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Instability in a Rotating Environment

8.1 Frontal Zones

Imagine a fluid whose buoyancy varies in the horizontal. You might expect that
such a buoyancy distribution could not be sustained; the dense fluid would flow
under the buoyant fluid, and the buoyant over the dense, until the buoyancy gradi-
ent became purely vertical.1 On a rotating planet, though, a horizontal buoyancy
gradient can be maintained by the Coriolis force. One example is the atmospheric
polar front, where cold polar air flows alongside warmer mid-latitude air. Because
the fluid is moving, the Coriolis force pulls it to one side (right in the north-
ern hemisphere; left in the southern), and that force can balance the effect of the
buoyancy gradient (Figure 8.1). Most major ocean currents have the same property;

Figure 8.1 A baroclinic frontal zone in thermal wind balance. The buoyancy
contrast creates a pressure gradient that is balanced by the Coriolis force. The
isopycnal slope is sb. Coordinates indicate the along-front (x) and across-front
(y) directions and the vertical, z. The figure assumes that we’re in the northern
hemisphere and the Coriolis acceleration is therefore to the right.

1 As in, for example, Thorpe’s tilted tank experiment (Figure 4.2).
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196 Instability in a Rotating Environment

for example, the Gulf Stream carries warm equatorial water into the cold North
Atlantic.

The resulting equilibrium state is generally unstable: the Coriolis effect can
maintain the density distribution in the mean, but any small disturbance will upset
the balance locally. Mid-latitude weather systems result from instabilities of the
polar front, while the Gulf Stream continually spins off mesoscale eddies (Figure
1.1). Those instabilities are the focus of this chapter.

Figure 8.1 describes a frontal zone. The domain of interest covers only a small
part of the front, so that the buoyancy variation can be approximated as linear. With
the same justification, we use Cartesian coordinates. The geographical orientation
of the x and y directions is arbitrary, but for definiteness we’ll imagine that the
view is to the west, with south at the left. With apologies to our friends “down
under,” we assume we’re in the northern hemisphere. The force balance is easiest
to envision if we imagine a zonal flow changing direction from westward near the
ground to eastward aloft. The resulting Coriolis force changes from northward to
southward, balancing the buoyancy gradient.

8.2 Geostrophic Equilibrium and the Thermal Wind Balance

Our goal in this chapter is to explore equilibria and perturbations in a frontal zone.
For this purpose, we’ll neglect viscosity and diffusion, but retain buoyancy and
re-introduce the Coriolis acceleration:

�∇ · �u = 0 (8.1)
D�u
Dt

= −�∇π + bê(z) + �u × f ê(z) (8.2)

Db

Dt
= 0. (8.3)

To describe a baroclinic frontal zone like that shown in Figure 8.1, we seek an
equilibrium state in which buoyancy is a function of y as well as z, and the velocity
is purely zonal:

b = B(y, z) ; �u = Uê(x).

No assumption is made about the spatial variation of U , but (8.1) requires
∂U/∂x = 0, hence U = U (y, z). The buoyancy equation (8.3) is satisfied auto-
matically because there is no x-dependence for the zonal current to advect. For the
same reason, the left-hand side of the momentum equation (8.2) is zero. The three
components of (8.2) are then

∂�

∂x
= 0 (8.4)
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8.3 The Perturbation Equations 197

∂�

∂y
= − f U (8.5)

∂�

∂z
= B. (8.6)

In order, these equations tell us that:

● The pressure, like U , can depend only on y and z.
● The meridional pressure gradient is balanced by the Coriolis force, i.e., the

pressure is in geostrophic2 balance with the current.
● The vertical pressure gradient is in hydrostatic balance with the buoyancy.

Eliminating � between (8.5) and (8.6), we obtain the thermal wind balance:3

f
∂U

∂z
= −∂B

∂y
. (8.7)

The horizontal variation of buoyancy is referred to as baroclinicity. In the literature,
you will sometimes see ∂B/∂y abbreviated as M2 in analogy with ∂B/∂z = N 2.
A useful measure of the strength of the baroclinicity is the isopycnal slope:

sb = −∂B/∂y

∂B/∂z
,

the slope of a surface on which buoyancy is uniform (Figure 8.1). Using (8.7), we
can also write

sb = f ∂U/∂z

∂B/∂z
.

8.3 The Perturbation Equations

We now linearize (8.1–8.3) by applying perturbations �u′, π ′, and b′. As always, the
perturbation is incompressible:

�∇ · �u′ = 0. (8.8)

The linearized momentum equation is(
∂

∂t
+ U

∂

∂x

)
�u′ + ∂U

∂y
v′ê(x)︸ ︷︷ ︸
(1)

+∂U

∂z
w′ê(x) = −�∇π ′ + b′ê(z) + �u′ × f ê(z)︸ ︷︷ ︸

(2)

, (8.9)

2 Literally “Earth turning.”
3 The name reflects the meteorological origins of the concept, but it is equally relevant in any rotating,

stratified fluid.
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198 Instability in a Rotating Environment

while the buoyancy equation becomes(
∂

∂t
+ U

∂

∂x

)
b′ + ∂B

∂y
v′︸ ︷︷ ︸

(3)

+∂B

∂z
w′ = 0. (8.10)

The braced terms in (8.9) and (8.10) have not appeared in previous models (e.g.,
4.8, 4.10) where there was no ambient rotation and the mean state varied only
with z. The final term in (8.9), marked (2), is the Coriolis acceleration, and can
be expanded as f v′ê(x) − f u′ê(y). The remaining new terms, (1) and (3), repre-
sent advection of the horizontal gradients of U and B by the cross-front velocity
perturbation v′.

8.4 Energetics

As in section 3.10.1, we derive the equation for the perturbation kinetic energy by
dotting �u′ onto the perturbation velocity equation which, in this case, is (8.9). The
result is(
∂

∂t
+ U

∂

∂x

) |�u′|2
2

+ ∂U

∂y
u′v′ + ∂U

∂z
u′w′ = −�u′ · �∇π ′ + b′w′ + �u′ · (�u′ × f ê(z)).

(8.11)
The final term vanishes, because the cross product is perpendicular to �u′. In phys-
ical terms, this reflects the fact that the Coriolis acceleration acts at right angles
to the flow (e.g., to the right in the northern hemisphere). It therefore affects the
direction of the flow but not the magnitude. The kinetic energy, being a measure of
the magnitude, is unaffected by the Coriolis acceleration.

