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STRONGLY REGULAR GRAPHS DERIVED FROM 
COMBINATORIAL DESIGNS 

J. M. GOETHALS AND J. J. SEIDEL 

1. Introduction. Several concepts in discrete mathematics such as block 
designs, Latin squares, Hadamard matrices, tactical configurations, error-
correcting codes, geometric configurations, finite groups, and graphs are by 
no means independent. Combinations of these notions may serve the develop­
ment of any one of them, and sometimes reveal hidden interrelations. In the 
present paper a central role in this respect is played by the notion of strongly 
regular graph, the definition of which is recalled below. 

In § 2, a fibre-type construction for graphs is given which, applied to block 
designs with X = 1 and Hadamard matrices, yields strongly regular graphs. 
The method, although still limited in its applications, may serve further 
developments. In § 3 we deal with block designs, first considered by Shrikhande 
[22], in which the number of points in the intersection of any pair of blocks 
attains only two values. Investigating the relations between these designs and 
the strongly regular graphs formed by their blocks, we extend work by 
Kalbfleisch and Stanton [23] who called the designs quasi-symmetric. The 
methods of the preceding sections are applied in § 4 to the construction of 
symmetric Hadamard matrices with constant diagonal. These matrices are 
related to special strong graphs. It was pointed out to us by Esther Seiden 
and by Michael Doob that symmetric Hadamard matrices with constant 
diagonal are involved in various current investigations. Three methods of 
construction and several detailed examples are given. 

In § 5, tactical configurations, derived from the Steiner system (1; 24, 8, 5), 
by means of the methods of § 3 lead to strongly regular graphs of orders 
253, 176, 120, 100, 77, and 56. Some of these are related to recently discovered 
graphs (Gewirtz [4]) and simple groups (Higman and Sims [11]) ; others seem 
to be new. These graphs are connected with the strongly regular graph of 
order 2048 which in the final section (§ 6) is derived from the extended Golay 
code (24, 12). 

The graphs considered in the present paper are undirected, without loops, 
and without multiple edges. We make use of adjacency matrices that have 
elements 0 on the diagonal, — 1 or + 1 elsewhere according as the correspond­
ing vertices are adjacent or non-adjacent, respectively (cf. [14; 21; 19; 20]). 
We denote by / the unit matrix, by / the all-one matrix, by 0 the all-zero 
matrix, and by j the all-one vector, of some order. 
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A non-void and non-complete graph of order v is defined to be a strong graph 

(cf. [20, Theorem 4; 21]) if i ts adjacency matr ix A satisfies the equat ion 

{A - piJ) {A - p2I) = (v - 1 + p ip 2 ) / , PI > P2. 

I t is known t h a t the real numbers pi and p2 are odd integers unless pi + p2 = 0. 
T h e y are the only eigenvalues of A with the possible exception of one simple, 
integer eigenvalue po which satisfies 

(po — Pi)(po — P2) = v(v — 1 + P1P2). 

Strongly regular graphs are strong graphs t h a t satisfy A J = p 0 / , i.e., t h a t 
are regular. Th is concept is due to Bose [2] who used a different definition 
(cf. [19]). Strong graphs with v — 1 + pip2 9^ 0 are strongly regular 
[20, Theorem 5]. 

Other combinatorial notions are introduced in the text or can be found in 
the books of Ryser [18] and Hall [9]. 

2. A c o n s t r u c t i o n m e t h o d for g r a p h s . Le t B be the adjacency matr ix 
of any graph of order n and let Xi, . . . , X6, p2 be the eigenvalues of B, with 
p2 < 0 of multiplicity n — b. F rom t r B = 0 and tr B2 = n(n — 1) we have 

Ai + . . . + A, = - (ft - b)P2, X12 + . . • + A,2 = n(n - 1) - (n - 6)p2
2. 

Th i s implies t h a t 

(1/6) (» - 6)2p2
2 ^ * ( n - 1) - (ft - 6)p2

2 

with equal i ty if and only if Xi = . . . = X6. Therefore, we have [14, L e m m a 6.1] 
the following result. 

T H E O R E M 2.1 . Any negative eigenvalue p2, of multiplicity n — b, of the 
adjacency matrix of any graph of order n satisfies 

P2 è - ( » - b)~l{b{n - l)(ft - b))l'\ 

equality holding if and only if all other eigenvalues are mutually equal. 

Let B be the adjacency matr ix of any graph of order n and let 

Xi, . . . , X6_i, po, p2 

be the eigenvalues of B, with p2 < 0 of mult iplici ty n — b. F rom tr B — 0 
and t r B2 = ft (ft — 1) we have 

Xi + . . . + X6_i = — (ft — b)p2 — po, 

Xi2 + . . . + AÎ-i = ft (ft - 1) - (ft - Ô)p22 - po2. 

This implies t ha t 

(b - l ) - i [ - (ft - b)P2 - po]2 S n(n - 1) - (ft - b)p2
2 - po2, 

(ft - & ) ( » - l )p 2
2 + 2(ft - b)p2Po + bPQ

2 ^ n(n - 1)(6 - 1), 

with equal i ty if and only if Xi = . . . = X&_i. T h e last inequali ty, together 
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with p2 < 0, defines a domain Sa in the (p2, po) plane. Its boundary consists 
of a half ellipse ê'. For (p2, po) € < \̂ all Xi, . . . , Xs_i are denoted by pi and 
we have 

po + (b - 1)PI + (» - i )p, = 0. 

