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Abstract

In this work, a new adaptive digital predistorter (DPD) is proposed to linearize radio
frequency power amplifiers (PA). The DPD structure is composed of two sub-models. A
Feedback-Wiener sub-model, describing the main inverse nonlinearities of the PA, combined
with a second sub-model based on a memory polynomial (MP) model. The interest of this
structure is that only the MP model is identified in real time to compensate deviations from
the initial behavior and thus further improve the linearization. The identification architec-
ture combines offline measurement and online parameter estimation with small number of
coeflicients in the MP sub-model to track the changes in the PA characteristics. The proposed
structure is used to linearize a class AB 75 W PA, designed by Telerad society for aeronautical
communications in Ultra High Frequency (UHF) / Very High Frequency (VHF) bands. The
obtained results, in terms of identification of optimal DPD and the performances of the digi-
tal processing, show a good trade-off between linearization performances and computational
complexity.

Introduction

Aeronautical communications cover critical areas such as aircraft-ground, aircraft-aircraft, and
aircraft-satellite links. Due to the transmission of critical data such as voice exchanges, physi-
cal/safety parameter measurements, speed, and position, it is important to ensure the efficiency
and the robustness of the radio link. Another constraint is the spectrum saturation of the Ultra
High Frequency (UHF) and Very High Frequency (VHF) bands due to the requirements of high
data rate, network capacity, and the increasing number of connected aircrafts with the con-
tinuous growth in global traffic [1, 2]. Spectral congestion imposes RF protocols with strong
frequency criteria on the in-band and out-band of the transmitted signals. For example, the
VDL2 (VHF DataLink for aircraft and ground stations) requires an Error Vector Magnitude
(EVM) less than 6% and an Adjacent Channel Power Ratio (ACPR) of —65 dBc to —85 dBc
according to the band.

In this context, power amplifiers (PA) are critical elements of the transmitter system in air-
craft communications in terms of energy and linearity. The use of new modulation schemes
to increase spectral efficiency and data rates leads to strong envelope variations that make the
signal sensitive to PA nonlinear characteristics [3—6]. These nonlinearities generate distortions
in the signal band and cause spectral regrowths in the adjacent channels, considered as dis-
turbances for the other users [7, 8]. To reduce these effects, PAs are often oversized for use
at a certain Back-Off from their maximum power, thus limiting their power efficiency [9].
Unfortunately, a good efficiency is obtained at the price of poor linearity, especially with modern
communication waveforms with high envelope fluctuations and large bandwidths.

In order to reduce this Back-Off while maintaining good transmission quality, lin-
earization techniques [10-15], such as digital predistortion, have proven to be effective
and are widely used in numerous wireless communication systems [16-20]. Their prin-
ciple is to digitally predistort the complex signal envelope in order to compensate the
PA distortions [21, 22]. Therefore, complex mathematical functions are implemented to
describe its gain/phase inverse characteristics and memory effects. In the literature, vari-
ous models are used as a predistorter, such as the Volterra series and their variations like
Hammerstein or Wiener models [23-27], the Memory Polynomial (MP) model [28, 29],
the Generalized Memory Polynomial (GMP) model [30-32], or the cascaded models
[33, 34]. In these models, a large number of coeflicients is required to achieve good accu-
racy, but this has the consequence of making their implementation complex and slow-
ing down the estimation process, especially when considering the real-time linearization.
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Figure 1. Online DPD based on the FWMP model.

In this work, we propose to study the FWMP model
(for Feedback-Wiener with Memory Polynomial) as a complexity-
reduced predistortion function [35]. The architecture is derived
from the study of the electrical constitution of an amplifier. It
includes an FW model, which is optimized to characterize the main
inverse behavior of the PA and then kept unchanged. A second
block MP, optimized in real time, then comes to model the oper-
ating deviations with regards to the initial inverse characteristic. A
block-oriented DPD function using this structure has been tested
for the linearization in real time of a 75 W PA devoted to UHF/VHEF
for aircraft-ground links.

