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Abstract

An edge flipping is a non-reversible Markov chain on a given connected graph, as defined
in Chung and Graham (2012). In the same paper, edge flipping eigenvalues and sta-
tionary distributions for some classes of graphs were identified. We further study edge
flipping spectral properties to show a lower bound for the rate of convergence in the case
of regular graphs. Moreover, we show by a coupling argument that a cutoff occurs at
1
4 n log n for the edge flipping on the complete graph.
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1. Introduction

Edge flipping is a random process on graphs where an edge of a graph is randomly chosen
at each step and both its endpoints are colored either blue with probability p or red with prob-
ability q = 1 − p. We are interested in the long-term vertex color configurations of the graph
and a derived statistic, the frequency of blue vertices. In most cases, the initial configuration
of vertex colors is taken to be monochromatic (all blue or all red). Stationary distributions for
paths and cycles [7] and for complete graphs [6] have been studied, and various asymptotic
results on stationary color configurations obtained for those cases. Our emphasis will be on the
mixing time of the chain.

The set of color configurations of a graph with n vertices is in fact the n-dimensional hyper-
cube, {0, 1}n, so it is expected that edge flipping has similarities with other Markov chains on
the space. Take, for example, the Ehrenfest urn model. In this model there are two urns con-
taining n balls in total. At every stage a ball is randomly chosen and is moved to the opposite
urn. In our case, the urns can be associated with the two different colors, and the dynamics
is picking two balls at random and placing them together in one of the two urns. The crucial
difference is that edge flipping is non-reversible, unlike the former model. In order to see that,
consider two configurations, one with all the vertices blue and the other with all but one vertex
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1318 Y. E. DEMİRCİ ET AL.

blue. Then the chain moves from the latter to the former with positive probability, but the other
direction has zero probability.

Edge flipping can also be considered a random walk on the set of chambers of Boolean
arrangements, which are particular cases of hyperplane arrangements. The eigenvalues of
hyperplane chamber walks were first obtained in [3]. Markov chains such as the Tsetlin library
and various riffle shuffle models were shown to be examples of these walks in the same paper.
The transition matrix of the random walk was shown to be diagonalizable in [5] using algebraic
topology, and a non-compelling condition for the uniqueness of the stationary distribution was
provided. In a broader context, [4] gave a ring-theoretical proof for the diagonalizability of
random walks on left-regular bands, which include hyperplane arrangements. Finally, a com-
binatorial derivation of the spectrum of the random walk was shown in [1]. The eigenvectors
of hyperplane arrangements were studied in [14, 16].

We use the spectral analysis of the Markov chain, as developed in the aforementioned
papers, and combine it with various probabilistic techniques to address the rate of conver-
gence to its stationary distribution with respect to total variation distance. See [13] for an
example of separation distance bounds on hyperplane random walks. The spectral techniques
are limited since edge flipping is non-reversible. In particular, a frequently used l2 bound on
the total variation distance by the sum of squares of eigenvalues is not available (see [11,
Lemma 12.16]). Rather, an upper bound involving the sum of the eigenvalues was obtained by
combining coupling techniques with spectral analysis in [3] and [5].

We are ready to present our results on the mixing time of edge flipping. The mixing time
of a Markov chain is the time required for the distance between the law of the chain and
the stationary distribution to be small. The formal definitions for the distance notion and the
mixing time are given at the beginning of Section 3. Our first result is for the most general case.
In Theorem 4, we show an upper and a lower bound on the mixing time for edge flipping on
connected graphs with n vertices, which differ by a logarithmic factor of n. Then we specialize
to regular graphs and obtain bounds of order n log n with different constants in Theorem 5.
This is known as pre-cutoff , which will not be defined here; we refer to [11, Section 18.1] for
its definition. A finer result is known as cutoff , which refers to a sharp transition in the distance
of the Markov chain from its stationary distribution. We refer the reader to Section 3.3 for its
definition.

A complete characterization of cutoff is still an open problem. There are conditions that
guarantee its existence in broad classes of Markov chains. For example, the product condition
implies the existence of cutoff for some classes of reversible chains [2], yet there are counter-
examples too; see [11, Section 18, Notes]. Recently, an entropic criterion was proposed in
[15] which requires symmetry of probabilities, a less restrictive property than reversibility.
However, that condition does not apply to edge flipping either for the aforementioned reason
of it not being reversible. So, we are not able to tell immediately whether edge flipping shows
a cutoff or not. The main result of this paper is to find matching constants for the upper and
lower bounds on the mixing time in the case of complete graphs.

Theorem 1. Let Kn be the complete graph with n vertices. Edge flipping on Kn exhibits a cutoff
at time 1

4 n log n with a window of order n.

In order to develop an intuition for this exact rate, let us reconsider random walks on hyper-
cubes. In particular, let us take the lazy random walk on {0, 1}n. In comparison to the lazy
random walk on the hypercube, the number of vertices that change color at each step is 1 on
average instead of 1

2 , so we expect to have twice as fast a chain as the former, which happens
to be the case; see [11, Theorem 18.3].
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Mixing time bounds for edge flipping on regular graphs 1319

The outline of the paper is as follows. The next section provides background on hyperplane
arrangements and the Markov chains defined on them. In Section 3 we formally present our
results. Then we discuss how to bound the rate of convergence to the stationary distribution,
and supply the proofs of our theorems.