Therefore, the following theorem is proved. 

THEOREM 2.2. Graphs with p0 9e pi are strong graphs if and only if (p2, po) € $. 

COROLLARY 2.3. 

(i) Pl = P0^(^-~ri(b(n-l)(n-b))1'\l(b(n-l)(n-b))1")e^, 

( H ) p l = ft(ft-l) {{b ~ l M n ~ b))1'2 

(iii) P l = ^ - j ((ft - l)n(» - ft))1/2 

** ( - ^3ft ((è - Vn(-n ~ 6))1/2> °) € ^-

This is proved by elementary calculations. 

The construction method which we are about to describe derives a graph 
from a given balanced incomplete block design ( = block design) with para­
meters v, b, k, r, X = 1; in some cases the graph obtained by this method is a 
strongly regular graph. Let N denote the v X b incidence matrix of the points 
and the blocks of a block design in which X = 1, and let L denote any x X r 
matrix all of whose elements are ± 1 such that 

LLT = rI + B, 

where B is the adjacency matrix of some graph of order x. We construct a 
vx X b matrix P by transforming each row of N into an x X b matrix ; this is 
done by replacing the r successive ones in the row by the r successive columns 
of L, and by replacing the b — r zeros in the row by zero columns of size x. 
Then P satisfies 

PPT = ri + A 

for some symmetric A of order vx with zero on the diagonal and ± 1 elsewhere. 
If the vx row vectors of P span a vector space of dimension b, then the smallest 
eigenvalue p2 of A has multiplicity vx — b, and p2 = — r. If PPT is regular 
with PPTJ = (po + r)J, then A is the adjacency matrix of a regular graph 
with A J = poJ. 
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THEOREM 2.4. If there exists a block design with parameters v, b, k, r, X = 1 and 
if there exists a Hadamard matrix of order r + 1, then there exists a strongly 
regular graph of order v{r + 1) whose adjacency matrix A satisfies 

[A + rI][A - (v + k - 1)7] = 0, AJ = -rJ. 

Proof. Normalizing the first column of the Hadamard matrix H we take 
L such that H = [j L] ; then 

LLT = rl + I - J , JL = 0. 

Application of our construction to this L, with x — r + 1, and to the given 
block design yields an adjacency matrix A of order n = v(r + 1). By use of 
the relations bk = vr and v — 1 = r(k — 1) we observe that the smallest 
eigenvalue p2 = — r satisfies 

P*= -r = -~-b{b{n-\){n-b))m. 

By Theorem 2.1 this implies that all other eigenvalues of A are equal to pi, 
say. From 

tr ,4 = Plb - r[v(r + 1) - b] = 0 

we conclude that p\ — v + k — 1. Finally, J L = 0 implies J P = 0 and 
J A — —rJ. Hence, the theorem is proved. 

COROLLARY 2.5. The columns of P constitute an orthogonal basis for the 
eigenspace of A belonging to p\. 

Proof. As to the v(r + 1) X b matrix P , we know that PPT has the eigen­
values v + k — 1 + r and 0, of multiplicities b and v(r + 1) — b, respectively. 
This implies that 

PTP = (v + k - 1 + r)I = (r + l)kl, AP = (v - 1 + k)P, 

from which the assertion follows. 

THEOREM 2.6. If there exists a finite projective plane PG(2, r — 1), and if 
there exists a Hadamard matrix of order r + 1, then there exists a strongly 
regular graph of order r(r2 — r + 1) with eigenvalues p0 = 0, pi = r2 — r + 1, 
P2 = —r. 

Proof. Normalizing the first row and column of the Hadamard matrix H 
we take L such that 

then 
LLT = rl + I - J, JL = LJ = J. 

Application of our construction to this L, with x — r, and to the block design 
with parameters v = b = r2 — r + 1, k = r, X = 1, yields an adjacency 
matrix 4̂ of order n = r(r2 — r + 1). Since JPPT = rXPT = rJ, 4̂ has the 
eigenvalues p0 = 0, and p2 = — r of multiplicity (r — 1) (r2 — r + 1). The 
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proof is completed by observing that the point (p2, po) is on the ellipse <o and 
by applying Theorem 2.2. 

THEOREM 2.7. If there exists a finite projective plane PG(2, r — 1) and if 
there exists a square matrix L of order r all of whose elements are ± 1 satisfying 

LLT = r l - I + J, JL = LJ = (2r - 1)1/2J, 

then there exists a strongly regular graph of order r(r2 — r + 1) with eigenvalues 
po = 2r(r — 1), pi = r2 — r — 1, p2 = — r. 

The proof is analogous to that of Theorem 2.6, the difference being that now 
we have JPPT = r(2r — 1)J, whence p0 = 2r(r — 1). 

Remark. Finite projective planes of orders = 2(mod 4) and 25(s + 1) are 
only known to exist for orders 2 and 4, respectively. In these cases, Theorem 2.6 
for r = 3 leads to the triangular graph T(7), and Theorem 2.7 for r = 5 leads 
to a strongly regular graph with 

L = J 6 - 2/5, » = 105; po = 40, Pl = 19, p2 = - 5 . 

It would be interesting to know whether Theorems 2.6 and 2.7 have any 
further consequences, for instance whether strongly regular graphs exist of 
order 1221 having the eigenvalues and multiplicities 

Po ==0, pi = 111, p2 = —11, /xo = 1, Mi = HO, M2 = 1110. 

