
THE RELAXATION METHOD FOR 
LINEAR INEQUALITIES 

T. S. MOTZKIN AND I. J. SCHOENBERG 

I. STATEMENT OF PROBLEM AND MAIN RESULTS 

1. The relaxation method. Let A be a closed set of points in the ^-di­
mensional euclidean space En. If p and pi are points of En such that 

(1.1) \p — a\ > \pi — a\, for every a £ A, 

then pi is said to be point-wise closer than p to the set A. If p is such that there 
is no point pi which is point-wise closer than p to A, then p is called a closest 
point to the set A. In 1922 Fejér (2) made the interesting observation that the 
set of closest points to A is identical with the convex hull K(A) of the set A. 
We have mentioned this remark because it will suggest a way of dealing with 
our main problem, to which we now turn. 

We are given a consistent system of m linear inequalities 
n 

(1.2) X aiJxJ + bt > 0 (i = 1, . . . , m). 

The coefficients atj and bt being given numerically, the problem is to devise a 
numerical procedure which will furnish a solution (x\, . . . , xn) of the system 
(1.2). In the case of a homogeneous system, i.e. when all bt = 0, we add the 
obvious requirement that the solution (xi, . . . , xn) obtained be different from 
the trivial solution (0, . . . , 0). 

A natural approach to this problem will be suggested by FejéVs idea as 
soon as we place the problem in its customary geometric setting. Each of the 
inequalities (1.2) defines a closed half-space 

n 

(1.3) Ht: X aijxJ + bi> 0, 
3=1 

in terms of which the set of points corresponding to the solutions of (1.2) is 
identical with the convex polytope 

m 

(1.4) A = fl H„ 

which is assumed from the outset not to be void. Let p $ A be given. The fol­
lowing simple construction furnishes a point pi which is point-wise closer than 
p to A : Clearly p $ Hj for somej. Let p' be symmetric to p with respect to the 
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boundary TTJ of Hj. If pi is on the segment joining p to p' and pi ^ p, p', then 
clearly if a G Hj then 

\p — a\ > \pi — a\ 

holds. As A C Hj, we see that (1.1) is verified, i.e. pi is point-wise closer than p 
to A. The numerical "construction" of pi is easily done as follows. Let q be the 
projection of p on the hyperplane Tj, choose a number X such that 0 < X < 2 
and set 

Pi = p + X(g - p). 

In passing from p to pu the point-wise approach to A would seem to be 
strongest if among the Hj, not containing p, we select the one which is furthest 
away from p. If X = 2 then pi = p' and then (1.1) again holds, with the excep­
tion that we have the equality sign for the points of A which are on the boun­
dary of Hjy if such points exist. 

These remarks suggest the following systematic search for a point of A : 
Choose a pointy at will. If p G A, i.e. its coordinates satisfy (1.2), our quest has 
ended. If p $A, let Hj be such that 

(1.5) dist (p, Hj) = max dist (p, Ht), 
i 

where dist denotes euclidean distance. Let q be such that 

(1.6) q£ Hj, \p-q\= dist (p, Hj). 

If X is a constant, 0 < X < 2, we define 

(1.7) pi = p + \(q- P). 

For convenience we abbreviate this construction by writing 

(1.8) Pi = Fx(p). 

where F\ (p), defined for p $.A, has been made single-valued by some pre-
assigned rule for choosing j in case that (1.5) should not define j uniquely.1 If 
pi Ç A our process has terminated. If pi $ A we iterate (1.8), obtaining 

P% = Fx(Pi), 

and we continue in like manner deriving a sequence of points p = po, pu pi, . . ., 
all outside A and connected by the relation 

(1.9) pv+i = Fx(p,) (v = 0, 1, . . .). 

There are two alternatives: (1) The process terminates after N steps with a 
point pN Ç A ; (2) The process continues indefinitely producing an infinite 
sequence {£„}. 

2. Statement of the main theorems. S. Agmon (1) has recently shown that 
if 0 < X < 2 and the sequence {pv) is infinite, then pv converges, as v —> <», 

^ o r instance the smallest j satisfying (1.5). 
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to a point on the boundary of A. We give a new proof of this result (Theorem 1, 
Case 1, and Theorem 2, Case 1, below). Our main contribution, however, is the 
investigation of the case when X = 2. Throughout this paper we denote by r 
the dimensionality of the polytope A defined by (1.4). As we assume that A is 
not void, r may have any value from zero to n. We denote by Lr the r-flat 
which contains A. 

