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Many turbulent flows exhibit time-periodic statistics. These include turbomachinery flows,
flows with external harmonic forcing and the wakes of bluff bodies. Many existing
techniques for identifying turbulent coherent structures, however, assume the statistics are
statistically stationary. In this paper, we leverage cyclostationary analysis, an extension of
the statistically stationary framework to processes with periodically varying statistics, to
generalize the spectral proper orthogonal decomposition (SPOD) to the cyclostationary
case. The resulting properties of the cyclostationary SPOD (CS-SPOD for short) are
explored, a theoretical connection between CS-SPOD and the harmonic resolvent analysis
is provided, simplifications for the low and high forcing frequency limits are discussed,
and an efficient algorithm to compute CS-SPOD with SPOD-like cost is presented.
We illustrate the utility of CS-SPOD using two example problems: a modified complex
linearized Ginzburg–Landau model and a high-Reynolds-number turbulent jet.
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1. Introduction

Periodic and quasi-periodic forced turbulent flows are ubiquitous in engineering and
nature. Such flows include those in turbomachinery, weather and climate, flow control with
harmonic actuation, or any other flow that exhibits periodic/quasi-periodic modulation of
the turbulence/statistics. In cases where the forcing is slow compared to the turbulence
time scales, the statistics may be modelled as quasi-stationary (comprising a series of
stationary states). However, in many cases, the forcing is at frequencies commensurate
with the turbulence, and the turbulence structure is not only modulated by, but also altered

† Email address for correspondence: lheidt@caltech.edu

© The Author(s), 2024. Published by Cambridge University Press 985 A42-1

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

70
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

mailto:lheidt@caltech.edu
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jfm.2024.70&domain=pdf
https://doi.org/10.1017/jfm.2024.70


L. Heidt and T. Colonius

by, the forcing. In such, a key goal is to identify coherent structures that can be compared
with and contrasted to their occurrence in similar but unforced flows.

The most commonly used technique to identify coherent structures in turbulence is
proper orthogonal decomposition (Lumley 1967, 1970; Aubry et al. 1988; Sirovich 1989;
Aubry 1991), which represents flow data as mutually orthogonal modes whose amplitudes
optimally reconstruct the correlation tensor. When applied in its typical space-only form,
the modes are not coherent in time, leading many researchers to apply dynamic mode
decomposition and its variants (Rowley et al. 2009; Schmid 2010; Schmid et al. 2011).
However, for statistically stationary flows, spectral proper orthogonal decomposition
(SPOD) (Lumley 1967, 1970; Citriniti & George 2000; Picard & Delville 2000; Towne,
Schmidt & Colonius 2018) leads to an optimal reconstruction of the space–time statistics
and results in modes that oscillate at a single frequency. A fundamental assumption
required in both space-only proper orthogonal decomposition (POD) and SPOD is
statistical stationarity, meaning that the statistics are time invariant. This assumption is
appropriate for many unforced flows. However, when forced, this fundamental assumption
is no longer valid as the flow and its statistics are now correlated to the forcing. To
clarify, by forcing, we mean any system that exhibits a periodic modulation of the statistics
(including by actuators, vortex-shedding in bluff body flows, rotation in turbomachinery,
etc.). Several works have developed extensions to SPOD to study forced turbulent flows.
Franceschini et al. (2022) studied flows where a high-frequency turbulent component
develops on a low-frequency periodic motion. Subsequently, a quasi-steady assumption
is made and conditionally fixed coherent structures at each phase are determined. Glezer,
Kadioglu & Pearlstein (1989) developed an extended POD method for flows with periodic
statistics by summing an ensemble of time series. However, since this method is based on
POD, it still contains the shortcomings present in POD. Heidt et al. (2021) applied SPOD
to the residual component of the triply decomposed fields (Hussain & Reynolds 1970,
1972) to isolate the impact of the forcing on the turbulence but still required a stationary
assumption. Clearly, SPOD and the aforementioned extensions are not sufficient to study
forced turbulent flows. This motivates an extension of SPOD to these flows, which is the
primary focus of this paper which we achieve by leveraging cyclostationary analysis.

Cyclostationary analysis is an extension to statistically stationary analysis to processes
with periodic statistics that have been applied in a range of fields (Gardner 2018), from
economics to physics and mechanics. Initially developed by Gudzenko (1959), Lebedev
(1959) and Gladyshev (1963), it was then extensively studied and popularized by Hurd
(1969) and Gardner (1972). The theory of second-order cyclostationary processes was
further developed by Boyles & Gardner (1983) and Gardner (1986b), while Brown (1987)
and Gardner (1986c) furthered the theory of complex-valued processes. Cyclostationary
analysis provides a robust statistical theory to study these processes, and tools analogous
to those used to study stationary processes (e.g. the mean, cross-correlation, cross-spectral
density, etc.) have been developed which naturally collapse back to their stationary
counterparts when analysing a stationary process.

Kim, North & Huang (1996) developed cyclostationary empirical orthogonal-functions
(CSEOFs) that essentially extends SPOD to cyclostationary processes for one-dimensional
data. Kim & North (1997) modified this technique to include multi-dimensional data
by reducing the computational cost through several approximations. However, due to
a lack of clarity in the literature regarding the derivation, properties, interpretation
and computation of these techniques, their use has been limited. Furthermore, despite
the aforementioned approximations, both formulations are computationally intractable
for high-dimensional data. In this paper, we extend SPOD to flows with time-periodic
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Decomposition of harmonically forced flows

statistics through an extension to the exact form of CSEOFs (Kim et al. 1996) to include
large multi-dimensional data. We hereafter refer to this method as cyclostationary SPOD
(CS-SPOD for short).

Methods used to model coherent structures are also considered. Specifically, we consider
resolvent analysis (also known as input/output analysis), where one seeks forcing modes
that give rise to the most amplified response modes with respect to their energetic gain.
When applied to turbulent fluid flows, the nonlinear modal interactions are regarded as
forcing terms to the linearized time-averaged turbulent mean (McKeon & Sharma 2010).
Resolvent analysis has been used to study a wide range of transitional and turbulent flows
(Cossu, Pujals & Depardon 2009; McKeon & Sharma 2010; Meliga, Pujals & Serre 2012;
Sharma & McKeon 2013; Oberleithner, Paschereit & Wygnanski 2014; Jeun, Nichols
& Jovanović 2016; Schmidt et al. 2018), amongst others. Towne et al. (2018) provided
a theoretical connection between SPOD and resolvent, showing that resolvent output
modes equal SPOD modes when the resolvent forcing modes are mutually uncorrelated.
This provides a theoretical basis to use resolvent analysis to develop models of the
space–time statistics of a turbulent flow (Moarref et al. 2013; Towne, Lozano-Durán &
Yang 2020; Amaral et al. 2021) and the development of various methods (Morra et al.
2019; Pickering et al. 2021a) to help whiten the forcing coefficients, thereby improving
these models. Resolvent analysis was extended to flows with a time-periodic mean flow by
Padovan, Otto & Rowley (2020) and Padovan & Rowley (2022), and is termed harmonic
resolvent analysis. This leads to a system of frequency-coupled equations that provide
the ability to study the first-order triadic interactions present in these time-periodic
flows. Analogous to the relationship between SPOD and resolvent analysis, in the present
paper, we establish a theoretical connection between CS-SPOD and harmonic resolvent
analysis.

The remainder of the paper is organized as follows. Section 2 introduces the theory
of cyclostationary processes and reviews an algorithm to compute their statistics. In § 3,
CS-SPOD is derived, its properties explored and an efficient computational algorithm is
proposed. After validating the method in § 4, we demonstrate the utility of CS-SPOD in
§ 5. In § 6, we explore the relationship between CS-SPOD and the harmonic resolvent
analysis. Finally, in § 7, we investigate low- and high-frequency forcing limits. Section 8
concludes the manuscript and summarizes the main points.

2. Cyclostationary theory

This section provides an overview of the theory of cyclostationary analysis and the tools
used to study them, with a focus on fluid dynamics. Comprehensive reviews can be found
from Gardner, Napolitano & Paura (2006), Antoni (2009) and Napolitano (2019).

A complex-valued scalar process q(t) at time t is cyclostationary in the wide sense if its
mean and autocorrelation functions are periodic with period T0 (Gardner 1986b), giving

E{q(t)} = E{q(t + T0)}, (2.1a)

R(t, τ ) = R(t + T0, τ ), (2.1b)

where E{·} is the expectation operator, R is the autocorrelation function and τ is a time
delay. Since the mean and autocorrelation are time periodic, they can be expressed as a
Fourier series
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E{q(t)} =
∞∑

kα=−∞
q̂kαα0 ei2π(kαα0)t, (2.2a)

R(t, τ ) ≡ E{q(t + τ/2)q∗(t − τ/2)} =
∞∑

kα=−∞
R̂kαα0(τ ) ei2π(kαα0)t, (2.2b)

where kα ∈ Z and the Fourier series coefficients are given by

q̂kαα0 ≡
1
T0

∫ T0/2

−T0/2
E{q(t)} e−i2π(kαα0)t dt, (2.3a)

R̂kαα0(τ ) ≡ 1
T0

∫ T0/2

−T0/2
R(t, τ ) e−i2π(kαα0)t dt, (2.3b)

where α0 = 1/T0 is the fundamental cycle frequency and (·)∗ is the complex conjugate.
The Fourier coefficients R̂kαα0(τ ) are known as the cyclic autocorrelation functions of q(t)
at cycle frequency kαα0. If a process contains non-zero q̂kαα0 and/or R̂kαα0(τ ), it is said
to exhibit first- and second-order cyclostationarity at cycle frequency kαα0, respectively.
Wide-sense stationary processes are the special case where R̂kαα0(τ ) /= 0 for kα = 0 only.

If the process q(t) contains a deterministic periodic component at cycle frequency kαα0,
it would exhibit both first-order and second-order (and any higher order) cyclostationarity
at cycle frequency kαα0. Thus, a deterministic component results in a pure first-order
component and an impure (i.e. made up from components of a lower-order) second-order
(or higher) component (Antoni et al. 2004). Antoni et al. (2004) and Antoni (2009) showed
that in physical systems, it is crucial to analyse the first- and second-order components
separately, where the second-order component q′′(t) is defined as

q′′(t) ≡ q(t)− E{q(t)}, (2.4)

such that q(t) = E{q(t)} + q′′(t) and the mean E{q(t)} = E{q(t + T0)} is T0 periodic.
This approach makes physical sense considering that the first-order component is the
deterministic tonal component that originates from the forcing, while the second-order
component is a stochastic component that represents the underlying turbulence that is
modified by the forcing. The sequential approach is analogous to the triple decomposition
(Hussain & Reynolds 1970, 1972) where the underlying flow is separated into the
first-order (phase-averaged) and second-order (turbulent/residual) components. First-order
and second-order cyclostationarity then refer to a modulation of the first-order and
second-order components, respectively.

In this manuscript, we assume that all processes analysed using second-order analysis
tools are zero-mean processes (or have had their first-order component removed). Thus, by
stating that a process exhibits second-order cyclostationarity at cycle frequency kαα0, we
mean that the process exhibits pure second-order cyclostationarity at kαα0.

We must clarify one point of terminology. Considering stationary processes are a subset
of cyclostationary processes, all stationary processes are also cyclostationary. We use the
most restrictive description, i.e. stationary processes are referred to as stationary and not
cyclostationary. By stating that a process exhibits cyclostationarity, we imply that at least
one cycle frequency kαα0, kα /= 0 exists.
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Decomposition of harmonically forced flows

2.1. Second-order cyclostationary analysis tools
In fluid dynamics, we are frequently interested in the correlation between two quantities.
Thus, we will now consider the complex-valued vector-valued process q(x, t) at time t
and independent variables (or spatial locations) x instead of the scalar process q(t). Two
processes are jointly cyclostationary if their cross-correlation function can be expressed as
a Fourier series, such that

R(x, x′, t, τ ) ≡ E{q(x, t + τ/2)q∗(x′, t − τ/2)}

=
∞∑

kα=−∞
R̂kαα0(x, x′, τ ) ei2π(kαα0)t, (2.5)

where the Fourier series coefficients are given by

R̂kαα0(x, x′, τ ) ≡ 1
T0

∫ T0/2

−T0/2
R(x, x′, t, τ ) e−i2π(kαα0)t dt, (2.6)

and are known as the cyclic cross-correlation functions between q(x) and q(x′) at cycle
frequency kαα0. If the only non-zero cycle frequency is kαα0 = 0, then q(x) and q(x′) are
jointly wide-sense stationary. Similar to the common assumption in stationary analysis,
we assume that all processes are separately and jointly cyclostationary.

A cyclostationary process can be analysed in the dual-frequency domain via the cyclic
cross-spectral density (CCSD). The CCSD is the generalization of the cross-spectral
density (CSD) for cyclostationary processes and is related to the cyclic cross-correlation
function via the cyclic Wiener–Khinchin relation (Gardner & Robinson 1989)

Skαα0(x, x′, f ) =
∫ ∞
−∞

R̂kαα0(x, x′, τ ) e−i2πf τ dτ. (2.7)

The CCSD can also be written as

Skαα0(x, x′, f )

≡ lim
�f→0

lim
T→∞

1
T

∫ T/2

−T/2
�f E

{
q̂1/�f

(
x, t, f + 1

2
kαα0

)
q̂∗1/�f

(
x′, t, f − 1

2
kαα0

)}
dt,

(2.8)

where q̂W(x, t, f ) ≡ ∫ t+W/2
t−W/2 q(x, t′) e−i2πft′ dt′ is the short-time Fourier transform of

q(x, t), f is the spectral frequency and kαα0 is the cycle frequency. This shows that the
CCSD represents the time-averaged statistical correlation (with zero lag) of two spectral
components at frequencies f + 1

2 kαα0 and f − 1
2 kαα0 as the bandwidth approaches zero

(Napolitano 2019). Formally, the CCSD is defined as in (2.8) and then the Fourier
transform version (2.7) is proved, which is then known as the Gardner relation or
as the cyclic Wiener–Khinchin relation (Napolitano 2019). For kα = 0, the CCSD
naturally reduces to the CSD, i.e. S0(x, x′, f ). Correlation between spectral components
in cyclostationary processes is critical in the derivation of CS-SPOD, and for stationary
processes, the lack of correlation between spectral components is why SPOD can analyse
each frequency independently.