THEOREM 2.8. Let there exist a strongly regular graph obtained by our construction 
from some block design with parameters v, b, k, r, \ = 1 and from some square L 
of order r, all of whose elements are ± 1 , with 

LLT = rl + B, JL = LJ = U, 

where B has zero diagonal and ± 1 elsewhere. Then the block design is a projective 
geometry PG(2, r - 1) and either B = I - J , I2 = 1 or B = J - I, I2 = 2r - 1. 

Proof. From the hypotheses it is seen that L is non-singular, hence / ^ 0. 
Furthermore, the strongly regular graph has the eigenvalues p0 = kl2 — r 
and P2 = — r (the latter of multiplicity vr — b). By Theorem 2.2, it follows 
that ( — r, kl2 — r) G S*, whence, by use of vr = 6& and z> — 1 = r(k — 1), we 
have 

(bk - b)(vr - l)r2 - 2{bk - b)r(kl2 - r) + b(kl2 - r)2 = bk{vr - l)(ft - 1), 
&2/4 - 2r&2/2 + k2r2 = k2r2 - 2r2k + r2 + (r + r2k - r2 - l ) ( r - ife), 

P(/2 _ r)2 = (f _ 1 ) 2 ( ^ + k _ f ) # 

From (/2 — r ) / = BJ we have (/2 — r)2 ^ (r — l)2 , whence ^2 ^ ^ + ^ — r, 
k ^ r, b ^ v. Therefore, by Fisher's inequality v S b1 we have v = bt and 
hence the block design is a projective geometry. This implies that 

p - r = r - 1, B = J - I or Z 2 - r = l - r , B = I - J, 

which proves the theorem. 
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Remark. Theorem 2.8 explains the restriction in the hypotheses of 
Theorems 2.6 and 2.7. It would be interesting to extend the construction 
method by using several distinct matrices L. 

3. Quasi-symmetric block designs. Let N be the (0, 1) point-block 
incidence matrix of a block design with parameters v, b, k, r, X. The following 
relations hold: 

JN = kJ, NJ = rJ, NNT = (r - \)I + \J, 

bk = vry r(k — 1) = \(v — 1). 

In this section we deal with special block designs having the property that 
the number of points in the intersection of any pair of blocks attains only 
two values, x + y and x — y, say, 

Definition. A quasi-symmetric block design with matrix A is a block design 
whose point-block incidence matrix N satisfies 

NTN = kl + x(J - I) -yA, 0 < y ^ x < k, 

for some symmetric A with elements 0 on the diagonal and ± 1 elsewhere. 

THEOREM 3.1. The matrix belonging to a quasi-symmetric block design is the 
adjacency matrix of a strongly regular graph. 

Proof. Since NNT has the eigenvalues rk and r — X, the matrix NTN has 
the eigenvalues rk, r — X, 0, with multiplicity 1, v — 1, b — v, respectively. 
Therefore, the eigenvalues p0, pi, P2 of A are the numbers given by 

p0y = (b — l)x — k(r — 1), piy = k — x, p2y = k — x — r + X, 

with multiplicity 1, b — v, v — 1, respectively. Since j is the eigenvector of 
Pe, we have 

b(A — piI)(A — p2I) = (po — PI)(PO — PI) J, A J = PoJ; 

hence A is the adjacency matrix of a strongly regular graph. 

Remark. From tr A2 = b(b — 1), the following necessary condition for the 
parameters of a quasi-symmetric block design is obtained: 

(6 - l)(x2 - y2) - 2xk(r - 1) + k(r - k) + k(k - 1)X = 0. 

THEOREM 3.2. The incidence matrix N and the adjacency matrix A of a 
quasi-symmetric block design are related by 

N(A - P2I) - ( * A 0 ( P O - P 2 ) / . 
Proof. 

0 - \)N + \kJ - NNTN = kN + xrJ - xN - yNA, 

0 = (k - x - r + X)N + (xr - \k)J - yNA, 

from which the desired relation follows. 
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In the following theorems, quasi-symmetric block designs which belong to 
some special strongly regular graphs are discussed. Theorem 3.4 is an extension 
of a result by Stanton and Kalbfleisch [23], who also obtained Theorem 3.3. 
In Theorem 3.5 it is seen that there exist strongly regular graphs which do not 
belong to any quasi-symmetric block design. The special graphs and designs 
are introduced in the proofs. 

THEOREM 3.3. The only quasi-symmetric block designs whose graph is a ladder 
graph are the designs consisting of two copies of a symmetric block design. 

Proof. The ladder graph [20] is the graph on 2n vertices whose adjacency 
matrix is the matrix 

\ j - I J-2l\ 
LJ -21 J - I J 

with square blocks of size n. Its eigenvalues are p0 = 2n — 3, pi = 1, P2 = —3. 
For the parameters of the quasi-symmetric block design we have b — 2n and 
(from tr A = 0) v = n. Writing N = [N\ N2] with square N± and N2 of order 
n we conclude from Theorem 3.2 that 

Ni = N2, NJ = kJ = JNi, NiNxT = (k - JX)J + $\J, 

hence that Ni is the incidence matrix of a symmetric block design with para­
meters v, k, |X. Conversely, any design consisting of two copies of a symmetric 
block design is quasi-symmetric. 

THEOREM 3.4. The only quasi-symmetric block design with graph H(n) is the 
double Hadamard design of order n + 1. 

