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Abstract. We consider continuous SL(2, R) valued cocycles over general dynamical
systems and discuss a variety of uniformity notions. In particular, we provide a description
of uniform one-parameter families of continuous SL(2, R) cocycles as Gδ-sets. These
results are then applied to Schrödinger operators with dynamically defined potentials.
In the case where the base dynamics is given by a subshift satisfying the Boshernitzan
condition, we show that for a generic continuous sampling function, the associated
Schrödinger cocycles are uniform for all energies and, in the aperiodic case, the spectrum
is a Cantor set of zero Lebesgue measure.
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1. Introduction
Consider a compact metric space � and a homeomorphism T : � → �. Such a pair
(�, T ) will be called a dynamical system in this paper. (It would be more accurate to
call it a topological dynamical system, but we hope this slight abuse of language does not
lead to any confusion. Given that we are interested in topological notions and quantities,
this is the natural setting in which for us to work.) We will freely use standard concepts
from the theory of dynamical systems such as minimality and unique ergodicity; see, for
example, the textbook [48].

The set of real 2 × 2 matrices with determinant equal to one is denoted by SL(2, R).
Any

A ∈ C(�, SL(2, R)) := {A : � → SL(2, R) : A continuous}
gives rise to the skew-product

(T , A) : �× R2 → �× R2, (ω, v) �→ (T ω, A(ω)v),
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2 D. Damanik and D. Lenz

which is usually also referred to as a continuous SL(2, R))-cocycle. Since the base
dynamics T will be fixed throughout, we will sometimes leave it implicit and just refer
to A ∈ C(�, SL(2, R)) to specify the cocycle it generates. Specifically, by slight abuse
of terminology, when we refer to ‘the cocycle A’ below, we really have in mind the map
(T , A).

For n ∈ Z, define An : � → SL(2, R) by (T , A)n = (T n, An). A cocycle A is called
uniformly hyperbolic if there exists L > 0 with

lim inf
n→∞

1
n

log ‖An(ω)‖ ≥ L

uniformly in ω ∈ �.
One says that A is uniform if there is a number L(A) such that

lim
n→∞

1
n

log ‖An(·)‖ = L(A)

uniformly. Clearly, any uniform cocycle A with L(A) > 0 is uniformly hyperbolic.
A cocycle may or may not be uniform. However, by the subadditive ergodic theorem,

once an ergodic measure μ is chosen, there is always a (μ-dependent) Lμ(A) such that

lim
n→∞

1
n

log ‖An(ω)‖ = Lμ(A) for μ-almost every ω ∈ �.

The numbers L(A) and Lμ(A) are called Lyapunov exponents.
For our actual considerations, a further uniformity property of cocycles will be relevant.

A cocycle A ∈ C(�, SL(2, R)) is said to have uniform behavior if it is either uniformly
hyperbolic, or

lim sup
n→∞

1
n

log ‖An(ω)‖ = 0

uniformly in ω ∈ �. Note that this latter condition can also be written as
limn→∞(1/n) log ‖An(ω)‖ = 0 uniformly in ω ∈ � (as ‖B‖ ≥ 1 for any B ∈ SL(2, R),
and hence log ‖An(ω)‖ ≥ 0).

Remark 1.1. It is known that the property

lim
n→∞

1
n

log ‖An(ω)‖ = 0 uniformly in ω ∈ �
is equivalent to the simultaneous vanishing of the Lyapunov exponent for all ergodic Borel
probability measures μ,

sup{Lμ(A) : μ ergodic} = 0;

compare [1, Proposition 1], [42, Theorem 1], and [44, Theorem 1.7]. See also [28] for the
special case where there is only one ergodic measure and [8] for related work.

Let us briefly discuss the relationship between these uniformity notions, see Appendix A
for more details. For uniquely ergodic dynamical systems, a continuous cocycle is
uniformly hyperbolic if and only if it is uniform withL(A) > 0. From this, we immediately
conclude that for uniquely ergodic dynamical systems, a continuous cocycle is uniform if
and only if it has uniform behavior. For general dynamical systems, it is obviously true
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Uniformity aspects of cocycles and Schrödinger operators 3

that a uniform cocycle has uniform behavior. However, the converse does not hold. Indeed,
for any non-uniquely ergodic system, there exist uniformly hyperbolic continuous cocycles
that are not uniform (see, e.g., Remark A.2).

We will be interested in one-parameter families of cocycles. This is partly motivated by
the application of our general results, presented below, to the case of Schrödinger cocycles,
which naturally depend on the energy parameter. Let I ⊆ R be an interval in R and equip
C(I ×�, SL(2, R)) with the topology of local uniform convergence. Define W(I , �) to
be the set

{A ∈ C(I ×�, SL(2, R)) : A(E, ·) has uniform behavior for each E ∈ I }.
Then, we have the following result.

THEOREM 1.2. Let (�, T ) be a dynamical system and let I ⊆ R be an interval. Then,
W(I , �) is a Gδ-set.

Remark 1.3.
(a) Of course, the theorem can be applied with I being just one point. This gives that the

set of A ∈ C(�, SL(2, R)) with uniform behavior is a Gδ-set. This particular case
was known; see the first paragraph of the proof of [1, Theorem 1]. In fact, under
suitable assumptions on (�, T ), Avila and Bochi even show that it is a dense Gδ-set
[1, Theorem 1].

(b) An inspection of the proof shows that I could be chosen as any topological space
that is a countable union of compact subspaces. Indeed, the proof proceeds in two
steps. In the first step, it is shown that uniformity extends from any E to a suitable
neighborhood of it. In the second step, we use that I can be written as a countable
union of compact intervals. Both of these steps generalize to the more general setting.

As pointed out above, for uniquely ergodic dynamical systems, a cocycle is uniform if
and only if it has uniform behavior, but in general, the set of uniform cocycles may be
strictly smaller than the set of cocycles with uniform behavior. This naturally raises the
question whether the set of uniform cocycles is a Gδ-set in general. Thus, let us consider

U(I , �) := {A ∈ C(I ×�, SL(2, R)) : A(E, ·) is uniform for each E ∈ I }.
The following theorem answers the question affirmatively.

THEOREM 1.4. Let (�, T ) be a dynamical system and let I ⊂ R be an interval. Then,
U(I , �) is a Gδ-set.

Remark 1.5.
(a) With the obvious modifications, parts (a) and (b) of Remark 1.3 apply here as well.
(b) For equicontinuous systems, it is known that the set of uniform cocycles is a dense

Gδ-set (see [28]).