Rotation therefore has this property in common with stable stratification (section
4.9) and viscosity (section 5.9): it cannot, by itself, transfer energy to the perturba-
tion. It can, however, alter the form of the perturbation such that it gains energy via
the shear or buoyancy production mechanisms.

We next use (8.1) to convert �u′ · �∇π ′ to �∇ · (�u′π ′) and bring the second and third
terms to the right-hand side:(

∂

∂t
+ U

∂

∂x

) |�u′|2
2

= −�∇ · (�u′π ′)− ∂U

∂y
u′v′ − ∂U

∂z
u′w′ + b′w′. (8.12)

Applying a horizontal average and rearranging a little, we arrive at

∂

∂t

|�u′|2
2

= − ∂

∂z
w′π ′ − ∂U

∂z
u′w′ + b′w′−∂U

∂y
u′v′. (8.13)

Most of this should look very familiar. The first and second terms on the right were
described in section 3.10.1: the first is the convergence of the vertical energy flux,
which vanishes when integrated in the vertical; the second is the shear production.
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8.5 The Vertical Vorticity Equation 199

The third term is the buoyancy flux that we discussed (in normal mode form)
in section 4.9: it is positive (i.e., adding to the kinetic energy of the perturbation)
if buoyant fluid is rising and dense fluid is falling. In the reverse case, the per-
turbation must do work against gravity to grow, so this term exerts a damping
influence.

The fourth term is new, but it will be easily recognized as a second shear pro-
duction term. Through it, the instability can exchange energy with the mean flow
by advecting the horizontal shear ∂U/∂y.

8.5 The Vertical Vorticity Equation

The planet’s rotation can be thought of as a vorticity whose vertical compo-
nent is f . Measured in an inertial reference frame, the total vorticity would be
that of the flow as we measure it plus the extra contribution from the planet,
a circumstance that affects the flow profoundly. In this chapter we will pay
special attention to factors affecting vorticity. Since we have made the f-plane
approximation ( f = const.), the vertical component of vorticity is the most
important.

The perturbation vertical vorticity is given by

q ′ = ∂v′

∂x
− ∂u′

∂y
. (8.14)

We derive an evolution equation for q ′ from the x and y components of the
perturbation momentum equation (8.9), namely:(

∂

∂t
+ U

∂

∂x

)
u′ + ∂U

∂y
v′ + ∂U

∂z
w′ = −∂π ′

∂x
+ f v′ (8.15)

and (
∂

∂t
+ U

∂

∂x

)
v′ = −∂π ′

∂y
− f u′. (8.16)

Subtracting the y derivative of (8.15) from the x derivative of (8.16), we obtain(
∂

∂t
+ U

∂

∂x

)
q ′ = v′ ∂

∂y

(
∂U

∂y

)
+ w′ ∂

∂z

(
∂U

∂y

)
︸ ︷︷ ︸

advection

+ ∂U

∂z

∂w′

∂y︸ ︷︷ ︸
tilting

+ fa
∂w′

∂z︸ ︷︷ ︸
stretching

. (8.17)

The first two terms on the right-hand side describe advection of the background
vorticity −∂U/∂y by the velocity perturbations v′ and w′. The third represents
vortex tilting as shown in Figure 8.2a. The vertical shear of the mean flow carries
y-vorticity, which is tilted toward the vertical by differences in vertical motion. The
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x 

y 

z 

U(z) (a) (b) 

fa

Figure 8.2 Mechanisms governing the perturbation vorticity as in (8.17). Red
arrows depict the vertical velocity w′. (a) Tilting of the mean vertical shear by
cross-front variations in w′. (b) Stretching of the absolute vertical vorticity by the
vertical strain ŵ′

z .

final term of (8.17), illustrated in Figure 8.2b, represents vortex stretching.4 The
total vertical vorticity (that of the planet plus the mean flow, as would be measured
by an observer in outer space) is written as

fa = f − ∂U

∂y
. (8.18)

In the final term of (8.17), that total vorticity is stretched or compressed by the
vertical strain ∂w′/∂z.

8.6 Analytical Solution #1: Inertial and Symmetric Instabilities

Here we consider two cases in which nothing varies in the along-front (x) direction.
This eliminates advection of the perturbation by the along-front background flow,
i.e., U∂/∂x = 0, an extreme simplification that enables two interesting analytical
solutions, both of which are important in the Earth’s oceans and atmosphere.

First, we will neglect buoyancy in order to focus on the Coriolis effect. The result
is the inertial instability. In the second case we will restore buoyancy effects and
thereby examine symmetric instability.

8.6.1 Inertial Instability

For zonal shear flow u = Uê(x) in a homogeneous fluid in a rotating environment,
the equilibrium state is described by

∂�

∂x
= 0,

∂�

∂y
= − f U,

∂�

∂z
= 0, (8.19)

4 In case you are unfamiliar with vortex stretching, the strain ∂w/∂z, when positive, causes fluid parcels to
become taller and thinner. Because each parcel has vorticity fa directed vertically, that vorticity is amplified
to conserve angular momentum, like the classical example of a figure skater pulling their arms inward to spin
faster. If ∂w/∂z < 0, the opposite happens: the fluid parcel is compressed vertically and the vertical vorticity
is reduced.
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8.6 Analytical Solution #1: Inertial and Symmetric Instabilities 201

A meridional pressure gradient maintains geostrophic balance. The pressure does
not vary in x or z, and therefore (by differentiating the middle equation with respect
to x or z) neither does the velocity, i.e., U = U (y).

The perturbation equations are now

∂v′

∂y
+ ∂w′

∂z
= 0 (8.20)

∂u′

∂t
= −∂U

∂y
v′ + f v′ (8.21)

∂v′

∂t
= −∂π ′

∂y
− f u′ (8.22)

∂w′

∂t
= −∂π ′

∂z
. (8.23)

The only coefficient is ∂U/∂y, which varies only in the y direction; hence, we can
use a normal mode solution of the form

v′ = v̂(y)eσ t+ιmz.