THEOREM 1. We assume that r = n, i.e. A is not contained in any hyper plane of 

En. Let {pv} be a sequence of points obtained by the process described m § 1. There 
are two cases: 

CASE 1. If 0 < X < 2 then either \pv) terminates or else pv converges to a point 
I on the boundary of A. 

CASE 2. If\ = 2 then the sequence {pv} always terminates. 

The formulation of our results for the case when r < n requires the following 
remarks concerning spherical surfaces. Let Lr be a given r-flat in En} 0 < r 
< n — 1. We are also given a point p, p $ Lr. Let X be the locus of points x 
such that 
(1.10) \x — a\ = \p — a\, for every a G Lr. 

We claim that X is a spherical surface Sw_r_i of dimension n — r — 1. Thus if 
r = 0, then Lr reduces to a single point a and X is evidently the Sn-i with 
center at a passing through p. In the other extreme case when r = n — 1, 
Lr is a hyperplane and the locus X contains exactly two points: the point p 
and its symmetric image with respect to Lr. These two points form a So 
located on the line through p which is normal to Lr. A general proof of our 
assertion is as follows: Let b be the orthogonal projection of p onto Lr. Erect 
at b the (n — r)-flat L'n^T which is normal to LT. Evidently p Ç L'n_r. Then 
x Ç X if and only if x Ç Z/n_r and \x — b\ = \p — b\. Indeed, assume that 
x£ X. By (1.10), for a = b, we obtain that \x — b\ = \p — b\. This last 
equality and (1.10) show that for every a € Lr the two triangles xba and pba 
are congruent. Since A pba = 90° we conclude that Zxba = 90°. Hence the 
line joining b and x is normal to Lr and x Ç Z/W_r. Conversely, if x G Z/TO_r and 
\x — b\ = \p — b\, let us show that x Ç l . This is now clear because the two 
triangles pba and xba (a G Lr) are right-angled at b and have equal legs respec­
tively. This implies (1.10), hence x f l . The locus X may accordingly be 
defined by the two conditions 

x Ç L'n-Ty \x - b\ = \p - b\, 

and is therefore seen to be identical with the spherical surface Sn-r-i of Z/W_r 

having its center at b and passing through p. We shall refer to Sn-r-i as a 
spherical surface having LT as its axis, for indeed, by (1.10), Lr is precisely the 
locus of points a with the property of being equidistant from all points of 
iOn—r—1' 
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THEOREM 2. We assume that r < n, A C LT. Let {pv) be a sequence of points 
obtained by the process of %\. 

CASE 1. / / 0 < X < 2, then [pv] either terminates or else pv converges to a 
point I of A. 

CASE 2. If\ = 2, then {pv} either terminates or else there is a number vo such 
that the points pv, for v > *>o, are on a spherical surface Sn-r-\ having LT as its 
axis. 

3. Remarks, (a) The procedure here described for finding a solution of 
(1.2) is called the relaxation method, especially if X = 1, when it may also be 
called the projection method. We speak of under-relaxation or over-relaxation 
depending on whether 0 < X < l o r l < X < 2 . The case when X = 2 is an 
extreme case of over-relaxation which may also be called the reflexion method. 

(b) Theorem 1, Case 2, describes the main advantage of the reflexion method 
(X = 2). No other value of X, 0 < X < 2, has the property of always leading to 
a terminating sequence if r = n. If 0 < X < 1, this is easily shown by con­
sideration of a triangle A in E2. For a X with 1 < X < 2, an example of a non-
terminating sequence in £ 2 is constructed as follows (Fig. 1) : Let ZpqO = 90° 

and p, q, pi be such that ppi/pq = X, hence pq > qp\. Draw the ray Or such 
that Z.pOr — ZqOpi and produce Or into a full line r'Or. Let A be the inter­
section of the closed half-plane below q'q and the closed half-plane above r'r. 
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Starting with p and iterating the process pi — F\(p), we obtain an infinite 
sequence of points {pv} which oscillate between the rays Op and Opi, converging 
toO. 