The results above are relevant in the study of spectral properties of discrete
one-dimensional Schrödinger operators with dynamically defined potentials. Operators
of this kind arise as follows. The set of continuous f : � −→ R is denoted by C(�, R).
Any choice of an f ∈ C(�, R), commonly referred to as a sampling function, gives rise
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4 D. Damanik and D. Lenz

to potentials Vω(n) = f (T nω), ω ∈ �, n ∈ Z, and the associated Schrödinger operators

[Hωψ](n) = ψ(n+ 1)+ ψ(n− 1)+ Vω(n)ψ(n)

in �2(Z). The spectral theory of such operators has been reviewed in [15] and it will be
discussed in full detail in the forthcoming monographs [16, 17]. We refer to these works
for details on the concepts and results discussed next.

If μ is a T-ergodic Borel probability measure, then the spectral properties of Hω are
μ-almost surely independent of ω ∈ �. For example, there are sets �, �ac, �sc, �pp such
that σ(Hω) = � and σ•(Hω) = �•, • ∈ {ac, sc, pp} for μ-almost every ω ∈ �.

Several recent works have investigated the question of which spectral properties are
generic. One usually fixes the base dynamics (�, T ) and studies the set of f ∈ C(�, R)
for which a certain spectral phenomenon occurs. For example, Avila and Damanik showed
in [4] that {f ∈ C(�, R) : �ac = ∅} is a denseGδ-set for any ergodic μ, provided that T is
not periodic. (By the standard theory of periodic Schrödinger operators, the result clearly
fails if the assumption is dropped.) A companion result was obtained by Boshernitzan and
Damanik in [10]: {f ∈ C(�, R) : �pp = ∅} is residual (that is, it contains a denseGδ-set),
provided that (�, T , μ) has the metric repetition property. See [10, 11] for the definition
of this property and many examples, including shifts and skew-shifts on tori.

The proofs of the results in [4, 10] just mentioned rely on approximation of f by
functions taking finitely many values. Realizing that the absence of point spectrum, as
well as the absence of absolutely continuous spectrum, are phenomena that are quite
well understood in the setting of sampling functions taking finitely many values, the
results in [4, 10] then appear to be somewhat natural. (It should be noted, however, that
they were both initially quite surprising as one had previously expected the presence of
an absolutely continuous spectrum for small quasi-periodic potentials, and the presence
of a point spectrum for operators generated by the standard skew-shift T (ω1, ω2) =
(ω1 + α, ω1 + ω2).)

Let us discuss some key concepts underlying the general theory and the results just
mentioned. A cocycle

Ag : ω �→
(
g(ω) −1

1 0

)
with g ∈ C(�, R) is called a Schrödinger cocycle.

Given an operator family {Hω}ω∈� as introduced above, the associated one-parameter
family of Schrödinger cocycles {AE−f }E∈R is intimately related to the study of the
solutions of the associated difference equation

u(n+ 1)+ u(n− 1)+ Vω(n)u(n) = Eu(n),

and hence provides important information. The parameter E is referred to as the energy in
this context.

We write
UH = {E ∈ R : AE−f is uniformly hyperbolic},
Z = {E ∈ R : Lμ(AE−f ) = 0},

NUH = R \ (UH ∪ Z).
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Note that Z and NUH depend on the choice of ergodic measure μ, while UH does not.
This provides a (μ-dependent) partition of the energy axis: R = UH � NUH � Z .

Let us now relate the Lyapunov exponents with the spectra mentioned earlier. The
Johnson–Lenz theorem [32, 37] (see also the textbook treatments in [2, 16, 26, 33] for
applications) states that

Z ⊆ � ⊆ Z ∪ NUH. (1.1)

Moreover,

supp μ = � ⇒ � = Z ∪ NUH. (1.2)

Recall that the essential closure of a measurable set M ⊆ R is given by M
ess =

{E ∈ R : Leb(M ∩ (E− ε, E + ε) > 0 for every ε > 0}. The Ishii–Pastur–Kotani theorem
[31, 34, 40] (see also [14, 36] for an exposition) states that

�ac = Zess
. (1.3)

Finally, if the potentials {Vω} take finitely many values and are μ-almost surely aperiodic,
then by Kotani [35], we have

Leb(Z) = 0, (1.4)

which by equation (1.3) implies that�ac = ∅. The very general result in equation (1.4) was
alluded to in the discussion above as one of the general spectral phenomena in the setting
of potentials taking finitely many values, and it forms the basis of the generic C0 result
from [4] also mentioned above.

Note that under the assumption supp μ = � (which holds, e.g., when T is minimal),
equation (1.2) shows that � = Z if and only if NUH = ∅. Now, for uniquely ergodic
dynamical systems, uniform behavior is equivalent to uniformity, see appendix, and
Lμ(A) = 0 if and only if A is uniform with L(A) = 0. Thus, for minimal uniquely ergodic
dynamical systems, we have

� = Z ⇐⇒ NUH = ∅ ⇐⇒ AE−f is uniform for all E ∈ R. (1.5)

For general systems, it follows from the definitions and Remark 1.1 that

{E ∈ R : AE−f has uniform behavior} = UH ∪
⋂

μ ergodic

Zμ.

In other words, uniform behavior fails for AE−f precisely when

E ∈
⋃

μ ergodic

NUHμ.

This gives

NUHμ = ∅ for each ergodic μ ⇐⇒ AE−f has uniform behavior for all E ∈ R

⇐⇒ �μ = ZU for each ergodic μ.
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6 D. Damanik and D. Lenz

Here,
ZU := {E ∈ R : AE−f is uniform with L(AE−f ) = 0} =

⋂
μ ergodic

Zμ.

In any case, if the potentials {Vω} take finitely many values, then equation (1.4) implies
zero-measure spectrum whenever one can show that NUH = ∅. Thus, pursuing a proof of
the absence of non-uniformity is a natural approach to a zero-measure spectrum whenever
a property such as equation (1.4) is known. This approach is implemented in [21, 37], as
well as in the present paper.

Let us mention that the zero-measure spectrum property has been investigated exten-
sively for sampling functions taking finitely many values. From the classical results for the
Fibonacci Hamiltonian [45] or the more general class of operators with Sturmian potentials
[7] through numerous results for operators with potentials generated by substitutions to the
general result [21] by Damanik and Lenz, which covers many examples [22], this is a
spectral statement that is quite ubiquitous in this setting.

It has therefore been a very natural open problem to find conditions on the base
dynamics T : � → � such that {f ∈ C(�, R) : Leb(�) = 0} is residual. The paper [5] by
Avila, Damanik, and Zhang discusses this question in the particular case T : R/Z → R/Z,
ω �→ ω + α, α �∈ Q, but fails to answer it. Instead, [5] proves the weaker result that the
singularity of the integrated density of states is generic in this setting.

Not only is the problem open in the case of irrational circle rotations, it is open in
any setting and hence one of our goals is to exhibit the first class of base dynamics
T : � → � for which {f ∈ C(�, R) : Leb(�) = 0} is a dense Gδ-set. At the same time,
we will provide the first class of aperiodic base dynamics for which {f ∈ C(�, R) :
NUH = ∅} or, equivalently, {f ∈ C(�, R) : � = Z} is a denseGδ-set. This is of interest
as the equality� = Z is known in the periodic case and, hence, aperiodic dynamics giving
this feature deserves particular attention.