2. Hyperplane random walks

Let A= {Hi}n
i=1 be a collection of hyperplanes in a real vector space V . The collection is

called central if
⋂

Hi �= ∅. Each Hi divides V into two open half-spaces. Let us denote them
by H+

i and H−
i , and let H0

i stand for the hyperplane itself. A face F is a non-empty subset of V

determined by hyperplanes as F = ⋂n
i=1 Hσi(F)

i , where σi(F) ∈ {+, −, 0}. So, we can represent
any face by a sign sequence {σi(F)}n

i=1. The faces with σi(F) �= 0 for all i are called chambers.
The set of faces and the set of chambers are denoted by F and C respectively. Then we define
a left-multiplication on F by

σi(FF′) =
⎧⎨
⎩

σi(F) if σi(F) �= 0,

σi(F′) if σi(F) = 0.
(1)

The operation defined above generates a random walk on C with transition probabilities

P(C, C′) =
∑
F∈F

FC=C′

w(F), (2)

where C, C′ ∈ C, and w is any probability distribution over faces.
To state the results on the eigenvalues of the matrix associated with the transition probabil-

ities, we first consider a partial order on A defined via (1) as F ≤ F′ ⇔ FF′ = F′. This implies
that F ≤ F′ if and only if either σi(F) = σi(F′) or σi(F) = 0 for each i = 1, . . . , n. We can view
left-multiplication by F as a projection from A onto A≥F := {F′ ∈A : F ≤ F′}.

Next, we define another partial order by

F 
 F′ ⇔ F′F = F′. (3)

In other words, F 
 F′ if and only if σi(F′) = 0 implies σi(F) = 0. The equivalence classes of
(3) give a semilattice L, and L is a lattice if and only if A is central [17]. The equivalence class
of F with respect to (3) is called the support of F, and is denoted by supp F. In lattice termi-
nology, we have supp FF′ = supp F ∨ supp F′. The elements of L are called flats. Furthermore,
if supp F = supp F′, then the projection space A≥F is isomorphic to A≥F′ . Thus the following
is well-defined: cX = |A≥F| for any F ∈F with X = supp F.

Observe that the support of the chambers is maximal in L, and the set of chambers is closed
under left-multiplication. Therefore, the Markov chain is well-defined over the set of chambers.
Its spectral profile is as follows.

Theorem 2. ([5, Theorem 1].) Let {w(F)}F∈F be a probability distribution over the faces of
a central hyperplane A. The eigenvalues of the random walk given by the transition prob-
abilities (2) are indexed by the lattice L. For each flat X ∈ L, the associated eigenvalue is
λX = ∑

supp F⊆X w(F), with multiplicity mX satisfying
∑

X
Y mY = cX.

We note that the multiplicities have the explicit expression mX = ∑
X
Y μ(X, Y)cY by

Möbius inversion, where μ is the Möbius function of the lattice L. For a Boolean arrangement,
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1320 Y. E. DEMİRCİ ET AL.

the partial order (3) is set inclusion, and its Möbius function is simply μ(X, Y) = (−1)|Y|−|X|
by the inclusion–exclusion principle. In this case, the eigenvalues are indexed by the Boolean
lattice.

Finally, we look at the edge flipping case. Let G be a connected graph with n vertices and m
edges. Denote the vertex set of G by V(G) and the edge set by E(G). Each vertex i is associated
with a hyperplane Hi in R

n and the arrangements are central. All color configurations where
the vertex i is blue reside in the half-space H+

i , and the color configurations where the vertex i
is red fall into H−

i .
The faces that correspond to color configurations on subsets of vertices are the chambers

of the hyperplane where the sign of σk(C) gives the color of the vertex k in the subset. In
agreement with the half-spaces defined above, if σk(F) = +(−), the vertex of the subset labeled
by k is blue (red). The faces that generate the random walk are colored edges. A blue edge
connecting the vertices i and j is given by the face which has the sign sequence

σk(Fb) =
⎧⎨
⎩

+ if k ∈ {i, j},
0 otherwise.

In the same way, a red edge connecting i and j is given by

σk(Fr) =
⎧⎨
⎩

− if k ∈ {i, j},
0 otherwise.

The probabilities assigned to these faces are uniform for the same color, and are given by
w(Fb) = p/m and w(Fr) = q/m.

3. Edge flipping

We are ready to study the stationary distribution and the rate of convergence to it for edge
flipping. We first define the distance notion to be used. The total variation distance between μ

and ν on the state space � is defined as

‖μ − ν‖TV = 1

2

∑
x∈�

|μ(x) − ν(x)| = max
S⊆�

|μ(S) − ν(S)|. (4)

In the context of Markov chains, we will use the following notation. For a Markov chain defined
on �, let the probability assigned to x ∈ � be Pt

z(x) after running the chain for t steps with the
initial state z, and let it be π (x) at the stationary distribution. A shorthand notation will be used
for the total variation distance between Pt and π : dTV(t) = maxz∈� ‖Pt

z − π‖TV. In case that
it does not make difference from which state we initiated the Markov chain, we will denote
its law after t steps by Pt. In fact, it can be shown that the maximum can only be achieved by
point masses on color configurations. For the rate of convergence, we define the mixing time,
tmix(ε) = min{t : dTV(t) ≤ ε}.