The Wigner–Ville (WV) spectrum (Martin 1982; Martin & Flandrin 1985; Antoni 2007)
shows the spectral information of the process as a function of time (or phase) and, for a
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cyclostationary process, is given by

WV (x, x′, t, f ) =
∞∑

kα=−∞
Skαα0(x, x′, f ) ei2π(kαα0)t. (2.9)

The WV spectrum of the cyclic power-spectral density is determined by setting x =
x′, giving WV (x, t, f ) =∑∞

kα=−∞ Skαα0(x, f ) ei2π(kαα0)t. While non-physical, the WV
spectrum may contain negative energy densities due to the negative interaction terms in the
WV spectrum (Flandrin 1998; Antoni 2007). However, Antoni (2007) showed this could
be arbitrarily reduced with increasing sampling time. The CCSD and WV spectrum can be
integrated with respect to frequency (Gardner 1994; Randall, Antoni & Chobsaard 2001),
which results in the instantaneous variance and the cyclic distribution of the instantaneous
variance, respectively

m(x, t) = E{q(x, t)q∗(x, t)} =
∫ ∞
−∞

WV (x, t, f ) df , (2.10a)

m̂kαα0(x) =
∫ ∞
−∞

Skαα0(x, f ) df , (2.10b)

where m(x, t) is the mean-variance of the process and m̂kαα0(x) quantifies the
mean-variance contribution from each cycle frequency kαα0.

So far, we have assumed that the cycle frequencies are known, but this may not always
be the case. To determine the cycle frequencies present in the system, all possible cycle
frequencies α are explored by rewriting the CCSD as

S(x, x′, α, f )

≡ lim
�f→0

lim
T→∞

1
T

∫ T/2

−T/2
�f E

{
q̂1/�f

(
x, t, f + α

2

)
q̂∗1/�f

(
x′, t, f − α

2

)}
dt. (2.11)

A process exhibits cyclostationarity at cycle frequency α when S(x, x′, α, f ) /= 0. For
cyclostationary processes, because the cross-correlation function is periodic, the spectral
correlation becomes discrete in α such that

S(x, x′, α, f ) =
∞∑

kα=−∞
Skαα0(x, x′, f )δ(α − kαα0), (2.12)

where δ is the Kronecker delta. The cyclic distribution of the instantaneous variance is
rewritten as

m̂(x, α) =
∫ ∞
−∞

S(x, α, f ) df , (2.13)

which similarly becomes discrete for a cyclostationary process.

2.2. Cycloergodicity
In fluid dynamics, it is laborious to require multiple realizations of a single process,
and we often invoke ergodicity in stationary processes to equate the ensemble average
with a long-time average of a single realization. We can similarly leverage the concept
of cycloergodicity as described by Boyles & Gardner (1983), allowing us to replace the
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Decomposition of harmonically forced flows

expectation operator with a suitable time average, specifically, the cycle-averaging operator
(Braun 1975)

q̃(x, t) = E{q(x, t)} = lim
P→∞

1
P

P∑
p=0

q(x, t + pT0), (2.14)

where q̃(x, t) is the mean. The cycle-averaging operator is used when the data are
phase-locked to the forcing (i.e. sampled at an integer number of samples per cycle) and
is identical to the phase-average used in the triple decomposition (Hussain & Reynolds
1970; Reynolds & Hussain 1972). As the cycle-averaging operator is periodic, it can be
expressed as a Poisson sum

q̃(x, t) = E{q(x, t)} =
∞∑

kα=−∞
ei2π(kαα0)t lim

s→∞
1
s

∫ s/2

−s/2
q(x, t′) e−i2π(kαα0)t′ dt′. (2.15)

This definition is employed for non-phase-locked data or to filter out first-order
components that are assumed to be statistical noise (Sonnenberger, Graichen & Erk 2000;
Franceschini et al. 2022) and is identical to the harmonic-averaging procedure used by
Mezić (2013) and Arbabi & Mezić (2017) when restricted to a temporally periodic average.

2.3. Computing the CCSD
There are practical considerations and nuances to computing the CCSD from discrete
data that we discuss in this section. Let the vector qk ∈ CN represent a flow snapshot,
i.e. the instantaneous state of the process q(x, t) at time tk on a set of points in a spatial
domain Ω . The length of the vector N is equal to the number of spatial points multiplied
by the number of state variables. We assume that these data are available for M equispaced
snapshots, with tk+1 = tk +�t. In addition, we assume that these data are phase-locked,
meaning that there are an integer number of time steps in the fundamental period,
T0, and define Nθ = T0/�t. This restriction simplifies and reduces the computational
expense of the calculations but can in principle be relaxed by using the Poisson sum
time-average as in (2.15) and the non-computationally efficient form of CS-SPOD shown
in Algorithm 3. Alternatively, non-phased-locked data can be temporally interpolated to
be phase-locked. Adopting similar notation to Towne et al. (2018), we estimate the CCSD
tensor S(x, x′, α, f ), which represents the spectral correlation between q(x, t) and q(x′, t)
at cycle frequency α and spectral frequency f . For a cyclostationary process, S(x, x′, α, f )
is non-zero for α = kαα0 only, and therefore is written as Skαα0(x, x′, f ) or equivalently
Skα/T0(x, x′, f ). The space–time data can now be represented as the data matrix Q and
time vector T:

Q = [q1, q2, . . . , qM] ∈ C
N×M, (2.16)

T = [t1, t2, . . . , tM] ∈ R
M. (2.17)

Although we have a formula for the CCSD as seen in (2.8) and (2.11), this does not result
in a consistent estimator of the CCSD, as the variance of the estimate of the CCSD does
not tend to zero as the amount of available data becomes large (Jenkins 1968; Antoni 2007;
Napolitano 2019). Instead, this results in an estimate where the variance in the estimate is
equal to the squared value of the estimate itself. A consistent estimate of the CCSD can be
obtained by employing an appropriate averaging technique. The most common technique is
the time-averaging Welch method (Welch 1967) due to its high computational efficiency.
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The Welch method averages a number of CCSDs to obtain a consistent estimate of the
CCSD. From (2.11), we see that to compute the CCSD, the Welch procedure is performed
on two frequency-shifted versions of the data, given by

Q±α/2 = Q e−i2π(±α/2)T = [q1,±α/2, q2,±α/2, . . . , qM,±α/2], (2.18a)

= [q1 e−i2π(±α/2)t1, q2 e−i2π(±α/2)t2, . . . , qM e−i2π(±α/2)tM ], (2.18b)

where qk,±α/2 are the ±1
2α frequency-shifted data matrices corresponding to the kth

snapshot, i.e. qk,±α/2 = qk e−i2π(±α/2)tk . Next, we split the two frequency-shifted data
matrices into a number of, possibly overlapping, blocks. Each block is written as

Q(n)
±α/2 = [q(n)

1,±α/2, q(n)
2,±α/2, . . . , q(n)

Nf ,±α/2] ∈ C
N×Nf , (2.19)

where Nf is the number of snapshots in each block and the kth entry of the nth block
is q(n)

k,±α/2 = qk+(n−1)(Nf−N0),±α/2. The total number of blocks, Nb, is given by Nb =
�(M − N0)/(Nf − N0)	, where �·	 represents the floor operator and N0 is the number
of snapshots that each block overlaps. The cycloergodicity hypothesis states that each of
these blocks is considered to be a single realization in an ensemble of realizations of this
cyclostationary flow. Subsequently, the discrete Fourier transform (DFT) of each block for
both frequency-shifted matrices is computed using a window w, giving

Q̂(n)
±α/2 = [q̂(n)

1,±α/2, q̂(n)
2,±α/2, . . . , q̂(n)

Nf ,±α/2], (2.20)

where

q̂(n)
k,±α/2 =

1√
Nf

Nf∑
j=1

wjq
(n)
j,±α/2 e−i2π(k−1)[( j−1)/Nf ] (2.21)

for k = 1, . . . , Nf and n = 1, . . . , Nb, where q̂(n)
k,±α/2 is the kth Fourier component of

the nth block of the ±α/2 frequency-shifted data matrix, i.e. fk,±α0/2. The nodal values
wj of a window function are used to mitigate spectral and cyclic leakage arising from
the non-periodicity of the data within each block. Due to the ±α/2 frequency-shifting
applied, the kth discrete frequencies of the±α/2 frequency-shifted data matrices represent
a frequency of

fk,±α/2 = fk ± α

2
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
k − 1
Nf �t

for k ≤ Nf /2,

k − 1− Nf

Nf �t
for k > Nf /2,

± α

2
. (2.22)

This shows that the frequency components fk + α/2 and fk − α/2, as required by (2.11),
have the same index k in the shifted frequency vectors fk,±α/2. The CCSD tensor
S(x, x′, α, f ) is then estimated at cycle frequency α and spectral frequency fk by

Sfk,α =
�t
sNb

Nb∑
n=1

q̂(n)
k,α/2(q̂

(n)
k,−α/2)

∗, (2.23)

where s =∑Nf
j=1 w2

j is the normalization constant that accounts for the difference in power
between the windowed and non-windowed signal. This is written compactly by arranging
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Decomposition of harmonically forced flows

Algorithm 1 Algorithm to compute the CCSD.

1: for Each data block, n = 1, 2, . . . , Nb do
� Compute the frequency-shifted block-data matrices

2: Q(n)
±α/2 ← [q1+(n−1)(Nf−N0),±α/2, q2+(n−1)(Nf−N0),±α/2, . . . , qNf+(n−1)(Nf−N0),±α/2]
� Using a (windowed) fast Fourier transform, calculate and store the row-wise
DFT for each frequency-shifted block-data matrix

3: Q̂(n)
±α/2 = FFT(Q(n)

±α/2) = [q̂(n)
1,±α/2, q̂(n)

2,±α/2, . . . , q̂(n)
Nf ,±α/2]

� The column q̂(n)
k,±α/2 contains the nth realization of the Fourier mode

at the kth discrete frequency fk,±α/2
4: end for
5: for Each frequency k = 1, 2, . . . , Nf (or some subset of interest) do

� Assemble the matrices of Fourier realizations from the kth column of each
Q̂(n)
±α/2

6: Q̂fk,±α/2 ←
√

κ[q̂(1)
k,±α/2, q̂(2)

k,±α/2, . . . , q̂(Nb−1)
k,±α/2, q̂(Nb)

k,±α/2]
� Compute the CCSD at spectral frequency fk and cycle frequency α

7: Sfk,α = Q̂fk,α/2(Q̂fk,−α/2)
∗.

8: end for

the Fourier coefficients at the same index k into new frequency-data matrices

Q̂fk,±α/2 =
√

κ[q̂(1)
k,±α/2, q̂(2)

k,±α/2, . . . , q̂(Nb−1)
k,±α/2, q̂(Nb)

k,±α/2] ∈ C
N×Nb, (2.24)

where κ = �t/sNb. Then, Sfk,α is estimated by

Sfk,α = Q̂fk,α/2(Q̂fk,−α/2)
∗. (2.25)

This estimate converges, i.e. the bias and variance become zero, as Nb and Nf are
increased together (Welch 1967; Antoni 2007; Bendat & Piersol 2011). The algorithm
to compute the CCSD from data snapshots is outlined in Algorithm 1, from which all
other second-order cyclostationary analysis tools can be computed. For efficient memory
management, variables assigned with ‘←’ can be deleted after each iteration in their
respective loop. Similar to the Welch estimate of the CSD, the estimate of the CCSD
suffers from the standard bias-variance trade-off, and caution should be taken to ensure
sufficiently converged statistics. In the CCSD, a phenomenon similar to spectral leakage
is present and is called cyclic leakage (Gardner 1986a) that results in erroneous cycle
frequencies. Using 67 % overlap when using a Hanning or Hamming window results in
excellent cyclic leakage minimization and variance reduction (Antoni 2007). To reduce the
variance sufficiently, T�f � 1 is required (Antoni 2009). If one does not know the cycle
frequencies a priori, one must search over all possible cycle frequencies with a resolution
�α = 1/T (Gardner 1986a) to ensure all cycle frequencies are captured.

3. Cyclostationary SPOD

3.1. Derivation
The objective of CS-SPOD is to find deterministic functions that best approximate,
on average, a zero-mean stochastic process. For clarity, we derive CS-SPOD using an
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approach and notation analogous to the SPOD derivation presented by Towne et al.
(2018) and refer the reader to Brereton & Kodal (1992), Towne et al. (2018) and Schmidt
& Colonius (2020) for detailed discussions on POD and SPOD. Like SPOD, we seek
deterministic modes that depend on both space and time such that we can optimally
decompose the space–time statistics of the flow. Thus, we assume that each realization
of the stochastic process belongs to a Hilbert space with an inner product

〈q1, q2〉x,t =
∫ ∞
−∞

∫
Ω

q∗2(x, t)W (x)q1(x, t) dx dt, (3.1)

where q1(x, t), q2(x, t) are two realizations of the flow, W (x) is a positive-definite
weighting tensor (while we have chosen a time-independent weighting tensor since this
simplifies the derivations and is appropriate for the example cases shown, a time-periodic
weighting tensor could also be employed), and Ω denotes the spatial domain of interest.
We then seek to maximize

λ = E{|〈q(x, t),φ(x, t)〉x,t|2}
〈φ(x, t),φ(x, t)〉x,t , (3.2)

which leads to ∫ ∞
−∞

∫
Ω

R(x, x′, t, t′)W (x′)φ(x′, t′) dx′ dt′ = λφ(x, t), (3.3)

where R(x, x′, t, t′) ≡ E{q(x, t)q∗(x′, t′)} is the two-point space–time correlation tensor.
Until this stage, no assumptions about the flow have been made and it is therefore identical
to the derivation of SPOD (Lumley 1967, 1970; Towne et al. 2018).

Since cyclostationary flows persist indefinitely, they have infinite energy in the
space–time norm, as shown in (3.1). Consequently, the eigenmodes of (3.3) do not possess
any of the useful quantities relied upon in POD or SPOD. To solve this, a new eigenvalue
decomposition is obtained in the spectral domain from which modes with the desired
properties are determined. We employ a solution ansatz of

φ(x, t) =
∞∑

kf=−∞
ψ(x, γ + kf α0) ei2π(γ+kf α0)t. (3.4)

The set of frequencies present in the solution ansatz φ(x, t) is called the γ set of solution
frequencies Ωγ = {. . . , γ − 2α0, γ − α0, γ, γ + α0, γ + 2α0, . . .}.

