixed point lemma or recursion theorem.

Remark 4.10. An infinitary proof is coded by the label of its root. Buchholz
shows that there are primitive recursive functions that can be used to compute, from
the code of (the root of) a proof P, the codes of P’s subtrees. Accordingly, we can
use ACA0 (and even RCA0) to construct a proof tree from its code. Moreover, we will
be able to prove in ACA0 that the defined tree satisfies the definition of an infinitary
proof by the way Buchholz sets up his term system for infinitary derivations.

In Definition 4.9 we did not require that the ordinal tags are exact but merely that
they are bounds. Hence, the new version of Lemma 4.2 is trivial:
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Lemma 4.11. For any α < ε0, ACA0 proves “if �α Δ, α � � , and Δ ⊆ Γ, then
�� Γ.”

For the analogue of Lemma 4.3, we refer the reader to the proof of Theorem
10.7 in [10]. Note that Pohlers proves Theorem 10.7 by induction along α. In the
following we can follow suit since we are assuming α < ε0.

Lemma 4.12. For any α < ε0, ACA0 proves “if �α Δ,
∧
{Ai | i ∈ I } then, for all

i ∈ I , �α Ai .”
Finally, we note that the following version of Theorem 4.5 follows easily given

how we have set things up:

Theorem 4.13. For any Π1
1 sentence ∀ �Xϕ( �X ), if ACA0 � ∀ �Xϕ( �X ) then for some

α < ε0, ACA0 proves that �α ϕ( �X ).

Indeed, if ACA0 � ∀ �Xϕ( �X ) then, through the usual embedding f of ACA0 proofs
into �-logic, ACA0 can prove that there is an infinitary derivation with height< ε0
of ϕ( �X ). We get a term for this proof in Buchholz’s term system and then, by
Remark 4.10, we use it to construct an �-proof of height α of ϕ( �X ), all in ACA0.

Before continuing, we want to note that Lemmas 4.11 and 4.12 and Theorem 4.13
are all proved without recourse to the recursion theorem or self-reference.

4.3. The boundedness lemma. We need to check that a version of what is called
“the boundedness lemma” is provable in ACA0. Beckmann and Pohlers claim that a
version of the boundedness lemma is already implicit in Gentzen’s [5] proof of the
PA non-derivability of ε0-induction. To state this result, let us recall one definition
that occurs frequently in the work of Pohlers.1

Definition 4.14. The truth complexity tc
(
∀ �Xϕ( �X )

)
of a Π1

1 statement ∀ �Xϕ( �X )
is the least α such that �α ϕ( �X ).

Before continuing we will also fix some notation. We let

field(≺) := {x | ∃y(x ≺ y ∨ x ≺ y)},

Prog(≺, X ) := ∀x
((
x ∈ field(≺) ∧ ∀y(y ≺ x → y ∈ X )

)
→ x ∈ X

)
,

TI(≺) := ∀X
(
Prog(≺, X ) → ∀x ∈ field(≺) x ∈ X

)
.

Note that TI(≺) expresses transfinite induction along ≺ and for arithmetically
definable ≺ the sentence TI(≺) is Π1

1. An upshot of the boundedness lemma is
the boundedness theorem, which establishes a tight connection between otyp(≺)
and tc

(
TI(≺)

)
. Beckmann and Pohlers attribute the following consequence of the

boundedness theorem to Gentzen:

Theorem 4.15 (Gentzen). For any arithmetic well-ordering ≺,

otyp(≺) � 2tc
(
TI(≺)

)
.

1Note that sometimes (e.g., in [11]) a different definition is given and this definition is stated as a
theorem. Elsewhere, as in [2], the definition given here is used.
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Beckmann [2] has sharpened Gentzen’s result to show that otyp(≺) � tc
(
TI(≺)

)
,

which he derives from a sharp version of the boundedness lemma. For present
purposes, we will not need the sharp version. To state the version that we will need,
we need to cover some definitions.

Definition 4.16. A formula ϕ is X -positive if ϕ has no occurrences of X of the
form t /∈ X .