Proof. The graph H(n) is the complement of the ladder graph on 2n vertices 
[20] and has the adjacency matrix 

r i-J 2 / - / I 
A~l2I-J I-j] 

with square blocks of size n. This matrix has the eigenvalues po = 3 — 2n, 
Pi = 3, P2 = — 1 . For the parameters of the quasi-symmetric block design we 
have b — 2n and (from tr A = 0) v — n + 1, whence 2nk = (n + l)r . 
Since v divides 2k and v > k, it follows that v = 2k, r = n, X = k — 1. Since 
Pi = 3, P2 = —1 implies x = y = \k, we have 

b = 2w, v = n + 1, r = n, k = \{n + 1), 
X = \{n — 1), x + y = \(n + 1), x - y = 0. 

Writing iV = [iVi N2] with (« + 1) X n matrices Ni and N2 we conclude 
from Theorem 3.2 that 

Nt + N2 = / , JiVi = i ( n + 1) / , 
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and 
NiN? + (J - NJ(J - N,Y = \{n + l)I+h(n- 1)7, 

(2iVx - J)(2iV1 - jy = (» + 1)7 - J, 

[2#i - / i][2iVx - / j ] T = (n + 1)7. 

Hence [2iVi — J" j] is a normalized Hadamard matrix of order n + 1. 
Conversely, if 77 = [L 7] is any normalized Hadamard matrix of order 
n + 1, then the matrix iV = § [ / + L J — L] is the incidence matrix of a 
quasi-symmetric block design with graph H(n) and with the parameters 
indicated above. We call this block design the double Hadamard design of 
order n + 1. 

THEOREM 3.5. There is no quasi-symmetric block design whose graph is the 
lattice graph L2(n) or its complement. 

Proof. Suppose that a quasi-symmetric block design exists whose graph is 
the lattice graph L2(n) on b = n2 vertices. The eigenvalues are (cf. [19]) 

Po = in — l)(n — 3), pi = 3, p2 = 3 — 2n. 

From tr A = 0 we have v = 2n — 1, so that n2k = (2n — l)r , but this would 
imply that b = n2 divides r, which is impossible. 

Suppose that a quasi-symmetric block design exists whose graph is the 
complement of L2(n) on b = n2 vertices. The eigenvalues are 

po = -in - l)(n - 3), pi = 2n - 3, p2 = - 3 . 

From tr^4 = 0 we have v — (n — l ) 2 + 1, so that n2k = (n — l)2r + r, but 
this would imply that b = n2 divides 2r, whence 

n2 = 2r, & — 1 = |w2 — n, 4X(w — l ) 2 = n3(n — 2), 

which is impossible. Therefore, these designs do not exist. 

4. Symmetric Hadamard matrices with constant diagonal. A Hada­
mard matrix H is called symmetric with constant diagonal if H = A ± / , 
4̂ symmetric. Let the order of such a matrix be x, then we have 

H2 = *I , ( i ± I - x 1 / 2 / ) (^ ± I + x1/27) = 0. 

Therefore, A is the adjacency matrix of a strong graph, and its eigenvalues 
are odd integers whose sum equals =F 2. This implies the following theorem. 

THEOREM 4.1. Symmetric Hadamard matrices with constant diagonal have 
order £s2, s an integer. They exist if and only if strong graphs of that order exist 
with eigenvalues 

Pi = 2s =F 1, p2 = -2s =F 1. 

For the remaining eigenvalue p0 of A we have p0 = pi or p0 = p2. If in 
addition A J — p0J, then A, and also the Hadamard matrix H — A ± 7, is 
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regular with HJ = 2sJ or HJ = — 2sJ. For the eigenvalues of these strongly 
regular graphs on 4s2 vertices there are the following possibilities: 

Po = pi = 2s — 1, p2 = — 2s — 1 and pi = 2s + 1, p0 = p2 = — 2s + 1, 

Pl = 2s — 1, po = P2 = — 2s — 1 and p0 = pi = 2s + 1, p2 = — 2s + 1. 

The first case corresponds to the pseudo Latin-square graphs Ls(2s) and their 
complements [2; 15]. The second case corresponds to the negative-Latin-square 
graphs NLs(2s) and their complements. Negative-Latin-square graphs Nh8(n) 
have been introduced by Mesner [15] who gave a construction for prime 
power n. The Clebsch graph, for n = 4, s = 2, and its complement, for 
n = 4, 5 = 3, belong to this class [20; 21]. Summarizing we have the following 
theorem. 

THEOREM 4.2. Regular symmetric Hadamard matrices with constant diagonal 
of order 4s2 exist if and only if pseudo Latin-square graphs hB(2s) or negative 
Latin-square graphs NLs(2s) exist. 

We now present three methods to construct symmetric Hadamard matrices 
with constant diagonal. The first method consists in changing somewhat the 
argument used in [7, Theorem 4.2], which had its origin in a result of Ehlich [3]. 
We recall that a symmetric or skew C-matrix Cv of order v and the correspond­
ing S-matrix 5c_i of order v — 1 are matrices with diagonal elements 0 and 
other elements + 1 and — 1 which satisfy 

CCT = (v - 1)7, CT = ± C , SST = (v - 1)1 -J, SJ = JS = 0, ST = ± 5 . 

These matrices are symmetric for v = 2 (mod 4) and skew for v = 0 (mod 4). 

THEOREM 4.3. If there exists a symmetric S-matrix of order n + 1, and a skew 
S-matrix of order n — 1 which is symmetric with respect to its antidiagonal, then 
there exists a regular symmetric Hadamard matrix with constant diagonal of 
order n2. 