Note that k = 0 in accordance with our assumption that the perturbations do not
vary in x . (Remember also that only the real part is relevant, and that corresponding
expressions are used for w′, u′, b′, and π ′.) The resulting normal mode equations
are

v̂y + ιmŵ = 0 (8.24)

σ û = ( f − Uy)v̂ (8.25)

σ v̂ = − f û − π̂y (8.26)

σŵ = −ιmπ̂ (8.27)

where the subscript y indicates the derivative. These can be reduced by combining
(8.24) and (8.27) to get

π̂ = − σ

m2
v̂y.

Substituting this into (8.26) along with (8.25) yields the single stability equation

σ 2(v̂yy − m2v̂) = m2 f ( f − Uy)v̂. (8.28)

Notice that this equation is isomorphic with the convection equation (2.29) after
the substitutions ŵ → v̂, z → y, k̃ → m, and Bz → f ( f − Uy). Making the same
substitutions in the convective growth rate bound (2.34), we see that the growth
rate is bounded from above by

σ <
√− min

y
{ f ( f − Uy) }, (8.29)
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202 Instability in a Rotating Environment

and instability is possible only if f ( f − Uy) < 0 at some latitude. In other words,
the relative vorticity must be anticyclonic, meaning in this case that −Uy has sign
opposite to f , and it must be greater in magnitude than f . In the northern hemi-
sphere, for example, U must increase (become more eastward) toward the pole.

By analogy with the convective and centrifugal instabilities (section 7.8.1), iner-
tial instability can grow wherever there is a negative local minimum in f ( f −Uy).
The fastest-growing mode has arbitrarily small vertical wavelength and growth rate
that approaches the upper bound (8.29).

Inertial Instability – Physical Mechanism

The mechanism of inertial instability is similar to the mechanisms of the convective
and centrifugal instabilities described in section 7.8, but there is a slight compli-
cation. In those previous cases, the destabilizing force acted in only one direction:
gravity downward, centrifugal force outward. In contrast, the Coriolis force acts in
two directions, zonal and meridional, adding a new element to the process.

In the inertially unstable flow geometry considered here, the background zonal
velocity at some latitude decreases with distance from the pole (Figure 8.3).

(i) Suppose a northward flow is initiated at some altitude (thick red arrow). It
advects with it a negative (westward) perturbation in zonal velocity, u′.

(ii) The westward perturbation sets up a northward Coriolis force (F ′, thin red
arrow), which accelerates the northward flow, completing a positive feedback
loop.

(iii) Now here is the complication: the northward flow (red arrow) also experi-
ences an eastward Coriolis acceleration (in the northern hemisphere). If that
acceleration dominates, then u′ is eastward and the feedback is negative. Only
if the advective effect dominates, i.e., if Uy > f , is the net zonal acceleration
westward and the flow unstable.

U(y)

F'
u'

v'

F '
u'

v'

f

Figure 8.3 Perturbations involved in inertial instability. The meridional motion v
advects the background zonal velocity to create a perturbation, F ′, in the Coriolis
force.
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The northward motion is accompanied by southward motion at some other alti-
tude. There, the reverse process happens (blue arrows). In the southern hemisphere,
the signs are reversed in the above argument, but the criterion f ( f − Uy) < 0
remains generally valid.

Exercise: Examine the perturbation equations and identify the terms that corre-
spond to the three-part processes described above.

8.6.2 Symmetric Instability

We now reintroduce the frontal stratification (Figure 8.4), so that U must vary in z
to maintain thermal wind balance:

f
∂

∂z
U (y, z) = − ∂

∂y
B(y, z). (8.30)

We retain the assumption that nothing varies in the along-front (x) direction.
For this discussion we make two additional simplifying assumptions:

● To facilitate a normal mode solution, all mean gradients (Uy , Uz , By , and Bz)
are assumed to be uniform, with f Uz = −By in accordance with (8.30).

● The perturbation is quasi-hydrostatic in the sense that b′ can be approximated
by ∂π ′/∂z.5 This assumption is easily relaxed; it merely simplifies the algebra.

With these assumptions, the coefficients of the perturbation equations (8.1, 8.9,
8.10) are all constants, and we can seek a solution using normal modes of the form

Figure 8.4 Definition sketch for symmetric instability. The thin green lines are
isopycnals, with slope sb = −By/Bz . Arrows show buoyant (red) and dense
(blue) currents whose slope is s = −�/m. The flow is invariant in the along-front
(x) direction.

5 Admonition: This does not mean that ŵ = 0, as a look at the vertical momentum equation,

(σ + ιkU )ŵ = −π̂z + b̂,

might suggest (cf. 8.23). Vertical motions, slow as they may be, play a critical role in the other equations by
advecting the vertical gradients Uz and Bz . The assumption we make here is only that the left-hand side of
(8.23) is a small difference between two large quantities b̂ and π̂z , so we can approximate the latter as equal.
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204 Instability in a Rotating Environment

u′ = ûeσ t eι(�y+mz),

where the complex amplitude û is a constant.
The normal mode equations are now

ι�v̂ + ιmŵ = 0 (8.31)

σ û + Uy v̂ + Uzŵ = f v̂ (8.32)

σ v̂ = −ι�π̂ − f û (8.33)

ιmπ̂ = b̂ (8.34)

σ b̂ + By v̂ + Bzŵ = 0. (8.35)

To express this system as an eigenvalue equation, we solve (8.31) for ŵ and (8.34)
for π̂ , then substitute the results into the remaining equations. This leaves us with
three homogeneous equations for the three unknowns û, v̂, and b̂. The characteristic
equation is easily found:

σ 2 = �2

m2
Bz − 2

�

m
f Uz − f ( f − Uy), (8.36)

where use has been made of the thermal wind relation By = − f Uz (8.7, 8.30).
A few abbreviations will be useful here. First, note that the wave vector compo-

nents � and m appear only as the ratio �/m, which is minus the ratio ŵ/v̂ according
to (8.31). As shown in Figure 8.4, this is the slope of the planes to which motion is
restricted:

s = − �

m
.

The slope of the isopycnals (thin lines in Figure 8.4) is

sb = − By

Bz
= f Uz

Bz
.

