THE RELAXATION METHOD FOR
LINEAR INEQUALITIES

T. S. MOTZKIN axp I. J. SCHOENBERG

I. STATEMENT OF PROBLEM AND MAIN RESULTS

1. The relaxation method. Let 4 be a closed set of points in the #-di-
mensional euclidean space E,. If p and p; are points of E, such that

1.1) lp — a| > |p1 — a], for every a € 4,

then p, is said to be point-wise closer than p to the set A. If p is such that there
is no point p; which is point-wise closer than p to A4, then p is called a closest
point to the set A. In 1922 Fejér (2) made the interesting observation that the
set of closest points to 4 is identical with the convex hull K(4) of the set 4.
We have mentioned this remark because it will suggest a way of dealing with
our main problem, to which we now turn.

We are given a consistent system of # linear inequalities

1.2) Zlaijxj +5,>0 G=1,...,m).
p

The coefficients a,; and b; being given numerically, the problem is to devise a

numerical procedure which will furnish a solution (xy, ..., x,) of the system

(1.2). In the case of a homogeneous system, i.e. when all b; = 0, we add the

obvious requirement that the solution (xi, ..., x,) obtained be different from

the trivial solution (0, ..., 0).

A natural approach to this problem will be suggested by Fejér's idea as
soon as we place the problem in its customary geometric setting. Each of the
inequalities (1.2) defines a closed half-space

(1.3) H;: Z‘lauxf +5:>0,
=

in terms of which the set of points corresponding to the solutions of (1.2) is
identical with the convex polytope

(1.4:) A = n Hi1
i=1
which is assumed from the outset not to be void. Let p § A be given. The fol-

lowing simple construction furnishes a point p; which is point-wise closer than
p to A: Clearly p ¢ H, for some j. Let p’ be symmetric to p with respect to the
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boundary =; of H;. If p; is on the segment joining p to p’ and p, # p, p’, then
clearly if @ € H; then
b —a| > [pr — 4

holds. As A C H,, we see that (1.1) is verified, i.e. p1 is point-wise closer than p
to A. The numerical “construction” of p; is easily done as follows. Let ¢ be the
projection of p on the hyperplane 7, choose a number A such that 0 < A < 2
and set

pr=p+Ng— p).

In passing from p to pi, the point-wise approach to 4 would seem to be
strongest if among the H;, not containing p, we select the one which is furthest
away from p. If A = 2 then p; = p’ and then (1.1) again holds, with the excep-
tion that we have the equality sign for the points of 4 which are on the boun-
dary of H,, if such points exist.

These remarks suggest the following systematic search for a point of 4:
Choose a point p at will. If p € 4, i.e. its coordinates satisfy (1.2), our quest has
ended. If p § 4, let H, be such that

(1.5) dist (p, H;) = maxdist (p, Hy),
where dist denotes euclidean distance. L:at g be such that
(1.6) g€ Hy |p— gl =dist (b, H).

If X\ is a constant, 0 < X < 2, we define

(1.7) pr=1p+Ng — p).

For convenience we abbreviate this construction by writing
(1.8) b1 = F\(p).

where Fy(p), defined for p ¢ A, has been made single-valued by some pre-
assigned rule for choosing j in case that (1.5) should not define j uniquely.! If
p1 € A our process has terminated. If p; § A we iterate (1.8), obtaining

Pz = F)\(pl)y

and we continue in like manner deriving a sequence of points p = po, p1, P2, - - -,
all outside A and connected by the relation

(1.9) Por1 = Fr(py) v»=0,1,...).

There are two alternatives: (1) The process terminates after IV steps with a
point py € A; (2) The process continues indefinitely producing an infinite
sequence {p,}.

2. Statement of the main theorems. S. Agmon (1) has recently shown that
if 0 < XA < 2 and the sequence {p,} is infinite, then p, converges, as v — =,

'For instance the smallest j satisfying (1.5).
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to a point on the boundary of 4. We give a new proof of this result (Theorem 1,
Case 1, and Theorem 2, Case 1, below). Our main contribution, however, is the
investigation of the case when N = 2. Throughout this paper we denote by 7
the dimensionality of the polytope 4 defined by (1.4). As we assume that 4 is
not void, # may have any value from zero to n. We denote by L, the r-flat
which contains 4.