This paper is organized as follows. In section “Online DPD
based on the FWMP model,” we introduce the proposed adap-
tive linearization architecture, based on a Feedback—Wiener (FW)
system. The results of the identification of the optimal DPD struc-
ture, the linearization performances using the proposed structure
through experimental tests, and a comparison with the MP model
are presented in section “Experimental results” Finally, conclu-
sions are given in the last section.

Online DPD based on the FWMP model

The proposed adaptive linearization architecture is illustrated
in Fig. 1. It is based on an Indirect Learning Architecture [36, 37]
for updating the coefficients of the MP block [35].

Predistorter structure

As shown in Fig. 1, the proposed DPD structure is based on a com-
bination of two blocks: a FW system that models the main behavior,
that is, the interaction between nonlinearities and memory effects,
and an MP model to compensate the remaining modeling errors
[38]. The FW block itself is composed of two sub-blocks: a memo-
ryless nonlinearity in the direct path and a finite impulse response
(FIR) filter in the feedback path, where z™! is the unit delay.

Each block of the DPD is described using the equivalent com-
plex envelope model. The output v(n) of the FW system is given by
the following polynomial expression:

=2 Z

p=1

@

C

p - w(n

(g0 - x(n) —d(n))’,

https://doi.org/10.1017/51759078723000491 Published online by Cambridge University Press

Recursive
identification
algorithm

where ¢, are the complex coefficients of the nonlinear function,
go is a complex gain, and P is the nonlinearity order. x(n) is the
complex envelope of the input signal.

The feedback block F(w) is implemented by an FIR filter, and
its output d(n) can be formulated as

M
n) = Z by, (2)
m=1
where M is the memory depth of the FIR filter.
The signal v(n) is used as an input to the MP model [8]:
P—1M,—1
! n):Z Zapm~v(n—m)~|v(n—m)|f’, (3)
p=0 m=0

where x’(n) is the predistorted signal, P, and M, are the nonlin-
earity order and the memory depth, respectively.

A great advantage of the MP model in the identification is that
it is linear in parameters, allowing a least squares (LS) algorithm.

We can introduce its regression form, where §  is the vector of
parameters to be estimated and ¢(n) is the regressor vector, such

that

¥ (n) = o(n)T-0 @)
with
éMP = [ago * @pm - “(Pa—1><Mu—1>}T
B(n) = [do(n) = by () = Gip, i, p(m)] )
such as the regressor elements are
Spm(n) = |v(n —m)""" - v(n —m) (6)

Note that, since nonlinearities and memory effects are treated
separately in the FW block, the proposed model has the advantage
of having an additive evolution in the number of its first block coef-
ficients, unlike the GMP model [30]. Therefore, the total number
of coeflicients is given by

FW

—_— P
Npwmp = (P + M) + (P, x M,) .

MP
(7)

In order to further reduce the complexity of the linearizer, the
idea is to estimate in offline the FW sub-model with a large num-
ber of coefficients to describe the main inverse PA characteristics,
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while the MP structure will be minimized by reducing as much as
possible the orders P, and M, to operate in real time. The FW sys-
tem will then be fixed regardless of the application and only the
MP sub-model will be updated to take into account variations and
changes in the PA environment such as the waveform, temperature,
bias voltage, and/or aging.

Identification algorithm

As mentioned previously, the MP model will be estimated in real
time during the use of the PA. The FW model must be estimated
beforehand. One of the fundamental characteristics in the FW sys-
tem is its cascaded structure [32, 34, 39, 40], and here the focus will
be on the unmeasured intermediate signals v(n) and w(n), required
for the estimation process.

From Egs. (1) and (2), we can write the FW output by separating
the first term such as

v(n) = ¢ (go x(n) =Y by v(n— nﬂ)

m=1
P
+ ZCP w(n)P. (8)
=2

Noted that the gains g, and c; are correlated and to avoid the
overparametrization problem [40], ¢; is set to one and only g, is
estimated. Thus, for parameters estimation, the FW block can be
expressed in linear regression system:

v(n) = gox(n) — Z b,v(n—m)+ Z cw(n)?