Finally, the quantity f − Uy is the absolute vorticity fa , as defined in section 8.5.
With these abbreviations the characteristic equation (8.36) becomes

σ 2 = −Bzs
2 + 2Bzsbs − f fa. (8.37)

Differentiation with respect to s shows that the growth rate is a maximum when

s = sb,

and that

σmax = | f |
(

U 2
z

Bz
− fa

f

)1/2

. (8.38)

Exercise: Derive s = sb and (8.38) from (8.37).
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Exercise: Repeat the whole derivation without using the quasi-
hydrostatic approximation. You will find that the latter is equivalent to
assuming that the slopes s and sb are small. This makes sense if you
examine (8.23) and recognize that small slope implies small vertical
velocity.

Remembering that Bz/U 2
z is the Richardson number Ri , the condition for σmax

to be real can be written as

Ri <
f

fa
. (8.39)

For example, if there is no across-front shear, then fa = f and the condition for
instability is Ri < 1.

A few points to consider:

● Unlike the similar condition Ri < 1/4 for shear instability, (8.39) is a necessary
and sufficient condition, i.e., instability is guaranteed if the condition is satisfied.

● Like convection in an inviscid, unbounded fluid, symmetric instability has no
preferred length scale (cf. section 2.2.2). The growth rate depends only on
the orientation of the wave vector, and symmetric instability is therefore a
broadband instability.

● The across-front shear Uy can have either a stabilizing or a destabilizing influ-
ence depending on its sign. If Uy has the same sign as f (i.e., Uy > f > 0 in
the northern hemisphere), the across-front shear reduces the absolute vorticity
fa . From (8.38) we see that this increases the growth rate, while (8.39) shows
that the criterion for Ri is relaxed. The reverse is true if Uy has sign opposite
to f .

● If we reduce the buoyancy gradients to zero, we recover inertial instability as
described in the previous section.

Symmetric Instability – Physical Mechanism

Recall that inertial instability grows when meridional flow advects the velocity gra-
dient Uy , setting up a Coriolis acceleration that reinforces the original meridional
flow. The only difference in the symmetric case is that the velocity gradient has a
second component, Uz , that can be advected if the perturbation velocity has a verti-
cal component. In fact, the instability can grow even if Uy = 0, solely by advecting
the vertical shear.

Note that buoyancy has no direct effect on the fastest-growing symmetric insta-
bility. When s > sb, as in Figure 8.4, the instability does work against gravity,
whereas the opposite is true if s < sb. For the fastest-growing symmetric insta-
bility, motion is along isopycnals (s = sb) and the mode therefore exchanges no
energy with the gravitational field. The energy source can only be the kinetic energy
of the along-front current.
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8.7 Analytical Solution #2: Baroclinic Instability

For perturbations that vary in the along-front direction (as distinct from inertial and
symmetric instability), analytical solutions are available provided that we make the
set of simplifying assumptions that define a quasigeostrophic flow. The essential
assumption is that the flow varies slowly relative to the Earth’s rotation, i.e., on a
time scale much greater than a day. The conditions for quasigeostrophy to hold are
described in much more detail elsewhere, e.g., Pedlosky (1987). Here we will give
only enough detail to make the approximation plausible. We will find, however,
that the characteristics of the predicted instability correspond well with those of
(1) mid-latitude storms and (2) oceanic mesoscale eddies.

8.7.1 The Quasigeostrophic Potential Vorticity Perturbation

The vertical component of the perturbation vorticity, introduced in section 8.5, is

q ′ = v′
x − u′

y (8.40)

(writing partial derivatives as subscripts). Its evolution equation (8.17) is written as

q ′
t = −Uq ′

x︸ ︷︷ ︸
advection

+ Uzw
′
y︸ ︷︷ ︸

tilting

+ faw
′
z︸︷︷︸

stretching

. (8.41)

We now make two critical assumptions. First, we assume that the vortex tilting
effect is negligible in comparison with the stretching effect, i.e., |Uzw

′
y| � | faw

′
z|

(Figure 8.2). Second, we neglect Uy relative to f so that fa is replaced by f .
This leaves us with the approximate vertical vorticity equation

q ′
t + Uq ′

x = fw′
z. (8.42)

This is a single equation for two unknowns (q ′ and w′), so we need more informa-
tion (i.e., assumptions) to make a complete theory. The strategy is to approximate
both q ′ and ŵ′

z in terms of the pressure perturbation π ′.

The Left-Hand Side of (8.42)

We begin with an assumption concerning the perturbation momentum equations
(8.15) and (8.16). In each of those equations, it is often true that the individual terms
on the right-hand side, i.e., the pressure gradient and the Coriolis acceleration, are
large in magnitude compared with the terms on the left-hand side. In other words,
the left-hand side is not zero, but it is a small difference of large numbers. It follows
that the pressure gradient and Coriolis terms are nearly equal. If those terms are, in
fact, equal, the perturbation is in geostrophic balance, and the horizontal velocity
components can be represented entirely in terms of the pressure perturbation:

https://doi.org/10.1017/9781108640084.009 Published online by Cambridge University Press

https://doi.org/10.1017/9781108640084.009


8.7 Analytical Solution #2: Baroclinic Instability 207

u(g) = − π̂ ′
y

f
; v(g) = π̂ ′

x

f
. (8.43)

In fact, the horizontal velocity perturbation can be thought of as the sum of a
geostrophic part and an ageostrophic part:

u′ = u(g) + u(a) ; v′ = v(g) + v(a).

We can do the same with the perturbation vorticity:

q ′ = q(g) + q(a)

where the geostrophic part

q(g) = v(g)x − u(g)y = 1

f
∇2

Hπ
′.

Our assumption is that the ageostrophic part is negligible, i.e., |q(a)| � |q(g)|, so
that

q ′ = 1

f
∇2

Hπ
′. (8.44)

The Right-Hand Side of (8.42)

Suppose we try to approximate w′
z in the same way, by assuming that it is

dominated by its geostrophic part. From continuity we have

w′
z = −(u′

x + v′
y) = −(u(g)x + u(a)x + v(g)y + v(a)y )

= −
(

−π ′
yx

f
+ u(a)x + π ′

xy

f
+ v(a)y

)
= −(u(a)x + v(a)y ).