Definition 4.17. If ϕ is a formula, then ϕ[X �→ 	] is the set of formulas we get
by replacing each occurrence of t ∈ X in ϕ with 	(t). If Δ = {ϕ1, ... , ϕn} is a set of
formulas, then Δ[X �→ 	] = {ϕ1[X �→ 	], ... , ϕn[X �→ 	]}.

Definition 4.18. For any well-ordering ≺:

(1) |n|≺ is the rank of n in ≺.
(2) ≺α= {n | |n|≺ < α}.

Remark 4.19. Note that y ∈ X [X �→≺α] = |y|≺ < α.

The following lemma—the boundedness lemma—is a version of Lemma 13.9
in [10]. Our proof is essentially the same as that in Pohlers, except that Pohlers relies
on some notions that are not formalizable in ACA0. In particular, we are careful to
use partial truth-predicates rather than speak of satisfaction in N.

Lemma 4.20 (ACA0). Let α < ε0 be well-founded. Let ≺ be an arithmetic well-
ordering. Let Δ be a finite set of X-positive formulas. Suppose that

�α ¬Prog(≺, X ), t1 /∈ X, ... , tn /∈ X,Δ.

Then it follows that

TrueΠ1
1

(
∀X

(∨
Δ[X �→≺
 ]

))
,

where 
 = � + 2α and � = max{|t1|≺, ... , |tn|≺}.

Proof. We prove the claim by induction on α; note that this is licit since we are
assuming that α is well-founded. We split into cases based on the final inference
in the derivation that yields �α ¬Prog(≺, X ), t1 /∈ X, ... , tn /∈ X,Δ. Note that we do
not have to consider the inference CUT since the derivation is cut-free. Note that
we also do not have to consider the inference REP; if the given proof ends with
repetition we simply look at some smaller proof of the same sequent that does not
end with repetition.
Case 1: The sequent ¬Prog(≺, X ), t1 /∈ X, ... , tn /∈ X,Δ is an axiom according to
(AxM). The set Δ contains a true atomic formula ϕ. Then ϕ = ϕ[X �→≺
 ]. So
Δ[X �→≺
 ] contains a true formula, namely ϕ = ϕ[X �→≺
 ].
Case 2: The sequent ¬Prog(≺, X ), t1 /∈ X, ... , tn /∈ X,Δ is an axiom according to
(AxL). Δ contains a formula ti ∈ X for some i � n. If �i = |ti |≺, then �i � � < 

and TrueΠ1

1

(
(ti ∈ X )[X �→≺
 ]

)
since �i < 
. Hence TrueΠ1

1

(∨
Δ[X �→≺
 ]

)
.

Case 3: The final inference yields Δ. Assume that the main formula of the final
inference belongs to Δ. Then we have the premises

�αi ¬Prog(≺, X ), t1 /∈ X, ... , tn /∈ X,Δi ,
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where Δi contains only X -positive formulas. From the induction hypothesis we

infer that ∀i TrueΠ1
1

(
∀X

(∨
Δi [X �→≺
i ]

))
where 
i = � + 2αi . Lemma 4.11, i.e.,

the monotonicity lemma, delivers

∀i TrueΠ1
1

(
∀X

(∨
Δi [X �→≺
 ]

))
.

Appealing to Lemma 4.11 once again we infer that

TrueΠ1
1

(
∀X

( ∨
Δ[X �→≺
 ]

))
,

since validity is preserved by all inferences.
Case 4: The final inference yields ¬Prog(≺, X ). The main formula of the final
inference is

∃x
((
x ∈ field(≺) ∧ ∀y(y ≺ x → y ∈ X )

)
∧ x /∈ X

)
.

Then we have the premise:

�α0 ¬Prog(≺, X ), t ∈ field(≺) ∧ ∀y(¬y ≺ t ∨ y ∈ X ) ∧ t /∈ X, t1 /∈ X, ... , tn /∈ X,Δ.