:f(ﬂ)T ‘QFW7 (9)

where ¢ is the regressor vector and éFW is the vector of coefhicients

n
to be estimated:

éFW:[go byby ccp] (10)

p(n) = [x(n)  —v(n—1)-—v(n—M) wn)? - wn?]"

Noted that in the linearization scheme, the aim is to modelize
the inverse PA characteristic. Thus, v(n) is replaced by the PA input,
x(n) by the normalized output y(n), v(n — m) and w(n) by their
simulation during the identification process. The parameter vector

0.,y is obtained by minimizing the quadratic criterion J based on

N measured samples such as

J=Y en)?,

n=1

(11)

where &(n) is the complex-envelope error between measured input
x’(n) and its estimation X’ (n).

Once the FW block has been identified, its coefficients are main-
tained constant during operation. The aim is now to find an MP
model that describes the modeling error, remaining after the FW
block, as accurately as possible. We propose then to use the recur-
sive weighted least squares (RWLS) algorithm for the real-time
identification. The RWLS algorithm [41] is a recursive form of the
ordinary LS method [42], which is performed sample by sample to
identify the parameters that are subject to change to maintain the
tracking ability. The main principle of the RWLS technique is to
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introduce a forgetting factor A that gives greater importance to the
recent measurements [43]. The parameter vector QMP(n) is updated
at each iteration # such as

0,,(n) =0 ,(n—1)+K(n) (x'(n) = (n)),

where K () is the gain matrix depending on the coeflicients covari-
ance matrix C(n), such as

(12)

C(n—1)¢ (n)
K(n) = :

T A+ 6 m)Cln— 1)g(n) 1)

C(n) = A" (Cn—1)—K(n)¢ (mC(n—1)),  (14)

where ¢(n) is the MP regressor vector defined in Eq. (5), (-)"

and () represent, respectively, the conjugate operation and the
transposition-conjugate transform.

Experimental results

The proposed structure has been used for the linearization of a
75W UHF/VHF PA designed by Telerad Society for aeronauti-
cal communications. The test bench used in this study is shown
in Fig. 2. The PA input is a Quadrature Phase Shift Keying mod-
ulated signal with 16.8 kHz bandwidth at the carrier frequency
of 127.5 MHz. The output is recovered via a directional coupler
and then digitally converted by a fast ADC converter. The input
and output signals are synchronized using a cross-correlation
technique.

For the measurements, different carrier frequencies, different
PA bias voltages, and different operating temperatures were tested.
In our targeted airborne VHF applications, the VDL2 standard
imposes strong constraints on the ACPR values. The out-of-band
spurious emissions are specified by the first- and second-order
ACPR such as

e ACPR;,, ACPRy, < —65dB
e ACPR;,, ACPR;, < —75dB

The first adjacent band is located at 25 kHz from the main band
and with 16.8 kHz of width (ACPR;; and ACPRy;;) when the sec-
ond adjacent band is located at 50 kHz from the main band and
with 25 kHz of width (ACPR|, and ACPRy,). L and U denote the
lower and upper bands, respectively, which are located in the left
and right of the main band.

The first step is to determine the minimum structure of the MP
model needed to guarantee the specifications. Then, we look for the
optimal structure of the FWMP model with a minimum number
of coefficients.

Table 1 gives the obtained ACPR values for different structures
of MP and FW blocks. For better readability and unlike the values
shown in bold italic, which shows the respect for the standard, the
other values in plain format indicate that the specifications are not
reached. The analysis of these results shows that it is impossible to
reduce the number of coefficients in the MP block beyond 8 (see
the three last lines). The introduction of the FW block improves the
results on the L2 and U2 bands, for which the constraints are diffi-
cult to meet. Although a reduced two-coefhicient FW block allows
the respect of the specification (model in line 3), for a safety margin,
we used the FWMP model with an MP block of eight coefficients
and an FW block of three coefficients (model in line 4).
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Figure 2. Amplifier to be linearized and digital boards.