THEOREM 1. Weassumethatr = n,i.e. A is not contained in any hyperplane of

E,. Let {p,} be a sequence of points obtained by the process described in § 1. There
are two cases:

CaseE 1. If 0 < N < 2 then either {p,} terminates or else p, converges to a point
! on the boundary of A.

CaSE 2. If N = 2 then the sequence {p,} always terminates.

The formulation of our results for the case when » < % requires the following
remarks concerning spherical surfaces. Let L, be a given 7-flat in E,, 0 < r
< n — 1. We are also given a point p, p § L,. Let X be the locus of points x
such that
(1.10) ]x - a| = lp — a], for every a € L,.

We claim that X is a spherical surface S,_._1 of dimension n — r — 1. Thus if
r = 0, then L, reduces to a single point ¢ and X is evidently the .S,—; with
center at a passing through p. In the other extreme case when r = n — 1,
L, is a hyperplane and the locus X contains exactly two points: the point
and its symmetric image with respect to L,. These two points form a S,
located on the line through p which is normal to L,. A general proof of our
assertion is as follows: Let b be the orthogonal projection of p onto L,. Erect
at b the (n — r)-flat L’,_, which is normal to L,. Evidently p € L/,_,. Then
x€ X if and only if x € L',_, and |x — b| = |p — b|. Indeed, assume that
x € X. By (1.10), for a = b, we obtain that |x — b| = |p — b|. This last
equality and (1.10) show that for every a € L, the two triangles xba and pba
are congruent. Since Zpba = 90° we conclude that Zxba = 90°. Hence the
line joining b and «x is normal to L, and x € L’,_,. Conversely, if x € L’,_, and
|« — 8] = |p — |, let us show that x € X. This is now clear because the two
triangles pba and xba (a € L,) are right-angled at b and have equal legs respec-
tively. This implies (1.10), hence x € X. The locus X may accordingly be
defined by the two conditions

x € L,n—ry ]x - b! = Ip - b]’

and is therefore seen to be identical with the spherical surface S,_,_; of L',_,
having its center at b and passing through p. We shall refer to S,_,_; as a
spherical surface having L, as its axis, for indeed, by (1.10), L, is precisely the
locus of points @ with the property of being equidistant from all points of

Sn—r—-l'
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THEOREM 2. We assume that v < n, A C L,. Let {p,} be a sequence of points
obtained by the process of § 1.

CaseE 1. If 0 < N\ < 2, then {p,} either terminaies or else p, converges to @
point I of A.

CASE 2. If N = 2, then {p,} either terminates or else there is a number vy such
that the points p,, for v > v, are on a spherical surface S,_,_1 having L. as its
axis.

3. Remarks. (a) The procedure here described for finding a solution of
(1.2) is called the relaxation method, especially if A = 1, when it may also be
called the projection method. We speak of under-relaxation or over-relaxation
depending on whether 0 < A < 1 or 1 <A < 2. The case when A = 2 is an
extreme case of over-relaxation which may also be called the reflexion method.

(b) Theorem 1, Case 2, describes the main advantage of the reflexion method
(A = 2). No other value of A, 0 < A < 2, has the property of always leading to
a terminating sequence if r = #n. If 0 < X\ < 1, this is easily shown by con-
sideration of a triangle A in E,. For a A with 1 < A < 2, an example of a non-
terminating sequence in E is constructed as follows (Fig. 1): Let £pq0 = 90°

p/

and p, q, p1 be such that ppi/pg = A, hence pg > gp;. Draw the ray Or such
that £pOr = ZqOp, and produce Or into a full line 7’Or. Let 4 be the inter-
section of the closed half-plane below ¢’¢ and the closed half-plane above 7.
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Starting with p and iterating the process p, = Fy(p), we obtain an infinite
sequence of points {p,} which oscillate between the rays Op and Op;, converging
to O.