Proof. Let n = 0 (mod 4) and suppose that there exist a symmetric Sn+i, 
a skew 5w_i, and a permutation matrix Un-i such that 

Un-l2 = In-h Un-lSn-l = ( Un-lSn-i)
T. 

The matrix of order n2 — 1, 

X = Un-lSn-l 0 5 n + i + Un-l ® (-/"n+1 ~ A + l ) ~ ^n -1 0 2»+i, 

is symmetric and satisfies 

KJ = JK = J, KKT = rc2/ - / . 

With the aid of the diagonal matrix Fn+i, whose diagonal elements are + 1 
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and —1 alternatingly, the following matrices of order n2 are denned: 

- [ - ] £ ] • - r i0* H.\ : >.\. G. r\ T ^ r> \ i H = GHG. 
0 7n_i ® /*„+! J 

Then H and 2? are symmetric Hadamard matrices with constant diagonal 
and H is regular with HJ = —nJ. The theorem just proved applies for 
n = 0 (mod 4), n + 1 and n — \ prime powers, for instance w = 12, since 
in this case the Paley construction may be used, cf. [9, p. 211; 7]. 

The second method of construction is an application of § 2 and yields 
regular symmetric Hadamard matrices with constant diagonal of orders which 
are divisible by 16. 

THEOREM 4.4. If there exists a Hadamard matrix of order n, then there exists 
a regular symmetric Hadamard matrix with constant diagonal of order n2. 

Proof. The pair design with parameters 

v = n, b — \n(n — 1), k = 2, r = n — 1, X = 1 

exists for all n. If a Hadamard matrix of order n exists, then Theorem 2.4 
may be applied so as to obtain a strongly regular graph of order n2 with 
adjacency matrix A satisfying 

(A +nl - I) (A - ni - I) = 0, A J = - in - 1)J. 

Therefore, H = A — I is a Hadamard matrix which meets the required 
conditions. 

As a third method of construction, in order to obtain symmetric Hadamard 
matrices with constant diagonal of other orders, we investigate block designs 
with X = 1. Since any two blocks have one or no points of intersection, 
these designs are quasi-symmetric in the sense of § 3 with 

x + y = 1, x — ;y = 0, r 

po = 2k + 1 - 2v + 

Pi = 2k — 1, p2 = -.v , u. b — i * 

Some special cases are considered. 
(i) If v = k(k — 1) + 1, then the design is a symmetric block design with 

parameters (k — l ) 2 + ( & — 1) + 1, é, 1, that is, a projective geometry 
PG(2, k — 1), and its graph is the complete graph. 

(ii) If v = k(k — 1) + k, then we have 

v = k2, b = k(k + 1), r = k + 1, k = k, X = 1, 

Po = — £2 + fe — 1, pi = 2k — 1, p2 = — 1. 

V - 1 

k - l ' 
- 1 ) 
- 1 ) ' 

v(v — 1) 2(» - 1) 
£ ( & - l ) 

9k -i- 1 -

A - 1 ' 

2(v - 1) 
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The graph is the complement of the graph consisting of k + 1 mutually 
non-adjacent complete subgraphs of order k. In the case of prime k, this 
design exists. Indeed, its incidence matrix N is written in terms of the k X k 
permutation matrix P , defined by its elements piti+i = pk,i = 1 
(i = 1, . . . , fe — 1) and pitj = 0 otherwise, as follows: 

[~P P 2 . . . P* [j 0 . . . Of] 

N= P 2 P 4 ... P2* [o i ... o] I 

Li / ... / [o o ... j]J 
(iii) If v = 2k (k — 1) + 1, then we have 

z; = 2&2 - 2& + 1, b = (2k - l ) 2 + 1, * = k, 

r = 2k, X = 1, pi = — p0 — P2 = 2k — 1. 

The adjacency matrix of these designs satisfies 

A2 = (2* - l)2I, AJ = (1 - 2&)J, 

hence is a regular orthogonal matrix with zero diagonal. These matrices 
exist for orders which exceed prime powers by 1 and for some other orders, 
for instance 226, cf. [7]. It would be interesting to know which of these matrices 
correspond to a quasi-symmetric design. For k = 2 we have the adjacency 
matrix of the triangular graph P(5); this case was discussed in Theorem 3.6. 
For k = 3 we have v = 13, b = 26, and the design is one of the two existing 
mutually non-isomorphic Steiner triple systems on thirteen symbols. The two 
corresponding graphs of order 26 satisfy 

A2 = 257, AJ = - 5 J . 

These are the only graphs satisfying the equations and belonging to any 
quasi-symmetric design; this follows easily from the relations between the 
parameters. However, two further graphs satisfying the equations exist. 
These are obtained by suitable complementation (cf. [14; 19; 20; 21]) of the 
graphs consisting of any one of the two existing non-isomorphic Latin-square 
graphs L3(5) together with an isolated vertex. They do not belong to any 
quasi-symmetric design since they are not equivalent to one of the Steiner 
graphs [7; 21]. 

For k = 4 we have v = 25, b = 50, p± = — p0 = —pi — 7. Apart from the 
quasi-symmetric designs no. 22 [9, p. 291], we have a further such design 
given by the incidence matrix 

1 f 0T 0T 0T 0T 0T oTH 
1 0T f 0T 0T 0T 0T 0T 

1 0T 0T f 0T 0T 0T 0T 

1 0T 0T 0T f 0T 0T 0T 

0 I I I I Q 0 I 
0 I p P2 P4 I Q 0 

Lo I P3 P6 P5 0 I ÇJ 
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with 7, P , Q circulant matrices of order 7, P = (0, 1, 0, 0, 0, 0, 0), 
Q = (0, 1, 1,0, 1,0,0). The corresponding graph is not equivalent to the 
Latin-square graph L4(7) together with an isolated vertex, since it contains 
only one set of parallel cliques [private communication by Ph. Delsarte]. 