In Appendix A, we then use theory from § 2 to derive the infinite-dimensional CS-SPOD
eigenvalue problem, written compactly as

∫
Ω

S(x, x′, γ )W(x′)Ψ (x′, γ ) dx′ = λ(γ )Ψ (x, γ ), (3.5)

985 A42-10

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

70
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2024.70


Decomposition of harmonically forced flows

where

S(x, x′, γ )

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

. . .
. . .

. . .
. . .

. . .

. . . S0(x, x′, γ − α0) S−α0

(
x, x′, γ − α0

2

)
S−2α0(x, x′, γ )

. . .

. . . Sα0

(
x, x′, γ − α0

2

)
S0(x, x′, γ ) S−α0

(
x, x′, γ + α0

2

)
. . .

. . . S2α0(x, x′, γ ) Sα0

(
x, x′, γ + α0

2

)
S0(x, x′, γ + α0)

. . .

. . .
. . .

. . .
. . .

. . .

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

(3.6a)

W (x) =

⎡⎢⎢⎢⎢⎢⎣
. . .

W (x)

W (x)

W (x)
. . .

⎤⎥⎥⎥⎥⎥⎦ , Ψ (x, γ ) =

⎡⎢⎢⎢⎢⎢⎣
...

ψ(x, γ − α0)
ψ(x, γ )

ψ(x, γ + α0)
...

⎤⎥⎥⎥⎥⎥⎦ . (3.6b,c)

Here, S(x, x′, γ ) is the CS-SPOD decomposition tensor, W (x) is the concatenated
weight tensor and Ψ (x, γ ) are the CS-SPOD eigenvectors. This frequency-domain version
Ψ (x, γ ) of the CS-SPOD eigenvectors can be converted to the time-domain version φ(x, t)
using (3.4). In essence, we convert the original problem into the frequency domain and
then solve for the Fourier series coefficients ψ(x, f ) at each f ∈ Ωγ .

This coupling of frequencies in CS-SPOD occurs because frequency components
separated by kαα0 are correlated to each other, as shown in (2.8). In contrast, stationary
processes do not exhibit correlation between frequencies, and thus each frequency can
be solved independently via SPOD. Due to this coupling, CS-SPOD performed at γ and
γ + α0 solve the same problem, i.e. giving Ωγ = Ωγ+zα0 , where z ∈ Z. This means that
CS-SPOD only contains unique solutions for the frequency sets corresponding to γ ∈ Γ ,
where Γ = [−α0/2, α0/2).

In practice, the infinite-dimensional problem can not be solved. Instead, we must restrict
the cycle frequencies considered and the frequencies present in the solution ansatz to some
limit. We restrict the solution ansatz to

φ(x, t) =
Kf∑

kf=−Kf

ψ(x, γ + kf α0) ei2π(γ+kf α0)t (3.7)

and the cycle frequencies to

R(x, x′, t, τ ) =
Kα∑

kα=−Kα

R̃kαα0(x, x′, τ ) ei2π(kαα0)t, (3.8)

where Kf ∈ Z+ and Kα ∈ Z+. This gives a final solution frequency set of Ωγ =
{−Kf α0 + γ, (−Kf + 1)α0 + γ, . . . , γ, . . . , (Kf − 1)α0 + γ, Kf α0 + γ }. In addition,
the flow may only exhibit cyclostationarity at Kα harmonics of the fundamental cycle
frequency. We employ identical notation to restrict the harmonics used to compute
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various second-order tools, such as the WV spectrum. These limits result in 2Kf + 1
coupled equations, resulting in a 2Kf + 1× 2Kf + 1 block eigensystem that is 2Kα + 1
banded-block-diagonal. In practice, Kf should be chosen such that Ωγ encompasses
all frequencies of interest/importance, Kα should be chosen to encompass all the cycle
frequencies present in the flow and Kα ≤ Kf . An example for Kf = 2, Kα = 1 is (for
compactness, we have dropped the explicit dependence on x in this equation)

S(γ ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

S0(γ − 2α0) S−α0

(
γ − 3

2
α0

)
0 0 0

Sα0

(
γ − 3

2
α0

)
S0(γ − α0) S−α0

(
γ − 1

2
α0

)
0 0

0 Sα0

(
γ − 1

2
α0

)
S0(γ ) S−α0

(
γ + 1

2
α0

)
0

0 0 Sα0

(
γ + 1

2
α0

)
S0(γ + α0) S−α0

(
γ + 3

2
α0

)
0 0 0 Sα0

(
γ + 3

2
α0

)
S0(γ + 2α0)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(3.9)

In the limiting case that Kα = 0, we obtain a block-diagonal CS-SPOD decomposition
matrix where each diagonal block is the standard SPOD eigenvalue problem.

3.2. CS-SPOD properties
Since S(x, x′, γ ) is compact and finite, Hilbert–Schmidt theory guarantees a number of
properties analogous to those for POD and SPOD (Lumley 1967, 1970; Towne et al. 2018).
There is a countably infinite set of eigenfunctions Ψj(x, γ ) at each unique frequency set
Ωγ that is orthogonal to all other modes at the same frequency set Ωγ in the spatial
inner norm 〈q1, q2〉x =

∫
Ω

q∗2(x, t)W (x)q1(x, t)dx, i.e. 〈Ψj(x, γ ),Ψk(x, γ )〉x = δj,k. The
following concatenated vector of each flow realization at the solution frequencies is
optimally expanded as

Q̂(x, γ ) =

⎡⎢⎢⎢⎢⎢⎣
...

q̂(x, γ − α0)
q̂(x, γ )

q̂(x, γ + α0)
...

⎤⎥⎥⎥⎥⎥⎦ , Q̂(x, γ ) =
∞∑

j=1

aj(γ )Ψj(x, γ ), (3.10a,b)

where q̂(x, f ) is the temporal Fourier decomposition of each flow realization q(x, t) at
frequency f and aj(γ ) = 〈Q̂(x, γ ),Ψj(x, γ )〉x are the expansion coefficients, which are
uncorrelated, i.e. E{aj(γ )a∗k(γ )} = λj(γ )δj,k.

Here, S(x, x′, γ ) is positive semi-definite, meaning that S(x, x′, γ ) has the following
unique diagonal representation:

S(x, x′, γ ) =
∞∑

j=1

λj(γ )Ψj(x, γ )Ψ ∗j (x
′, γ ), (3.11)

in which the CS-SPOD modes are its principal components. This shows that CS-SPOD
determines the modes that optimally reconstruct the second-order statistics, one frequency
set Ωγ at a time.
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Decomposition of harmonically forced flows

CS-SPOD modes are optimal in terms of their total energy reconstruction of S(x, x′, γ )

only. Thus, although each of the CCSDs present in S(x, x′, γ ) have a diagonal
representation, the individual components of Ψj(x, γ ) are, in general, not orthogonal in
the space norm, i.e. 〈ψ j(x, f ),ψk(x, f )〉x /= δj,k. One exception is for stationary processes
where the correlation between different frequency components is zero, resulting in a
block-diagonal matrix where Ψj(x, γ ) contains just a single non-zero ψ j(x, f ) component,
with 〈ψ j(x, f ),ψk(x, f )〉x = δj,k.

Transforming the eigenvectors Ψj(x, γ ) back into the time domain, noting the ansatz
defined in (3.4), gives φγ,j(x, t) =∑∞

kf=−∞ ψ j(x, γ + kf α0) ei2π(γ+kf α0)t, which are
orthogonal in the space–time inner product integrated over a complete period. Thus, every
mode occurring at each frequency set Ωγ can be viewed as a unique space–time mode.

The two-point space–time correlation tensor can be written as

R(x, x′, t, t′) =
∫ α0/2

−α0/2

∞∑
j=1

λj(γ )φγ,j(x, t)φ∗γ,j(x
′, t′) dγ. (3.12)

Substituting in the frequency expansion of φγ,j(x, t) and applying t′ = t − τ gives

R(x, x′, t, τ ) =
∫ α0/2

−α0/2

∞∑
j=1

λj(γ )

×
∞∑

kf=−∞

∞∑
k′f=−∞

ψ j(x, γ + kf α0)ψ
∗
j (x
′, γ + k′f α0) ei2π(kf−k′f )α0t ei2π(γ+k′f α0)τ dγ,

(3.13)

resulting in a reconstruction that is time-periodic due to ei2π(kf−k′f )α0t, which is why the
ansatz defined by (3.4) was chosen.

In summary, for cyclostationary flows, CS-SPOD leads to modes that oscillate at a set
of frequencies (Ωγ ) and optimally represent the second-order space–time flow statistics.

3.3. Computing CS-SPOD modes in practice
We now detail how to compute CS-SPOD modes from data along with a technique
to reduce the cost and memory requirements to levels similar to those of SPOD.
A MATLAB implementation of the presented algorithms is available at https://github.
com/CyclostationarySPOD/CSSPOD. Since the dimension of the CCSD is N × N, the
overall eigensystem Sγk (which is the discrete approximation of S(x, x′, γ )) becomes
(2Kf + 1)N × (2Kf + 1)N in size. For common fluid dynamics problems, this can become
a dense matrix O(106 − 109)× O(106 − 109) in size, which is computationally intractable
to store in memory, let alone compute its eigendecomposition. This is also the dimension
of the inversion required in the CSEOF methods by Kim et al. (1996) and Kim &
North (1997). Thus, we derive a method-of-snapshots approach similar to the technique
employed in POD (Sirovich 1987) and SPOD (Citriniti & George 2000; Towne et al.
2018) that reduces the size of the eigenvalue problem from (2Kf + 1)N × (2Kf + 1)N to
(2Kf + 1)Nb × (2Kf + 1)Nb. Since Nb << N, the method-of-snapshots technique makes
the eigenvalue problem computationally tractable.

To determine CS-SPOD with a finite amount of discrete data, we substitute in the Welch
computational procedure for the CCSD into each term of the frequency-limited version of
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(3.6a). We numerically evaluate this as

Sγk = Q̃γk Q̃
∗
γk

, Q̃γk =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Q̂γk,−Kf α0
...

Q̂γk,0
...

Q̂γk,Kf α0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (3.14a,b)

where
Q̂γk,kf α0

= √κ[q̂(1)
k,kf α0

, q̂(2)
k,kf α0

, . . . , q̂(Nb−1)
k,kf α0

, q̂(Nb)
k,kf α0

] ∈ C
N×Nb . (3.15)

Here, Q̃γk is called the concatenated frequency-data matrix at the discrete Ωγk set of
solution frequencies and q̂(n)

k,kf α0
is the kth DFT component of the nth block of the kf α0

frequency-shifted data matrix. As stated previously, the solution frequency sets are only
unique for γ ∈ Γ , thus the corresponding DFT frequencies are

γk =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
k − 1
Nf �t

for k ≤
⌊

α0Nf �t
2

⌋
+ 1,

k − 1− Nf

Nf �t
for Nf −

⌈
α0Nf �t

2

⌉
+ 1 < k ≤ Nf ,

(3.16)

which forms the elements γk ∈ Γk. Expanding (3.14) gives

Sγk =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Q̂γk,−Kf α0
Q̂∗γk,−Kf α0

· · · Q̂γk,−Kf α0
Q̂∗γk,0 · · · Q̂γk,−Kf α0

Q̂∗γk,Kf α0

...
...

...
...

...

Q̂γk,0Q̂∗γk,−Kf α0
· · · Q̂γk,0Q̂∗γk,0 · · · Q̂γk,0Q̂∗γk,Kf α0

...
...

...
...

...

Q̂γk,Kf α0
Q̂∗γk,−Kf α0

· · · Q̂γk,Kf α0
Q̂∗γk,0 · · · Q̂γk,Kf α0

Q̂∗γk,Kf α0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(3.17)
This expression shows that Sγk contains off-diagonal terms that represent spectral

correlations that are not present in the process (i.e. are not cycle frequencies considered in
(3.8)). However, as Nb and N are increased together, this system converges and becomes a
consistent estimate of (3.6a). Thus, all terms that represent spectral correlations not present
in (3.8) converge to zero. Furthermore, the estimate is numerically positive semi-definite
resulting in CS-SPOD modes that will inherit the desired properties. We note that for the
numerical computation, one can not choose Kα; instead, only Kf is chosen and Kα = Kf .

Equation (3.14) shows that the final eigenvalue problem can be compactly written as
Sγk W�γk = �γk�γk , (3.18a)

Q̃γk Q̃
∗
γk

W�γk = �γk�γk . (3.18b)
The spatial inner weight

〈q1, q2〉x =
∫

Ω

q∗2(x, t)W (x)q1(x, t) dx (3.19)

is approximated as 〈q1, q2〉x = q∗2Wq1, where W ∈ CN×N is a positive-definite Hermitian
matrix that accounts for both the weight and the numerical quadrature of the integral on the
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discrete grid and W ∈ C(2Kf+1)N×(2Kf+1)N is the block-diagonal matrix of W (similar to
(3.6b)). The CS-SPOD modes are then given by the columns of�γk and are ranked by their
corresponding eigenvalues given by the diagonal matrix �γk . These discrete CS-SPOD
modes hold analogous properties to all those previously discussed, including that they are
discretely orthogonal �∗γk

W�γk = I and optimally decompose the estimated CS-SPOD
decomposition matrix Sγk = �γk�γk�

∗
γk

(i.e. the second-order statistics).
At most, min(N, Nb) number of non-zero eigenvalues can be obtained. Thus, it is

possible to show that the following Nb × Nb eigenvalue problem

Q̃
∗
γk

WQ̃γk�γk = �̃γk�γk (3.20)

contains the same non-zero eigenvalues as (3.18). This approach is known as the
method-of-snapshots (Sirovich 1987). The corresponding eigenvectors are exactly
recovered as

�̃γk = Q̃γk�γk�̃
−1/2
γk

. (3.21)

Other than the simple weighting matrix W, only the concatenated data matrix Q̃γk must
be determined, which is easily achieved by computing each term (Q̂γk,kf α0

) in Q̃γk using
Algorithm 1. Once Q̃γk is determined, one computes Q̃

∗
γk

WQ̃γk and then performs the
eigenvalue decomposition. Typically, only the first few modes are of physical interest,
which allows us to employ a truncated decomposition where we determine a limited
number of the most energetic CS-SPOD modes using randomized linear algebra methods
(Martinsson & Tropp 2020). The total energy can be efficiently evaluated by taking the
trace of Q̃

∗
γk

WQ̃γk . In Appendix B, we show a practical but computationally inefficient
implementation of CS-SPOD. The algorithm requires computing 2Kf + 1 CCSDs, and
thus the cost is approximately 2Kf + 1 times that of the SPOD. The memory requirement
scales similarly. This can be prohibitive when analysing large data sets.