Number of MP Coefficients FW ACPR;, < -75dB ACPR;; < -65dB ACPRy; < -65dB ACPRy, < -75dB
9 0 -79.01 -78.75 -78.51 -79.20
8 0 ~72.20 -74.33 -74.56 ~72.69
8 2 -76.89 -77.41 -77.03 -77.59
8 3 -79.15 -78.27 -77.73 -80.13
8 4 -79.82 -78.56 -77.94 -80.88
7 2 -67.56 -70.74 -70.97 -68.11
7 3 -68.20 -71.22 -71.38 -68.80
7 4 -67.57 -70.68 -70.81 -68.25

Considering the optimized FWMP structure with 11 coefhi-
cients (P=3,M =0, P, = 8,and M, = 1) with 3 fixed coefficients
for FW block and 8 estimated coefficients for the MP block, the
ACPR results without and with DPD (in offline and online ver-
sions), using a modulated signal transposed on a carrier frequency
of 127.5 MHz, are presented in Table 2 for a symbol rate of 10 kS/s.
This structure is compared to an MP model with nine coefficients
(P,=9and M, = 1).

Table 2 is decomposed into three parts: the first one gives the
results without DPD, followed by the results of the offline lineariza-
tion with the MP models alone and the proposed model. The last
part shows the results of both models in the online version.

Here, offline DPD consists of applying a static predistorter,
estimated from measurements at 127.5 MHz. The estimation of
the offline DPD models (MP and FWMP) is carried out by the
least squares algorithm [32, 35]. There is no update of the DPD
coeflicients in this case. The online DPD architecture is the one
described in Fig. 1, using the recursive algorithm described in
Egs. (12)-(14).

From this table, it can be seen that, contrary to the case with-
out DPD, the offline DPD functions based on the MP model (9
coefficients) and the FWMP model allow to achieve the specifica-
tions (values in bold italic). However, switching to the online mode
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deteriorates the performance of the MP and FWMP model on the
U, and L, side bands, but the DPD based on the proposed FWMP
structure maintains the respect of the specifications. Also, note that
only eight tunable coefficients are updated in the case of the FWMP
model.

Output spectra with and without DPD based on the two models
MP and FWMP are shown in Fig. 3. The real-time adjustment of
the DPD parameters allows an improvement of about 40 dB in the
lower and upper first side bands.

Table 3 presents a comparison of the estimated vector éMP for
both MP and FWMP models, resulting from the two versions
of identifications (offline and online). This allows to see how the
parameters of the MP block evolve between the two versions for
each model.

We can see from Table 3 that the FWMP model obtained in
offline version is very close to that obtained in real time with the
RLWS algorithm. This is not the case for the MP model where
the values of the coeflicients are different. This result is predictable
because the MP structure is a black-box model without any physi-
cal significance, contrary to the FWMP model where FW block is
close to the behavior of PA [38]. In the case of the FWMP model,
use of the FW block helps to make the variations in the MP block
less fluctuating.
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Table 2. ACPR without and with DPD
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Model ACPR,, < -75 dB ACPRy, < 65 dB ACPRy, < -65 dB ACPRy, < -75 dB
Without DPD -54.11 -37.65 -35.68 -52.59
Offline DPD
MP (9 coefficient) -79.01 -78.75 -78.51 -79.20
FW fixed + MP (3 coefficient) + (8 coefficient) -79.15 -78.27 -77.73 -80.13
Online DPD
MP (9 coefficient) -72.42 -73.96 -73.79 -71.30
FW fixed + MP (3 coefficient) + (8 coefficient) -75.87 -77.37 -78.15 -76.79
20
10 — PA output
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Figure 3. Output spectra with and without DPD.
In general case, the complexity of the RLS algorithm is dom- ' ' '
inated by the complexity of updating the gain matrix K(n) in 1r *  Linearized AM/AM o
Egs. (13) and (14), which requires a computational load by O(N?) - Measured AM/IAM

operations per iteration, where N is the number of coefficients.
The other steps of the algorithm have a complexity at most linear
in O(N).

In the time domain, the AM/AM curves with and without lin-
earization using the adaptive DPD, with a fixed FW block and only
the MP block coefficients to be updated, are presented in Fig. 4.
We can see that the proposed structure improves the linearity of
the communication system.