(c) Let X = 2, r < n and let us suppose that the sequence {pv) is infinite. 
By Theorem 2, Case 2, for v > v0, all pv are on a Sn-.r-i having LT as its axis. 
Since pv and £„+i are both on Sn-r-i, the hyperplane with respect to which pv 

and pv+i are symmetric to each other must contain the axis Lr of Sn-T-i* We 
may state this result as 

COROLLARY 1. Let r < n and let the reflexion process (X = 2) lead to an infinite 
sequence {pv}. Then there exists an integer v0 such that all the hyper planes 

n 

(1.11) -Ki'. ]C aiJXJ + bf = 0 
3=1 

which are actually used in the reflexion process for v > v0 contain the entire poly-
tope A and therefore also the r-flat Lr which contains A. Any such hyperplane, or 
combination of such independent hyperplanes, may therefore be used to reduce the 
problem to one of a dimension less than n. 

(d) When the inequalities (1.2) are all homogeneous, we wish to find a point 
of A distinct from its vertex o. The relaxation method may well lead to the 
trivial solution o, if 0 < X < 2. Thus if 1 < X < 2 and if A is the "cone" in 
E2 of Fig. 1, we have the infinite sequence {pv) converging to o. By Theorem 1, 
Case 2, and Theorem 2, Case 2, this can never happen if X = 2. 

In II and III we prove the Theorems 1 and 2 respectively. In IV we discuss 
the behavior of the reflexion process for a special kind of infinite family of 
half-spaces, namely all half-spaces of support of a bounded and closed convex 
set in Ew. A study of this problem, suggested by our previous discussion, seems 
justified by its own geometric interest. 

II. A PROOF OF THEOREM 1 

4. On Fejér-monotone sequences of points. Let A be defined by (1.4) and 
let q0, qi, Q2, . • • be an infinite sequence of points outside A with the following 
properties : 
(2.1) qt 5* qi+u 

(2.2) \qt — a\ > \qi+i — a|, for all a 6 A, i = 0, 1, . . . . 

The sequence {qv} is approaching the set A point-wise and we summarize this 
situation by saying that the sequence {qv} is Fejér-monotone with respect to A. 
Concerning such sequences we prove 

LEMMA 1. Let the sequence {qv} be Fejér-monotone with respect to the poly tope 
A, assumed to be of dimension r. 

CASE 1. Ifr — n then the sequence {qv} converges to a point. 
CASE 2. If'r < n then the sequence \qv) either converges to a point or else the set 

of its limit points lies on a spherical surface Sn-T-i whose axis is the r-flat Lr 

spanned by A. 
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Proof. CASE 1. Let r = n and consider the spherical surfaces 

(2.3) S9 (a) : \x - a\ = \qv - a\ (a G A, v = 0, 1, . . .). 

By (2.2) the surface Sv (a) is non-expanding as its center a is kept fixed and v 
increases. Therefore the following limits exist 

(2.4) lim \qv - a\ = R(a) 
v-ïœ 

Define the surface 
(2.5) S(a) : \x - a\ = R(a) 
and let us consider the set 

(2.6) X = fi S(a). 
aeA 

(a) Every limit point I of the sequence {qv) is in X. Indeed by (2.4) we see 
that / G 5(a), for every aÇ i , hence / G X, by (2.6). We conclude that X is 
not void because the bounded sequence {qv} has at least one limit point. 

(b) The set X contains exactly one point I. Indeed, if / ^ /', l G X, V G Xy 

then let -K denote the hyperplane of points equidistant from I and V. If a Ç A 
then /, V being both in X, are also both in S (a). Hence a G TT and we conclude 
that A C A" in contradiction to our assumption that r = n. 

(c) We conclude that qv —+ L Indeed, by (a) and (b) we see that I = X is the 
only limit point of the sequence {qv). 

CASE 2. Let r < n, A C £r- If the sequence {qv} converges to a point then 
there is nothing to prove. Let us assume that 

(2.7) the sequence {qv} does not converge to a point. 

In any case the bounded sequence {qv} has limit points and let p be one of them. 
Define as before the spheres Sv (a), S (a) and the set X by (2.3), (2.4), (2.5) 
and (2.6). By (2.4) we have that R(a) = \p - a\ (a G A). The set X is there­
fore identical with the set of points x such that 

\x — a\ = \p — a\, for every a G A. 

Since A spans Lr we may also define X as the locus of points x such that 

(2.8) \x — a\ = \p — a\, for every a G Lr. 