However, significant savings are realized since all the terms in Q̃γk are in the form of
Q̂γk,kf α0

, which represent the kth frequency component of the temporal Fourier transform
of the kf α0 frequency-shifted data matrix. The temporal Fourier transform of the nth
realization of the kf α0 frequency-shifted data is given by

q̂(n)
k,kf α0

= 1√
Nf

Nf∑
j=1

wjq
(n)
j,kf α0

e−i2π(k−1)[( j−1)/Nf ], (3.22a)

= 1√
Nf

Nf∑
j=1

wjq
(n)
j e−i2π(kf α0)[( j−1)+(n−1)(Nf−N0)]�t e−i2π(k−1)[( j−1)/Nf ], (3.22b)

where e−i2π(kf α0)[( j−1)+(n−1)(Nf−N0)]�t is the frequency-shifting operation. We separate
these components into a phase-shifting component and a zero-phase-shift frequency-shifting
component, by

q̂(n)
k,kf α0

= e−i2π(kf α0)�t[(n−1)(Nf−N0)] 1√
Nf

Nf∑
j=1

wjq
(n)
j e−i2π(kf α0�tNf+k−1)[( j−1)/Nf ],

(3.23a)

q̂(n)
k,kf α0

= e−i2π(kf α0)�t[(n−1)(Nf−N0)]q̂(n)
�(k,kf )

, (3.23b)
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where �(k, kf ) is the �th frequency that is a function of k, kf and will be defined in
(3.26). This shows that the fk discrete frequency of the kf α0-frequency-shifted data matrix
(Q̂fk,kf α0

) can be exactly computed as a phase-shifted version of the f�(k,kf ) discrete

frequency component of the non-frequency-shifted data matrix (Q̂f�(k,kf ),0). To employ
this method, kf α0�tNf ∈ Z. Since α0�T = 1/Nθ , where Nθ is the number of snapshots
per fundamental period, this gives kf Nf /Nθ ∈ Z, which requires Nf = cNθ , where c ∈ Z+
(i.e. there is a restriction on the length of each realization). This ensures that the change in
frequency due to the frequency-shifting operator is equal to an integer change in the index
of the frequency vector. With this restriction, the frequency spectrum of the DFT of an Nf
length record is

fk =

⎧⎪⎨⎪⎩
(k − 1)α0

c
for k ≤ Nf

2 ,

(k − 1− Nf )α0

c
for k >

Nf
2 ,

(3.24)

and the unique frequency sets become

γk =

⎧⎪⎪⎨⎪⎪⎩
(k − 1)α0

c
for k ≤

⌊ c
2

⌋
+ 1,

(k − 1− Nf )α0

c
for Nf −

⌈ c
2

⌉
+ 1 < k ≤ Nf .

(3.25)

This demonstrates that a frequency shift of kf α0 corresponds to an integer change in
the frequency index, i.e. the kth frequency component of the kf α0-frequency-shifted data
matrix corresponds to the phase-shifted version of the �(k, kf )th frequency component
( f�(k,kf )) of the non-frequency-shifted data matrix, i.e. fk,kf α0 = f�(k,kf ), where

�(k, kf ) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

{
k + kf c for kf ≥ 0
k + kf c+ Nf for kf < 0

for k ≤
⌊ c

2

⌋
+ 1,

{
k + kf c− Nf for kf > 0
k + kf c for kf ≤ 0

for Nf −
⌈ c

2

⌉
+ 1 < k ≤ Nf .

(3.26)

This means that all the data required for CS-SPOD (for all frequency sets Ωγk ) are
contained within the Fourier transform of the original data matrix.

Algorithm 2 incorporates these savings and requires only a single DFT of the data
matrix, making it similar in computational cost and memory requirement to SPOD. The
memory usage to compute CS-SPOD for complex input data is ≈ (1/(1− N0/Nf )+ 1)×
mem(Q), which is the memory required to store the, possibly overlapping, block-data
matrix and the original data matrix. Additional memory is required to store the temporary
matrix Q̃γk , although the size of this matrix is minimal as typically 2Kf + 1 << Nf . In
extreme cases where only a single snapshot can be loaded at a time, a streaming CS-SPOD
algorithm could be developed analogous to the streaming SPOD method by Schmidt &
Towne (2019).

4. Validation of our CCSD and CS-SPOD algorithms

We validate our implementation of the CCSD and CS-SPOD using a model problem that
has an analytical solution. Let n(x, t) be a zero-mean, complex-valued, stationary random
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Decomposition of harmonically forced flows

Algorithm 2 Efficient algorithm to compute CS-SPOD.

1: for Each data block, n = 1, 2, . . . , Nb do
� Construct the block-data matrix

2: Q(n)← [q1+(n−1)(Nf−N0)
, q2+(n−1)(Nf−N0)

, . . . , qNf+(n−1)(Nf−N0)
]

� Using a (windowed) fast Fourier transform, calculate and store the row-wise
DFT for each frequency-shifted block-data matrix

3: Q̂(n) = FFT(Q(n)) � Discard any frequency components that are not required
to compute Q̃γk

4: end for
5: for Each γk ∈ Γk (or some subset of interest) do

� Assemble the concatenated frequency-data matrix for frequency set Ωγk

6: Q̃γk ←

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Q̂γk,−Kf α0
...

Q̂γk,0
...

Q̂γk,Kf α0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

where Q̂γk,kf α0
←√κ[q̂(1)

k,kf α0
, q̂(2)

k,kf α0
, . . . , q̂(Nb−1)

k,kf α0
, q̂(Nb)

k,kf α0
] is the matrix of

Fourier realizations corresponding to the kth column of the kf α0 frequency-shifted

block-data matrix Q̂(n)
kf α0

, evaluated efficiently by q̂(n)
k,kf α0

=
e−i2π(kf α0)�t[(n−1)(Nf−N0)]q̂(n)

�(k,kf )
, where the index �(k, kf ) is given by (3.26)

7: Compute the matrix Mγk ← Q̃
∗
γk

WQ̃γk

8: Compute the eigenvalue decomposition Mγk = �γk�̃γk�
∗
γk

9: Compute and save the CS-SPOD modes �̃γk = Q̃γk�γk�̃
−1/2
γk

and energies �̃γk for the γk frequency set Ωγk
10: end for

process with uniformly distributed phase (between 0 and 2π), normally distributed unit
variance and a covariance kernel c(x, x′) = E{n(x, t)n∗(x′, t)} of

c(x, x′) = 1√
2πση

exp

[
−1

2

(
x− x′

ση

)2
]

exp
[
−i2π

x− x′

λη

]
, (4.1)

where ση = 4 is the standard deviation of the envelope, λη = 20 is the wavelength of the
filter and x0 = 1.5 is the centre off-set distance. A domain x ∈ [−10, 10] is employed and
is discretized using 2001 equispaced grid points resulting in a grid spacing of �x = 0.01.
This covariance kernel is identical to the one used by Towne et al. (2018) as its structure
is qualitatively similar to statistics present in real flows (e.g. a turbulent jet). The filtered
process ñ(x, t) is defined as the convolution between a filter f�(x, t) and n(x, t), given by

ñ(x, t) = f�(x, t) � n(x, t). (4.2)

The filter employed is a fifth-order finite-impulse-response filter with a cutoff frequency
fco that varies as a function of the spatial location fco = 0.2|x− x0|/ max(x)+ 0.2.
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Figure 1. (a) Model problem sample paths at x = 0 as a function of the phase θ where the red line shows a
single representative trajectory for clarity. (b) Analytical WV spectrum of the model problem at x = x′ = 0 as
a function of phase θ .

This results in a filter exhibiting a more rapid spectral decay at x0 and a flatter spectrum
moving away from this location.

We sinusoidally modulate ñ(x, t) to create a cyclostationary process

g(x, t) = ñ(x, t)cos(2πf0t + θ0), (4.3)

where f0 = 0.5 is the modulation frequency and θ0 = 1
3 2π is a phase offset. Using the

theory developed in § 2, the CCSD of g(x, t) is analytically determined as

Sg(x, x′, α, f ) =

⎧⎪⎪⎨⎪⎪⎩
1
4 e±i2θ0Sñ(x, x′, 0, f ) for α = ±2f0,

1
4 Sñ(x, x′, 0, f + f0)+ 1

4 Sñ(x, x′, 0, f − f0) for α = 0,

0 otherwise,

(4.4)

where Sñ(x, x′, 0, f ) is the CCSD of ñ(x, t) at cycle frequency α = 0 (thus equalling
the CSD). The fundamental and only non-zero cycle frequency present is α0 = ±2f0,
indicating that this process exhibits cyclostationarity. The CSD of ñ(x, t) is given by

Sñ(x, x′, 0, f ) = c(x, x′)F�(x, f )F∗� (x
′, f ), (4.5)

where F�(x, f ) is the temporal Fourier transform of the filter f�(x, t). All estimates of
the CCSD and CS-SPOD are performed using a Hamming window with Nf = 10Nθ and
an overlap of 67 %. Snapshots are saved in time with �t = 0.04, resulting in Nθ = 25
time steps per period of the fundamental cycle frequency, T0 = 1/α0 = 1/(2f0). Data are
saved for tend = 2000T0, resulting in 50 000 snapshots and 593 blocks (realizations) of the
process.

Sample paths of the process at x = 0, as a function of the phase of the fundamental cycle
frequency, are shown in figure 1(a). As theoretically predicted, we observe a modulation
in the amplitude of the process as a function of the phase. This modulation is observed
in figure 1(b), where we plot the analytical WV spectrum computed using (2.9) and
(4.4) at x = x′ = 0. This shows the sinusoidal modulation of the PSD as a function of
the phase, a maximum in the PSD at θ = π/3 due to the phase offset applied and a
decay in the amplitude of the spectrum with increasing | f | due to the applied filter. In
figure 2, we compare the magnitude of the analytical and numerical CCSD at f = 0.1 and
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Figure 2. Magnitude of the analytically (a,c) and numerically (b,d) generated CCSD of the model problem at
f = 0.1.
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Figure 3. (a) Plot of the analytical and numerical CS-SPOD eigenspectrum of the model problem at γ = 0.2
for multiple signal durations. (b) Convergence of CS-SPOD eigenvalues of the model problem at γ = 0.2 as a
function of the total signal duration.

α = 0,±2f0. Here, we observe the aforementioned key structures of the covariance kernel
along with the excellent agreement between the numerical and analytical CCDSs, which
would further improve with an increasing number of realizations, thereby validating our
CCSD implementation (Algorithm 1).

Next, we validate our efficient algorithm to compute CS-SPOD (Algorithm 2) and
determine its convergence with increasing data by comparing the numerical results to
the analytical results. The analytical solution is determined by forming the CS-SPOD
eigensystem defined via (3.6a) through evaluating the analytical CCSDs (given by (4.4))
and then numerically evaluating the final eigenvalue problem. To encompass the range
of relevant frequencies, we use Kf = 10 (i.e. cyclic frequencies up to 10α0), resulting in
Ωγ = {−10,−9, . . . , 9, 10} + γ . Figure 3(a) shows a comparison of the analytical and
numerical CS-SPOD eigenspectra (averaged over 10 000 realizations of the process), at
γ = 0.2 for tend = 100T0, 400T0 and 2000T0, which corresponds to 27, 117 and 593
blocks, respectively. As the duration of the process increases, we observe an increasingly
converged estimate of the eigenspectrum. This is reflected in the percentage error between
the averaged numerical eigenvalues and the analytical eigenvalues of the three most
dominant CS-SPOD modes, which we show in figure 3(b). We see that these eigenvalues
linearly converge to the true value as the duration of the process increases, which is
theoretically expected due to the linear reduction in the variance of the Welch estimate
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of the CCSD with increasing realizations (Antoni 2007). Overall, we obtain a consistent
estimate of the CS-SPOD eigenvalues and conclude that our implementation of CS-SPOD
is correct.

5. Example problems

5.1. Application to a modified linearized complex Ginzburg–Landau equation
Our first example is the simple and well-understood linearized complex Ginzburg–Landau
equation, which has been used as a model for a convectively unstable flow that exhibits
non-modal growth (Chomaz, Huerre & Redekopp 1988; Hunt & Crighton 1991; Cossu &
Chomaz 1997). It can be written in the form of a generic linear forced system

∂q(x, t)
∂t

− L(x, t)q(x, t) = f (x, t), (5.1)

where q(x, t) and f (x, t) represent the state and forcing, respectively, with |q(x→
±∞, t)| → 0, and L(x, t) is the linear operator

L(x, t) = −ν1
∂

∂x
+ ν2

∂2

∂x2 − μ(x, t). (5.2)

We use the commonly used form μ(x) = μ0 − c2
μ + μ2(x2/2) (Hunt & Crighton 1991;

Bagheri et al. 2009; Chen & Rowley 2011; Towne et al. 2018). All constants in (5.1) and
(5.2), except for μ0, use the values of Bagheri et al. (2009).

Similar to Franceschini et al. (2022), we construct periodic dynamics by using μ0 =
μ̄0 + Aμ0 sin(2πf0t), where μ̄0 is the average value of μ0, Aμ0 is the amplitude of the
periodic modulation of μ0 and f0 is the frequency of the periodic modulation. For Aμ0 = 0,
the system has time-invariant dynamics, while for |Aμ0 | > 0, the system has time-periodic
dynamics, resulting in a stationary and cyclostationary response, respectively. By varying
Aμ0 , we modify the degree to which the system is cyclostationary. We choose f0 = 0.1,
which is substantial compared with the frequencies of interest (≈[−0.5, 0.5]), meaning
that the quasi-steady approach of Franceschini et al. (2022) cannot be employed. Like
Towne et al. (2018), we use μ̄0 = 0.23, which for Aμ0 = 0, strongly amplifies external
noise due to the non-normality of L(x, t) and results in a degree of low-rankness typically
present in turbulent flows. As per Franceschini et al. (2022), we confirm the stability of the
system using Floquet analysis (results not shown). To demonstrate the utility of CS-SPOD
and to facilitate its interpretation, we compare CS-SPOD performed at several levels of
cyclostationarity Aμ0 = 0.0, 0.2 and 0.4.