In order to test the robustness of the proposed model, we
study the effect of the temperature changes at 26, 31, and 36°C by
switching the PA with the previously identified models at each tem-
perature. Figure 5 shows the convergence of the coefficients during
operation, while Fig. 6 gives the linearization error between the PA
input x(n) and the normalized PA output y(n). Note that the used
FW structure is the one obtained at 36°C.

The obtained results (Fig. 5) show that the algorithm based on
the FWMP model adapts to temperature changes. Also, we can see
from the comparison between the input and the linearized output
(Fig. 6) that the difference is small, which means that during tem-
perature changes, the system is able to adapt in a robust way. In
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practice, the algorithm converges after the temperature change in
about 1 ms.
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Table 3. Evolution of éM

b for MP and FWMP models (in offline and on

line versions)

Tayeb H. C. Bouazza et al.

Model FW fixed (3 coefficients) + MP (8 coefficients) P (9 coefficients)
coefficient Offline Online Offline Online
oo 0.0108 + 0.0023; 0.0109 + 0.0024; 0.0052 — 0.0034j —0.0010 + 0.0010j
dyg —0.0227 — 0.0395j —0.0234 — 0.0403;j 0.0143 + 0.0189j 0.0192 — 0.0172j
ay 0.1867 + 0.2604j 0.1881 + 0.2615j —0.1675 — 0.1904j —0.1410 + 0.1206j
a3 —0.7109 — 0.8735j —0.7038 — 0.8616j 1.1206 + 1.0401; 0.5685 — 0.4611j
Q40 1.4587 + 1.6408; 1.4224 + 1.5853j —3.6533 — 3.0061j —1.3752 + 1.0626j
aso —1.6680 — 1.7483; —1.6043 — 1.6490j 6.5822 + 4.9654j 2.0506 — 1.5174j
dgo 1.0014 + 0.9876j 0.9520 + 0.9059j —6.7278 — 4.7317j —1.8469 + 1.3154f
aqg —0.2460 — 0.2299j —0.2317 — 0.2041j 3.6611 + 2.4234j 0.9219 — 0.6346j
dgg —0.8248 — 0.5170j —0.1958 + 0.1307j
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Figure 5. Variation of MP coefficients versus temperature changes.
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Figure 6. Linearization error versus temperature changes.
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The value of the forgetting factor A € ]0,1] has a significant
influence on the performance of the algorithm. When it is close to
unity, the online algorithm achieves good robustness, but the con-
vergence becomes slower, like the Gradient algorithm. A smaller
value improves the speed convergence but it increases the prob-
ability of being unstable. In this case, fluctuations appear on the
estimates because the new measured samples are more weighted in
the algorithm.

In our case, we choose A = 0.95, which achieves a good trade-
off between the stability and the tracking ability, with a time
convergence of about 1 ms.

Conclusion

A new DPD based on an FW model has been proposed in this
study. In this approach, we used a reduced complexity structure
with a real-time tunable MP block. Adjustment of the MP block
allows tracking of changes in the nonlinear behavior when the
RF PA is operating. The RLWS algorithm is introduced to design
and estimate the complex predistortion with memory in real time.
Also, the optimization process includes a step to characterize the
minimum orders of the model to insure convergence, stability and
reduced number of calculation during estimation.

To meet the industrial requirements in terms of high-speed pro-
cessing and complexity of implementation, the main FW part of the
DPD is maintained constant during operation, and only the MP
block is adapted. This speeds up the algorithm’s convergence and
decreases the execution time.

The effectiveness of this approach is demonstrated through
studies in aeronautical applications using aircraft-ground signals.
The results show that the proposed predistorter is able to be more
accurate in the characterization of the inverse nonlinear PA, even if
its behavior changes according to the operating conditions. Despite
the strong criteria, in terms of ACPR values, in the aeronautical
domain, the FWMP-based system shows a good ACPR reduction
illustrated by an improvement of about 40 dB in spectral regrowths.
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