We will work with aperiodic subshifts that satisfy the Boshernitzan condition. Recall
that a subshift is a closed shift-invariant subset � of AZ, where A is a finite set carrying
the discrete topology and AZ is endowed with the product topology. The map T : � → �

is given by the shift (T ω)n = ωn+1, and it is clearly a homeomorphism. We say that a
subshift� satisfies the Boshernitzan condition (B) if it is minimal and there is a T-invariant
Borel probability measure μ such that

lim sup
n→∞

n · min{μ([w]) : w ∈ �n} > 0.

Here,�n = {ω1 · · · ωn : ω ∈ �} is the set of words of length n that occur in elements of�
and [w] is the cylinder set [w] = {ω ∈ � : ω1 · · · ωn = w}. This condition was introduced
by Boshernitzan in [9] as a sufficient condition for unique ergodicity.

THEOREM 1.6. Suppose � is a subshift that satisfies the Boshernitzan condition (B).
Then, the following hold.
(a) The set

{f ∈ C(�, R) : NUH = ∅} = {f ∈ C(�, R) : � = Z}
is a dense Gδ-set.
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(b) If � is furthermore aperiodic, then the set

{f ∈ C(�, R) : Leb(�) = 0}
is a dense Gδ-set.

The theorem has the following immediate consequence.

COROLLARY 1.7. Suppose � is an aperiodic subshift that satisfies the Boshernitzan
condition (B). Then, the zero-measure spectrum given by the vanishing set of the Lyapunov
exponent is generic, that is,

{f ∈ C(�, R) : Leb(�) = 0 and � = Z}
is a dense Gδ-set.

Remark 1.8.
(a) It is well known that the spectrum is always closed and, in the dynamically defined

setting we consider, it never contains any isolated points. Thus, Corollary 1.7 shows
that the Cantor spectrum of zero Lebesgue measure is generic when the base dynam-
ics is given by an aperiodic subshift that satisfies the Boshernitzan condition (B).

(b) As pointed out above, if the subshift� satisfies the Boshernitzan condition (B), then
it is uniquely ergodic by [9, Theorem 1.2]. For this reason, there is no ambiguity in
writing � without specifying μ. However, the minimality of � and the continuity
of the sampling functions f in question also imply the independence of the spectrum
of ω, so that in the setting of Theorem 1.6, σ(Hω) = � for every ω ∈ �, not merely
for μ-almost every ω ∈ �.

(c) Many important classes of subshifts satisfy the Boshernitzan condition (B); see [22]
for a detailed discussion.

(d) It remains very interesting to clarify whether the zero-measure spectrum is (C0-)
generic for quasi-periodic potentials, or at least for one-frequency quasi-periodic
potentials.

Finally, we note that our general result, Theorem 1.4, can also be seen in the context
of a question of Walters on the existence of non-uniform cocycles. Specifically, Walters
asks in [47] whether every uniquely ergodic dynamical system (with non-atomic invariant
measure) allows for a non-uniform cocycle. Walters discusses some examples, where the
answer is affirmative. The question in general seems to still be open with further partial
results contained in [28]. In this situation, the following consequence of (the proof of) our
spectral results may be of interest.

COROLLARY 1.9. Suppose � is an aperiodic subshift that satisfies the Boshernitzan
condition (B). Then, the set of uniform cocycles is a dense Gδ-set.

Remark 1.10. Based on these considerations, we feel that aperiodic Boshernitzan subshifts
are the best candidates for a potential negative answer to Walters’ question, but at this time,
we are unable to extend the uniformity result to all continuous cocycles over a Boshernitzan
subshift.
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8 D. Damanik and D. Lenz

The paper is organized as follows. We prove Theorem 1.2 in §2 and Theorem 1.4 in
§3. We then provide a result on semicontinuity of the measure of the spectrum for general
dynamical systems in §4 and a result on denseness of cocycles for subshifts in §5. In §6,
we then derive Theorem 1.6 from results in the earlier sections. Section 6 also contains the
proof of Corollary 1.9. Finally, there are two appendices, one discussing the relationships
between the uniformity notions we consider, and one discussing a consequence of the
avalanche principle that we need in the earlier sections.

2. Cocycles with uniform behavior as a Gδ-set
In this section, we prove Theorem 1.2. That is, we show that the set of cocycles with
uniform behavior is a Gδ-set and, in fact, we prove this result for families of cocycles
depending on one real parameter.

We start with a simple observation.

LEMMA 2.1. Let (�, T ) be a dynamical system and A ∈ C(�, SL(2, R)). If there exist
L > 0 and k ∈ N with M := max{(1/k) log ‖Ak(ω)‖ : ω ∈ �} < L, then

1
n

log ‖An(ω)‖ < L

for all ω ∈ � and

n ≥ 2k max{log ‖A(ω)‖ : ω ∈ �}
L−M

.

Proof. Set N := 2k max{log ‖A(ω)‖ : ω ∈ �}/(L−M). By definition of N, we have

1
N

log ‖Ar(ω)‖ ≤ L−M

2
(2.1)

for all ω ∈ �, r = 0, . . . , k. Clearly, this estimate continues to hold if N is replaced by
any n ≥ N .

Consider now an n ∈ N with n ≥ N . Of course, n can be uniquely written in the form
n = sk + r with s ∈ N ∪ {0} and 0 ≤ r < k. By construction of the cocycle, we obtain

An(ω) = Ar(T
skω)Ak(T

(s−1)kω) · · · Ak(T kω)Ak(ω).
Taking logarithms and using submultiplicativity of the matrix norm and additivity of the
logarithm, we find

1
n

log ‖An(ω)‖ ≤ 1
n

log ‖Ar(T skω)‖ + 1
n

s−1∑
j=0

log ‖Ak(T jkω)‖

≤ L−M

2
+ 1
n

s−1∑
j=0

k
log ‖Ak(T jkω)‖

k

≤ L−M

2
+ 1
n

s−1∑
j=0

kM

= L−M

2
+M

< L.
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Uniformity aspects of cocycles and Schrödinger operators 9

Here, we used equation (2.1) in the second step, the definition of M in the third step, sk ≤ n

in the fourth step, and M < L in the last step. This finishes the proof.

Proof of Theorem 1.2. We first consider a compact interval I.
For ε > 0, we define Wε to be the set of A ∈ C(I ×�, SL(2, R)) such that for

each E ∈ I , the cocycle A(E, ·) is uniformly hyperbolic or there exists a k ∈ N with
(1/n) log ‖An(ω)‖ < ε for all ω ∈ � and n ≥ k. Clearly,

W =
⋂
m∈N

W1/m.

Thus, it suffices to show that Wε is open for any ε > 0. To do so, we consider E ∈ I
arbitrary. There are two cases.