(iv) If v = 2k (k —• 1) + k, then we have 

v = k(2k - 1), b = (2k + l)(2fe - 1), r = 2k + 1, 
Po = —2, pi = 2k — 1, p2 = —2k — 1. 

The adjacency matrix of these designs satisfies 

(A + I)2 = 2k2I -J, AJ = -2J. 

For the bordered matrix B of order 4&2 we have 

B = 
T 

• ° jA, (B + I)2 = 4k2I. 
Lj AJ 

Therefore, the following theoremf is proved. 

THEOREM 4.5. If there exists a block design with parameters 

v = k(2k » 1), 6 = 4ife2 - 1, k = jfe, r = 2& + 1, X = 1, 

then there exists a symmetric Hadamard matrix with constant diagonal of order 

(2ky. 
If the blocks of the block design can be partitioned into two sets of orders 

k(2k — 1) and (k + l)(2fe — 1), respectively, in such a way that each point 
appears exactly k and k + 1 times, respectively, in each set, then there exists 
a regular symmetric Hadamard matrix with constant diagonal of order 4&2. 
Indeed, this partition induces the following partitioning of the adjacency 
matrix A of the design, from which the following bordered B is obtained: 

A=[A
A\ AA, BJ-J ~J

Al -A, 
LAi AsJ L j -A? AZA 

Here Ai and Az are square matrices of orders k(2k — 1) and (k + 1) (2k — 1), 
respectively, and 

AJ = (k - 1)/, AJ = (-k - 1)/, A2
TJ = -kJ, AJ = (k - 2)J. 

Hence BJ = JB = (2k — 1)J, and therefore the Hadamard matrix B + I is 
regular. In addition, if [iVi N2] is the partitioned incidence matrix of the 
design, then it follows by Theorem 3.2 that the matrix [j Ni —N2] repre­
sents the eigenspace of B belonging to the eigenvalue p2 = — 1 — 2&. 

| S . S. Shrikhande informed us that this theorem is contained in a paper by S. S. Shrikhande 
and N. K. Singh [On a method of constructing symmetrical balanced incomplete block designs, 
Sankhyâ A U (1962), 25-32]. 
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We now mention some examples to Theorem 4.2. 
For k = 3 we have v = 15, b = 35, and the design is one of the eighty 

existing non-isomorphic Steiner triple systems on fifteen symbols [10]. This 
yields eighty symmetric Hadamard matrices with constant diagonal of order 
36. There are twelve further such matrices of order 36, which are obtained by 
use of Theorem 4.1 from the twelve non-isomorphic Latin-square graphs L3(6). 
Among these 92 matrices, only two are equivalent, both originating from 
Latin squares [private communication by F. C. Bussemaker]. 

For k = 5 we have v = 45, b = 99, k = 5, r = 11, X = 1. Since this design 
exists [9, p. 294, no. 51], we have a symmetric Hadamard matrix with constant 
diagonal of order 100. Explicitly, this amounts to the following construction. 
With the aid of the square matrices C and D of order 9, denned by 

0 1 0 h o3 03 
0 0 1 p = 03 P 3 03 

_1 0 0_ -0, 03 Pz 

c 
±z — Jz Jz — 2/3 Jz — 2/3 
Jz — 2/3 ±z — Jz Jz — 2/3 
.Jz — 2/3 Jz — 2/3 Iz — Jz 

we form the following matrix A of order 99: 

j - 1 c - 1 c - 1 c - 1 -c -
1 +c 1 -c 1 -c 1 +c 

D = PTCP, 

-c -1 -c-i 
I+D I -D I +D 

c - I 1 +c C 1 +c I - C I - C I+D -J I - D I +D I - D 

c - I I - C 1 +c c 1 +c I - C I - D I+D -J I - D I +D 
c - I I - C I - C 1 +c c 1 +c I +D I - D I+D -J I - D 

c - I 1 +c I - C I - C 1 +c c I - D I +D I - D I +D -J 

c - I -J I+D I - D I +D I - D - C I - C I+C 1 +c I - C 

c - I I - D -J I +D I - D I +D I - C - c I - C 1 +c 1 +c 
c - I I +D I - D -J I +D I - D 1 +c I - C - c I - C 1 +c 
c - I I - D I+D I - D -J I +D i+c i+c I - C - C I - C 

c - I I +D I - D I +D I - D -J I - C i+c 1 +c I - C - C 

This matrix A is the adjacency matrix of the graph obtained from the design 
with parameters 45, 99, 5, 11, 1. The desired symmetric Hadamard matrix with 
constant diagonal of order 100 is obtained by bordering A + I. By inspection, 
it is seen that a second such matrix is obtained by changing any D into C in the 
above matrix A. Both A and this second matrix can be made regular by 
suitable complementation, by use of the method explained after Theorem 4.5. 
This implies the existence of two non-trivial symmetric block designs with 
parameters v = 100, k = 45, X = 20. If complementations could be found 
that would make the graph with adjacency matrix 

0 f 
-j A. 

regular in such a way that it consisted of five parallel classes of 10-cliques, 
then three orthogonal Latin squares of order 10 would have been found. The 
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obvious complementations, by which the graph is made regular, do not 
possess this property. 