A pseudo-spectral approach using Hermite polynomials is employed to discretize the
equations (Bagheri et al. 2009; Chen & Rowley 2011), where the collocation points
[x1, x2, . . . , xNH ] correspond to the first NH Hermite polynomials with scaling factor
Re{(−μ2/(2ν2))

1
4 }. Following Bagheri et al. (2009) and Towne et al. (2018), we use NH =

221, leading to a computational domain x ∈ [−85.19, 85.19], which is large enough to
mimic an infinite domain. The boundary conditions are implicitly satisfied by the Hermite
polynomials (Bagheri et al. 2009). For CS-SPOD, the value of the weighting matrix at
xi is determined as the distance between the midpoints of the neighbouring grid points.
Temporal integration is performed using the embedded fifth-order Dormand–Prince
Runge–Kutta method (Dormand & Prince 1980; Shampine & Reichelt 1997). After the
initial transients have decayed, a total of 40 000 solution snapshots are saved with �t =
0.5, giving a Nyquist frequency of fNyquist = 1.
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Figure 4. The CCSD (top) and integrated CCSD (bottom) of the Ginzburg–Landau system at x = 0: (a)
Aμ0 = 0; (b) Aμ0 = 0.2 and (c) Aμ0 = 0.4.

To mimic a turbulent system, similar to Towne et al. (2018), we force our system using
spatially correlated band-limited noise, f (x, t). This is performed by constructing spatially
correlated noise with the following covariance kernel:

g(x, x′) = 1√
2πση

exp

[
−1

2

(
x− x′

ση

)2
]

exp
[
−i2π

x− x′

λη

]
, (5.3)

where ση is the standard deviation of the envelope and λη is the wavelength of the
filter, such that the covariance c(x, x′) = E{ f (x, t)f ∗(x′, t)} = g(x, x′). Spatial correlation
is introduced by multiplying white noise by the Cholesky decomposition of the covariance
kernel. The white noise has a uniformly distributed phase, normally distributed amplitude
with unit variance and is generated as by Towne et al. (2018). The forcing is spatially
restricted to an interior portion of the domain via the window exp[−(x/L)p], where
L = 60, p = 10. The spatially correlated noise is low-pass filtered using a tenth-order
finite-impulse-response filter with a cutoff frequency equal to 0.6fNyquist. This results in
a stationary forcing that is approximately constant in amplitude up to the cutoff frequency
(−6 dB in amplitude at the cutoff frequency) but has non-zero spatial correlation as
defined by (5.3). The forcing is then linearly interpolated to the temporal locations
required by the temporal integration. To compute the WV spectrum, SPOD and CS-SPOD,
we employed a window length Nf = 10Nθ and an overlap 67 %, resulting in Nb = 595
(realizations) of the process and a frequency discretization of �f = 0.01.

In analysing the data, we must first determine those frequencies, if any, where the system
exhibits cyclostationarity. To do this, we compute the CCSD and search over all possible
values of α in the range α ∈ [−1, 1], noting the α discretization required as discussed in
§ 2 to ensure no possible cycle frequencies are missed. Figure 4 shows the CCSD and
integrated CCSD for the three values of Aμ0 at x = x′ = 0, and confirms that the system is
cyclostationary when Aμ0 > 0 as high values of the CCSD and the integrated CCSD are
seen at α = 0, the modulation frequency ( f0) and an increasing number of harmonics as
Aμ0 is further increased. This demonstrates that α0 = f0.

We show 100 realizations of the process for each Aμ0 along with the WV spectrum at
x = x′ = 0 as a function of the phase of α0 in figure 5. The WV spectrum is computed
using Kα = 5 to encompass all cycle frequencies present. Figure 5(a) shows that the
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Figure 5. Example Ginzburg–Landau sample paths (top) at x = 0, where the red line shows a single
representative trajectory for clarity and WV spectrum at x = 0 (bottom): (a) Aμ0 = 0; (b) Aμ0 = 0.2 and
(c) Aμ0 = 0.4.

statistics are almost constant as a function of phase for Aμ0 = 0, which is expected given
the time-invariant dynamics. The small degree of modulation observed is due to statistical
uncertainty. In figure 5(b,c), we observe increasing levels of modulation in the statistics
as Aμ0 increases. Furthermore, the peak value of the spectrum also increases due to the
increasing non-normality of the system with increasing μ0. Given that the largest value of
μ0 occurs at θ = 0.5π and the peak of the WV spectrum occurs at θ ≈ 0.95π, there is a
phase delay of ≈ 0.45π between when the dynamics of the system are the least stable and
when the perturbations are, on average, the largest.

Based on the preceding analysis and to ensure we encompass all frequencies of
interest, we compute CS-SPOD using Kf = 5, resulting in a frequency range of Ωγ =
[−0.5, 0.5]+ γ . We first consider the stationary process with Aμ0 = 0.0. Although
CS-SPOD modes are theoretically equivalent to SPOD for the stationary case, finite data
length leads to differences.

Figure 6 shows the SPOD eigenspectrum for Aμ0 = 0.0. Note that the spectrum is not
symmetric in f because the Ginzburg–Landau system is complex. We superpose on the
SPOD spectra the set of frequencies f ∈ Ωγ for γ = 0.05, and mark and rank the six
intersections with the highest energy. Based on the plot, we should find that the four most
dominant CS-SPOD modes correspond to the dominant SPOD mode at a frequency of γ −
α0, γ, γ + α0 and γ + 2α0, respectively. Similarly, the fifth and sixth CS-SPOD modes
should correspond to the first subdominant SPOD modes at a frequency of γ and γ +
α0, respectively. Figure 7 makes comparisons between SPOD and CS-SPOD (performed
assuming a fundamental cycle frequency of α0 = f0) for the energy and eigenfunctions
for each of these six modes. While the results are quite similar in each case, there are
differences associated with statistics convergence, and this, as expected, occurs when there
is a small energy separation between two distinct modes (e.g. modes 5 and 6).

In figure 8(a), we now compare the CS-SPOD eigenspectrum for all γk ∈ Γk for the
three different values of Aμ0 . As Aμ0 increases, so does the energy, as the disturbances
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Figure 6. The SPOD eigenspectrum of the Ginzburg–Landau system with Aμ0 = 0.0, showing the three most
energetic modes at each discrete frequency f . Every other eigenvalue has been omitted to improve readability.
The six highest-energy modes occurring at the frequencies present in the CS-SPOD solution frequencies at
γ = 0.05, i.e. f ∈ Ωγ , are depicted with the red dots.

are increasingly amplified by the increasing non-normality of the linear operator at phases
corresponding to positive Aμ0 sin(2πf0t), consistent with the trend shown previously in
figure 5. A large energy separation between the dominant and sub-dominant CS-SPOD
modes is observed, which increases for greater Aμ0 , indicating that the process is
increasingly low rank. In figure 8(b), for γ = 0.05, we show the fraction of the total energy
(λT =

∑
j λj) that the first J CS-SPOD or SPOD modes recover. As theoretically expected

for Aμ0 = 0, CS-SPOD and SPOD result in an almost identical energy distribution. In
contrast, with increasing Aμ0 , CS-SPOD captures an increasingly greater amount of energy
than SPOD. For example, at Aμ0 = 0.4, the first CS-SPOD mode captures 64 % of the
total energy, while the first SPOD mode captures just 45 %. Furthermore, the first three
CS-SPOD modes capture 92 % of the total energy, while seven SPOD modes are required
to capture a similar amount of energy. As theoretically expected, the energy captured by
SPOD does not exceed the energy captured by CS-SPOD (since SPOD modes are a subset
of CS-SPOD modes). Thus, as the statistics become increasingly cyclostationary (i.e.
more phase-dependent), CS-SPOD is able to capture an increasingly larger fraction of the
phase-dependent statistics present in the process, which SPOD, due to the fundamentally
flawed assumption of statistical stationarity, is unable to achieve. Due to the increased
complexity of CS-SPOD modes, since they contain several frequency components, it is
expected that they capture more energy. However, the critical difference is that SPOD is
unable to capture the phase-dependent structure of the statistics (regardless of the number
of modes employed).

We now investigate how Aμ0 modifies the dominant CS-SPOD modes, at γ = 0.05, by
showing the real component and the magnitude of the temporal evolution of the modes
φj(x, t) in figures 9 and 10, respectively. We note that due to the multiple frequency
components (Ωγ ) present in φj(x, t), φj(x, t) can, unlike SPOD, no longer be completely
represented by a single snapshot and instead must be displayed as a function of time.
Similarly, the amplitude of the mode is periodic in time with period T0 = 1/α0, unlike
SPOD where the amplitude is constant in time. Thus, the amplitude is displayed as a
function of phase θ . Similar results are observed for other values of γ not shown here.
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Figure 7. Comparison of (a) SPOD and (b) CS-SPOD modes of the Ginzburg–Landau system with Aμ = 0.
From top to bottom are the six most dominant CS-SPOD modes and the six points identified in figure 6.
The contour limits of the CS-SPOD eigenfunctions are set equal to the corresponding SPOD mode
±‖Re{φj(x, t)}‖∞.

Overall, across all values of Aμ0 , the real component of the CS-SPOD modes show a
similar structure. However, as Aμ0 is increased, an additional modulation is seen that
results in increasingly time/phase-dependent magnitudes.

Finally, in figure 11, we investigate which frequency components are the most energetic
via the fractional energy of each frequency component f ∈ Ωγ for each CS-SPOD
mode, defined as Ef ,j ≡ ψ j(x, f )∗W (x)ψ j(x, f ), where

∑
f∈Ωγ

Ef ,j = 1. As Aμ0 increases,
the CS-SPOD modes are constructed from an increasing number of non-zero-energy
frequency components and at higher energy levels. For example, at γ = 0.05, the dominant
frequency component, f = 0.05, contains ≈100 %, 83 % and 64 % of the total energy of
the corresponding CS-SPOD mode for Aμ0 = 0, 0.2 and 0.4, respectively. This occurs
because of the increasing amount of correlation present between different frequency
components as Aμ0 increases. Alternatively, this phenomenon can be understood as the
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following; as Aμ0 increases, the statistics become more time dependent, and thus, the
amount of interaction between frequency components in Ωγ increases such that the
summation of these frequency components result in CS-SPOD modes that capture the
time-periodic modulation experienced by the flow.

5.2. Forced turbulent jet
We now consider a forced turbulent, isothermal, subsonic jet for which data are available
from a previous study (Heidt et al. 2021). The large eddy simulation (LES) was computed
using the Charles solver by Cascade Technologies using a set-up similar to previous,
experimentally validated, simulations of turbulent jets (Brès et al. 2017, 2018). The jet
has a Mach number of Mj = Uj/cj = 0.4 and a Reynolds number of Rej = ρjUjD/μj =
4.5× 105, where ρ is the density, μ is the viscosity, U is the velocity, c is the speed of
sound, D is the nozzle diameter, and the subscripts j and∞ represent the jet and free stream
conditions, respectively. Frequencies are reported with respect to the Strouhal number
St = fD/Uj, where f is the frequency.

A schematic of the simulation set-up is shown in figure 12. An axisymmetric acoustic
forcing is applied at a frequency Stf = ff D/Uj = 0.3 and amplitude a0/Uj = 0.1. This
forcing was chosen to roughly model the forced jet experiments of Crow & Champagne
(1971), and we chose Stf = 0.3 to match what they observed as the frequency that led to the
largest amplification by the flow (i.e. the jet preferred mode). We intentionally used a high
amplitude of forcing as we wanted to clearly establish cyclostationarity in the resulting
turbulence. The forcing is applied in an annular region surrounding the jet up to r/D = 5.
The acoustic forcing inlet co-flow is defined by

c(r) = 0.5[1− erf(2(r − 5))], (5.4a)

uf (r, t) = c(r) sin(2πff t), (5.4b)

ux(r, t) = u∞ + a0uf (r, t), (5.4c)

ur(r, t) = uφ(r, t) = 0, (5.4d)

ρ(r, t) = ρ∞ + ρ∞(ux(r, t)− u∞)/a∞, (5.4e)

p(r, t) = p∞ + a∞ρ∞(ux(r, t)− u∞). (5.4f )

The simulation was run, post-transient, with a time step of �tD/c∞ = 0.001, for
480 periods of the forcing frequency (or a total time of tsimD/c∞ ≈ 4000), during
which Nθ = 48 snapshots were saved over each cycle of the forcing. For the subsequent
analyses, the unstructured LES data were interpolated onto a structured cylindrical grid
spanning x/D ∈ [0, 30], r/D ∈ [0, 6] and φ ∈ [0, 2π] with 656, 138 and 128 points in
the axial, radial and circumferential dimensions. For the stochastic estimates, we use a
window length Nf = 12Nθ and an overlap of 67 %, resulting in Nb = 118 blocks and a
non-dimensional frequency discretization of �St ≈ 0.025.

985 A42-26

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

70
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2024.70


Decomposition of harmonically forced flows

40

30

20

10

–10
–10 0 10 20 30 40 50

0

7

6

5

4

3

2

1

0

–1

–6 –4 –2 0

x/D

r/
D

x/D

Sponge zone

LES Database domain
Slip

Coflow

O
u
tflo

w C
o
fl

o
w

:

u c
(r

, t
) 

=
 u

∞
 +

 a
0
u f

 (
r, 

t)

Outfl
ow buffe

r

C
o
fl

o
w

N
o
zz

le
 i

n
le

t

φ φ

u∞

c(r)sin(2fπff t)

(a) (b)

Figure 12. Schematic of the forced Mach 0.4 turbulent jet, adapted from Brès et al. (2018): (a) Overall
domain and (b) nozzle region.

In figure 13, we plot the instantaneous and phase-averaged (2.14) velocity at four phases
of one forcing cycle. Though not shown, we verified that the phase-averaged field is
axisymmetric, consistent with the axisymmetric jet forcing. In the phase-averaged field,
a large modulation in the axial velocity of the jet is observed with a vortex roll-up
occurring around x/D = 2.0. The fundamental frequency fluctuation is primarily located
in the potential core region and drives the large-scale periodic modulation. In figure 14, we
extract the first four frequency components (St = 0, 0.3, 0.6, 0.9) of the phase-averaged
field. The total fluctuation level, i.e. 2× Re{ûx,f /Uj}, for each non-zero frequency is
≈40 %, 15 % and 8 % thereby indicating that a substantial, nonlinear periodic modulation
of the mean occurs. Harmonic generation similarly peaks near x = 2 where the strong
roll-up is occurring.