(c) Let A = 2, » < n and let us suppose that the sequence {p,} is infinite.
By Theorem 2, Case 2, for » > »,, all p, are on a S,_,_; having L, as its axis.
Since p, and p,41 are both on .S,—_,_;, the hyperplane with respect to which p,
and p,41 are symmetric to each other must contain the axis L, of S,_,—1. We
may state this result as

COROLLARY 1. Letr < n and let the reflexion process (N = 2) lead to an infinite
sequence {p,}. Then there exists an integer vy such that all the hyperplanes

(1.11) Ty Za,-jxj—i—bt =0
=1

which are actually used in the reflexion process for v > vy contain the entire poly-
tope A and therefore also the r-flat L, which contains A. Any such hyperplane, or
combination of such independent hyperplanes, may therefore be used to reduce the
problem to one of a dimension less than n.

(d) When the inequalities (1.2) are all homogeneous, we wish to find a point
of A distinct from its vertex 0. The relaxation method may well lead to the
trivial solution 0, if 0 < A < 2. Thus if 1 <X < 2 and if 4 is the “cone” in
E; of Fig. 1, we have the infinite sequence {p,} converging to 0. By Theorem 1,
Case 2, and Theorem 2, Case 2, this can never happen if A = 2.

In IT and III we prove the Theorems 1 and 2 respectively. In IV we discuss
the behavior of the reflexion process for a special kind of infinite family of
half-spaces, namely all half-spaces of support of a bounded and closed convex
set in E,. A study of this problem, suggested by our previous discussion, seems
justified by its own geometric interest.

II. A Proor orF THEOREM 1
4. On Fejér-monotone sequences of points. Let 4 be defined by (1.4) and

let go, ¢1, g2, . . . be an infinite sequence of points outside 4 with the following
properties:

(2.1) 9 # Qv

(2.2) [q,-—a[ >[gi+1-—al,for alla € 4,7=0,1,....

The sequence {g¢,} is approaching the set 4 point-wise and we summarize this
situation by saying that the sequence {g,} is Fejér-monotone with respect to 4.
Concerning such sequences we prove

LEMMA 1. Let the sequence {q,} be Fejér-monotone with respect to the polytope
A, assumed to be of dimension r.

CASE 1. If r = n then the sequence {q,} converges to a point.

CASE 2. Ifr < n then the sequence {q,} either converges to a point or else the set
of its limit points lies on a spherical surface S,—,—1 whose axis is the r-flat L,
spanned by A.
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Proof. Casg 1. Let r = n and consider the spherical surfaces
(2.3) S (a) :|x — a| = |g, — 4 (@€ A,v=0,1,...).

By (2.2) the surface S’(¢) is non-expanding as its center a is kept fixed and »
increases. Therefore the following limits exist

(2.4) lim |g, — a] = R(a) (@a€d).
Define the surface

(2.5) S(a) :|x — a| = R(a) (a € A),
and let us consider the set

(2.6) X = N S).

aeA

(a) Every limait point I of the sequence {q,} is in X. Indeed by (2.4) we see
that 7 € S(a), for every a € 4, hence [ € X, by (2.6). We conclude that X is
not void because the bounded sequence {g¢,} has at least one limit point.

(b) The set X contains exactly one point I. Indeed, if I #1I', 1€ X, 1I' € X,
then let 7 denote the hyperplane of points equidistant from Jand /. [f e € 4
then /, I’ being both in X, are also both in S(e). Hence a € = and we conclude
that A C = in contradiction to our assumption that » = #.

(c) We conclude that g, — Il. Indeed, by (a) and (b) we see thatl = X is the
only limit point of the sequence {g,}.

Casg 2. Let » < n, A C L,. If the sequence {gq,} converges to a point then
there is nothing to prove. Let us assume that

(2.7) the sequence {q,} does not converge to a point.

In any case the bounded sequence {g,} has limit points and let p be one of them.
Define as before the spheres S*(a), S(a) and the set X by (2.3), (2.4), (2.5)
and (2.6). By (2.4) we have that R(a) = [p — a| (a € A). The set X is there-
fore identical with the set of points x such that

|x —a| = |p — al, for every a € 4.
Since 4 spans L, we may also define X as the locus of points «x such that
(2.8) lx —a| = |p — a|, for every a € L.