3.1. Distance to stationary distribution

The following theorem gives an upper bound for the distance to stationary distributions in
terms of the eigenvalues given in the previous section.

Theorem 3. ([3, Theorem 5.1].) Consider a central hyperplane arrangement with set of flats L.
Let L∗ be the set of all flats in L except the unique maximal one, and μ be the Möbius function
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of the lattice L. Then dTV(t) ≤ − ∑
X∈L∗ μ(X, V(G))λt

X, where λX, the eigenvalue associated
with flat X, is as defined in Theorem 2.

As mentioned in the introduction, this upper bound is not obtained by eigenvalue techniques,
symmetric matrices, etc. This is due to a coupling argument.

We provide two examples where we identify the eigenvalues of the transition matrix and
apply the theorem above.

Example 1. (The complete graph, Kn.) Kn is the graph with n vertices where every ver-
tex is connected to every other vertex. Let Xk be a flat in L consisting of k vertices. Then
μ(Xk, V(G)) = (−1)n−k. By Theorem 2, the eigenvalue corresponding to flat Xk is

(k
2

)
/
(n

2

)
and

the number of flats of size k is
(n

k

)
. Hence,

dTV(t) ≤ −
∑
X∈L∗

μ(X, V(G))λt
X = −

n−1∑
k=2

∑
Xk

μ(Xk, V(G))

((
k

2

)/(
n

2

))t

= −
n−1∑
k=2

(−1)n−k
(

n

k

) ((
k

2

)/(
n

2

))t

≤ n

(
1 − 2

n

)t

+
n−2∑
i=2

(−1)i−1
(

n

i

)(
1 − i

n

)2t

+ o(n)

=O
(

n

(
1 − 2

n

)t)
,

provided that t ≥ 1
2 n log n.

Example 2. (The complete bipartite graph, Km,n.) Km,n is a graph whose vertex set is parti-
tioned into two sets of sizes m and n, where every vertex of one set is connected to every vertex
of the other set. Take a flat Xk,l ∈ L, where k and l denote the numbers of vertices from the
set of size m and the set of size n respectively. The reader can verify using Theorem 2 that
λXk,l = kl/mn with multiplicity

(m
k

)(n
l

)
. We can also show that μ(Xk,l, V(G)) = (−1)m+n−k−l.

So, by Theorem 3,

dTV(t) ≤ −
∑
X∈L∗

μ(X, V(G))λt
X = n

(
(n − 1)m

nm

)t

+ m

(
n(m − 1)

nm

)t

−
m−1∑
k=1

n−1∑
l=1

(−1)m+n−k−l
(

m

k

)(
n

l

)(
kl

mn

)t

= n

(
1 − 1

n

)t

+ m

(
1 − 1

m

)t

+
m−1∑
j=1

(−1)j
(

m

j

)(
1 − j

m

)t n−1∑
i=1

(−1)i
(

n

i

)(
1 − i

n

)t

.

Suppose n ≥ m. Then, for t ≥ n log n, we have dTV(t) =O(n(1 − (1/n))t).
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A computationally tractable bound was obtained in [5] by a coarser version of the coupling
argument in the proof of Theorem 3 in [3]:

dTV(t) ≤ −
∑
X∈L∗

μ(X, V(G))λt
X ≤

∑
{M: M co-maximal in L}

λt
M, (5)

where M is a co-maximal flat in L if M ≺ X implies X is maximal in L. In edge flipping, co-
maximal flats are simply obtained by removing a vertex from the flat of all vertices, since any
flat is a subset of vertices.

The precision of the alternating bound compared to (5) is discussed in [8] considering var-
ious examples of random hyperplane arrangements. In the examples that we study, the latter
bound is as good as the former.

Now we can provide an upper bound for the rate of convergence of edge flipping in general
connected graphs.

Theorem 4. Consider edge flipping on a connected graph G with n vertices and m edges, and
let δ be the degree of the vertex with the minimum degree in G. For c > 0,

c
m

δ
≤ tmix

(
qe−2c

)
≤ m

δ
( log n + 2c − log q).

Proof. Observe that the co-maximal flats obtained by removing any vertex with the mini-
mum number of edges have the smallest eigenvalue among all co-maximal flats. Let M∗ denote
this flat. Then the eigenvalue indexed by M∗ is

λM∗ =
∑

supp F⊆M∗
w(F) = m − δ

m
= 1 − δ

m

by Theorem 2. By (5), we have

dTV(t) ≤
∑

{M: M co-maximal in L}
λt

M ≤ n λt
M∗ ≤ n

(
1 − δ

m

)t

≤ e−tm/δ ≤ qe−2c

if t ≥ (m/δ)( log n + 2c − log q).
For the lower bound, let us label a vertex with the minimal degree by x and take its color to

be blue in the initial configuration without loss of generality. Let R be the set of all configura-
tions where x is colored red. We have π (R) = q because whenever an edge with an endpoint x
is chosen, it is colored blue with probability p and red with probability q. Now let us look at
Pt(R). The probability that the edge connecting x to the rest of the graph is not chosen before
step t is

(
1 − δ

m

)t

≥ exp

{
−t

(
m

δ
+ m2

δ2

)}
.