Next, we analyse the second-order stochastic component to determine the cycle
frequencies present to apply CS-SPOD. Similar to the previous example, to determine what
cycle frequencies are present in the flow, we interrogate the CCSD and integrated CCSD
for α = [−3, 3] (not shown), again noting the α discretization required as discussed in § 2.
We confirm that the only cycle frequencies present are harmonics of the forcing frequency
(i.e. Zff ).

Figures 15(a,b) show the CCSD and corresponding WV spectrum, respectively, of the
axisymmetric component of the axial velocity at x/D = 5, r/D = 0.75. For clarity, the
CCSD is only shown for α/α0 ∈ Z since all other values of α are ≈ 0 (to within statistical
convergence). A large modulation occurs for α/α0 = 0,±1,±2. The WV spectrum
shows this large modulation of the statistics, where the phase of the high-energy regions
corresponds to when the high-velocity regions pass. Overall, it is clear that the forced
turbulent jet exhibits cyclostationarity at frequencies equal to the harmonics of the forcing
frequency.

Finally, we demonstrate the utility of CS-SPOD on a forced turbulent jet. Recalling
that both SPOD and CS-SPOD modes are decoupled among the azimuthal modes of the
jet (owing to the statistical axisymmetry of the flow), we focus for brevity only on the
axisymmetric m = 0 component of the fluctuations. We seek modes that are orthogonal in
the Chu-compressible energy norm (Chu 1965) that have been applied in previous SPOD
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Figure 13. Top of each pair of images is ũx(θ)/Uj of the forced Mach 0.4 turbulent jet at θ =
0, π/2, π, 3π/2. Bottom of each pair of images is u′′x (t)/Uj at a time instant corresponding to a forcing
phase of θ = 0, π/2, π, 3π/2.

0

2

1

2 4 6

x/D

r/D

2 St = 0

St = 0.6 St = 0.9

St = 0.3

1

2

1

2
1.0

0.5

0.05

–0.05

0

0

0.2

–0.2

0

0.02

–0.02
0

1r/D

8 10 0 2 4 6

x/D
8 10

0 2 4 6 8 10 0 2 4 6 8 10

Figure 14. Re{ûx,St/Uj} of the forced Mach 0.4 turbulent jet at St = 0, 0.3, 0.6 and 0.9.

2.0

1.5

1.0St

0.5

0
–5 –4 –3 –2 –1 0 1 2 3 4 5

α/α0

10–1

10–2

10–3

2.0

1.5

1.0

0.5

10–1

10–2

10–3

0

θ

π/2 3π/2π

(a) (b)
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Figure 16. (a) The CS-SPOD energy spectrum of the forced Mach 0.4 turbulent jet. (b) Total fractional energy
captured by a truncated set of CS-SPOD (blue) and SPOD (black) modes of the forced Mach 0.4 turbulent jet
at γSt = 0.15. The difference in the fractional energy captured by CS-SPOD and SPOD modes is also shown
(red).

studies (Schmidt et al. 2018):

〈qj, qk〉E =
∫∫∫

q∗k diag

(
T̂0

γgρ̂0M2 , ρ̂0, ρ̂0, ρ̂0,
ρ̂0

γg(γg − 1)T̂0M2

)
qjr dx dr dφ

= q∗kWqj, (5.5)

where M is the Mach number, γg is the ratio of specific heats, ρ̂0 and T̂0 are the
zero-frequency mean density and temperature components, and the matrix W takes into
account the energy and domain quadrature weights. To compute CS-SPOD, we choose
Kf = 10, resulting in a non-dimensional solution frequency set of ΩγSt = [−3, 3]+ γSt,
which encompasses all frequencies of interest.

We show the CS-SPOD eigenspectrum of the turbulent jet in figure 16(a). A large
difference in the energy between the 1st and 2nd, and 2nd and 3rd modes, at each γSt,
across almost all γSt is seen. This shows that the jet is low-rank. Since CS-SPOD solves
for multiple frequencies at a time, the energy separation will be smaller than with SPOD,
in particular, with a flatter spectrum. The spectrum peaks at γSt = 0.025 and decays as
|γSt| → 0.15 which, because the smallest |St| ∈ ΩγSt occurs at |γSt|, occurs due to the
decaying energy spectrum typically present in a turbulent jet. This low-rank behaviour,
which is expected based on previous literature on natural turbulent jets (e.g. Schmidt et al.
2018), is observed in figure 16(b) where we show the fraction of the total energy captured
by the first J SPOD and CS-SPOD modes. The first CS-SPOD mode, at γSt = 0.15,
captures 10 % of the total energy present in the flow at the set of frequencies ΩγSt , two
modes capture 15.2 %, ten modes capture 38 % and 50 modes capture 84.5 %. Surprisingly,
in contrast to the Ginsburg–Landau model, the energy separation between the most
energetic CS-SPOD and SPOD modes is not large despite the high level of modulation
present. However, despite this small difference, a large variation in the structure and
temporal evolution of the most energetic SPOD and CS-SPOD modes is seen, which we
explore next.

We show the real component and absolute value of the pressure component of the most
energetic SPOD and CS-SPOD mode at γSt = 0.15 in figure 17. The solid and dashed
lines in these figures correspond to the contour lines of ũx(θ)/Uj = 0.25, 0.75. SPOD
modes are only shown at a single time instance due to their time-invariant evolution, while
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Figure 17. Comparison of the (a) real component and (b) magnitude of the pressure component of the
dominant CS-SPOD mode to the dominant SPOD mode of the forced Mach 0.4 turbulent jet at γSt = 0.15.
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contours, respectively. The solid and dashed lines correspond to contour lines of ũx(θ)/Uj = 0.25, 0.75,
respectively.

CS-SPOD modes are shown at several time instances to show their temporal evolution.
The most dominant SPOD mode is focused downstream at x/D ≈ [6, 12], has a frequency
St = 0.15 and has a structure typical of the so-termed ‘Orr modes’ previously observed
in unforced turbulent jets (Schmidt et al. 2018; Pickering et al. 2020). By construction,
the amplitude of the SPOD mode remains constant over time, and the region of maximum
amplitude corresponds to x/D ≈ [6, 12] and r/D ≈ [0, 1]. The real component of the most
energetic CS-SPOD mode has a structure similar to the respective SPOD mode but with
an additional modulation localized to the shear layer in regions of high velocity. This is
also observed in the amplitude contours, where the amplitude of the mode substantially
varies as a function of phase in a region similar to the amplitude profile of SPOD, but the
high-amplitude regions always follow the high-velocity regions of the jet. The CS-SPOD
modes follow this region since it is where the greatest amount of shear occurs along with
the vortex roll-up (as seen in figures 13 and 14).

Figure 18 shows the same CS-SPOD mode in a zoomed-in region near the nozzle exit,
plotted with lower contour levels since the fluctuation levels are smaller there. At t = 0
(i.e. θ = 0), a short wavelength Kelvin–Helmholtz (KH) mode that is located between the
25 % and 75 % velocity lines in the x/D = [0, 1] region is seen. The KH mode is angled
towards the centreline due to the modulation of the mean flow. Next, at t = T0/4, the KH
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Figure 18. Real component of the pressure of the dominant CS-SPOD mode of the forced Mach 0.4 turbulent
jet at γSt = 0.15 (zoomed into x/D = [0, 2], r/D = [0, 2]). All contours are set to ±0.25‖Re{φp,1(x =
[0, 2], r = [0, 2], t)}‖∞. The solid and dashed lines correspond to contour lines of ũx(θ)/Uj = 0.25, 0.75,
respectively.
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Figure 19. (a) Normalized energy of the dominant CS-SPOD modes of the forced Mach 0.4 turbulent jet over
the phase of the external forcing at γSt = 0.15. (b) Fractional CS-SPOD modal energy by frequency, Ef ,j, of
the forced Mach 0.4 turbulent jet at γSt = 0.15, shown in log10 scale.

mode has propagated slightly downstream and has become significantly weaker due to the
much thinner shear layer at this phase of the motion. From t = T0/4 to t = 3T0/4, the KH
mode increases in strength as it continues to propagate downstream due to the increasing
thickness of the boundary layer. The KH mode also rotates due to the roll-up induced
by the forcing, as seen in figure 13. At t = 3T0/4, the KH mode is substantially stronger
than at t = T0/4, is a lower-frequency structure located around the x/D = [0.6, 1] region
and is angled away from the centreline. A corresponding interrogation of the SPOD mode
shows no near-nozzle KH activity at this frequency, highlighting the ability of CS-SPOD
to reveal potentially important dynamical effects that are slaved to the forcing frequency.

Figure 19(a) shows the normalized energy as a function of phase of the three dominant
modes at γSt = 0.15, defined as the spatial norm of the modes at each θ . The energy,
despite the large phase-dependent modulation seen in figure 17, varies by just ±2 % as a
function of phase. This demonstrates that, despite the strong phase-dependent structure
of the mode and of the statistics present in the jet, on average, over the flow, the
total energy contained within these modes is not strongly phase-dependent. Finally, in
figure 19(b), we show the fractional energy of each frequency component St ∈ ΩγSt of
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the CS-SPOD modes. The large amount of frequency interaction previously observed is
visible, where for j = 1, the eight highest energy frequency components are±0.15,±0.45,
±0.75, ±1.05 which contain 45.6 %, 3.6 %, 0.52 %, 0.15 % of the energy, respectively.
Thus, a large amount of interaction occurs between the frequency components in ΩγSt ,
which results in the large periodicity observed. It is important to note that although a
frequency component may only contain a small fraction of the total energy in a CS-SPOD
mode, in many cases, it is still a physically important feature, such as the modulated KH
mode discussed previously, and thus should be carefully studied.

Overall, we see that the forcing clearly results in a large modulation of the KH and Orr
modes present, an effect that SPOD is unable to capture. Thus, the utility of CS-SPOD to
describe the coherent structures in a forced turbulent jet is demonstrated.

6. Harmonic resolvent analysis and its relationship to CS-SPOD

Harmonic resolvent analysis (Padovan & Rowley 2022) extends resolvent analysis to
time-periodic mean flows. Starting with the nonlinear governing equations

∂g(t)
∂t
= H(g(t)), (6.1)

where H is the time-independent continuity, momentum and energy equations and g(t) ∈
CN is the state vector of flow variables, we decompose the state as g(x, t) = g̃(x, t)+
g′′(x, t), where g̃(t) = g̃(t + T0) is the T0 periodic mean flow component (first-order
component) and g′′(t) is the turbulent component (second-order component). Since g̃(t) is
periodic, it can be expressed as a Fourier series, giving g̃(t) =∑∞

kα=−∞
ˆ̃gkαα0

ei2π(kαα0)t,

where ˆ̃gkαα0
are the Fourier series components of the meanflow and T0 is the period

of oscillation of the mean flow. The cycle frequencies, which in the context of linear
analysis must be the frequencies present in the mean flow, are kαα0. By substituting this
decomposition into (6.1), we obtain

∂g′′(t)
∂t
= Dg(H(g̃(t))g′′(t)+ f′′(t), (6.2)

where f′′(t) contains higher-order terms in g′′(t). The Jacobian A(t) = Dg(H(g̃(t))
is also a periodic function in time, which, following the discussion of Padovan &
Rowley (2022), we assume is a differentiable function of time thereby guaranteeing a
unique solution of (6.2). Subsequently, it is also expanded as a Fourier series A(t) =∑∞

kα=−∞ Âkαα0 ei2π(kαα0)t. Inserting this expansion into (6.2), Fourier transforming in time
and then separating by frequency gives

i2π(γ + kf α0)ĝγ+kf α0
=

∞∑
kα=−∞

Âkαα0 ĝγ+(kf−kα)α0
+ f̂γ+kf α0, (6.3)

where ĝf and f̂f are the f -frequency components of g′′(t) and f′′(t), respectively. Equation
(6.3) represents a system of coupled equations where perturbations at frequency f are
coupled to perturbations at frequency f + kαα0 through the kαα0 frequency component
of the mean flow. In general, this results in an infinite-dimensional problem similar to
the infinite-dimensional CS-SPOD eigenvalue problem. The final problem is compactly
written as

(i2πγ I − T̂ )Ĝ = F̂ , (6.4)

where
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Decomposition of harmonically forced flows

T̂ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

. . .
. . .

. . .
. . .

. . . R̂−α0 Â−α0 Â−2α0

. . .

. . . Âα0 R̂0 Â−α0

. . .

. . . Â2α0 Âα0 R̂α0

. . .

. . .
. . .

. . .
. . .

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (6.5a)

Ĝ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

...

ĝγ−α0

ĝγ

ĝγ+α0

...

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, F̂ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

...

f̂γ−α0

f̂γ

f̂γ+α0

...

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (6.5b,c)

R̂kα0 = (−i2πkα0I + Â0) ∈ CN×N and I is the identity operator. The harmonic resolvent
operator is then defined as Ĥ = (i2πγ I − T̂ )−1. If the flow is time invariant, then all
off-diagonal blocks are zero, i.e. there is no cross-frequency coupling, and the system
becomes block-diagonal where each diagonal block is the standard resolvent problem at
frequency γ + kα0, k ∈ Z. As detailed by Padovan & Rowley (2022), the singularity in
the harmonic resolvent operator must be removed to avoid numerical difficulties.

In practice, identically to CS-SPOD, we restrict the number of linked problems and the
base flow frequencies considered. Thus, we seek time-periodic perturbations of g′′(t) =∑Kf

kf=−Kf
ĝγ+kf α0

ei2π(γ+kf α0)t, where Kf ∈ Z+. This results in a solution frequency set of
Ωγ = {−Kf α0 + γ, (−Kf + 1)α0 + γ, . . . , γ, . . . , (Kf − 1)α0 + γ, Kf α0 + γ }. We also
limit the mean flow frequencies to g̃(t) =∑Kα

kα=−Kα

ˆ̃gkαα0
ei2π(kαα0)t, with Kα ≤ Kf .