As shown in § 2, (2.8) defines a S,_,—1, provided that the locus does not
reduce to a point of L,. Since this locus contains all limit points of {g¢,}, our
assumption (2.7) excludes this possibility and (2.8) defined a spherical surface
S,_r—1. This completes a proof of Lemma 1.

5. Proof of Theorem 1, Case 1. Here r = n; assume the sequence {p,} to
be infinite. As already mentioned in § 1, the sequence {p,} is Fejér-monotone
with respect to 4. By Lemma 1, Case 1, the sequence {p,} converges to a
point I: :

(2.9) lim p, = 1.
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We have to show that / € 4. For this purpose we introduce the function

(2.10) d(x) = max dist (x, H,).
Observe that d(x) is everywhere continuous and that

=0, x€ 4,
(2.11) d(x)

>0, x§¢A4.

Now (2.9) implies that ]p,_l — p,] — 0 and therefore also that

1
a(p,) = X [pri1 — ps| = 0.
By the continuity of d(x) we have
d(l) =limd(p,) =0

and therefore I € A, by (2.11). The point /, being a limit of exterior points p,,
must be on the boundary of 4.

6. Proof of Theorem 1, Case 2. Let A = 2, » = #, and let us show that the
sequence {p,} must terminate. Indeed, suppose it were infinite. By Lemma 1,
Case 1, we again conclude that
(2.12) limp, =1

and the argument used in the previous paragraph shows that [ is on the
boundary of 4. Let p,1 be obtained from p, by reflexion in the boundary ;,
of the half-space H,,. By (2.12) it is clear that

(2.13) lim dist (¢, 7,,) = 0.

V00

The given family of hyperplanes (1.11) being finite, we conclude from (2.13)
that

dist (I, 7,) = 0,

provided v > »,, hence
1€, v > v

This conclusion, however, contradicts (2.12). Indeed, every point p, (v > »y)
is obtained from the preceding point $,_; by reflexion in a hyperplane through
1. All these points must therefore lie on the spherical surface

e =1 = [0 = 1] (>0)
and can therefore never converge to /, as (2.12) requires.

I111. A Proor orF THEOREM 2

7. Proof of Theorem 2, Case 1. We assume 7 < n, 0 < X < 2, and that the
relaxation process (1.9) furnishes an infinite sequence {p,}. We are to show that
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P, converges to a point / of 4. If the sequence {p,} converges to a point / then
the argument of § 5 shows that / € 4 and we are through. Let us now assume
that

3.1) the sequence {p,} does not converge

and show that we shall reach a contradiction. By Lemma 1, Case 2, and (3.1),
we conclude that all the limit points of {p,} are on a spherical surface .S,_,_;
having L, as an axis.

(a) Our assumptions imply that
(3.2) inf |p,11 — p| = ¢ > 0.

Indeed, consider the function d(x), defined by (2.10), for the points x on the
surface S,_,_1. Since 4 N S,_,_; = 0, we conclude that

d(x) > 0, if x € Sp_p1.

Since d(x) is continuous and .S,_,_; is compact, we conclude that
v = min d(x) > 0, x € S

Let us select v, fixed such that 0 < v, < v. Let 6 be positive and let V5 denote
the set of points x defined by

dist (x, S,—r—1) < 6.

Again by the continuity of d(x) we can select & so small that

(3.3) d(x) > 7 x € N,.
By Lemma 1, Case 2, we have p, € N;, provided v > »,. Now (3.3) implies
that

[prss = £l = Nd(p) > Ay,

provided » > »o. This proves (3.2) with ¢ > Ay, > 0.

We may now easily show that the assumption (3.1) leads to a contradiction.
Indeed, let the point @ on S,—,—; be a limit point of {p,}. For an appropriate
subsequence {»’'} of the sequence of all integers {r} we have

Py =€ Sy
For a subsequence {»"'} of {»'} we may also assume that
Py —a,and pyrpr — BE Syt
By (3.2) we conclude that o % 8; in fact
la — 8 >¢>0.