If we take t ≤ cm/δ, then we have Pt(R) ≤ q(1 − e−2c). Finally, using the second inequality in
(4), we have ‖Pt − π‖TV ≥ |Pt(R) − π (R)| ≥ qe−2c. �

We note that this bound is not optimal in either direction, as shown in the following section.
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3.2. Rate of convergence for regular graphs

A graph G is called regular if every vertex of G has the same degree. It is called k-regular
if the degree of the vertices is k. We show the following bounds on the mixing time of edge
flipping for regular graphs, which are independent of the degree of the vertices.

Theorem 5. Let G be a connected, regular graph with n vertices. Then, for c > 0, the mixing
time of edge flipping satisfies 1

4 n log n −O(n) ≤ tmix(e−c) ≤ 1
2 n log n +O(n).

The smallest-degree regular graph on n vertices is the cycle Cn, and the largest-degree reg-
ular graph on n vertices is Kn. We remark that the stationary distributions of edge flipping for
these graphs are studied in [6, 7].

The derivation of these bounds shows that, as long as the number of vertices of the same
degree is of order n, the principal terms in the bounds above remain the same.

Proof of the upper bound in Theorem 5. Suppose the degree of the vertices of G is equal
to k. Let M denote a co-maximal flat. Then the corresponding eigenvalue is

λM =
∑

supp F⊆M

w(F) = (kn/2) − k

kn/2
= 1 − 2

n

by Theorem 2. The bound (5) gives

‖Pt
C − π‖TV ≤ n

(
1 − 2

n

)t

≤ e−c

if we take t ≥ n log n/2 + cn/2. �

For the proof of the lower bound in Theorem 5 we use the Wilson’s method: [18] showed
that an eigenvector is a good candidate for a test statistic as the variance of the associated eigen-
function can be estimated inductively from the transition probabilities of the Markov chain.
Assuming the second-order estimate for the eigenfunction, a lower bound can be obtained as
follows.

Lemma 1. ([11, Theorem 13.5].) Let Xt be an irreducible, aperiodic, time-homogenous
Markov chain with state space �. Let 	 be an eigenfunction associated with eigenvalue λ > 1

2 .
If, for all x ∈ �, E((	(X1) − 	(x))2 | X0 = x) ≤ R for some R > 0, then

tmix(ε) ≥ 1

2 log (1/λ)

(
log

(
(1 − λ)	(x)2

2R

)
+ log

(
1 − ε

ε

))

for any x ∈ �.

The maximum eigenvalue is 1 with right eigenfunction φ0(C) = 1 for all C ∈ C. The eigen-
vectors of eigenvalues corresponding to co-maximal flats in hyperplane arrangements are
identified by Pike as follows.

Theorem 6. ([14, Theorem 3.1.1].) For each i ∈ {1, . . . , n}, the Markov chain defined on the
chambers by the transition probabilities in (2) has the right eigenfunction

φi(C) =

⎧⎪⎨
⎪⎩

− ∑
F∈F

σi(F)=+
w(F), σi(C) = −,

∑
F∈F

σi(F)=−
w(F), σi(C) = +,
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1324 Y. E. DEMİRCİ ET AL.

corresponding to eigenvalue λi = ∑
σi(F)=0 w(F). Moreover, φ0, φ1, . . . , φn are linearly inde-

pendent, where φ0 is the eigenvector for the largest eigenvalue 1.

In our problem, the eigenvectors have a simpler expression as

φi(C) =
⎧⎨
⎩

−p, σi(C) = −,

q, σi(C) = +,
(6)

for i = 1, . . . , n. Each i represents a vertex, and we can read off the color of i in a chamber
by the eigenfunction φi. These eigenfunctions are not quite distinguishing on their own. In
fact, Wilson’s lemma applied to any φi gives a lower bound of order n only. Nevertheless, if an
eigenvalue corresponding to a co-maximal flat has algebraic multiplicity larger than one, linear
combinations of eigenvectors can be used in Wilson’s lemma. In the case of regular graphs,
where each vertex has the same degree, we have the second largest eigenvalue

λ =
∑

σ1(F)=0

w(F) = kn/2 − k

kn/2
= 1 − 2

n

associated with the co-maximal flat obtained by removing the vertex indexed by 1. Of course,
it has multiplicity n considering all other co-maximal flats and equality of degrees. Therefore,
from Theorem 6, the eigenspace for the second largest eigenvalue is spanned by eigenvectors
(6) for i = 1, . . . , n. If we consider the linear combination 	 = ∑n

i=1 φi, it is easy to see that
	(C) = 	(C′) if and only if they have the same number of blue vertices. If the color configu-
ration C has k blue vertices, then 	(C) = k − pn. So, 	 is a statistic that counts the number of
blue vertices up to an additive term which guarantees E(	(π )) = 0, where the expectation is
taken with respect to the stationary distribution π , i.e. E(	(Xt | X0 = C)) = λt	(C) → 0. We
can use this statistic to obtain the lower bound by Wilson’s method. Since, at each step, at most
two vertices can change color, we have

E[(	(X1) − 	(C))2 | X0 = C)] ≤ 4, (7)

so that the condition in Lemma 1 is satisfied with R = 4.