Case 1: A(E, ·) is uniformly hyperbolic. As is well known, the set of uniformly
hyperbolic cocycles is open (see, e.g., [50]). As A is continuous in the first variable, there
exists a δ > 0 such that any B ∈ C(I ×�, SL(2, R)) close enough to A will have the
property that B(E′, ·) is uniformly hyperbolic for all E′ ∈ (E − δ, E + δ) ∩ I .

Case 2: A(E, ·) satisfies (1/k) log ‖Ak(E, ω)‖ < ε for all ω ∈ � for some k ∈ N. By
continuity of A and compactness of �, there exists a δ > 0 with

sup
ω∈�,E′∈(E−δ,E+δ)∩I

1
k

log ‖Ak(E′, ω)‖ < ε.

This same inequality will then also hold for anyB ∈ C(I ×�, SL(2, R)) sufficiently close
to A. By Lemma 2.1, there exists then an N ∈ N with

1
n

log ‖Bn(E′, ω)‖ < ε

for all ω ∈ �, n ≥ N , and E′ ∈ (E − δ, E + δ) ∩ I for all such B.
So, in both of these two cases, there is an open neighborhood (E − δ, E + δ) ∩ I of

E such that any B sufficiently close to A shares the respective property of A(E, ·) for all
E′ in this neighborhood. As I is compact, the openness of Wε then follows by standard
reasoning.

We now consider an arbitrary interval I in R. We can write I as a countable union of
compact intervals In, that is, I = ⋃

n∈N In. By what we have shown already, W(In, �) is
aGδ-set for each n ∈ N. For any n ∈ N, there is the canonical embedding jn : In ×� −→
I ×�, (E, ω) �→ (E, ω), and the associated restriction map

Rn : C(I ×�, SL(2, R)) −→ C(In ×�, SL(2, R)), A �→ A ◦ jn.

Then, Rn is continuous. Hence, R−1
n (W(In, �)) is a Gδ-set for each n ∈ N (as the inverse

image of a Gδ-set under a continuous map) and so is then

W(I , �) =
⋂
n∈N

R−1
n (W(In, �)).

This finishes the proof.
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10 D. Damanik and D. Lenz

3. Uniform cocycles are a Gδ-set
In this section, we prove Theorem 1.4. A pertinent idea is that for a uniquely ergodic
dynamical system (�, T ), a continuous B : � → SL(2, R) is uniform if and only if

lim
n→∞

1
n

sup
ω,�∈�

|log ‖Bn(ω)‖ − log ‖Bn(�)‖| = 0. (3.1)

Indeed, it is clear that any uniform B will satisfy equation (3.1). Conversely, any B
satisfying equation (3.1) must be uniform as there exists (by the subadditive ergodic
theorem) an ω0 ∈ � with limn→∞(1/n) log ‖Bn(ω0)‖ = L(B). Some additional work
will be needed to deal with the dependence on the parameter.

We start with two auxiliary statements. For the convenience of the reader, we include
sketches of the proofs.

LEMMA 3.1. Let (�, T ) be a dynamical system and A ∈ C(�, SL(2, R) be arbitrary.
(a) If there exist L > 0 and N ∈ N with (1/k) log ‖Ak(ω)‖ < L for all ω ∈ � and

k = N , . . . , 2N , then

1
n

log ‖An(ω)‖ < L

for all ω ∈ � and n ≥ N .
(b) Let c := maxω∈�{log ‖A(ω)‖, log ‖A−1(ω)‖}. Then, for any n ∈ N,∣∣∣∣ log ‖An+1(ω)‖

n+ 1
− log ‖An(ω)‖

n

∣∣∣∣ ≤ 1
n+ 1

log ‖An(ω)‖
n

+ c

n+ 1
.

Proof.
(a) Consider n ≥ N . Then, we can uniquely write n in the form n = kN + r with k ∈

N ∪ {0} and N ≤ r ≤ 2N − 1. Now, the proof follows similar lines as the proof of
Lemma 2.1.

(b) For invertible matrices C, B, we clearly have ‖BC‖ ≤ ‖B‖‖C‖ and ‖C‖ =
‖B−1BC‖ ≤ ‖B−1‖‖BC‖. Applying this with C = An(ω) and B = A(T nω), we
infer part (b) after a short computation.

Remark 3.2. It follows from part (a) of the lemma that for any L > 0 and N ∈ N, the set
of A ∈ C(�, SL(2, R)) with supω∈�,n≥N(1/n) log ‖An(ω)‖ < L is open.

We now show that the pointwise uniformity of the A(E, ·) appearing in the definition
of U(I , �) can be replaced by a uniform uniformity when I is compact. This is the content
of the next proposition.

PROPOSITION 3.3. Let (�, T ) be a dynamical system. Let I ⊂ R be a compact interval.
Consider A ∈ U(I , �). Then, for any ε > 0, there exists N ∈ N with

1
n
| log ‖An(E, ω)‖ − log ‖An(E, �)‖| < ε

for all ω, � ∈ �, E ∈ I , and n ≥ N .

Proof. As I is compact, it suffices to find for each E ∈ I , a δ > 0 such that the desired
estimate holds in (E − δ, E + δ) ∩ I . We consider two cases.
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Uniformity aspects of cocycles and Schrödinger operators 11

Case 1: A(E, ·) is uniform with L(A(E, ·)) > 0. The proof follows from Lemma B.1
in the following way. Assume without loss of generality ε/46L < 1/12. By uniformity
of A(E, ·), there exists N ∈ N such that the assumptions of Lemma B.1 will be satisfied
with L = L(A(E, ·)), � = N , and ε/47L < 1/12 instead of ε. Now, as discussed in part
(c) of Remark B.2, the assumptions are open assumptions in the following sense. If they
are satisfied for the cocycle A(E, ·) with ε/47L, then for any 1/12 > ε′ > ε/47L, any
B sufficiently close to A(E, ·) will satisfy the assumptions as well with ε′ instead of
ε/47L, and the same L and �. So, the conclusion of the lemma will hold for such B. With
ε′ = ε/46L, the conclusion of the lemma gives

L

(
1 − 44

46L
ε

)
≤ 1
n

log ‖Bn(ω)‖ ≤ L

(
1 + ε

46L

)
for all n ≥ � and ω ∈ � for any such B. This in turn implies

1
n
|log ‖Bn(ω)‖ − log ‖Bn(�)‖| < ε

for all ω ∈ � and n ≥ � = N for any such B. By continuity of A (in the first variable),
there exists δ > 0 such that each A(E′, ·) with E′ ∈ (E − δ, E + δ) ∩ I is such a B. This
gives the desired statement.