Similar to CS-SPOD, harmonic resolvent analysis is periodic in γ and thus we must only
solve over the range γ ∈ Γ , where Γ = [−α0/2, α0/2). We then seek the forcing mode
F̂ that results in the most energetic response Ĝ, expressed as the following optimization
problem:

σ 2 = 〈Ĝ, Ĝ〉G
〈F̂ , F̂ 〉F

, (6.6)

where 〈Ĝj, Ĝk〉G and 〈F̂ j, F̂ k〉F are inner products on the output and input spaces,
respectively, and are given by

〈Ĝj, Ĝk〉G =
∫

Ω

Ĝ∗k(x, f )W G(x)Ĝj(x, f ) dx, (6.7a)

〈F̂ j, F̂ k〉F =
∫

Ω

F̂∗k(x, f )W F(x)F̂ j(x, f ) dx. (6.7b)

The solution to this optimization problem is given by the singular value decomposition of
the weighted harmonic resolvent operator

H̃ = W 1/2
G ĤW−1/2

F = ŨΣ Ṽ∗, (6.8)
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where the diagonal matrix 	 = diag[σ 2
1 , σ 2

2 , . . .] contains the ranked gains and the
columns of V̂ = W−1/2

F Ṽ and Û = W 1/2
G Ũ contain the forcing and response modes,

respectively. These modes have an analogous structure to F̂ or Ĝ, and the jth forcing and
response modes (V̂ j, Û j) can be reconstructed in the time domain as

V j = V j(x, t) =
Kf∑

kf=−Kf

v̂j,γ+kf α0 ei2π(γ+kf α0)t, (6.9a)

U j = U j(x, t) =
Kf∑

kf=−Kf

ûj,γ+kf α0 ei2π(γ+kf α0)t, (6.9b)

respectively. These modes are orthonormal in their respective spatial norms 〈V̂ j, V̂ k〉F =
〈Û j, Ûk〉G = δj,k and the temporal modes are orthogonal in their respective space–time
norms when integrated over a complete period. The decomposition is complete, allowing
the output to be expanded as

Ĝ(x, γ ) =
∞∑

j=1

Û j(x, γ )σj(γ )βj(γ ), (6.10)

where
βj(γ ) = 〈F̂ (x, γ ), V̂ j(x, γ )〉F. (6.11)

A connection between harmonic resolvent analysis and CS-SPOD is obtained using an
approach similar to that of Towne et al. (2018) and is analogous to the relationship between
resolvent analysis and SPOD. The derivation is shown in Appendix C. We show that
CS-SPOD and harmonic resolvent analysis modes are equal if and only if the harmonic
resolvent-mode expansion coefficients are uncorrelated. Furthermore, we show that the
CS-SPOD eigenvalues and harmonic resolvent analysis gains are equal (σ 2

j = λj) if the
forcing is unit-amplitude white noise.

As described by Towne et al. (2018), while the nonlinear forcing terms in a real flow
are unlikely to be white, this approximation has been shown to be reasonable in some
flows, and has been employed to construct low-order models (Farrell & Ioannou 1993,
2001) and resolvent-based models (Jovanovic & Bamieh 2001; Bagheri et al. 2009; Sipp
et al. 2010; Towne, Bres & Lele 2017; Pickering et al. 2021b) which consider resolvent
modes to be approximations of SPOD modes. We expect similar models could be created
for cyclostationary flows using harmonic resolvent analysis modes as approximations of
CS-SPOD modes. Furthermore, a comparison of CS-SPOD modes and harmonic resolvent
analysis modes can also show us how correlated the forcing modes are (and where).

We demonstrate this result by comparing the CS-SPOD and harmonic resolvent analysis
results for the modified forced Ginzburg–Landau for Aμ = 0.4. For both CS-SPOD
and harmonic resolvent analysis, we employ Kf = 5 resulting in a frequency range of
Ωγ = [−0.5, 0.5]+ γ . To compute CS-SPOD, we force the system with unit variance
band-limited white noise. This is constructed similarly to the spatially correlated case
previously considered in § 5.1 without the step to introduce the spatial correlation. We
employ identical computational parameters to those used in § 5.1.

Since the forcing is white, CS-SPOD modes and harmonic resolvent analysis modes
are theoretically identical. Furthermore, since the inner product has unit weight, the
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Figure 20. Comparison of the first six harmonic resolvent gains σ 2
j and CS-SPOD eigenvalues λj as a

function of γ for the white noise forced Ginzburg–Landau system with Aμ = 0.4.

CS-SPOD eigenvalues equal the harmonic resolvent analysis gains. Figure 20 shows the
first six CS-SPOD eigenvalues and harmonic resolvent gains. Overall, excellent agreement
is observed between the CS-SPOD eigenvalues and harmonic resolvent gains. The small
amount of jitter present in the CS-SPOD eigenvalues is due to statistical uncertainty. The
minor overshoot or undershoot is associated with spectral and cycle leakage, which can
be reduced by increasing the frequency resolution of the estimate. As with any spectral
estimate, increasing the length of the blocks reduces the number of blocks leading to the
well-known bias-variance tradeoff. Improved control over the bias-variance tradeoff in
SPOD was achieved using multi-taper methods (Schmidt 2022) and could similarly be
used for CS-SPOD.

Figure 21 shows the magnitude of the time evolution of the three most energetic
CS-SPOD and harmonic resolvent modes at γ = 0.05, which we see are almost
indistinguishable. The similarity between the CS-SPOD and harmonic resolvent
modes is quantified using the projection ξjk(γ ) = 〈Ψ j(γ ), Ûk(γ )〉x and the harmonic
resolvent-mode expansion-coefficient CSD Sβjβk(γ ). To compute Sβjβk(γ ), we take two
inner products with respect to Û j(γ ) and Ûk(γ ), and then divide by σj(γ ) and σk(γ ),
obtaining

Sβjβk(γ ) =
∞∑

n=1

λn(γ )

σj(γ )σk(γ )
ξnj(γ )ξ∗nk(γ ). (6.12)

The projection ξjk and |Sβjβk |/|Sβjβk |∞ are shown in figure 22 for γ = 0.05. Here, |Sβjβk |
is, by construction, diagonal and this should result in a diagonal ξjk. This is verified for the
first eight modes, but for increasingly subdominant modes, off-diagonal terms become
increasingly apparent, which is owing to a lack of full statistical convergence.

Finally, to demonstrate the necessity of using harmonic resolvent and CS-SPOD to
model and educe structures for time-periodic mean flows, we compare our results with
a naive application of SPOD and (standard) resolvent analysis to the time-periodic GL
system. Figure 23 compares the (standard) resolvent gains and SPOD eigenvalues for
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Figure 21. Comparison of (a) the magnitude of the three most energetic CS-SPOD and (b) harmonic resolvent
analysis modes at γ = 0.05 of the white noise forced Ginzburg–Landau system with Aμ = 0.4. The contour
limits of the CS-SPOD modes are set equal to the corresponding harmonic resolvent modes [0, ‖U j(x, θ)‖∞].
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Figure 22. (a) The CS-SPOD and harmonic resolvent analysis mode projection coefficient ξjk and (b)
magnitude of the normalized harmonic resolvent-mode expansion-coefficient CSD |Sβjβk |/|Sβjβk |∞ of the
white noise forced Ginzburg–Landau system at γ = 0.05.

Aμ = 0, 0.2 and 0.4. When Aμ = 0, the system is stationary, and the resolvent gains and
SPOD energies agree (as expected), but there are significant and growing discrepancies
as Aμ /= 0 is increased and the base flow is increasingly oscillatory. This shows that once
the statistically stationary or constant mean flow assumptions are violated, the relationship
between SPOD and resolvent analysis does not hold even if the forcing is white (as seen
due to the difference between the SPOD eigenspectrum and resolvent analysis gains for
Aμ > 0). Thus, for systems with periodic statistics, CS-SPOD and harmonic resolvent
analysis must be used to analyse these flows.
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Figure 23. Comparison of the first three resolvent analysis gains σ 2
j and SPOD eigenvalues λj as a function of

frequency f for the white noise forced Ginzburg–Landau system with Aμ = 0.0, 0.2 and 0.4. For clarity, every
second SPOD eigenvalue has been omitted.

7. Low-frequency and high-frequency forcing limits

In many flows, the frequency of the forcing may be either low or high with respect to the
dynamics of interest. In both cases, simplifications can be made to the analysis.

For low-frequency forcing, CS-SPOD and harmonic resolvent analysis tend towards
systems that link all frequency components together, thereby making the analysis of the
resulting system impractical. However, in many cases, we are interested in frequencies
that are much higher than the forcing frequency. Franceschini et al. (2022) showed that
high-frequency structures evolving on a low-frequency periodic motion could be analysed
using a quasi-steady approach which they named phase-conditioned localized SPOD
(PCL-SPOD) and quasi-steady (QS) resolvent analysis. These methods require f � f0
and that at each fixed time (or phase) t, the cross-correlation tensor, around that phase,
only depends on the time lag τ . At each phase, all standard SPOD and resolvent analysis
properties are satisfied in PCL-SPOD and QS resolvent analysis, and we refer the reader to
Franceschini et al. (2022) for a detailed discussion. Although PCL-SPOD was developed
without reference to cyclostationary theory and computational methods, by employing a
similar derivation to Franceschini et al. (2022), PCL-SPOD can be written as∫

Ω

WV (x, x′, f , t)W (x′)ψ(x′, f , t) dx′ = λ( f , t)ψ(x, f , t), (7.1)

where WV (x, x′, f , t) is the WV spectrum and ψ(x, f , t) are the PCL-SPOD eigenvectors
that only contain a single frequency component f and are independent over time. This
is analytically identical to the PCL-SPOD shown by Franceschini et al. (2022), but is
numerically determined using a different computational procedure. QS resolvent analysis
is similarly written as

(i2πf I − A(t))ĝ( f , t) = η̂( f , t), (7.2)

where R( f , t) = (i2πf I − A(t)) is the QS resolvent operator, and the solution at each
time instance t (or equivalently phase θ ) is independent of the solution at any other time
instance. For each frequency f and time t, we then seek to solve the forcing mode η̂( f , t)
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Figure 24. Contours of the gain and weighted mode shapes of the white-noise forced Ginzburg–Landau system
with Aμ = 0.2, and f0 = 0.01, 0.04 and 0.1. (a) Contours of QS resolvent gain σ1( f , θ)2 and PCL-SPOD
energy λ1( f , θ) as a function of frequency f and phase θ . (b) Weighted mode shapes in θ − x space of the
dominant QS resolvent σ1( f , θ)|Û†1(x, f , θ)| and PCL-SPOD

√
λ1( f , θ)|ψ1(x, f , θ)| modes at f = 0.1.

that results in the most energetic response ĝ( f , t), which is determined via the singular
value decomposition of the weighted QS resolvent operator

W 1/2
g R( f , t)W−1/2

η = Ũ†Σ†Ṽ∗†, (7.3)

where W η and W g are the norms on the input and output space, respectively, and are
defined similarly to (6.7). The diagonal matrixΣ† = diag[σ 2

1 , σ 2
2 , . . .] contains the ranked

gains, and the columns of V̂ † = W−1/2
η Ṽ † and Û† = W 1/2

g Ũ† contain the forcing and
response modes, respectively.

Using (2.9), Algorithm 1 and a procedure similar to that of regular SPOD, we compute
PCL-SPOD of the Ginzburg–Landau systems with white-noise forcing for several different
forcing frequencies f0 = 0.01, 0.04 and 0.1 at Aμ = 0.2. Due to the substantially lower
forcing frequency, 2× 105 snapshots are saved instead of 4× 104. We then compare the
PCL-SPOD and QS resolvent results in figure 24 where we see excellent agreement for
small f0. We see that as f0 increases, the PCL-SPOD and QS resolvent results increasingly
deviate as the two aforementioned assumptions are increasingly violated.

Many physical systems exhibit some form of spectral peak. If the forcing frequency is
sufficiently large, such that the energy contained at f + kα0, k ∈ Z & k /= 0 is substantially
lower than at f , one can see that the CS-SPOD and harmonic resolvent systems (given by
(3.5), (6.4), respectively) can be approximated by the block diagonal term that corresponds
to f (i.e. the most energetic component in Ωγ ). Furthermore, for many systems, the
impact of a high-frequency forcing on the low-frequency dynamics is not direct, instead,
the low-frequencies are modified as a result of nonlinear interaction that modifies the
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0–0.2–0.4
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f
0.4

SPOD: Aμ = 0

SPOD: Aμ = 0.8, f0 = 0.1

SPOD: Aμ = 0.8, f0 = 0.2

SPOD: Aμ = 0.8, f0 = 0.4

CS-SPOD: Aμ = 0.8, f0 = 0.4

CS-SPOD: Aμ = 0.8, f0 = 0.2

CS-SPOD: Aμ = 0.8, f0 = 0.4

Figure 25. Comparison of the dominant SPOD and CS-SPOD eigenvalues λ1 as a function of frequency f for
the white-noise forced Ginzburg–Landau system at Aμ = 0.8 for f0 = 0.1, 0.2, 0.4. The SPOD eigenvalues for
Aμ = 0 are overlaid to show the impact of the forcing on the spectrum.

mean flow. Thus, for a large forcing frequency, CS-SPOD and harmonic resolvent analysis
approach SPOD and standard resolvent analysis, respectively. In figure 25, we show the
SPOD and CS-SPOD eigenspectrum of the white-noise forced Ginzburg–Landau system
at Aμ = 0.8 for f0 = 0.1, 0.2, 0.4. To assess the convergence of CS-SPOD to SPOD for
large forcing frequencies, the CS-SPOD modes have been mapped to the SPOD mode of
greatest alignment (computing over the same set of frequencies Ωγ ). This is similar to
what was performed in § 5.1 during the comparison between SPOD and CS-SPOD modes.
We see that as the forcing frequency increases, the CS-SPOD and SPOD eigenvalues begin
to converge in the region where the energy at f + kα0 � f , k ∈ Z & k /= 0.

8. Conclusions

In this paper, we have proposed CS-SPOD for the extraction of the most energetic
coherent structures from complex turbulent flows whose statistics vary time periodically
(i.e. flows that have cyclostationary statistics). This is achieved by an extension of the
one-dimensional technique developed by Kim et al. (1996) to large high-dimensional
data through the use of the method-of-snapshots to make the algorithm computationally
feasible for large data. The orthogonality/optimality properties of the modes generated
by CS-SPOD are shown, where, similar to SPOD analysis of stationary flows, CS-SPOD
determines the set of orthogonal modes that optimally reconstruct the statistics of these
flows in terms of the space–time norm.