Proof of the lower bound in Theorem 5. For the lower bound, since the second eigenvalue
has multiplicity n given that the graph is regular, the sum of eigenvectors is an eigenvector
of the second largest eigenvalues above. Take the initial state to be the blue monochromatic
graph, for which 	(C) = n − pn = qn. Then, using Lemma (1),

tmix(ε) ≥ n

4

(
log

(
q2n2

4n

)
+ log

(
1 − ε

ε

))
≥ 1

4
n log n − Cn

for some constant C depending only on p and ε. We take ε = e−c to conclude the proof. �

We also note, with thanks to the anonymous referee who pointed this out, that the construc-
tion of eigenfunctions of edge flipping is analogous to the construction of eigenfunctions for
the simple random walk on the hypercube. This also justifies the lower bound on the leading
order of 1

4 n log n.
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3.3. Exact rate of convergence for complete graphs

In Section 3.2 we established a lower bound of 1
4 n log n for the mixing time of edge flipping

in regular graphs with n vertices. However, the upper bound obtained from eigenvalues differs
by a factor of two. So we can only give an interval for the exact rate of convergence. Yet some
earlier studies on similar processes suggest that the lower bound captures the correct rate of
convergence; see [12], for instance. We can verify that in the case of complete graphs. First,
we formally define what we mean by the ‘exact rate’.

Definition 1. A sequence of Markov chains shows a cutoff at the mixing time {tn} with a
window of size {wn} if

(i) lim
n→∞ wn/tn = 0,

(ii) lim
γ→−∞ lim inf

n→∞ dTV(tn + γ wn) = 1,

(iii) lim
γ→∞ lim sup

n→∞
dTV(tn + γ wn) = 0.

We will use a coupling argument to show that edge flipping in complete graphs shows a
cutoff at time 1

4 n log n with a window of size n. The coupling time of two copies of a process
is defined as τ := min{t : Xt = Yt}. Writing d(·) for dTV(·), the coupling time is related to the
mixing time by

d(t) ≤ max
x,y∈�

P(τ > t | X0 = x, Y0 = y). (8)

See, for example, [11, Theorem 5.4].

Proof of Theorem 1. Consider the linear combination of eigenvectors denoted by 	 in
Section 3.2. We already showed that it counts the number of blue vertices. Now, if we view
edge flipping on Kn as a random walk on the hypercube (Z/2Z)n where at each step two coor-
dinates are replaced either by 1s with probability p or by 0s with probability q, then 	 is just
the Hamming weight, the sum of the 0–1 coordinates. See [11, Section 2.3] for the definition
of a hypercube random walk. An n log n upper bound is obtained for a lazy random walk on
the hypercube by a coupling and a strong stationary time argument, which can be found in
[11, Sections 5.3 and 6.4], respectively. This bound is later improved by monotone coupling
in Section 18.2 of the same book following the observation that the problem can be reduced
to convergence of Hamming weights, which can be considered as a lazy Ehrenfest urn prob-
lem. The same reduction argument is valid in the case of edge flipping in complete graphs, as
follows. We claim that if the initial configuration is monochromatic, then

‖Pt − π‖TV = ‖	(Xt) − π	‖TV, (9)

where Xt is the chamber at step t, and π	 is the stationary distribution for the number of
blue vertices. To argue for this, let us denote the set of chambers with k blue vertices by
Ck = {C ∈ C : 	(C) = k}. Starting from a monochromatic configuration, Xt is equally likely to
be any of the chambers with the same number of blue vertices by symmetry. Thus, we have

∑
C∈Ck

|P(Xt = C) − π (C)| =
∣∣∣∣

∑
C∈Ck

P(Xt = C) − π (C)

∣∣∣∣ = |P(	(Xt) = k) − π	(k)|.

The equality in (9) shows that we can study the convergence of 	(Xt) to its stationary
distribution to obtain an upper bound for the mixing time of the edge flipping on Kn. We
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define a coupling with three stages to study the mixing time. Let Xt and Yt be two edge flipping
processes where the initial states are monochromatic of opposite colors. We denote the number
of blue vertices in each process by Wt = 	(Xt), Zt = 	(Yt), and take W0 = 0 and Z0 = n. From
now on, we will only deal with Wt and Zt. Let us first define t := Zt − Wt for t = 0, 1, . . .

First stage: Coupon collector’s problem For the first stage of the coupling (Wt, Zt)∞t=0 we
define the stopping time τ1 as τ1 = mint

{
t ≤ ⌈√

n
⌉}

; then we define the rule of coupling up
to this time. If t < τ1, the two chains move identically in the sense that we choose the same two
vertices in the underlying graphs and color them the same.