Select on the line through « and $8 a point 5 such that 8 — o = A(n — «), and
notice, because of 0 < X\ < 2, that 7 is nearer to 8 than to a:

(3.4) ln—af > |n— gl
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For the subsequence {»"}, the half-spaces H;, used in obtaining p, 4 from
b, must converge to the half-space

(3.5) H:lx —of* ~|x — 2> |n = of* = |n — 8]

in fact H, must already be identical with H, for sufficiently large »”’, because
of the finiteness of the number of half-spaces H;. This, however, leads to a
contradiction, for on the one hand 4 C H; implies that 4 C H. Hence x € 4
implies x € H and therefore by (3.5) and (3.4)

o —al—|x = B2 > |n — ol = |n — 8> >0,
or
(3.6) lx — o > |x — g].

On the other hand, A being on the axis of S,_,_;, we must have in 4 the
equality |x — | =[x — 8| in contradiction to (3.6). Thus our assumption
(3.1) is untenable and the proof is completed.

8. Proof of Theorem 2, Case 2. We assume » < n#, A = 2, and that the
reflexion process produces an infinite sequence {p,}. This sequence cannot
possibly converge, for its limit / would belong to 4 (§ 5) and would then have
to terminate (§ 6). By Lemma 1, Case 2, the only alternative is that the
sequence {p,} converges to a spherical surface S,_,_; of axis L,. Then (3.2) or

(3.7) inf |py1 — o

again holds. Out of 4 select » + 1 fixed points a,, a4, . . . , @, spanning L, and
let =;, be the reflecting hyperplane used in obtaining p,+: as the point sym-
metric to p,. Since all limit points of p, are on S,_,_1, it is clear that

>0

lim |a; — p»| = lim |ax — por1| = R(ax) k=0,...,7).
This, together with (3.7), shows that
lim dist (ax, 7;,) =0 k=0,...,7).

By the finiteness of our supply of reflecting hyperplanes we conclude from the
last relations that ‘
akijy, V}V{);kzo,...,r,

or what amounts to the same thing:
L, Cmy, v > .

In other words: there is a number »y such that all reflexions for » > », are
performed with respect to hyperplanes = ;, which contain the axis L, of S,_,_:.
This, however, requires that

Pu E S —r—1 14 > Vo.
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Indeed, if p,, § S.—,_1, then all p, (¥ > ») would lie on a surface S’,_,_; of
axis L,, passing through p,,, and could then not converge to S,_,_;, as we
assumed.

IV. THE REFLEXION PRrocEss witH RESPECT To A CoNVEX DomaIn

9. Statement of the problem. We have so far discussed the behavior of the
reflexion process with respect to a finite family {H} of half-spaces in E,. Do
the results obtained extend to infinite classes of half-spaces? We deal here only
with the following special case of this problem: Let 4 be a given closed and
bounded convex set in E,. A closed half-space H belongs to the family F if and
only if the boundary of H is a hyperplane of support of 4 and 4 C H. Let
p ¢ A and let g be the point of 4 which is nearest to p. Let 7, be the hyperplane
through ¢ which is normal to the segment joining p and ¢ and let H, be the
closed half-space, bounded by o, which does not contain p. Evidently H, € F;
also

dist (p, Hy) = max dist (p, H)
He

Indeed, if there were a H € F such that dist (p, H) > dist (p, Hy) = |p — 4|,
then ¢ ¢ H, in contradiction to the fact that ¢ € 4 = MH. This shows that the
reflexion process with respect to the family F = {H} amounts to the construc-
tion of the point

(3.1) p1=1p+2(q—p) = F(p) (» ¢4).

Let us call p; = F(p) the image of p with respect to 4.
If p, ¢ A we may form p, = F(p;) and continue in like manner obtaining a
sequence of points p = po, p1, P2, . . . connected by the relation

(3-2) Pv+1 = F(Py) (V = 0, 1, .. )

We have again the old alternative: (1) The process terminates after N steps
with py € A; (2) The process continues indefinitely, producing an infinite
sequence {p,}.

10. The main result. The behavior of the reflexion process with respect to
A is described by the following

THEOREM 3. Let A be a closed convex and bounded set of E, of dimension r
and let L, be the r-flat containing A. Suppose po ¢ A and let {p,} be the sequence
obtained by the reflexion process (3.1), (3.2).