So, we cannot assume that the ageostrophic part of w′
z is negligible because it’s

the only part (the geostrophic part being zero). Instead, we invoke the buoyancy
equation (8.10), which we write in the form

Bzw
′ = −Byv

′ − b′
t − Ub′

x . (8.45)

We assume once again that v′ is dominated by its geostrophic part v(g), and more-
over that the perturbation is in hydrostatic balance b′ = π ′

z . Making the appropriate
substitutions, (8.45) becomes

Bzw
′ = − By

f
π ′

x − π ′
zt − Uπ ′

zx (8.46)

and, after a differentiation,

Bzw
′
z = − By

f
π ′

xz − π ′
zzt − Uπ ′

zzx − Uzπ
′
zx .
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Remembering the thermal wind balance f Uz = −By , we see that the first and last
terms on the right-hand side cancel, and therefore

w′
z = − 1

Bz
(π ′

zzt − Uπ ′
zzx). (8.47)

With (8.47) and (8.44), we have accomplished our goal of approximating both q ′

and ŵ′
z in terms of π ′.

The Potential Vorticity Equation

Inserting (8.47) and (8.44) into (8.42), we have

ξ ′
t + Uξ ′

x = 0, (8.48)

where ξ ′ is the linearized, quasigeostrophic potential vorticity

ξ ′ = ∇2
Hπ

′ + f 2

Bz
π ′

zz. (8.49)

Equation (8.48) states that, to an observer moving with the mean along-front
current U , the potential vorticity of the perturbation remains constant. If the per-
turbation is in fact growing exponentially, then its potential vorticity can have only
one value and that value is zero.

We next reconfigure (8.48, 8.49) so that it can be solved in a finite vertical
domain with impermeable upper and lower boundaries. We assume that π ′ has
the normal mode form

π ′ = π̂(z)eιk(x−ct)+ι�y,

and similarly for ξ ′. Equation (8.48) becomes

ιk(U − c)ξ̂ = 0

or, as anticipated, ξ̂ = 0 for c �= 0. From (8.49) we now obtain an ordinary
differential equation

π̂zz − μ2π̂ = 0, (8.50)

where

μ = k̃

P
(8.51)

is a scaled vertical wavenumber. The Prandtl ratio P is defined as

P = | f |√
Bz
, (8.52)

and k̃2 = k2 + �2 as usual.

https://doi.org/10.1017/9781108640084.009 Published online by Cambridge University Press

https://doi.org/10.1017/9781108640084.009
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The Impermeable Boundary Condition

We must now express the boundary condition ŵ = 0 in terms of π̂ . To this end we
write (8.46) in the normal mode form

Bzŵ = − By

f
ιkπ̂ − ιk(U − c)π̂z,

or, invoking thermal wind balance By = − f Uz ,

Bzŵ = ιk[Uz π̂ − (U − c)π̂z].
The boundary condition ŵ = 0 is therefore equivalent to

(U − c)π̂z − Uzπ̂ = 0. (8.53)

8.7.2 Eady Waves

We can solve (8.50) with (8.53) imposed at upper and lower boundaries, or with one
boundary at infinity. In the latter case, the solution describes Eady waves, which are
analogous to the vorticity waves discussed in section 3.12.2. And, like the vorticity
waves, a pair of Eady waves can resonate to drive exponential growth.

Before deriving the Eady wave dispersion relation, we give a qualitative descrip-
tion of the mechanism. In Figure 8.5a, we are looking across a frontal zone from
the warm (buoyant) side, shaded in red. Now consider an imaginary horizontal
surface, and suppose that the fluid is displaced upward and downward by some
means so that the surface varies sinusoidally in the along-front direction. At the
top of the domain is an impenetrable horizontal boundary where the amplitude of
the displacement must decrease to zero as shown by the thin curves.

Because the vertical motion drops to zero at the boundary, the fluid above
each trough of the perturbation experiences an extensional strain, w′

z > 0, which
stretches, and thereby amplifies, the ambient vorticity f . The result is a counter-
clockwise increment of vorticity as shown at the top of Figure 8.5b by the curved
arrows. In contrast, the strain above each crest is compressive, effectively reducing
the ambient vorticity, so that the increment is clockwise. Between these strips of
oppositely signed vorticity increments are cross-front currents that carry alternately
dense (blue) and buoyant (red) fluid.

In each cross-front current, gravity acts to accelerate the fluid vertically: upward
in buoyant currents, downward in dense currents (Figure 8.5c). As a result, the
nodes of the sinusoidal disturbance are displaced vertically such that the whole
pattern propagates to the left.

This intrinsic leftward propagation is relative to the mean along-front current,
which must be rightward to maintain thermal wind balance. At the lower boundary,
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Figure 8.5 Mechanics of Eady wave propagation. (a) Sinusoidal perturbation
of a frontal zone in thermal wind balance. Shading on the cross-sections indi-
cates the mean buoyancy distribution: dense (blue) and buoyant (red). The figure
assumes f > 0, i.e., that we are in the northern hemisphere. (b) Circulations
induced by stretching and compression of the ambient vorticity, and the resulting
cross-front circulations. (c) Advected buoyancy drives rising and sinking motions,
which cause the pattern to propagate to the left, counter to the mean along-front
flow U .

the same dynamic supports a right-going wave in a leftward background current. It
is therefore possible for both waves to be stationary and, if their relative phases are
such that the vertical motion of one wave reinforces the crests and troughs of the
other, positive feedback leads to a growing instability, just as we saw with vorticity
waves in Chapter 3 (Figure 3.23).
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To derive a dispersion relation for the Eady wave shown in Figure 8.5, we
solve (8.50), with (8.53) imposed at the upper boundary and the condition that
the solution remain bounded as z → −∞. The general solution of (8.50) is

π̂ = αeμz + βe−μz, (8.54)

where α and β are constants. Boundedness as z → −∞ requires that β = 0. In
this case π̂z = μπ̂ , and the boundary condition becomes

(Uu − c)μ− Uz = 0,

where Uu is the mean along-front velocity at the boundary. Solving for c, we have

c = Uu − Uz

μ
. (8.55)

For a wave at a lower boundary, we carry out the same steps, this time requiring
boundedness as z → +∞. In this case α = 0, ŵz = −μŵ, and the boundary
condition gives the dispersion relation

c = Ul + Uz

μ
, (8.56)

where Ul is the mean along-front velocity at the lower boundary.
The upper and lower waves propagate oppositely relative to the mean flow at

their respective boundaries. It is therefore possible that their phase speeds could be
equal. In that case, the two waves might resonate and drive exponential growth. To
see if this possibility is in fact true, we must solve (8.50) with (8.53) imposed at
both the upper and lower boundaries.