The first part suggests that the process up to time τ1 is twice as fast as the coupon collector’s
problem where you stop collecting more coupons if the remaining number of coupons is

⌈√
n
⌉

.
Let us define a process ̃t for all t with transition probabilities

̃t+1 = ̃t +

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 with probability
(n−̃t

2

)
/
(n

2

)
,

−1 with probability ̃t(n − ̃t) /
(n

2

)
,

−2 with probability
(
̃t
2

)
/
(n

2

)
and ̃0 = n. Note that ̃t = t for t ≤ τ1. Calculating the conditional expectation, we have
E[̃t+1 | ̃t] = (1 − (2/n))̃t. Therefore,

E[̃t] =
(

1 − 2

n

)t

̃0 ≤ ne−2t/n.

By Markov’s inequality, P(τ1 > s) = P[̃s >
√

n] ≤ √
ne−2s/n. If we take s = 1

4 n log n + γ1n,
we obtain

P

(
τ1 >

1

4
n log n + γ1n

)
< e−γ1 . (10)

Second stage: Coupling with lazy simple random walks Note that if we continued with the
first coupling until the two chains meet, this expression would give an upper bound of order
1
2 n log n, which is the same as we obtained from eigenvalues. To improve this rate, whenever
t ≥ τ1, we let the chains move according to the second rule where we choose edges indepen-
dently for two graphs but color them with the same color. We will show that it only needs O(n)
steps to hit zero with positive probability. Given that t ≥ τ1,

t+1 = t +

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−2 with probability
(n−Wt

2

)(Zt
2

)
/
(n

2

)2
,

−1 with probability
[(n−Wt

2

)
Zt(n − Zt) + Wt(n − Wt)

(Zt
2

)]
/
(n

2

)2
,

1 with probability
[
Wt(n − Wt)

(n−Zt
2

) + (Wt
2

)
Zt(n − Zt)

]
/
(n

2

)2
,

2 with probability
(Wt

2

)(n−Zt
2

)
/
(n

2

)2
,

0 otherwise.

(11)

We need to be more precise and show that the terms in the difference t are concentrated
around pn, recalling that p was the probability of coloring a chosen edge blue.

Lemma 2. If t > 1
4 n log n, then P(|Vt − pn| > n1/2+α) ≤ 2n−2α(1 + o(1)) for any α > 0, where

Vt can be replaced by Wt or Zt, which are defined in the beginning of the proof.
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Proof. It is not difficult to see that E[Wt] → pn as t → ∞. To show the concentration result,
we will use a second-order estimate. First, consider

Wt+1 = Wt +

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−2 with probability q
(Wt

2

)
/
(n

2

)
,

−1 with probability qWt(n − Wt)/
(n

2

)
,

1 with probability pWt(n − Wt)/
(n

2

)
,

2 with probability p
(n−Wt

2

)
/
(n

2

)
,

0 otherwise,

(12)

where we take
(z

n

) = 0 unless z is a positive integer. Let

Ft = σ (W0, W1, . . . , Wt) (13)

be the σ -field generated by W0, W1, . . . , Wt. Computation gives E[Wt+1 |Ft] = 2p + (1 −
(2/n))Wt. We can evaluate this sum recursively to obtain

E[Wt] = pn −
(

1 − 2

n

)t+1

pn > pn − p
√

n, (14)

provided that t > 1
4 n log n and W0 = 0 as assumed earlier.

Secondly, we bound the variance of Wt by applying a crucial step in the proof of Wilson’s
Lemma 1 (see [11, Section 13.2]), which gives

Var(Wt) ≤ R

1 − λ
= 4

1 − (1 − (2/n))
= 2n, (15)

by (7). Then, by (14) and using (15) in Chebyshev’s inequality,

P
(|Wt − pn| ≥ (p + r

√
2)

√
n
) ≤ 1

r2

for r > 0. This proves the result for Vt = Wt. The proof for Vt = Zt follows exactly the same
line of argument. By symmetric replacement of parameters, we have

E[Zt] = pn −
(

1 − 2

n

)t+1

pn +
(

1 − 2

n

)t

Z0 < pn + q
√

n,

where we take Z0 = n. Since the bound in (7) is true for all initial states, we have the same
variance bound. The rest follows from Chebyshev’s inequality. �

Next, we present a maximal inequality for Wt in the second stage of the coupling.

Lemma 3. If t ≥ 1
4 n log n and k is a positive real number independent of n, then

P

(
max

τ1≤t≤τ1+kn
|Vt − pn| > n1/2+β

)
≤ 4n−α

for any β > 0 and α ∈ (0, β), where Vt can be replaced by Wt or Zt.
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Proof. Since Wt and Zt are symmetric cases as in Lemma 2, we only prove the result for Wt.
By Doob–Meyer decomposition, we construct a martingale from {Wτ1+s}s≥0 with respect to the
σ -fields: Gs := Fτ1+s for all s = 0, 1, 2, . . ., where Ft is as defined in (13) for all t = 0, 1, 2, . . .

Since P(τ1 < ∞) = 1 by (10), M1 = Wτ1+1 − Wτ1 is well-defined. For s ≥ 2, we let

Ms = Wτ1+s + 2

n

s−1∑
i=1

Wτ1+i − Wτ1 − 2sp. (16)

From (12) and (14), we can prove the martingale property: E[Ms+1|Gs] = Ms. Observe that the
transition probabilities of the martingale depend on Wτ1 . We will fix Wτ1 later in the proof.