Case 2: A(E, ·) is uniform with L(A(E, ·)) = 0. In this case, there exists N ∈ N with

1
k

log ‖Ak(E, ω)‖ < ε/3

for all ω ∈ � and k ≥ N . By continuity of A, there exists a δ > 0 with

1
k

log ‖Ak(E′, ω)‖ < ε/2

for all E′ ∈ (E − δ, E + δ) ∩ I , ω ∈ � and k = N , . . . , 2N . By part (a) of Lemma 3.1,
we find

1
n

log ‖An(E′, ω)‖ < ε/2

for all ω ∈ �, E′ ∈ (E − δ, E + δ) ∩ I , and n ≥ N , and this easily gives the desired
statement in this case.

Whenever (�, T ) is a dynamical system and I is a compact interval, we define for n ∈ N,

Ṽarn : C(I ×�, SL(2, R)) −→ [0, ∞)

by

Ṽarn(A) := sup
E∈I

sup
�,ω∈�

{|log ‖An(E, ω)‖ − log ‖An(E, �)‖|}.

By the preceding proposition, any A ∈ U(I , �) satisfies

lim
n→∞

1
n

Ṽarn(A) = 0.

In fact, also an even stronger converse holds. This is the content of the next proposition.

https://doi.org/10.1017/etds.2024.66 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2024.66


12 D. Damanik and D. Lenz

PROPOSITION 3.4. Let (�, T ) be a dynamical system. Let I ⊂ R be a compact interval.
Then, any A ∈ C(I ×�, SL(2, R)) with

lim inf
n→∞

1
n

Ṽarn(A) = 0

belongs to U(I , �).

Proof. Choose E ∈ I arbitrary and write A instead of A(E, ·). By the assumption on A,
we can find nk ∈ N with

δk := 1
nk

Ṽarnk (A) → 0, k → ∞. (3.2)

We consider two cases.
Case 1: there exists ω0 ∈ � with lim infk→∞(1/nk) log ‖Ank (ω0)‖ = 0. Without loss

of generality, we can assume limk→∞(1/nk) log ‖Ank (ω)‖ = 0. By equation (3.2), this
gives limk→∞(1/nk) log ‖Ank (ω)‖ = 0 uniformly in ω ∈ �. By Lemma 2.1, we infer
limn→∞(1/n) log ‖An(ω)‖ = 0 uniformly.

Case 2: there exists ω0 ∈ � with L := lim infk→∞(1/nk) log ‖Ank (ω0)‖ > 0. Assume
without loss of generality that

Lk := 1
nk

log ‖Ank (ω0)‖ → L, k → ∞.

By equation (3.2) and the definition of Ṽarn, we then have for all ω ∈ �,

Lk − δk ≤ 1
nk

log ‖Ank‖(ω) < Lk + δk (3.3)

with δk → 0, k → ∞, and Lk → L, k → ∞. By part (b) of Lemma 3.1, we can assume
without loss of generality that each nk is even (as we could otherwise replace nk by nk + 1).

By nk → ∞, Lemma 2.1, and the upper bound in equation (3.3), there exist δ′k > 0 with
δ′k → 0, k → ∞, and

1
n

log ‖An(ω)‖ ≤ L+ δ′k

for all n ≥ nk/2. Also, by nk → ∞, we clearly have 3
4L(nk/2) ≥ λ0 (with λ0 from

Lemma B.1) for all sufficiently large k.
From these considerations, we see that for arbitrary ε < 1/12, the assumptions of

Lemma B.1 are satisfied with � = nk/2, provided that k is sufficiently large. The statement
of the lemma then gives the desired uniformity of A.

Proof of Theorem 1.4. It suffices to consider a compact interval I (compare the proof of
Theorem 1.2). Set

Un,ε :=
{
A ∈ C(I ×�, SL(2, R)) :

1
n

Ṽarn(A) < ε

}
.

By continuity of A, the set Un,ε is open. Hence,

ŨN ,ε :=
⋃
n≥N

Un,ε
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is open as well. Thus,

W :=
⋂
N ,k∈N

ŨN ,1/k

is a Gδ-set.
It remains to show W = U(I , �). To show this, we prove two inclusions.
U(I , �) ⊂ W : this is a direct consequence of Proposition 3.3.
W ⊂ U(I , �): it is not hard to see that

W =
{
A ∈ C(I ×�, SL(2, R)) : lim inf

n→∞
1
n

Ṽarn(A) = 0
}

.

Now, the inclusion follows from Proposition 3.4.

4. Upper semicontinuity of the measure of the spectrum
In this section, we consider a dynamical system (�, T ) and the associated Schrödinger
operators, and note that the map

M� : C(�, R) → [0, ∞), f �→ Leb(�f ) (4.1)

is upper semi-continuous. The proof uses variations of ideas developed in [18] in the
context of continuum limit-periodic Schrödinger operators and was suggested to us by
Jake Fillman. This will then imply that {f ∈ C(�, R) : Leb(�f ) = 0} is a Gδ-set.

PROPOSITION 4.1. The map M� defined in equation (4.1) is upper semi-continuous, that
is, for every δ > 0, we have that M�(δ) := {f ∈ C(�, R) : Leb(�f ) < δ} is open.

Proof. Let δ > 0 be given and let us consider f ∈ M�(δ). We have to show that there
exists ε > 0 such that every g ∈ C(�, R) with ‖f − g‖∞ < ε belongs to M�(δ) as well.

By assumption, we have ε′ := δ − Leb(�f ) > 0. By basic properties of the Lebesgue
measure, we can choose finitely many open intervals I1, . . . , Im with

�f ⊂
m⋃
j=1

Ij and
m∑
j=1

|Ij | < Leb(�f )+ ε′

2
.

Let us set ε := ε′/4m > 0. By the well-known properties of the spectrum of a
Schrödinger operator with respect to �∞ perturbations of the potential, if ‖f − g‖∞ < ε,
then �g ⊂ Bε(�f ) (where the latter notation denotes the ε neighborhood).

Putting these two ingredients together, we obtain

�g ⊂ Bε

( m⋃
j=1

Ij

)
,

and hence,

Leb(�g) ≤ Leb
(
Bε

( m⋃
j=1

Ij

))
≤ 2mε +

m∑
j=1

|Ij | < 2mε + Leb(�f )+ ε′

2
= δ,

as desired. This completes the proof.
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Remark 4.2. The statement of the proposition can also be understood as follows. Let K
be the set of all compact subsets of R equipped with the Hausdorff metric dH and let
S(�2(Z)) be the set of bounded self-adjoint operators equipped with the operator norm
‖ · ‖. Then, the map S(�2(Z)) � A �→ σ(A) ∈ K, mapping a bounded self-adjoint operator
to its spectrum, is continuous and, actually, satisfies dH (σ(A), σ(B)) ≤ ‖A− B‖, by the
well-known perturbation theory of self-adjoint operators. Moreover, the map K � K �→
Leb(K) ∈ [0, ∞) is upper semi-continuous, as is certainly well known (and can also be
seen from the proof above). Altogether, we find that the map S(�2(Z)) −→ [0, ∞), A �→
Leb(σ (A)) is upper semi-continuous. The statement of the proposition then follows by
composition as the map C(�, R) −→ S(�2(Z)), f �→ H

f
ω , is continuous with ‖Hf

ω −
H
g
ω‖ ≤ ‖f − g‖∞ for each ω ∈ �.