5. Tact ica l configurat ions. A tactical configuration (&*;*/, k, t) is a set V 
of v elements and a collection of fe-subsets of V, called blocks, such that every 
/-subset of V is contained in exactly bt blocks. Tactical configurations with 
t ^ 2 are block designs with parameters b, v, r, k, X. For i = 0, 1, . . . , t the 
number bi of blocks containing any i-subset of F is a constant and we have 

where bo = b, b\ = r, b2 = X. This well-known result [1; 12] may be proved 
by consideration of the derived tactical configuration (bt;v — 1, k — 1, t — 1) 
which is defined by the blocks of (bt;v, k, t) containing any given element 
of V. The remaining blocks constitute the so-called residual tactical con­
figuration (bt-i ~ bt\ v — 1, k, t — 1). Tactical configurations (1; v, k, t), 
with bt = 1, are called Steiner systems. 

Witt [24; 25] has proved the existence and uniqueness of the Steiner system 
(1; 24, 8, 5) which has the Mathieu group Mz\ as its automorphism group. 
This Steiner system and its derived and residual tactical configurations have 
parameters as follows 

no. V k t &o h b2 is bi b5 5 

1 24 8 5 759 253 77 21 5 1 4,2,0 
2 23 7 4 253 77 21 5 1 3,1 
3 22 6 3 77 21 5 1 2,0 
4 21 5 2 21 5 1 1 
5 23 8 4 506 176 56 16 4 4,2,0 
6 22 7 3 176 56 16 4 3,1 
7 21 6 2 56 16 4 2,0 
8 22 8 3 330 120 40 12 4,2,0 
9 21 7 2 120 40 12 3,1 
10 21 8 2 210 80 28 4,2,0 

The last column gives the numbers 5 of the elements that are common to pairs 
of blocks. Indeed, from the following Lemma 5.1 it follows that in the design 
no. 1, any two blocks have either 4 or 2 or 0 points of intersection. Then for 
the derived and the residual tactical configurations we arrive at the other 
values of s. Note that no. 4 is the symmetric block design PG(2, 4). 

LEMMA 5.1. In the Steiner system (1; 24, 8, 5), any block intersects 280 blocks 
in exactly four elements, 448 blocks in exactly two elements, and 30 blocks in 
no elements. 

Proof. Let ft be any fixed block. The number of its 4-subsets equals (4) = 70 
and each of these 4-subsets is contained in four other blocks. Hence 0 inter­
sects 280 other blocks in four elements. The number of 3-subsets of (3, each of 

https://doi.org/10.4153/CJM-1970-067-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1970-067-9


REGULAR GRAPHS 611 

which is contained in 20 other blocks, equals 56. However, the 1120 not 
necessarily distinct blocks which intersect /5 in three elements have been 
counted already. Hence 0 intersects no blocks in exactly three elements. The 
number of 2-subsets, each contained in 76 other blocks, equals 28, hence /3 
intersects 28 X 76 — 280 X 6 = 448 blocks in exactly two elements. Since 
8 X 252 = 4 X 280 + 2 X 448 the block 0 intersects no blocks in one 
element, hence it intersects the remaining thirty blocks in no element. 

THEOREM 5.2. There exist strongly regular graphs of order b, eigenvalues pu 

multiplicities M*, i — 0, 1, 2, as follows: 

n o . b p 0 pi p2 Mo Mi M2 

2 253 - 2 8 5 - 5 1 1 230 22 
3 77 - 4 4 5 - 1 1 1 55 21 
6 176 - 3 5 5 - 3 5 1 154 21 
7 56 - 3 5 5 - 7 1 35 20 
9 120 - 3 5 5 - 2 3 1 99 20 

Proof. We observe that the tactical configurations no. 2, 3, 6, 7, 9, derived 
from (1 ; 24, 8, 5), are all quasi-symmetric block designs. By application of 
Theorem 3.1, they yield strongly regular graphs whose eigenvalues are easily 
calculated, since their parameters, x + y and x — y, are known. 

The graphs of Theorem 5.2 and the forthcoming graph of Theorem 5.3, 
indicated by their number of vertices, are partially ordered by containment 
of one graph by another as a subgraph according to the following diagram: 

The existence and the uniqueness of the strongly regular graph on 56 vertices 
was first proved by Gewirtz [4; 5], who discovered its complement as a graph 
of diameter 2, girth 4, valency 10, order 56. Gewirtz also proved the uniqueness 
of the graph of order 100 which, together with its subgraph of order 77, was 
first constructed by Higman and Sims [11]. The other graphs and the relation 
between the graphs of orders 77 and 56 seem to be new, although in the 
setting of coding theory they are implicitly anticipated in [6]. In the following 
theorem a construction is given for the graph of order 100 from the graph of 
order 77 in a way analogous to the construction of the complement of the 
Clebsch graph from the Petersen graph, cf. [4; 21, Example 1.3]. 

THEOREM 5.3. There exists a strongly regular graph with 

b = 100, po = - 5 5 , PI = 5, P 2 = ~ 1 5 , m = 77, M2 = 22. 