As shown in § 2, (2.8) defines a Sn-T-u provided that the locus does not 
reduce to a point of Lr. Since this locus contains all limit points of {qv), our 
assumption (2.7) excludes this possibility and (2.8) defined a spherical surface 
Sn-T-i- This completes a proof of Lemma 1. 

5. Proof of Theorem 1, Case 1. Here r = n\ assume the sequence \pv\ to 
be infinite. As already mentioned in § 1, the sequence {pv} is Fejér-monotone 
with respect to A. By Lemma 1, Case 1, the sequence {pv) converges to a 
point /: 
(2.9) lim p, = I. 

(aeA). 

(ae A), 
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We have to show that l Ç A. For this purpose we introduce the function 

(2.10) d(x) = max dist (x, Ht). 
i 

Observe that d(x) is everywhere continuous and that 

= 0, x £ Af 

>0 , x$A. 

Now (2.9) implies that \pv-i — p\ —> 0 and therefore also that 

By the continuity of d(x) we have 

d(l) = lim d(pv) = 0 

and therefore I € A, by (2.11). The point /, being a limit of exterior points pVf 

must be on the boundary of A. 

6. Proof of Theorem 1, Case 2. Let X = 2, r = n, and let us show that the 
sequence {pv} must terminate. Indeed, suppose it were infinite. By Lemma 1, 
Case 1, we again conclude that 
(2.12) \\mpv = 1 

and the argument used in the previous paragraph shows that / is on the 
boundary of A. Let pv+\ be obtained from pv by reflexion in the boundary irjv 

of the half-space HJv. By (2.12) it is clear that 

(2.13) lim dist (/, wjy) = 0. 
v-tœ 

The given family of hyperplanes (1.11) being finite, we conclude from (2.13) 
that 

dist (/, 7TJv) = 0, 

provided v > vo, hence 

This conclusion, however, contradicts (2.12). Indeed, every point pv (y > J>0) 
is obtained from the preceding point pv-\ by reflexion in a hyperplane through 
/. All these points must therefore lie on the spherical surface 

\x -l\ = \pV0 - l\ ( > 0) 

and can therefore never converge to /, as (2.12) requires. 

III. A PROOF OF THEOREM 2 

7. Proof of Theorem 2, Case 1. We assume r < n, 0 < X < 2, and that the 
relaxation process (1.9) furnishes an infinite sequence {pv}. We are to show that 

(2.11) d(x) 
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pv converges to a point / of A. If the sequence {pv\ converges to a point / then 
the argument of § 5 shows that / Ç A and we are through. Let us now assume 
that 
(3.1) the sequence {pv} does not converge 

and show that we shall reach a contradiction. By Lemma 1, Case 2, and (3.1), 
we conclude that all the limit points of {pv} are on a spherical surface Sn-r-i 
having Lr as an axis. 

(a) Our assumptions imply that 

(3.2) inf \pv+1 - pv\ = c > 0. 

Indeed, consider the function d(x), defined by (2.10), for the points x on the 
surface Sn-T-i. Since A P\ 5w_r_i = 0, we conclude that 

d(x) > 0, if x Ç Sn-r-i-

Since d{x) is continuous and Sn-r-i is compact, we conclude that 

7 = min d(x) > 0, x G S»-r-i-

Let us select 71 fixed such that 0 < 71 < 7. Let <5 be positive and let N$ denote 
the set of points x defined by 

dist (x, Sn-r-i) < ô. 

Again by the continuity of d(x) we can select ô so small that 

(3.3) d{x) > 7 l , xe Nô. 

By Lemma 1, Case 2, we have pv Ç N^ provided v > v$. Now (3.3) implies 
that 

\pv+\ — pv\ = A d(pv) > X 7i, 

provided v > v0. This proves (3.2) with c > X 71 > 0. 
We may now easily show that the assumption (3.1) leads to a contradiction. 

Indeed, let the point a on Sn-r-i be a limit point of {pv}. For an appropriate 
subsequence {/} of the sequence of all integers {v) we have 

pv' —* « G «Sn-r-l-

For a subsequence {/'} of {v'} we may also assume that 

pv>> —» a, and /V'+i —> /3 G 5n_r_i. 

By (3.2) we conclude that a ^ |3; in fact 

\a - p\ > c > 0. 