8.7.3 The Eady Mode of Baroclinic Instability

We consider a finite domain, with coordinates chosen such that boundaries are at
z = ±H/2 and the mean along-front velocity is U = Uzz. The general solution of
(8.54) must satisfy the boundary conditions(

−Uz H

2
− c

)
π̂z + Uzπ̂ = 0 at z = − H

2

and (
Uz H

2
− c

)
π̂z + Uzπ̂ = 0 at z = H

2
.
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Figure 8.6 Phase speed (real = blue, imaginary = green) and scaled growth rate
μ�c�i (red) versus vertical length scale for the Eady model of baroclinic instability,
based on (8.57). Scalings are defined by μ� = μH and c� = c/Uz H . Annotations
mark the fastest-growing mode (FGM) and the stability boundary (SB).

Substituting (8.54) and solving for c, we obtain

c�2 = 1

4
− cothμ�

μ�
+ 1

μ�2
, (8.57)

where the nondimensional phase speed and vertical scale are

c� = c

Uz H
; μ� = μH. (8.58)

The solution (8.57) is shown in Figure 8.6. For μ� > 2.40, c is real and repre-
sents oppositely propagating modes. In the limit μ� → ∞ (in which the domain
height is large compared to the vertical scale μ−1), these correspond to the isolated
Eady waves described in section 8.7.2.6

As μ� decreases from infinity, the two Eady waves become close in phase speed.
At μ� = 2.40, both phase speeds reach zero, i.e., the waves become phase locked.

6 For μ� � 1, cothμ� approaches 1. Therefore,

c�2 ≈ 1

4
− 1

μ�
+ 1

μ�2
=
(

1

2
− 1

μ�2

)2
.

In dimensional terms,

c ≈ ±
(

Uz H

2
− Uz

μ

)
,

which is equivalent to the dispersion relations (8.55, 8.56) for the upper and lower Eady waves derived in
section 8.7.2.
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For μ� < 2.40, c is imaginary and we therefore have unstable modes with real
growth rate σ . The growth rate is proportional to the product μ�c�i :

σ = kci = k

k̃
k̃ c�i Uz H = k

k̃

μ

P
c�i Uz H = k

k̃

Uz

P
μ�c�i , (8.59)

where (8.51) and (8.58) have been used.
Instead of oppositely propagating waves, the solutions represent one growing

and one decaying mode (Figure 8.6). The product μ�c�i reaches a maximum of
0.31 at μ� = 1.61 (circle on Figure 8.6), then drops to zero at μ� = 0. This band of
unstable modes 0 < μ� ≤ 2.40 is the Eady mode of baroclinic instability, which
we will call the Eady mode for short.

We will be most interested in the fastest-growing Eady mode. The optimal
nondimensional length scale μ� = 1.61 corresponds to

k̃ = 1.61

H
P. (8.60)

The wavelength is

λ = 2π

k̃
= 3.9

P
H.

This is sometimes written as

λ = 3.9Ld,

where

Ld = H

P

is called the deformation radius.
For the optimal value of μ�, the dimensional growth rate is given by (8.59):

σ = 0.31
k

k̃
P Uz.

Like shear instability, the Eady mode grows fastest when k = k̃, or � = 0, i.e.,
when the wave vector is aligned with the mean along-front flow. The maximum
growth rate is then proportional to the thermal wind shear and also to the Prandtl
ratio:

σ = 0.31 P Uz. (8.61)

There are two interesting alternative ways to express this growth rate. First:

σ = 0.31
√

Bz sb,
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i.e., the growth rate depends on the strength of the stratification and the degree to
which the isopycnals are tilted. Second:

σ = 0.31
| f |√

Ri
. (8.62)

8.7.4 Terrestrial Examples

The Prandtl ratio
We now look at some typical dimensional parameter values for baroclinic insta-

bility, beginning with the Prandtl ratio f/
√

Bz . A typical mid-latitude value for
f is 10−4s−1 (section 1.5). In the troposphere, a typical value for Bz is 10−4s−2.
Coincidentally, this value is also typical of the upper ocean. Therefore, the Prandtl
ratio is near 0.01 in both fluids.

The Prandtl ratio exerts a control on the aspect ratio (i.e., the height to length
ratio) of the eddy structures that result from baroclinic instability. This is in line
with the wave length scaling in (8.60) above, which states that H/λ ∝ f/

√
Bz .

An illustration of this feature can be seen in Figure 8.7, where mesoscale eddies,
thought to arise from baroclinic instability, have been observed from a mooring
that measures the horizontal velocity of the upper 2000 m of the Arctic Ocean
from a position fixed to the sea bed. The sudden bursts of enhanced horizontal
velocity indicate the passage of eddies at various depths over a number of years.
Due to the strong stratification in the upper 200 m, the Prandtl ratio confines the
shallower eddies in this region to small vertical scales. This is not the case in the
deeper (> 200 m) ocean, where the much weaker stratification allows the eddies to
extend thousands of meters in the vertical. Notice that some eddies also have cores
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Figure 8.7 Observations of horizontal velocity magnitude from a mooring in the
Arctic Ocean together with a representative density profile (left). The different
vertical signatures of the eddies illustrate the dependence of the vertical scale
height to the Prandtl ratio, f/

√
Bz , which changes by an order of magnitude.

The horizontal scale of the eddies varies between 10 and 40 km [adapted from
Carpenter and Timmermans (2012), see also Zhao and Timmermans (2015)].
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that are centered at the transition between the two different stratification regimes
so that they have very asymmetrical velocity signatures – being able to extend to
great depths once they are able to “puncture” through to the weakly stratified layer.

The troposphere: If we take H to be the atmospheric scale height, which is near
10 km, then the deformation radius is 1000 km and the wavelength of the fastest-
growing Eady mode is about 4000 km. Now suppose that the wind speed changes
by 10 m/s over the scale height H , so that Uz = 10−3s−1. The growth rate is
then 3 × 10−6s−1, for an e-folding time of 4 days. These estimates are “in the
ballpark” for mid-latitude weather systems, which develop over a few days and
have longitudinal extents of a few thousand kilometers.