CaAsE 1. If r = n, then the process always terminates.

CASE 2. Let r < n. If po € L, then the process terminates. If po ¢ L, then the
process produces an infinite sequence {p,} with the following property. There is a
number vy such that for all v > v, the points p, oscillate between two points which
are symmetric with respect to L,.
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Proof. CAsE 1. Let r = » and let us assume, to obtain a contradiction, that
the sequence {p,} is infinite. We know that {p,} is a Fejér-monotone sequence
and hence that it converges to a point ¢ by Lemma 1, Case 1. Clearly a € 4,
and hence ¢ is on the boundary of 4, by the argument of § 5. Let P be
the projection cone of 4 at the point a, i.e. the intersection of all H whose
boundary hyperplanes pass through a. The cone P is convex and of dimension
n, since P D A. There is therefore a half-space H € F, whose boundary =
supports P (and also 4) at the point ¢ and whose interior normal ai, at a, is
wholly interior to P, except for the point a. Let us think of 7 as horizontal and
its normal a¢ as pointing vertically downward. The point 7 being interior to P
also a certain small spherical neighborhood S of 7 is in P. Let us call C the slim
circular cone, of vertex @ and axis a7, which is circumscribed to .S. This convex
cone C is wholly in P.

Let us denote by Q the convex cone of vertex ¢ which is generated by the
interior normals of all H supporting P (or 4) at the point a. These H support
also C at a. It follows that the closed convex cone Q (called the polar cone of 4
at @) has only the point ¢ in common with 7, Q being below 7. Q was defined as
the locus of all interior normals of 4 at a. Let us denote by N a small neigh-
borhood of e on the boundary of 4. Let Q' be a given closed and convex cone
satisfying the following conditions: (i) Every ray of Q is interior to Q’, (ii) Q'
has only the point ¢ in common with #. Clearly, a neighborhood N of a exists
such that the interior normals to 4 at the points of N, if transferred parallel to
themselves so as to start at @, will all lie in Q’. In fact otherwise we could find
normals at points converging to A whose limit (which obviously being a normal
at A) would be outside or on the boundary of Q.

We now return to the sequence of points {p,} which converges to a. Let ¢,
be the midpoint of the segment p,p,41. It is clear by our construction that
¢» € boundary of 4 and that the vectors ¢,p,+1 are interior normals to 4.
Also p, — a implies that ¢, — a, hence ¢, € N, provided » > »,. This leads to
a contradiction. Indeed, consider the sequence of points

Pwov Ph-}-l) e

We know from what was said above that the vectors ¢,p,41, if transferred to a,
lie in Q’. That means that the vectors

Dbyt (” > VO)

have a positive component in the direction of the downward vertical vector
ai. Since p, — a, we conclude that all points p,(» > »o) are above the horizontal
plane 7. But this implies that also ¢, are above . This, however, is absurd
since ¢, € 4 and 4 is below .

Casg 2. If » < n and p, € L, then again the process must terminate by the
previous case because we have no occasion to leave L, in the course of our
process.
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We now assume that » < n while po § L,. Let L,,; be the ( + 1)-flat con-
taining L, and po. Note that we never leave L,,; which amounts to assuming
at the start that» = »n — 1. Let, therefore, 4 be (# — 1)-dimensional, A CL,_;
and po ¢ L,_1. Let p’¢ and p’; be the projections of py and p, respectively, on
L,_;. It should be clear that a point g, of 4 is nearest to p, if and only if it is
nearest to p’o. It follows that p, = F(po) implies that p'y = F(p’y). Consider
the sequence of reflexions {p,}. It is clear that the distance from p, to L,—; has
the same positive value dist (po, L,—1), the points p, passing from one side of
the plane to the other alternately. However, the sequence {p’,} of their pro-
jections on L,_; has the property p’,.1 = F(p’,). By the previous case this
sequence ‘‘terminates’”’ with a first 'y € A. From that moment onwards the
sequence p, must oscillate between two points on the normal to L,_; at the

point p'y = p'yp1=....
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