In order to bound the variance of the martingale, we consider the variance of the differences.
The computations give

E[(Ms+1 − Ms)
2] = C1(p)

E[W2
τ1+s]

n2
+ C2(p)

E[Wτ1+s]

n
+ C3(p) ≤ C(p),

where C(p) and the other constants in the expression are independent of n and s. Therefore,
by the orthogonality of martingale differences E[M2

s ] = Var(Ms) ≤ C(p)s. Then, by the Doob–
Kolmogorov maximal inequality [10, Theorem 2 in Section 7.8],

P

(
max

1≤t≤kn
|Mt| ≥ a

)
≤ E[Mkn]

a2
= C(p)kn

a2
(17)

for a > 0.
Next, we show that, for a of order n1/2+β and large enough n, |Wτ1+s − pn| ≥ a implies

|Ms| ≥ n−β/2a (not optimal) with high probability. Let A be the event that

|Wτ1 − pn| ≤ n1/2+β/2, (18)

which has probability greater than 1 − 4n−β by Lemma 2. The following argument is condi-
tioned on A. Let us fix an outcome Wτ1 = W∗ in A. Note that both the stopping time τ1 and Wτ1

are determined. We take n > 24/β . Suppose

|Wτ1+s − pn| > n1/2+β . (19)

From (18) and (19), we get |Wτ1+s − Wτ1 | > 1
2 n1/2+β . There are two cases for (19): Wτ1+s >

pn + n1/2+β or Wτ1+s < pn − n1/2+β . Let us assume the former. It will be apparent below that
the other case can be treated similarly. From (16), we have one of

Ms >
1

4
n1/2+β,

2

n

s−1∑
i=1

Wτ1+i − 2sp ≤ −1

4
n1/2+β .

If the latter is the case, by (18) and (19), there must exist a time s′ such that

s′ = max
{

0 ≤ t > s : Wτ1+t ≤ pn + 2n1/2+β/2
}

.

Then observe that

2

n

s′−1∑
i=1

Wτ1+i − 2s′p <
2

n

s−1∑
i=1

Wτ1+i − 2sp,
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since pn < Wτ1+t for s′ ≤ t < s. Therefore,

Ms′ = Wτ1+s′ − Wτ1 + 2

n

s′−1∑
i=1

Wτ1+i − 2s′p ≤ 3n1/2+β/2 − 1

4
n1/2+β ≤ −n1/2+β/2.

In either case, we have max1≤t≤s |Mt| ≥ n1/2+β/2. Therefore, by (17),

P

(
max

τ1≤t≤τ1+s
|Wt − pn| > n1/2+β | Wτ1 = W∗) < P

(
max
1≤t≤s

|Mt| ≥ n1/2+β/2 | Wτ1 = W∗)

< C(p)kn−β .

Now let us take s = kn. Since the established upper bound is uniform for W∗ in A, it follows
via a conditioning argument that

P

(
max

τ1≤t≤τ1+kn
|Wt − pn| > n1/2+β

)
< P

(
max

1≤t≤kn
|Mt| ≥ n1/2+β/2 | A

)
P(A) + P(Ac)

< C(p)kn−β
P(A) + P(Ac)

≤ C(p)kn−β (1 − 4n−β ) + 4n−β < 4n−α,

where n is chosen large enough to satisfy the last inequality. �

We return to (11). We use the lemmas above to bound the transition probabilities of t

uniformly. We first need the following corollary.

Corollary 1. Let t ∈ [τ1, τ1 + kn] for some k > 0 independent of n. For every ε > 0, there exist
α ∈ (

0, 1
2

)
and β ∈ (

α, 1
2

)
such that

pt :=
√

2Wt

n
∈ [p − ε, p + ε], (20)

δ := √
2

Zt − Wt

n
=O(nβ−1/2),

with probability 1 − 8n−α .

Proof. Both statements follow from Lemma 3. For the latter, since Wt and Zt are correlated
by coupling, we use the union bound. �

Therefore, under the assumptions of Corollary 1 we can rewrite (11) as

t+1 = t +

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−2 with probability p2
t q2

t + 2ptq2
t δ + o(n2β−1),

−1 with probability 2ptqt(p2
t + q2

t ) + qt((qt − pt)2 + pt)δ + o(n2β−1),

1 with probability 2ptqt(p2
t + q2

t ) − pt((pt − qt)2 + qt)δ + o(n2β−1),

2 with probability p2
t q2

t − 2p2
t qtδ + o(n2β−1),

0 otherwise.

Then, examining the probabilities, we see that it is more likely for {t}t>τ1 to go to the left if
t > 0. In fact,
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P(t+1 − t = −2) ≥ p2
t q2

t ≥ P(t+1 − t = 2),

P(t+1 − t = −1) ≥ 2ptqt(p
2
t + q2

t ) ≥ P(t+1 − t = 1),
(21)

provided that Zt ≥ Wt. Thus, we can compare it to the following random walk, which is equally
likely to go in either direction at any time:

St+1 = St +

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−2 with probability p2
t q2

t ,

−1 with probability 2ptqt(p2
t + q2

t ),

0 with probability (p2
t + q2

t )2 + 2p2
t q2

t ,

1 with probability 2ptqt(p2
t + q2

t ),

2 with probability p2
t q2

t .