COROLLARY 4.3. Let (�, T ) be a dynamical system. Then, the set {f ∈ C(�, R) :
Leb(�f ) = 0} is a Gδ-set.

Proof. Simply write

{f ∈ C(�, R) : Leb(�f ) = 0} =
⋂
n∈N

M�

(
1
n

)

and use the fact that each M�(1/n) is open by Proposition 4.1.

5. Denseness of locally constant cocycles
In this section, we consider subshifts. Clearly, the set of locally constant cocycles is dense
in the set of continuous cocycles over a subshift. Here, we show that a similar result holds
for one-parameter families of cocycles.

LEMMA 5.1. Let (�, T ) be a subshift and let I be an interval in R. Then, the set

{A ∈ C(I ×�, SL(2, R)) : A(E, ·) is locally constant for each E ∈ I }

is dense in C(I ×�, SL(2, R)).

Proof. We consider SL(2, R) as a subspace of the space M(2, R) of real 2 × 2-matrices
with metric induced by the standard norm on these matrices.

Let A : I ×� −→ SL(2, R) continuous, ε > 0, and J ⊂ I compact be given.
We will construct a continuous A′ : J ×� −→ SL(2, R) such that A′(E, ·) is locally

constant for each E ∈ J , and

‖A(E, ω)− A′(E, ω)‖ ≤ ε

holds for all E ∈ J and ω ∈ �. This A′ can then be extended to a continuous function
A∗ : I ×� −→ SL(2, R), which is locally constant in the second argument, by extending
it constantly outside of the compact J. Specifically, with J = [Emin, Emax], we define
A∗(E, ω) := A′(Emax, ω) for E ≥ Emax and A∗(E, ω) = A′(Emin, ω) for E ≤ Emin.
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As A is continuous, the setA(J ×�) ⊂ M(2, R) is compact. Hence, as the determinant
is a continuous function on M(2, R) and

det C = 1 and
1√

det C
C − C = 0

for any C ∈ A(J ×�) (since A(J ×�) ⊆ SL(2, R)), there exists a δ > 0 such that

det C > 0 and
∥∥∥∥ 1√

det C
C − C

∥∥∥∥ ≤ ε

2

for any C ∈ M(2, R) with distance from A(J ×�) smaller than δ. Without loss of
generality, we assume δ ≤ ε/2.

By continuity of A again, we can find finitely many open sets I1, . . . , IN in I with

J ⊂
⋃
k

Ik

such that

‖A(E, ω)− A(E′, ω)‖ < δ

2

for all ω ∈ � whenever E′, E belong to the same Ik . As locally constant cocycles are
dense in C(�, SL(2, R)), we can then choose for each k = 1, . . . , N , a locally constant
Bk ∈ C(�, SL(2, R) with

‖Bk(ω)− A(E, ω)‖ < δ

for any ω ∈ � and E ∈ Ik .
Let ϕk , k = 1, . . . , N , be a partition of unity subordinate to I1, . . . , IN . This means

that each ϕk is a continuous non-negative function on I with compact support contained in
Ik and ∑

k

ϕk(E) = 1

for each E ∈ J . Define

Ak : J ×� −→ M(2, R), (E, ω) �→ ϕk(E)Bk(ω).

Then, each Ak is a continuous function and Ak(E, ·) is locally constant for each E ∈ J .
Hence,

Ã :=
∑
k

Ak

is a continuous function on J ×� and Ã(E, ·) is locally constant for each E ∈ J . A short
computation invoking A(E, ω) = ∑

k ϕk(E)A(E, ω) for all E ∈ J and ω ∈ � shows

‖Ã(E, ω)− A(E, ω)‖ ≤
∑
k

ϕk(E)‖Bk(ω)− A(E, ω)‖ <
∑
k

ϕk(E)δ = δ
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for all E ∈ J . Hence, by our choice of δ, we infer

det Ã(E, ω) > 0 and
∥∥∥∥ 1√

det Ã(E, ω)
Ã(E, ω)− Ã(E, ω)

∥∥∥∥ ≤ ε

2

for all E ∈ J and ω ∈ �. Define A′ on J ×� by

A′(E, ω) := 1√
det Ã(E, ω)

Ã(E, ω).

Then, A′ is continuous with values in SL(2, R) and A′(E, ·) is locally constant (as the
determinant of the locally constant Ã(E, ·) is locally constant). By construction, we find

‖A′(E, ω)− A(E, ω)‖ ≤ ‖A′(E, ω)− Ã(E, ω)‖ + ‖Ã(E, ω)− A(E, ω)‖
≤ ε

2
+ δ

≤ ε,

and the proof is finished.

Remark 5.2. The proof carries over directly to any compact topological space I.

From the preceding lemma and our main results, we immediately obtain the following
corollary.

COROLLARY 5.3. Let (�, T ) be a subshift over a finite alphabet.
(a) If all locally constant cocycles on � have uniform behavior, then for any interval I,

the set U(I , �) is a dense Gδ-set.
(b) If all locally constant cocycles on � are uniform, then for any interval I, the set

U(I , �) is a dense Gδ-set.

Proof.
(a) This follows from the preceding lemma and Theorem 1.2.
(b) This follows from the preceding lemma and Theorem 1.4.

6. Generic absence of non-uniform hyperbolicity for Schrödinger operators over
Boshernitzan subshifts
In this section, we show that for a generic continuous sampling function over an aperiodic
subshift satisfying the Boshernitzan condition, the associated Schrödinger cocycles are
uniform for all energies and the associated spectrum is a Cantor set of Lebesgue measure
zero equal to the vanishing set of the Lyapunov exponent. That is, we prove Theorem 1.6
(and its corollary). We then also point out a generalization.

Our proof of Theorem 1.6 relies on what we have shown in earlier sections together with
the following crucial feature of subshift satisfying the Boshernitzan condition (B).

LEMMA 6.1. [21, 22] Let (�, T ) be a subshift satisfying the Boshernitzan condition (B).
Then, any locally constant cocycle is uniform. In particular, if (�, T ) is additionally
assumed to be aperiodic, then � = Z is a Cantor set of Lebesgue measure zero for each
Schrödinger operator associated to a locally constant f ∈ C(�, R).
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Proof of Theorem 1.6. (a) Clearly, the map

S : C(�) −→ C(R ×�, SL(2, R)), f �→ ((E, ω) �→ AE−f (ω))

is continuous. Hence, the inverse image under S of any Gδ-set in C(R ×�, SL(2, R))
is a Gδ-set in C(�). Thus, the set G consisting of f ∈ C(�) with A(E, ·) := AE−f (·) ∈
U(R, �) is a Gδ-set by Theorem 1.4.