Select on the line through a and 0 a point rj such that 0 — a = X(?7 — a), and 
notice, because of 0 < X < 2, that rj is nearer to fi than to a: 

(3.4) \r) - a\ > \V - j3\. 

https://doi.org/10.4153/CJM-1954-038-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1954-038-x


RELAXATION FOR LINEAR INEQUALITIES 401 

For the subsequence \v"}, the half-spaces Hjy used in obtaining pv»+\ from 
pv», must converge to the half-space 

(3.5) H :\x - a\2 - \x - /?|2 > \rj - a|2 - |iy - f̂2; 

in fact Hj must already be identical with H, for sufficiently large v", because 
of the finiteness of the number of half-spaces H^ This, however, leads to a 
contradiction, for on the one hand A C Hj implies that A C H. Hence x Ç A 
implies x Ç H and therefore by (3.5) and (3.4) 

\x - a\2 - \x - /?|2 >\y - a\2 - \rj - p\2 > 0, 

or 

(3.6) \x - a\ > \x - p\. 

On the other hand, A being on the axis of Sn-r-u we must have in A the 
equality \x — a\ — \x — f$\ in contradiction to (3.6). Thus our assumption 
(3.1) is untenable and the proof is completed. 

8, Proof of Theorem 2, Case 2. We assume r < n, X = 2, and that the 
reflexion process produces an infinite sequence [pv\. This sequence cannot 
possibly converge, for its limit / would belong to A (§ 5) and would then have 
to terminate (§ 6). By Lemma 1, Case 2, the only alternative is that the 
sequence {pv} converges to a spherical surface Sn-r-i of axis Lr. Then (3.2) or 

(3.7) inf |/>,+1 -p,\>0 

again holds. Out of A select r + 1 fixed points a0, #i, . . . , ar spanning Lr and 
let TTJV be the reflecting hyperplane used in obtaining pv+i as the point sym­
metric to pv. Since all limit points of pv are on Sn-r-i, it is clear that 

lim \ak — pv\ = lim \ak — pv+i\ = R(ak) (k = 0, . . . , r). 

This, together with (3.7), shows that 

lim dist (ak, irjv) = 0 (k = 0, . . . , r). 

By the finiteness of our supply of reflecting hyperplanes we conclude from the 
last relations that 

ak G wjv, v > z>0; k = 0, . . . , r, 

or what amounts to the same thing: 

Lr C irjv1 v > v0. 

In other words: there is a number v0 such that all reflexions for v > z>0 are 
performed with respect to hyperplanes TTiv which contain the axis Lv of Sn-r-i-
This, however, requires that 

pv Ç Sn-r-ij V > VQ. 
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Indeed, if pVo $Sw_r_i, then all pv (v > v0) would lie on a surface S'n-r-i of 
axis Lv, passing through pVo, and could then not converge to Sn-r-i, as we 
assumed. 

IV. T H E REFLEXION PROCESS WITH RESPECT TO A CONVEX DOMAIN 

9. Statement of the problem. We have so far discussed the behavior of the 
reflexion process with respect to a finite family {H} of half-spaces in En. Do 
the results obtained extend to infinite classes of half-spaces? We deal here only 
with the following special case of this problem: Let A be a given closed and 
bounded convex set in En. A closed half-space H belongs to the family F if and 
only if the boundary of H is a hyperplane of support of A and A C H. Let 
p $ A and let q be the point of A which is nearest to p. Let wo be the hyperplane 
through q which is normal to the segment joining p and q and let Ho be the 
closed half-space, bounded by 7r0, which does not contain p. Evidently H0 £ F; 
also 

dist (p, Ho) = max dist (p, H) 
HeF 

Indeed, if there were a H £ F such that dist (p, H) > dist (p, H0) = \p — q\, 
then q $ H, in contradiction to the fact that q £ A = C\H. This shows that the 
reflexion process with respect to the family F = {H} amounts to the construc­
tion of the point 
(3.1) px = p + 2(q - p) = F(p) (p i A). 

Let us call pi = F(p) the image of p with respect to A. 
\{ pi^A we may form p2 = F (pi) and continue in like manner obtaining a 

sequence of points p = p0, pu P2, • • • connected by the relation 

(3.2) pv+i = F(pv) (v = 0, 1, . . .). 

We have again the old alternative: (1) The process terminates after N steps 
with pN Ç A ; (2) The process continues indefinitely, producing an infinite 
sequence {pv}. 