The ocean thermocline: In the ocean, the depth over which baroclinic instability
acts is more like 1 km, so the predicted wavelength is 1/10 of the atmospheric
value, say 400 km. This is a typical length scale for mesoscale eddies. If the current
changes by 0.1 m/s over 1 km depth, then Uz is 10−4s−1, and the predicted e-folding
time is about a month, not too different from the time scale for mesoscale eddy
growth.

The ocean mixed layer: The upper few tens of meters of the ocean is well
mixed by wind and waves. But while buoyancy and other properties vary little
in the vertical, they can vary substantially in the horizontal. The result is a class
of baroclinic and symmetric instabilities that currently goes by the general name
mixed layer instability (Boccaletti et al., 2007). Because stratification is weak, the
Prandtl ratio is relatively large, P = 0.1 perhaps. The depth of the layer is of
order 100 m, so the Eady model predicts a wavelength of 4 km, in the subme-
soscale range. If we assume a velocity scale of 0.1 m/s, we get an e-folding time of
9 hours.

8.8 Numerical Solution Method

Numerical solution of (8.8–8.10) is more complicated than in the non-rotating
cases we have studied previously for two main reasons:

(1) elimination of the pressure is harder because the pressure equation acquires a
Coriolis term, and

(2) the variation of the background state in both y and z complicates the
application of normal modes.

In the analytic solutions above we sidestepped those problems by making various
assumptions (no variation in x for inertial and symmetric instabilities, the quasi-
geostrophic approximation for the Eady mode). Numerical methods allow us to
relax those assumptions, at least in part. In what follows we will describe the two
problems in turn, and then describe the solution.
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8.8.1 The Pressure Equation

Taking the divergence of (8.9) gives the pressure equation

∇2π ′ = −2Uy
∂v′

∂x
− 2Uz

∂w′

∂x
+ ∂b′

∂z
+ f

(
∂v′

∂x
− ∂u′

∂y

)
. (8.63)

With f �= 0, u′ and v′ appear on the right-hand side, hence our usual tactic of using
the pressure equation to eliminate those variables will have to be reconsidered.

8.8.2 Limitations of the Normal Mode Approach

To solve the perturbation equations (8.1, 8.9, 8.10) we assume solutions of the form

u′ = û(z)eσ t eι(kx+�y). (8.64)

This requires that the coefficients depend only on z.
Now consider the second terms in (8.9) and (8.10). These describe advection

of the perturbation by the background flow, and have the form U times ∂/∂x of
something. If the perturbation is independent of x , as in the inertial and symmetric
instabilities (section 8.6), those terms vanish regardless of the form of U . For a
general perturbation, however, the factor U must depend only on z, i.e.,

Uy = 0. (8.65)

In addition, thermal wind balance requires that Byy = f Uyz = 0, hence

B = By y + ϑ(z), (8.66)

where By is a constant and ϑ is an arbitrary function.

8.8.3 Reduction to an Eigenvalue Problem

With the constraints (8.66) and (8.65) satisfied, we substitute (8.64) into (8.8–8.10)
to obtain the normal mode perturbation equations

ιkû + ι�v̂ + ŵz = 0 (8.67)

(σ + ιkU )û + Uzŵ = −ιkπ̂ + f v̂ (8.68)

(σ + ιkU )v̂ = −ι�π̂ − f û (8.69)

(σ + ιkU )ŵ = −π̂z + b̂ (8.70)

(σ + ιkU )b̂ + By v̂ + ϑzŵ = 0. (8.71)

Instead of using û and v̂, we define new variables

q̂ = ιkv̂ − ι�û ; χ̂ = ιkû + ι�v̂. (8.72)
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The first of these is just the normal mode form of the perturbation vertical vorticity
defined in section 8.5. Its evolution equation, arrived at by cross-differentiating
(8.68) and (8.69), is

(σ + ιkU )q̂ − ι�Uzŵ = f ŵz. (8.73)

This is the normal mode form of (8.17). [The limitation Uy = 0 has been imposed
in accordance with (8.65), so that y-derivatives of U vanish and fa = f .]

Our next goal is to eliminate π̂ from the vertical momentum equation (8.70).
The troublesome pressure equation (8.63) can be written as

∇2π̂ = −2ιkUzŵ + b̂z + f q̂ (8.74)

where, as usual,

∇2 = d2

dz2
− k̃2 , and k̃ =

√
k2 + �2.

In section 3.1.2, we discussed in detail the procedure of eliminating pressure
by (1) deriving a Poisson equation like the one above, (2) taking the Laplacian of
the vertical velocity equation, and combining the two. Thanks to our use of q̂, that
procedure will work here. Starting with (8.70) and applying ∇2, we obtain

(σ + ιkU )∇2ŵ + 2ιkUzŵz = −∇2π̂z + ∇2b̂,

remembering that Uzz = 0. Differentiating (8.74) and substituting leads, after some
gratifying cancellations, to

(σ + ιkU )∇2ŵ = −k̃2b̂ − f q̂z. (8.75)

In (8.73) and (8.75) we have two equations for the three unknown functions q̂,
ŵ, and b̂. To close the system we will add the buoyancy equation (8.71), but note
that (8.71) involves dependence on v̂. To remove this dependence, we solve the
pair of equations (8.72) for v̂:

v̂ = − ιk

k̃2
q̂ − ι�

k̃2
χ̂ ,

and remember that χ̂ = −ŵz by (8.67). With this substitution, (8.71) becomes

(σ + ιkU )k̃2b̂ = ιk Byq̂ − ι�Byŵz − k̃2ϑzŵ. (8.76)

Exercise: Compare (8.75, 8.76) with (4.14, 4.15) and also with (6.14,
6.15). Note all differences, and make sure you can explain each in terms
of the different assumptions that have been made.
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We now have three equations, (8.73), (8.75), and (8.76) for the three unknowns
q̂ , ŵ, and b̂, which we can write as a matrix differential equation:

σ

⎛⎝ 1 0 0
0 ∇2 0
0 0 1

⎞⎠⎛⎝ q̂
ŵ

b̂

⎞⎠ =

⎛⎜⎜⎝
−ιkU ι�Uz + f D(1w) 0

− f D(1q) −ιkU∇2 −k̃2

ιk

k̃2
By − ι�

k̃2
By D(1w) − ϑz −ιkU

⎞⎟⎟⎠
⎛⎝ q̂

ŵ

b̂

⎞⎠ ,

(8.77)
with

∇2 = D(2) − k̃2

and

D(1) = d

dz
; D(2) = d2

dz2
.