Let us take S0 = τ1 = ⌈√
n
⌉

. We define the stopping times τ2 = mint{τ1+t ∈ I} and τS =
mint{St ∈ I}, where I = {−1, 0, 1}. Comparing the transition probabilities of the two random
walks by (21), we have τ1+t ≤ St since Zt ≥ Wt. Therefore, we can find a coupling for two
processes such that

τ2 ≤ τS. (22)

Furthermore, observe that St+1 − St is a sum of independent and identically distributed random
variables which take values −1 or 1 with probability ptqt and 0 with probability p2

t + q2
t . But

then St = S′
2t, where S′

t is none other than a lazy simple random walk on the integers, so we
may use the results on the lazy simple random walk to bound P(τS > s), such as [11, Corollary
2.28]. The only difficulty is that St is not time-homogeneous as the parameter pt varies, which
is dealt with next.

Given r ∈ [0, 1], we let τS(r) = mint{St(r) ∈ I} where St(r) is the lazy simple random walk
with holding probability r2 + (1 − r)2. Considering the bound in (20), we define p∗ = (p −
ε)1{p≤1/2} + (p + ε)1{p>1/2}. The choice of p∗ ensures that St(p∗) has the maximal holding
probability among all values in [p − ε, p + ε].

Lemma 4. P(τS(p∗) > s) ≥ P(τS > s).

Proof. Let us take q∗ = 1 − p∗. We define a Bernoulli random variable for each t as
follows:

ξt =
⎧⎨
⎩

0 with probability [1 − (p∗2 + q∗2)]/[1 − (p2
t + q2

t )],

1 otherwise.

ξ is well-defined by the choice of p∗. Now observe that St(p∗) has the same distribution as
the chain which moves according to the law of St (which is the same as St(pt)) if ξt = 1, and
stays at the same state if ξt = 0. Then, it is obvious that we can find a coupling satisfying
τS(p∗) ≥ τS. The result follows. �

Finally, by Lemmas 3 and 4, (22), and modifying the numbers in [11, Corollary 2.28]
accordingly, we have

P(τ2 > s) ≤ 4n−2α + 4
√

n√
2p∗(1 − p∗)s

.
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So, if we take s = γ2n,

P(τ2 > γ2n) ≤ 4n−2α + 4√
2p∗(1 − p∗)γ2

≤ 4 max{p−1/2, (1 − p)−1/2}√
γ2

(23)

by choosing ε small enough, say ε = min{p, 1 − p}/100, in (20).

Third stage: Number of sign changes For the last stage of the coupling, let us define τ3 =
mint{τ1+τ2+t = 0}, which is to account for the case that Zτ2 − Wτ2 = 1 and t does not hit
zero in the next step. By symmetry, we see that it is more likely for {t}t>τ1 to go to the right
if t < 0. So, we can again bound the stopping time by the time associated with St. In fact, for
the simple random walk, we have the probability that ‘the number of sign changes is equal to
k up to t = 2n + 1’ is equal to the probability that ‘the walk is at position 2k + 1 at t = 2n + 1’;
see [9, Theorem 1 in Chapter III.6]. This allows us to use the normal approximation for the sign
changes [9, Theorem 2 in Chapter III.6]. Let FZ be the distribution function of the standard
normal distribution. Let us use St(p∗) again, the laziest simple random walk in the range. We
have

P

(
|t ∈ {1, 2, . . . , K(p∗)n} : Sτ1+τ2+t(p

∗) ∈ I| ≤
√

n

γ3

)
≤ 2FZ

(
1

γ3

)
− 1 ≤ 1√

2πγ3
,

where K(p) = 1 + [(p2 + q2)/2pq]. Since

P(|t ∈ {1, 2, . . . , k} : Sτ1+τ2+t ∈ I| ≤ x) ≤ P(|t ∈ {1, 2, . . . , k} : Sτ1+τ2+t(p
∗) ∈ I| ≤ x)

for all k and x, t visits I on an order larger than
√

n times a probability bounded away from
zero. At every visit to I, it has a positive probability to hit zero at the next stage. Let κ =
P(St+1(p∗) = 0 | St = −1 or 1). Thus,

P(τ3 > K(p∗)n) ≤ (1 − κ)
√

n/γ3 + 1√
2πγ3

< γ −1
3 (24)

for any γ3 > 0 independent of n for large n. Let us take γ3 > K(p∗) for convenience. Finally,
let τ = τ1 + τ2 + τ3, which is the stopping time, α > 0, and γ = γ1 + γ2 + γ3. By (10), (23),
(24), and using the strong Markov property iteratively,

P
(
τ > 1

4 n log n + γ n
)
< 1 − (1 − e−γ1 )

(
1 − 4 max{p−1/2, (1 − p)−1/2}γ −1/2

2

)(
1 − γ −1

3

)
.

Since we chose the opposite monochromatic configurations for the different initial states of
the coupled chains, among all choices for the starting pair chambers the coupling time above
is clearly the maximum, so is the probability in (8). Therefore,

d

(
1

4
n log n + γ n

)
≤ C√

γ

by choosing γ1, γ2, and γ3 large enough. Combining with the lower bound in Theorem 5, we
have tn = 1

4 n log n and wn = n in Definition 1. �
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