Moreover, for subshifts satisfying the Boshernitzan condition (B), it is known that any
locally constant f ∈ C(�) yields a one-parameter family A(E, ·) := AE−f (·) ∈ U(R, �);
see Lemma 6.1. As locally constant f ∈ C(�) are dense in C(�), we infer that the set G
is dense as well. Altogether, this shows that G is a dense Gδ-set.

Finally, as mentioned already, any subshift satisfying (B) is uniquely ergodic and
minimal. Hence, by the discussion in the introduction and, in particular, by equation
(1.5), the Schrödinger operator associated to f ∈ C(�, R) satisfies � = Z if and only
if NUH = ∅ holds, and this is the case if and only if the associated Schrödinger cycle is
uniform for all E ∈ R, that is, if and only if f ∈ G. As G is a Gδ-set, this proves part (a).

(b) By Corollary 4.3, the set {f ∈ C(�, R) : Leb(�f ) = 0} is a Gδ-set. Moreover, by
aperiodicity and the Boshernitzan condition (B), this set is dense by Lemma 6.1. This
shows part (b).

As a by-product of the considerations in the preceding proof, we now deal with our
result concerning the question of Walters.

Proof of Corollary 1.9. Any locally constant cocycle on a subshift satisfying the Bosher-
nitzan condition (B) is uniform, see Lemma 6.1. Now, the corollary is immediate from part
(b) of Corollary 5.3 (applied with an interval I consisting of one point).

Invoking [4], we can give also a variant of Theorem 1.6. This variant deals with a
more general setting. We formulate it mainly as a reference point for potential future
generalizations.

THEOREM 6.2. Let (�, T ) be an aperiodic dynamical system. Assume that the set

{f ∈ C(�, R) : AE−f has uniform behavior for all E ∈ R}
is dense in C(�, R). Then, for any ergodic measure μ on �, the set of f ∈ C(�, R) for
which we have that NUH = ∅ (and hence � = Z) and � is a Cantor set of Lebesgue
measure zero is residual (that is, it contains a dense Gδ-set).

Proof. Clearly, the map

S : C(�) −→ C(R ×�, SL(2, R)), f �→ ((E, ω) �→ AE−f (ω))

is continuous.
Hence, the inverse image under S of any Gδ-set in C(R ×�, SL(2, R)) is a Gδ-set in

C(�). Thus, the set G consisting of f ∈ C(�) with A(E, ·) := AE−f (·) ∈ W(R, �) is a
Gδ-set by Theorem 1.2. Moreover, by assumption, G is dense. Hence, G is a dense Gδ-set
and for each f ∈ G, we have NUH = ∅. By equation (1.1), for all f ∈ G, we then have
� = Z . Thus, the set of f such that NUH = ∅ and � = Z hold is residual.
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18 D. Damanik and D. Lenz

Moreover, by [4] and our aperiodicity assumption, the set of f with Leb(Z) = 0 is a
dense Gδ-set and hence residual.

Since the intersection of two residual sets is residual and Leb(�) = 0 implies that � is
a Cantor set by general principles (cf. Remark 1.8(a)), we are done.

Remark 6.3.
(a) Our proof of Theorem 1.6 works for all uniquely ergodic minimal subshifts for

which locally constant cocycles are uniform, as for these subshifts, the conclusions
of Lemma 6.1 hold by [21]. Recent results show the uniformity of locally constant
cocycles for all simple Toeplitz subshifts [30, 43] (see [39] for related earlier work
as well). All simple Toeplitz subshifts are minimal and uniquely ergodic. Hence,
the statement of Theorem 1.6 will hold for these subshifts as well. Note that the
class of simple Toeplitz subshifts contains examples not satisfying the Boshernitzan
condition. A characterization of those simple Toeplitz subshifts satisfying the
Boshernitzan condition is contained in [39].

(b) Theorem 6.2 does not require the dynamical system to be a subshift, nor does
it require unique ergodicity or minimality. It can be applied to general ergodic
dynamical systems. However, so far, the necessary denseness condition is only known
for classes of uniquely ergodic minimal subshifts.

(c) Theorem 6.2 gives a slightly weaker conclusion than Theorem 1.6 in that the involved
sets are shown to be residual rather than dense Gδ-sets. The reason is that in the first
part of the proof, we obtain the implication f ∈ G �⇒ NUH = ∅, but do not know
the converse (as we are dealing with general dynamical systems). If, additionally, the
condition of minimality and unique ergodicity is imposed on the dynamical system,
the converse holds and we can conclude that the sets in question areGδ-sets (compare
the proof of Theorem 1.6 as well).

(d) The corresponding results hold for non-singular Jacobi operators. The alert reader
may point out that in this more general setting, the standard transfer matrices are
not given by SL(2, R) cocycles, but rather by GL(2, R) cocycles. However, it is not
difficult (see, e.g., [6, 20]) to identify an affiliated family of SL(2, R) cocycles whose
study via the results above yields the desired conclusions.

(e) A similar remark applies in the setting of CMV matrices with dynamically defined
Verblunsky coefficients. The necessary tools to adapt the present work to that setting
are discussed in [23]. The CMV analog of [4], as well as the adaptation of Corollary
1.7, have been worked out in [27].

Remark 6.4. We note that our proof of Theorem 1.2 allows for a (semi-) explicit
construction of a potential with infinitely many values (and arbitrarily close to any given
potential) whose cocycles are uniform for all energies whenever the underlying dynamical
system is a subshift (�, T ) satisfying the Boshernitzan condition (B). The point of the
construction is that any finite sum of locally constant functions f : � → R is locally
constant again. Here are the details.

Let g0 be a locally constant function. Let I be a compact interval containing an open
neighborhood of the range of g0. Let gn, n ∈ N, be an arbitrary sequence of locally constant
functions on � with ‖gn‖ = 1 for each n. Let εn → 0.
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We now use the Wε from the proof of Theorem 1.2. Consider g0. Clearly, g0 belongs
to Wε1 (as g0 is locally constant). As Wε1 is open, there exists a δ1 > 0 such that any
perturbation of g0 with sup norm not exceeding δ1 belongs to Wε1 as well. Without loss
of generality, δ1 < 1. Consider g0 + δ1/2g1. Clearly, this belongs to Wε2 (as it is locally
constant). As Wε2 is open, there exists a δ2 > 0 such that any perturbation of g0 + δ1/2g1

with sup norm not exceeding δ2 belongs to Wε2 . Without loss of generality, δ2 < δ1/2.
Inductively, we can then construct for each N ∈ N, a δN with δN+1 < δN/2 such that any
perturbation of g0 + 1

2 (
∑N
j=1 δjgj ) with sup norm not exceeding δN+1 belongs toWεN+1 .

Consider

g := g0 + lim
N→∞

(
g1 + 1

2

N∑
j=1

δjgj+1

)
.