The first-derivative operators in (8.77) are marked with the superscripts w and q
to indicate that their matrix equivalents may be different depending on the choice
of boundary conditions (see below). We now replace the derivative operators D(1)

and D(2) with derivative matrices as defined previously (sections 1.4.2, 3.5, 5.5, and
6.2), remembering to incorporate the appropriate boundary conditions. The result
is a generalized eigenvalue problem with 3N × 3N matrices:

σ A�x = B�x .
The eigenvector �x is a concatenation of the discretized forms of q̂, ŵ, and b̂.

8.8.4 Boundary Conditions

For ŵ, we use the impermeable boundary ŵ = 0. Application of this boundary con-
dition should be familiar by now. For buoyancy, (8.77) does not require a boundary
condition since b̂ is not differentiated.

The new variable is the vertical vorticity q. Differentiating the definition (8.14),
we have

∂q ′

∂z
= ∂

∂z

(
∂v′

∂x
− ∂u′

∂y

)
= ∂

∂x

∂v′

∂z
− ∂

∂y

∂u′

∂z
. (8.78)

If we now assume that the boundary is frictionless, as described in section 5.4.2,
then this reduces to ∂q ′/∂z = 0 or, in normal mode form,

q̂z = 0.

We now need a first-derivative matrix for q̂ that incorporates this boundary con-
dition. The necessary modifications are derived in section 5.5; the top and bottom
rows are [−2/3 2/3 . . .]/� and [. . . 2/3 − 2/3]/�.
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8.8.5 Shear Scaling

Suppose that (8.77) has a solution algorithm:

[σ, q̂, ŵ, b̂] = F(z,Uz, ϑz, f ; k, �).

Now let us choose the time scale to be 1/Uz and the length scale to be the domain
height H . The nondimensionalization is straightforward. Scalings of particular
interest are

f � = f

Uz
,

and

ϑ�
z� = ϑz

U 2
z

= Ri(z),

the gradient Richardson number. Note that Ri can vary with height.
The scaled equations are isomorphic to (8.77), and therefore

[σ �, q̂�, ŵ�, b̂�] = F(z�, 1, Ri(z�), f �; k�, ��).

Time scales other than 1/Uz are possible, e.g., 1/| f |. If the stratification ϑz has an
identifiable “characteristic” value Bz , then 1/

√
Bz is also a viable time scale.

8.9 Instability in the Ageostrophic Regime

Numerical solutions of (8.77) as described above can approximate the analytically
derived inertial, symmetric, and baroclinic instabilities (sections 8.6 and 8.7), as
well as allowing us to relax some simplifying assumptions for greater realism. In
the example shown in Figure 8.8, variables are scaled by the shear and the domain
height (see section 8.8.5). We set the Prandtl ratio to the typical terrestrial value
P = 0.01 and the Richardson number to Ri = 0.94. At the largest values of k� and
�� (upper right), instabilities are oscillatory, but for smaller wavenumbers (lower
left) stationary modes are found.

The symmetric mode is visible at the left, where k� = 0. Modes with small ��

(and k� = 0, lower left) are damped in the presence of boundaries, but at large ��

the growth rate is consistent with the analytical solution P
√

1 − Ri . The fastest-
growing mode along the bottom edge (�� = 0), indicated by “AB,” is a stationary
baroclinic instability similar to the Eady mode (section 8.7). For this example
Ri has been set close to the value at which the symmetric and baroclinic modes
have equal growth rate. For comparison, the symbol “QB” shows the wavenumber
1.61P , the predicted value for the baroclinic mode in the quasigeostrophic regime
Ri � 1.
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Figure 8.8 Growth rates of instabilities far from the quasigeostrophic regime.
All background gradients are uniform. Shear scaling is used, with parameter
values P = 0.01, Ri = 0.94. Filled (plain) contours show the growth rate
(frequency). Symbols “AB”: ageostrophic baroclinic instability; “QB”: quasi-
geostrophic (Eady) baroclinic instability. Numerical solution employs N = 100
grid points.

Exercise: The student is invited to develop the code and explore the insta-
bilities further. Useful papers for reference are Stone (1966) and Stamper
and Taylor (2016).

8.10 Summary

● A stratified fluid in a rotating environment is in equilibrium if the pressure is
hydrostatic and the thermal wind balance holds: f Uz = −By .

● The perturbation equations can be solved numerically after the introduction of
the vertical vorticity perturbation.

● Inertial instability
– Arises from a sheared current in a rotating environment in the absence of

stratification.
– Instability requires that the shear produces a relative vorticity that is greater

than, and in opposition to the planetary vorticity, i.e., |Uy| > | f | and
−Uy f > 0.

– There is no preferred wavelength, and the motions are purely horizontal.
– The instability is caused by a continual alignment of the perturbation velocity

so that it is able to extract the shear of the equilibrium current.
● Symmetric instability

– Instability requires Ri < fa/ f .
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– Perturbations do not vary in the along-front (x) direction.
– Motion is along isopycnals in the (y − z) plane.
– There is no preferred wavelength.
– The physical mechanism of the instability is the same as inertial instability,

except it has an additional influence of the vertical shear in the thermal wind
equilibrium.

● Baroclinic instability (the Eady model)
– Flow is assumed to be quasigeostrophic.
– Perturbations do not vary in the cross-front (y) direction.
– Motion is sinusoidal, with phase velocity stationary with respect to the central

plane.
– The wavelength λ = 3.9H/P , where P = | f |/√Bz .
– The growth rate σ = 0.31PUz = 0.31| f |/√Ri .
– The instability can be understood as a resonance of Eady wave trains focused

near the upper and lower boundaries.

8.11 Further Reading

Theoretical details are developed further in Pedlosky (1987), Haine and Marshall
(1998), and Thomas et al. (2013). For more details of wave resonance in baroclinic
instability see Bretherton (1966) and Heifetz et al. (2004).
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