By ∧-inversion, i.e., Lemma 4.12, we obtain

�α0 ¬Prog(≺, X ), t ∈ field(≺),∀y(¬y ≺ t ∨ y ∈ X ), t1 /∈ X, ... , tn /∈ X,Δ (4)

and also

�α0 ¬Prog(≺, X ), t /∈ X, t1 /∈ X, ... , tn /∈ X,Δ. (5)

Assume towards a contradiction that ¬TrueΠ1
1

(
∀X

( ∨
Δ[X �→≺
 ]

))
.

Applying the induction hypothesis to (4) we obtain

TrueΠ1
1

(
∀X

( ∨
Δ[X �→≺2
0 ] ∨ ∀y(y ≺ t → y ∈ X )[X �→≺2
0 ]

))
, (6)

where 
0 = � + 2α0 .
By Lemma 4.11

¬TrueΠ1
1

(
∀X

(∨
Δ[X �→≺
 ]

))
entails ¬TrueΠ1

1

(
∀X

(∨
Δ[X �→≺2
0 ]

))
.

By (6) we then obtain that y ∈≺2
0 for all y ≺ t, i.e., |t|≺ � 2
0 . Letting �0 :=
max{|t|≺, �}, then we have �0 � 
0. Applying the induction hypothesis to (5), we
obtain

TrueΠ1
1

(
∀X

(∨
Δ[X �→≺�0+2α0 ]

))
.

Note that �0 � � + 2α0 and also 2α0 + 2α0 � 2α . Hence,

�0 + 2α0 � � + 2α0 + 2α0 � � + 2α = 
.

Lemma 4.11 then yields

TrueΠ1
1

(
∀X

( ∨
Δ[X �→≺
 ]

))
,

contradicting our initial assumption. �
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For the purposes of the present paper, we will appeal only to the following special
case of the previous lemma:

Corollary 4.21 (ACA0). Let α < ε0 be well-founded. Let ≺ be an arithmetic
well-ordering. Let Δ be a finite set of X-positive formulas. Suppose that

�α ¬Prog(≺, X ),Δ.

Then it follows that

TrueΠ1
1

(
∀X

(∨
Δ[X �→≺2α ]

))
.

4.4. Formalizing Σ1
1-bounding. We are now ready to provide a diagonalization-

free proof of Lemma 2.9, restated here:

Lemma 4.22 (Rathjen). Suppose H (x) is a Σ1
1 formula such that

ACA0 � ∀x
(
H (x) → x ∈ WRec

)
.

Then, for some e ∈ Rec,

ACA0 � e ∈ WRec ∧ ¬H (e).

Proof. Let H (x) be a Σ1
1 formula satisfying the hypothesis of the lemma. Then

H (x) is of the form ∃Y�(x,Y ) for some arithmetic formula �. For an x ∈ WRec , let
≺x be the well-ordering encoded by x.

We reason as follows:

ACA0 � ∀x
(
∃Y�(x,Y ) → x ∈ WRec

)
,

ACA0 � ∀x
(
¬∃Y�(x,Y ) ∨ ∀XTI(≺x, X )

)
,

ACA0 � ∀x
(
¬∃Y�(x,Y ) ∨ ∀X

(
¬Prog(≺x, X ) ∨ ∀y ∈ field(≺x) y ∈ X

))
,

ACA0 � ∀X∀Y∀x
(
¬�(x,Y ) ∨ ¬Prog(≺x, X ) ∨ ∀y ∈ field(≺x) y ∈ X

)
.

By Theorem 4.13, there is an α < ε0 such that the following is provable in ACA0:

�α ¬�(x,Y ),¬Prog(≺x, X ),∀y ∈ field(≺x) y ∈ X. (7)

We now switch to reasoning in ACA0. Suppose thatH (n) holds. That is,

∃Y�(n,Y ). (8)

Applying Corollary 4.21 to (7) we infer that

∀Y
(
¬�(n,Y ) ∨ ∀y ∈ field(≺x) y ∈≺n2α

)
.

Which, by definition of ≺x2α , is just to say

∀Y
(
¬�(n,Y ) ∨ ∀y ∈ field(≺n) y ∈ {k | |k|≺n < 2α}

)
.