Proof. Let N be the 22 X 77 incidence matrix of the quasi-symmetric block 
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0 f ~f 
j I - J 2N- J 

L-j 2NT- - J A _ 

design no. 3. From Theorems 3.1 and 3.2 we have 

NNT = 16/ + 57, NTN = 51 + J - A, N(A + 117) = - 9 7 , 

where A is the adjacency matrix of the graph no. 3 of Theorem 5.2. The matrix 

B = 

of order 100 then satisfies 

(B - 51) (B + 151) = 247, BJ = - 5 5 7 , 

which proves the theorem. 

6. The extended Golay code (24, 12). Let V(n, q) denote the vector space 
of dimension n over the Galois field GF(g). A linear code (n, k) is a set of 
vectors in V(n, q) which form a linear subspace V(k, q). The distance of any 
two vectors is the number of coordinates in which they differ. The weight of 
any vector is its distance to the zero vector, that is, the number of its non-zero 
coordinates. In a linear code the distribution of the distances is governed by 
the distribution of the weights. The existence of the perfect code (23, 12) 
over GF(2), due to Golay [8], is known. From this, the extended Golay code 
(24, 12) is obtained by adding an extra parity check bit. 

Let Q be the square circulant matrix of order 11 whose first row 
(0, 1,0, 1, 1, 1, 0, 0, 0, 1,0) has ones at the quadratic residues modulo 11. 
Slightly varying a result due to Karlin [13], we can represent the linear code 
(24, 12) over GF(2) by the following twelve generating row vectors 

To OT l A 
Li / j QJ 

or, since QQT = I (mod 2) equivalently, by the twelve generating row vectors 

To oT l i T l 
U QT i ; J -i Ql i 

The number N of vectors of weight w in this code is as follows, cf. [17, p. 70], 

w: 0 8 12 16 24 

N: 1 759 2576 759 1. 

Any vector of the code having x ones at the first twelve coordinates and y ones 
at the last twelve coordinates is said to be of type x + y. 

LEMMA 6.1. In the subspace of F(24, 2) of dimension 11 generated by the 
vectors [j I j Q], there are 792 pairwise complementary vectors of type 6 + 6. 

Proof. The subspace contains the all-one vector. Hence any vector in the 
subspace also has its complement in it. There are ( 6 ) = 924 vectors of type 
6 + ;y. By use of [j QT j I], we conclude that there are equally many of 
type x + 6. There are ( 2 ) = 66 vectors of type 2 + 6 and equally many of 
type 10 + 6. Since only vectors of weights 8,12,16, 24 exist, the lemma is proved. 
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LEMMA 6.2. The (24, 12) code contains 1584 pairwise complementary vectors 
of type 6 + 6. 

Proof. Apart from any of the vectors mentioned in Lemma 6.1, its sum with 
(0 0T 1 jT) is of type 6 + 6. This proves the lemma. 

The linear (24, 12) code may be interpreted as a set of 212 vectors with 
coordinates 1 and 0 in the vector space i?24 of dimension 24 over the reals. 
Taking the origin of i?24 in the centre of the cube with sides of length 2 parallel 
to the coordinate axes, we write the vectors with the coordinates — 1 and 1 in 
place of 1 and 0, respectively. The vectors then are opposite in pairs and 
span 211 lines through the origin. These lines mutually have the angles \-K 
and arccos \. Indeed, from the weight distribution in the (24, 12) code given 
above we have the following inner products of j with the other code vectors: 

.0'. *) = 8> 0\ y) = 0, (j, z) = - 8 , (j, ~j) = - 2 4 , 
for x of weight 8, y of weight 12, z of weight 16. Therefore, the line spanned 
by —j and j has the angle arccos f with 759 other lines and the angle %TT with 
1288 other lines. The linearity of the code yields the same property for any 
line of the code. 

THEOREM 6.3. There exists a strongly regular graph on 2048 vertices with 

po = - 5 2 9 , pi = 111, P2 = ~17 , MI = 276, /x2 = 1771. 

Proof. The set of 2048 lines obtained from the code (24, 12) is made into a 
graph as follows. The vertices of the graph are the lines. Any two vertices 
are adjacent (non-adjacent) whenever the angle of the corresponding lines 
equals §7r (arccos \). The resulting graph is regular of valency 1288, hence 
Po = 759 — 1288 = —529. Let / and m be any adjacent pair of lines. It is 
no restriction of generality to suppose that I is spanned by j and that m is 
spanned by (1 j T —1 —7*T). Indeed, the code is linear and the order of 
the coordinates is irrelevant. By Lemma 6.2, the number pu1 of lines adjacent 
to both / and m equals 792. In addition, the number p22

2 of lines non-adjacent 
to any non-adjacent pair is a constant. Indeed, the order of the coordinates 
can be taken such that any given vector of weight 8 is a generator of the code. 
This implies that the graph is strongly regular. By use of (cf. [19, p. 190]) 

Apn1 = 2(v - 3 - po) - (pi - 1)(1 - p2), 

(po — Pi)(po — P2) = v(p — 1 + pip2), 

the additional eigenvalues pi and P2 are calculated, which proves the theorem. 

Remark. Certain subgraphs of the graph explained in Theorem 6.3 again are 
strongly regular. We have reasons to believe that the subgraph on the 1288 
vertices which are adjacent to any one vertex is strongly regular with px = 71, 
p2 == —17. In addition, the graphs which in Theorem 5.2 are derived from the 
Steiner system are related to the graph of Theorem 6.3. Indeed, as was 
observed by Paige [16] (cf. [1]), the 759 vectors of weight 8 in the Golay code 
(24, 12) constitute the blocks of the Steiner system (1; 24, 8, 5). 
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