By construction, g belongs to Wεj for any j ∈ N. Now, the intersection of the Wεj is
W(I , �) (by definition of Wε). This easily gives the desired statement. As our choice of
g0 is arbitrary and

∑
δj can be made arbitrarily small by making δ1 as small as necessary,

the function g can be made arbitrarily close to any given continuous function on �.

Acknowledgements. Our original version of part (b) of Theorem 1.6 was based on
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A. Appendix. Notions of uniform hyperbolicity
In this section, we discuss various notions of uniform hyperbolicity in the context of
continuous SL(2, R) cocycles and the relationships between them. Related discussions
can be found in [19, 46, 49, 50].

Let (�, T ) be a dynamical system. Denote the projective space over R2 consisting of
lines through the origin by RP1. This is a topological space in a natural way. Then, any
B ∈ SL(2, R) can be considered as a map on RP1 as it maps lines through the origin to
lines through the origin. This map on RP1 will be denoted by B as well.

Let us consider the following three conditions for a continuous cocycle A : � −→
SL(2, R).
(UH1) There exists L > 0 with lim infn→∞(1/n) log ‖An(ω)‖ ≥ L uniformly in ω ∈

�.
(UH2) There exists continuous maps u, s : � −→ RP1 as well as λ > 1 and C > 0

with:
(α) A(ω)u(ω) = u(T ω) and A(ω)s(ω) = s(T ω) for all ω ∈ �;
(β) ‖An(ω)U‖, ‖A−nS(ω)‖ ≤ Cλ−n for all n ∈ N, ω ∈ � whenever U ∈

u(ω) and S ∈ s(ω) are normalized.
(UH3) There exists L > 0 with limn→∞(1/n) log ‖An(ω)‖ = L uniformly in ω ∈ �.
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PROPOSITION A.1.
(a) The conditions (UH1) and (UH2) are equivalent.
(b) Condition (UH3) implies (UH1).
(c) If (�, T ) is uniquely ergodic, then condition (UH1) is equivalent to condition (UH3).

Proof.
(a) This is well known; see, for example, [19, Theorem 1.2], [46, Proposition 2.5], [49,

Proposition 2], and [50, Corollary 1].
(b) This is obvious.
(c) By parts (a) and (b), it suffices to show (UH2)/(UH1) �⇒ (UH3). This follows

by standard methods as discussed, for example, in [28, 38]. More specifically, [38,
Theorem 3] shows that condition (UH3) follows from condition (UH1) under an
additional minimality assumption. This minimality assumption is only used in the
proof to ensure (β) of condition (UH2). Hence, the proof carries over to our case.

Remark A.2. It is not hard to see that the implication (UH1) �⇒ (UH3) fails whenever
the system is not uniquely ergodic. Indeed, consider a non-uniquely ergodic dynamical
system (�, T ). Then, there exists a continuous f : � −→ R such that

1
n

n−1∑
k=0

f (T kω)

does not converge uniformly in ω ∈ �. Without loss of generality, we can assume f ≥ 1
(otherwise replace f by f + 1 + ‖f ‖∞). Set h := exp(f ) and let A : � −→ SL(2, R) be
given by

A(ω) =
(
h(ω) 0

0 1/h(ω)

)
.

As f ≥ 1, the cocycle A clearly satisfies condition (UH1) with L = 1. However, we have

1
n

log ‖An(ω)‖ = 1
n

n−1∑
k=0

f (T kω),

which does not converge uniformly, and therefore condition (UH3) fails.

COROLLARY A.3. Let (�, T ) be uniquely ergodic. Then, an A ∈ C(�, SL(2, R)) is
uniform if and only if it has uniform behavior.

Remark A.4. Together with the results from [2, 3], this corollary shows that for a
rather general uniquely ergodic base dynamical system (�, T ), the Schrödinger cocycle
(T , AE−f ) is uniform for any fixed energy E ∈ R and a generic choice of the sampling
function f.
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B. Appendix. A consequence of the avalanche principle
The avalanche principle deals with products of SL(2, R) matrices AN · · · A1. Roughly
stated, it asserts that the norm of this product is large once the norm of each Aj and of
the products Aj+1Aj of consecutive matrices are large. It was introduced by Goldstein
and Schlag in [29], and then extended by Bourgain and Jitomirskaya in [13]. Subsequently,
various further variations and extensions have been found; see, for example, [12, 24, 25,
41]. For us, the following consequence, essentially taken from [21] and based on [13], will
be relevant.

LEMMA B.1. There exist constants κ > 0 and λ0 > 0 such that the following holds. Let
(�, T ) be a dynamical system and A : � −→ SL(2, R). Let 0 < ε < 1/12 be arbitrary.
Assume that there exist � ∈ N and L > 0 with:
(a1) (1/n) log ‖An(ω)‖ ≤ L(1 + ε) for all ω ∈ � and n ≥ l;
(a2) L(1 − ε) ≤ (1/2l) log ‖A2l (ω)‖ for all ω ∈ �;
(a3) 3

4L� ≥ λ0;
(a4) (1/�)(2κ/exp(λ0)) < εL.

Then,

L(1 − 44ε) ≤ 1
n

log ‖An(ω)‖ ≤ L(1 + ε)

for all ω ∈ � and n ≥ �.

Proof. The assumptions (a1), (a2), (a3), and (a4) of the lemma are just the conditions (I),
(II), (III), and (IV) appearing in the proof of [21, Theorem 1]. The lower bound given in the
conclusion of the lemma then follows by following this proof verbatim. The upper bound
is obvious from the assumptions.

Remark B.2.
(a) Let us emphasize that the number L appearing in the lemma is not required to be the

Lyapunov exponent of A. It suffices that it is sufficiently close to the actual Lyapunov
exponent. This is relevant for an application to families of cocycles.

(b) It may be instructive to discuss the assumptions appearing in the lemma. Assump-
tions (a3) and (a4) are independent of A. For given L > 0 and ε > 0, they will be
satisfied for all large enough �. For uniquely ergodic systems, assumption (a1) is auto-
matically satisfied for any given ε ifL = L(A) and � is large enough. So, in this sense
for uniquely ergodic dynamical systems, the crucial condition is assumption (a2).

(c) Note that the assumptions of the lemma are open conditions in the following sense.
Consider an A satisfying the assumptions for � ∈ N, L > 0, and ε > 0. Now, let
ε′ > ε (with ε′ < 1/12) be given. Then, any B sufficiently close to A will satisfy the
assumptions of the lemma with the same � and L, and ε replaced by ε′. Indeed, the
last two assumptions (a3) and (a4) do not depend on A and are then clearly satisfied
for B. The second assumption (a2) is satisfied for B sufficiently close to A due to
ε′ > ε. Similarly, the first assumption (a1) is satisfied for B sufficiently close to A by
part (a) of Lemma 3.1.
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