Which is just to say that

∀Y
(
¬�(n,Y ) ∨ ∀y ∈ field(≺n) |y|≺n < 2α

)
. (9)

Combining (8) and (9) we see that ∀y ∈ field(≺n) |y|≺n < 2α .
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This is just to say that otyp(≺n) < 2α . We infer that

sup{otyp(≺x) | TrueΣ1
1

(
H (x)

)
} < 2α < 2α + 1 < ε0.

Whence 2α + 1 ∈ WRec but ¬H (2α + 1). �

§5. Open problems. We will conclude with open problem concerning the
sharpness of these theorems. That is, can any of the hypotheses in the statement
of these theorems be weakened? There are three hypotheses that can be tweaked in
interesting ways. First, there is the question of relaxing the definability condition.

Question 5.1. Is there a Π1
1-sound and Π1

1-definable extension of Σ1
1-AC0 that

proves its own Π1
1-soundness?

Note that a positive answer to this question would imply that Theorem 3.5 is
sharp, at least along the dimension of the descriptive complexity of T.

If we do not demand that the theory extends Σ1
1-AC0, then we can get a positive

answer of sorts by considering the set of Π1
1 truths. This theory is Π1

1-sound and
definable by the Π1

1 predicate TrueΠ1
1
(x), which says that x encodes a sentence that is

ACA0-provably equivalent to a Π1
1 sentence. This theory proves its own Π1

1-reflection
statement:

∀ϕ ∈ Π1
1

(
TrueΠ1

1
(ϕ) → TrueΠ1

1
(ϕ)

)
,

which is a logical truth. However, note that this depends on treating Π1
1-reflection as

a single statement, which is arguably inappropriate for a theory that does not extend
ACA0. If we treated Π1

1-reflection as a schema{
∀ �x

(
TrueΠ1

1

(
ϕ( �x)

)
→ ϕ( �x)

)
| ϕ( �x) ∈ Π1

1

}
,

then the theory in question might not prove instances of this schema since ACA0 is
required to transform arbitrary Π1

1 statements into normal form.
If we define T as the union of Σ1

1-AC0 with the set of all Π1
1 truths, then the

Π1
1-reflection statement

∀ϕ ∈ Π1
1

(
PrT (ϕ) → TrueΠ1

1
(ϕ)

)
is not a Π1

1 statement, since the antecedent is Π1
1, so it does not trivially follow

from T.
Second, there is the question of relaxing the soundness condition.

Question 5.2. Is there a Σ1
1-sound and Σ1

1-definable extension of Σ1
1-AC0 that

proves its own Π1
1-soundness?

If we demand in addition that the theory proves Theorem 3.5 and provably extends
Σ1

1-AC0, then we get a strong negative answer. Suppose that:

(1) T is definable by a Σ1
1 formula �.

(2) T proves that � extends Σ1
1-AC0.

(3) T proves the Π1
1-soundness of �.
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Then, since T proves Theorem 3.5, T proves that � is not Π1
1-sound. Hence, T proves

both that � is and is not Π1
1-sound, i.e., T is inconsistent, whence T is not Σ1

1-sound.
Finally, there is the question of relaxing the condition that T extend Σ1

1-AC0.

Question 5.3. Is there a Π1
1-sound and Σ1

1-definable extension of ACA0 that proves
its own Π1

1-soundness?

Regarding this question there are reasons to expect a negative answer. In a recent
preprint [1], Aguilera and Pakhomov have introduced |T |Π1

2
, the Π1

2 norm of T.

|T |Π1
2

is a dilator associated with T that is in some ways analogous to the proof-

theoretic ordinal of T, except that it measures the Π1
2 consequences of T. Aguilera

and Pakhomov prove that Π1
2-reflection for T is equivalent to the statement “|T |Π1

2
is a dilator” [1, Theorem 7]; this is an analogue of Lemma 3.4. The important point
is that this result is proved for T extending ACA0. An appropriate reformulation
of their proof of Theorem 7 may deliver a negative answer to Question 5.3, which
would strengthen Theorem 3.5.
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