10. The main result. The behavior of the reflexion process with respect to 
A is described by the following 

THEOREM 3. Let A be a closed convex and bounded set of En of dimension r 
and let Lr be the r-flat containing A. Suppose p0 $ A and let {pv} be the sequence 
obtained by the reflexion process (3.1), (3.2). 

CASE 1. If r = n, then the process always terminates. 

CASE 2. Let r < n. If po 6 Lr then the process terminates. If po $ LT then the 
process produces an infinite sequence {pv} with the following property. There is a 
number v0 such that for all v > vo the points pv oscillate between two points which 
are symmetric with respect to Lr. 
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Proof. CASE 1. Let r = n and let us assume, to obtain a contradiction, that 
the sequence {pv\ is infinite. We know that {pv\ is a Fejér-monotone sequence 
and hence that it converges to a point a by Lemma 1, Case 1. Clearly a € A, 
and hence a is on the boundary of A, by the argument of § 5. Let P be 
the projection cone of A at the point a, i.e. the intersection of all H whose 
boundary hyperplanes pass through a. The cone P is convex and of dimension 
n, since P D A. There is therefore a half-space H Ç F, whose boundary ir 
supports P (and also A) at the point a and whose interior normal ai, at a, is 
wholly interior to P , except for the point a. Let us think of ir as horizontal and 
its normal ai as pointing vertically downward. The point i being interior to P 
also a certain small spherical neighborhood 5 of i is in P . Let us call C the slim 
circular cone, of vertex a and axis ai, which is circumscribed to 5. This convex 
cone C is wholly in P . 

Let us denote by Q the convex cone of vertex a which is generated by the 
interior normals of all H supporting P (or A) at the point a. These H support 
also C at a. It follows that the closed convex cone Q (called the polar cone of A 
at a) has only the point a in common with T, Q being below ir. Q was defined as 
the locus of all interior normals of A at a. Let us denote by N a small neigh­
borhood of a on the boundary of A. Let Qf be a given closed and convex cone 
satisfying the following conditions: (i) Every ray of Q is interior to Q', (ii) Qf 

has only the point a in common with T. Clearly, a neighborhood TV of a exists 
such that the interior normals to A at the points of N, if transferred parallel to 
themselves so as to start at a, will all lie in Qf. In fact otherwise we could find 
normals at points converging to A whose limit (which obviously being a normal 
at A) would be outside or on the boundary of Qf. 

We now return to the sequence of points {pv} which converges to a. Let qv 

be the midpoint of the segment pvpv+\. It is clear by our construction that 
qv Ç boundary of A and that the vectors qvpv+i are interior normals to A. 
Also pv-+ a implies that qv —» a, hence qv Ç N, provided v > vo. This leads to 
a contradiction. Indeed, consider the sequence of points 

Ppo, Ppo + 1, 

We know from what was said above that the vectors qvpv+i, if transferred to a, 
lie in Qf. That means that the vectors 

Pppv+l (V > I>o) 

have a positive component in the direction of the downward vertical vector 
ai. Since pv —» a, we conclude that all points pv{v > v0) are above the horizontal 
plane ir. But this implies that also qv are above w. This, however, is absurd 
since qv £ A and A is below T. 

CASE 2. If r < n and po Ç LT then again the process must terminate by the 
previous case because we have no occasion to leave LT in the course of our 
process. 
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We now assume that r < n while p0 i Lr. Let L r + i be the (r + l)-flat con­
taining LT and po. Note that we never leave L r + i which amounts to assuming 
at the start that r = n — 1. Let, therefore, A be (n — 1)-dimensional, A CLB-i 
and po $ Ln_i. Let p\ and p\ be the projections of po and £i, respectively, on 
Ln-\. It should be clear that a point go of A is nearest to po if and only if it is 
nearest to p\. I t follows that pi = F(p0) implies that p\ = F{p'o). Consider 
the sequence of reflexions {pv}. It is clear that the distance from pv to Zn_i has 
the same positive value dist (po, Lw_i), the points pv passing from one side of 
the plane to the other alternately. However, the sequence {p'v) of their pro­
jections on Lw_i has the property p'v+i = F(pf'„). By the previous case this 
sequence ^terminates" with a first p'N G A. From that moment onwards the 
sequence pv must oscillate between two points on the normal to Ln-i at the 
point p'N = p'N+1 = 
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