In contrast to SPOD, where the modes oscillate at a single frequency and have a
constant amplitude in time, CS-SPOD modes oscillate at a set of frequencies separated
by the fundamental cycle frequency (typically the modulation frequency), have a periodic
amplitude in time and optimally reconstruct the second-order statistics. We show that
CS-SPOD naturally becomes SPOD when analysing a statistically stationary process,
allowing the CS-SPOD results to be interpreted in a familiar manner. Furthermore, we
develop an efficient computational algorithm to compute CS-SPOD with a computational
cost and memory requirement similar to SPOD, thus allowing CS-SPOD to be computed
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on a wide range of problems. A MATLAB implementation of the presented algorithms
is available at https://github.com/CyclostationarySPOD/CSSPOD. Lastly, similar to the
relationship that exists between SPOD and standard resolvent analysis (Towne et al.
2018), CS-SPOD modes are identical to harmonic resolvent modes in the case where
the harmonic resolvent-mode expansion coefficients are uncorrelated. We also discuss
simplifications that can be made when forcing at a low or high frequency.

We applied the CS-SPOD algorithm to two datasets. The first is data from a modified
linearized complex Ginzburg–Landau equation with time-periodic dynamics, which
represents a simple model of a flow exhibiting non-modal growth. As the amplitude of
the imposed time periodicity is increased, CS-SPOD yields modes that are increasingly
phase dependent. We demonstrated the inability of SPOD to capture these dynamics,
which is shown through both an analysis of the temporal evolution of the modes and by
the ability of CS-SPOD to capture substantially more energy than SPOD. In addition,
we show that when the system is forced with unit-variance white noise, the CS-SPOD
modes from the data were identical (up to statistical convergence) with modes computed
by harmonic resolvent analysis. For cyclostationary processes, we show that (standard)
resolvent analysis cannot predict the time-averaged statistics even when the white-forcing
conditions are met. This shows that CS-SPOD and harmonic resolvent analysis should be
used to correctly analyse and/or model flows with cyclostationary statistics.

We next considered a forced, turbulent high-Reynolds-number jet, demonstrating
CS-SPOD on a turbulent flow for the first time. We identified coherent structures that
differed in important ways from their SPOD-identified cousins in natural jets. In particular,
CS-SPOD clarifies how the dynamics of the coherent structures are altered by the forcing.
For example, the axisymmetric CS-SPOD structure at a low Strouhal number featured
finer-scale axisymmetric KH roll-up in the near-nozzle region that is absent in natural jets
at a high Reynolds number. This roll-up waxed and waned at those phases of the forcing
cycle where the initial shear layer was thinned and thickened, respectively.

Overall, our results show that CS-SPOD successfully extends SPOD to flows with
cyclostationary statistics. This allows us to study a wide range of flows with time-periodic
statistics, such as turbomachinery, weather and climate, flow control with harmonic
actuation, and wake flows rendered cyclostationary through the (arbitrary) choice of a
phase reference for the dominant shedding frequency. Although we focused on strictly
cyclostationary processes, further generalizations are possible to almost periodic flows and
flows forced with several non-commensurate cyclic frequencies. Furthermore, for many
systems, cyclostationarity could be approximated to investigate the flow. For example, in
cases where the flow exhibits a secondary slow-time scale modulation, such as a bluff body
wake which generally exhibits a low-frequency meandering on top of the more pronounced
vortex-shedding modulation, one could likely still apply CS-SPOD by assuming that
the flow is not substantially modified by the low-frequency meandering and instead is
primarily governed by the vortex-shedding frequency.
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Appendix A

To derive the eigenvalue problem given by (3.5), we rewrite R(x, x′, t, t′)→
R(x, x′, t, τ ) ≡ E{q(x, t + τ/2)q∗(x′, t − τ/2)}, where τ = t − t′. Recalling that for a
cyclostationary process, the two-point space–time correlation density is a periodic
function in time and can be expressed as a Fourier series

R(x, x′, t, τ ) =
∞∑

kα=−∞
R̃kαα0(x, x′, τ ) ei2π(kαα0)t, (A1)

where R̃kαα0(x, x′, τ ) are the cyclic autocorrelation functions of R(x, x′, t, τ ) at cycle
frequency kαα0. One can also decompose the two-point space–time correlation density
as the following phase-shifted Fourier series

R(x, x′, t, τ ) =
∞∑

kα=−∞
R̂kαα0(x, x′, τ ) e−iπ(kαα0)τ ei2π(kαα0)t, (A2)

where the two Fourier coefficients are related by

R̃kαα0(x, x′, τ ) eiπ(kαα0)τ = R̂kαα0(x, x′, τ ). (A3)

Although somewhat unusual, this simply applies a phase shift to the resulting Fourier
series coefficients that, after Fourier transforming, shifts the centre frequency of the
CCSD. This is identical to the phase shift that relates the symmetric and asymmetric
definitions of the cyclic cross-correlation functions and CCSD. Due to this, one can derive
CS-SPOD using the symmetric definitions and a phase shift or using the asymmetric
definition. We choose the former as it results in a simpler derivation later. This phase shift
is required to ensure the resulting eigensystem is Hermitian and positive semi-definite.
Substituting the cyclic Wiener–Khinchin relation from (2.7) into (A2) and then into the
Fredholm eigenvalue problem (3.3) results in∫ ∞
−∞

∫
Ω

∫ ∞
−∞

∞∑
kα=−∞

Skαα0(x, x′, f ) ei2π(kαα0)t ei2π( f− 1
2 kαα0)τ W (x′)φ(x′, t′) df dx′ dt′

= λφ(x, t). (A4)

Since τ = t − t′, this leads to the following simplifications:

∫ ∞
−∞

∫
Ω

∞∑
kα=−∞

Skαα0(x, x′, f ) ei2π(kαα0)t ei2π( f− 1
2 kαα0)tW (x′)

×
∫ ∞
−∞

[φ(x′, t′) e−i2π( f− 1
2 kαα0)t′ dt′] df dx′ = λφ(x, t), (A5)
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−∞

∫
Ω

∞∑
kα=−∞

Skαα0(x, x′, f ) ei2π( f+1
2 kαα0)tW (x′)φ̂

(
x′, f − 1

2 kαα0

)
df dx′ = λφ(x, t),

(A6)

where φ̂(x′, f ) is the temporal Fourier transform of φ(x′, t′). Similar to SPOD, we must
choose a solution ansatz. In SPOD, we can solve a single frequency at a time as there is
no correlation between different frequency components. However, since cyclostationary
processes have spectral components that are correlated, we are unable to solve for each
frequency component separately. Instead, we solve multiple coupled frequencies together
by choosing our solution ansatz as

φ(x, t) =
∞∑

kf=−∞
ψ(x, γ + kf α0) ei2π(γ+kf α0)t, (A7)

giving

φ̂(x, f ) =
∞∑

kf=−∞
ψ(x, γ + kf α0)δ( f − (γ + kf α0)). (A8)

The frequency-shifted version of φ̂(x, f ) is given by

φ̂(x, f − 1
2 kαα0) =

∞∑
kf=−∞

ψ(x, γ + kf α0)δ( f − (γ + (kf + 1
2 kα)α0)). (A9)

Substituting these expressions into (A6) and integrating with respect to f results in∫
Ω

∞∑
kα=−∞

∞∑
k′f=−∞

Skαα0(x, x′, γ + (k′f + 1
2 kα)α0)e

i2π(γ+(kα+k′f )α0)tW (x′)

× ψ(x, γ + k′f α0) dx′ = λ
∞∑

kf=−∞
ψ(x, γ + kf α0) ei2π(γ+kf α0)t. (A10)

For this equation to hold over all time, we perform a harmonic balance where each
frequency component must hold separately. This gives γ + (k′f + kα)α0 = γ + kf α0 →
k′f + kα = kf . An equation for each frequency component of our ansatz is formed as∫

Ω

∞∑
kα=−∞

∞∑
k′f=−∞

Skαα0(x, x′, γ + (k′f + 1
2 kα)α0)W (x′)ψ(x, γ + k′f α0) dx′δk′f+kα,kf

= λψ(x, γ + kf α0). (A11)

Substituting kα = kf − k′f , this expression simplifies to∫
Ω

∞∑
k′f=−∞

S(kf−k′f )α0(x, x′, γ + 1
2 (kf + k′f )α0)W (x′)ψ(x, γ + k′f α0) dx′

= λψ(x, γ + kf α0). (A12)

Expanding (A12) gives the final CS-SPOD eigenvalue problem (3.5).
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Appendix B

Algorithm 3 Inefficient algorithm to compute CS-SPOD.

1: for Each data block, n = 1, 2, . . . , Nb do
� Construct the block-data matrix

2: Q(n) = [q1+(n−1)(Nf−N0)
, q2+(n−1)(Nf−N0)

, . . . , qNf+(n−1)(Nf−N0)
]

� Construct the block-time matrix
3: T(n) = [t1+(n−1)(Nf−N0), t2+(n−1)(Nf−N0), . . . , tNf+(n−1)(Nf−N0)]
4: end for
5: for kf = −Kf to Kf do
6: for Each data block, n = 1, 2, . . . , Nb do

� Compute the frequency-shifted block-data matrices
7: Q(n)

kf α0
← Q(n) e−i2π(kf α0)T(n)

� Using a (windowed) fast Fourier transform, calculate and store the row-wise
DFT for each frequency-shifted block-data matrix

8: Q̂(n)
kf α0
= FFT(Q(n)

kf α0
) = [q̂(n)

1,kf α0
, q̂(n)

2,kf α0
, . . . , q̂(n)

Nf ,kf α0
]

where, the column q̂(n)
k,kf α0

contains the nth realization of the Fourier mode at
the kth discrete frequency of the kf α0 frequency-shifted block-data matrix

9: end for
10: end for
11: for Each γk ∈ Γk (or some subset of interest) do

� Assemble the concatenated frequency-data matrix for frequency set Ωγk

12: Q̃γk ←

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Q̂γk,−Kf α0
...

Q̂γk,0
...

Q̂γk,Kf α0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

where Q̂γk,kf α0
←√κ[q̂(1)

k,kf α0
, q̂(2)

k,kf α0
, . . . , q̂(Nb−1)

k,kf α0
, q̂(Nb)

k,kf α0
] is the matrix of

Fourier realizations corresponding to the kth column of the kf α0 frequency-shifted
block-data matrix Q̂(n)

kf α0

13: Compute the matrix Mγk ← Q̃
∗
γk

WQ̃γk

14: Compute the eigenvalue decomposition Mγk = �γk�̃γk�
∗
γk

15: Compute and save the CS-SPOD modes �̃γk = Q̃γk�γk�̃
−1/2
γk

and energies �̃γk for the γk frequency set Ωγk
16: end for
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Appendix C

To derive the relationship between CS-SPOD and harmonic resolvent analysis, we note
that in § 2, it was shown that S(x, x′, α, f ) can be compactly written as

S(x, x′, α, f ) = E{q̂(x, f − α/2)q̂∗(x′, f + α/2)}, (C1)

where q̂(x, f ) is the short-time Fourier transform of q(x, t). Similarly, the CS-SPOD
decomposition tensor for the process q(x, t) can be written as

S(x, x′, γ ) = E{Q̂(x, γ )Q̂∗(x′, γ )}. (C2)

To develop a relationship between CS-SPOD and harmonic resolvent analysis, we equate
the CS-SPOD and harmonic resolvent expansions of the CS-SPOD decomposition matrix
and set all norms to be equal, i.e. 〈·〉 = 〈·〉G = 〈·〉F = 〈·〉x, giving

S(x, x′, γ ) =
∞∑

j=1

λj(γ )Ψj(x, γ )Ψ ∗j (x
′, γ ), (C3a)

=
∞∑

j=1

∞∑
k=1

Û j(x, γ )Û∗k(x
′, γ )σj(γ )σk(γ )Sβjβk(γ ), (C3b)

where Sβjβk(γ ) = E{βj(γ )β∗k (γ )} is the scalar CSD between the jth and kth expansion
coefficients. Identical to Towne et al. (2018), the output harmonic resolvent modes and
singular values were moved outside of the expectation operator since they are deterministic
quantities. Conversely, the expansion coefficients depend on the forcing F̂ (x, γ ), which
is stochastic due to the random nature of turbulent flows and thus is described by the
CSD. In the case of a stationary process, S(x, x′, γ ) is block-diagonal, meaning that
Ψj(x, γ ) and Û j(x, γ ) contain only a single non-zero frequency component per mode,
and this relationship simplifies to that of Towne et al. (2018). For uncorrelated expansion
coefficients Sβjβk(γ ) = μj(γ )δj,k, the relationship simplifies to

S(x, x′, γ ) =
∞∑

j=1

λj(γ )Ψj(x, γ )Ψ ∗j (x
′, γ ), (C4a)

=
∞∑

j=1

Û j(x, γ )Û∗j (x
′, γ )σ 2

j (γ )μj(γ ). (C4b)

Since orthogonal diagonalizations are unique, this shows that CS-SPOD modes and
harmonic resolvent modes are identical, and the kth most energetic CS-SPOD mode
corresponds to the resolvent mode with the kth greatest σ 2

j (γ )μj(γ ). If μj = 1 for
all j, then σ 2

j (γ ) = λj(γ ) and Ψj(x, γ ) = Û j(x, γ ) showing that the ranked CS-SPOD
eigenvalues equal the ranked harmonic resolvent gains. To determine the conditions when
the expansion coefficients are uncorrelated, we perform identical manipulation to Towne
et al. (2018), and show that

Sβjβk(γ ) = 〈〈SFF(x, x′, γ ), V̂ j(x′, γ )〉∗, V̂ k(x, γ )〉∗, (C5)

where SFF(x, x′, γ ) = E{F̂ (x, γ )F̂∗(x′, γ )} is the CS-SPOD decomposition tensor of
F̂ (x, γ ). Since harmonic resolvent modes are orthogonal, if 〈SFF(x, x′, γ ), V̂ j(x′, γ )〉∗ =
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μj(γ )V̂ j(x, γ ), then Sβjβk(γ ) = μj(γ )δj,k. This can be written as∫
Ω

SFF(x, x′, γ )W (x′)V̂ j(x′, γ ) dx′ = μj(γ )V̂ j(x, γ ), (C6)

which is identical to the CS-SPOD of the input. One can then show that the expansion
coefficients are uncorrelated if and only if the harmonic resolvent input modes correspond
exactly with the CS-SPOD modes of the input. Thus, we conclude that the relationship
between CS-SPOD and harmonic resolvent analysis is identical to that of SPOD and
resolvent analysis.

We can then specialize for μj = 1, giving

SFF(x, x′, γ )W (x′) = Iδ(x− x′), (C7)

which for W (x′) = I , results in SFF(x, x′, γ ) = Iδ(x− x′), i.e. the forcing is
unit-amplitude white noise. This results in identical harmonic resolvent and CS-SPOD
modes along with equal energies/gains, i.e. σ 2

j = λj.
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