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Abstract
Variational Bayesian inference is an important machine learning tool that finds application from statistics to robotics.
The goal is to find an approximate probability density function (PDF) from a chosen family that is in some sense
“closest” to the full Bayesian posterior. Closeness is typically defined through the selection of an appropriate loss
functional such as the Kullback-Leibler (KL) divergence. In this paper, we explore a new formulation of variational
inference by exploiting the fact that (most) PDFs are members of a Bayesian Hilbert space under careful definitions
of vector addition, scalar multiplication, and an inner product. We show that, under the right conditions, variational
inference based on KL divergence can amount to iterative projection, in the Euclidean sense, of the Bayesian pos-
terior onto a subspace corresponding to the selected approximation family. We work through the details of this
general framework for the specific case of the Gaussian approximation family and show the equivalence to another
Gaussian variational inference approach. We furthermore discuss the implications for systems that exhibit sparsity,
which is handled naturally in Bayesian space, and give an example of a high-dimensional robotic state estimation
problem that can be handled as a result. We provide some preliminary examples of how the approach could be
applied to non-Gaussian inference and discuss the limitations of the approach in detail to encourage follow-on work
along these lines.

1. Introduction
In 1763, Richard Price published on behalf of his recently deceased friend, the Reverend Thomas Bayes,
a paper that introduced what would become the atomic element of probabilistic inference: Bayes’ rule
[16]. The paper though was widely ignored. About a decade later, the same rule was discovered by
Pierre-Simon Laplace and, while Laplace laid its foundations, the theory of inference based on this
rule became known as Bayesian inference. So confident was Laplace in the theory that he famously
calculated the odds at 11,000 to 1 that the mass of Saturn as determined by a former student was correct
to within 1%, 1,000,000-to-1 odds on the mass of Jupiter [[29], translated from 1825 French edition,
pp. 46-47]. (Based on the most recent available data, he would have collected on the bet on Saturn.)
Bayesian inference has been used in a great variety of applications from Henri Poincaré’s defense of
Captain Dreyfus to Alan Turing’s breaking of the Enigma code [34]. In modern day, it provides the
crucial framework for inference in such fields as statistics, decision theory, computational neuroscience,
machine learning, computer vision, state estimation, and robotics.

The objective common to all these applications is the determination of a posterior probability to test
some hypothesis or to calculate some estimate based on prior information and observed measurements.
However, it is not always possible to find the posterior exactly. Indeed, we must often resort to approx-
imate techniques. One such technique, which will occupy us here, is that of variational inference or
variational Bayes [17]. In this variational approach, the goal is to find the probability density function
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(PDF) that comes closest to the posterior as determined by minimizing a loss functional subject to the
constraint that the distribution sought be drawn from a tractable class of densities, for example, where
the posterior has to take the form of a Gaussian distribution. A common choice for the loss functional
is the Kullback-Leibler (KL) divergence [5, 8, 17, 18, 20, 25, 27] although others such as Bregman [1,
36], Wasserstein [7], and Rényi divergences [30] have been used.

The field of variational inference based on the KL divergence is already well trodden although the
research is hardly exhausted. The chosen class of densities from which the approximate posterior is to be
shaped is key to variational inference. In the mean-field approximation, for example, the solution to the
minimization of the divergence is constructed as a product of densities from a chosen family of admis-
sible functions such as a Bayesian mixture of Gaussians [17]. Another possibility is using Bayesian
mixtures of exponential families [5, 44]. A number of algorithms by which to execute the minimiza-
tion exist including the variational EM algorithm, natural gradient descent, and Gaussian variational
inference.

In [27], it is observed that “there is not as yet a systematic algebra that allows particular variational
transformations to be matched optimally to particular graphical models.” While this was written two
decades ago and specifically about graphical models, the remark finds resonance in the present work.

In previous work [14], we developed a practical robotic state estimation tool based on variational
inference and compared it to maximum a posteriori (MAP), showing some advantages in certain situ-
ations. For example, the method we developed, dubbed Exactly Sparse Gaussian Variational Inference,
can be used to solve the famous simultaneous localization and mapping (SLAM) problem. The current
paper shows this existing method can be viewed through a different lens, that of iterative projections in
a special space known as a Bayesian Hilbert space or Bayes space for short [43]. The primary contribu-
tion of this paper is therefore to make this connection between two quite different fields and hopefully
to open the door to future extensions.

Our aim is to introduce a kind of information algebra to variational inference that not only provides
a convenient and effective framework for analysis but also reveals key relationships to past work. This
algebra has its origins in the work of [2] on compositional data in statistics. Compositional data can
be represented on a simplex as with probability distributions for a finite set of discrete events. The
resulting Aitchison geometry or Aitchison simplex establishes a vector space, in which vector addition
is a normalized multiplication (perturbation) and scalar multiplication is a normalized exponentiation
(powering). With an appropriate inner product, the set of PDFs over a finite discrete space was formalized
as a Hilbert space by [37] and independently investigated by [9] and [12] in their stochastic algebra. The
extension to continuous variables was first published by [23] and also studied by [13] for the case of finite
domains. The generalization to include probabilities and measures on the whole real line was made by
[42, 43], who introduced the term Bayesian Hilbert space.

In such a space, Bayes’ venerated rule becomes

p(x|z) = p(z|x) ⊕ p(x) (1)

where ⊕ indicates vector addition. (The normalization inherent in the operations accounts for the
marginal p(z) automatically.) Each new measurement made to refine the posterior becomes one more
term added to the sum. It is this linear feature of a Bayesian Hilbert space that makes the structure ideally
suited to variational inference.

The set of Gaussians, in an appropriately extended sense, constitutes a subspace of Bayes space as
do exponential families. An arbitrary PDF in one of these subspaces can be expressed in the simple and
usual manner as a linear combination of a basis for the subspace. The problem of variational inference
can thus be expressed as the minimization of a divergence over a set of Fourier coefficients.

The linear-algebraic structure of these spaces affords us a new perspective and provides new insight.
We show, for example, that the solution to variational inference based on the KL divergence can be
viewed as an iterative projection, in the Euclidean sense, onto a given subspace. Indeed, this algorithm
is essentially a Newton-like iteration scheme to solve for the minimum of the divergence, having a form
identical to the natural-gradient-descent technique of [4]. Moreover, using a subspace of Gaussians
reproduces the recent results of [14].
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We also employ an information measure using a norm for Bayes space. This allows for a metric to
be defined on the space, which can be interpreted as the distance between two PDFs. A (symmetric and
quadratic) divergence between PDFs can be based on the distance metric. It is notable that each step in
our iterative projection scheme is a local minimization of this divergence.

While this connection between variational inference and projection in Bayes space is exciting, there
are still some open challenges around the approach. In the current formulation, there is no guarantee
that our projection scheme will result in a valid PDF, although in practice we find the case to be so quite
often, particularly with a good initial guess for the posterior estimate. Throughout we attempt to pinpoint
the specific challenges and limitations of our approach so that improvements may follow in future work.

We shall begin with an overview of Bayesian Hilbert spaces in the next section. In Section 3, we
discuss subspaces and bases, including exponentiated Hermite polynomials and Gaussian distributions.
The variational inference problem for the KL divergence as viewed from the purchase of a Bayesian
Hilbert space is considered in Section 4. The specific case of using a Gaussian subspace, that is, Gaussian
variational inference, is treated in Section 5. Discussion is provided in Section 6 and we end with a few
concluding remarks.

2. Bayesian Hilbert spaces
Let us consider some domain X for our PDFs, for example, RN ; we shall refer to x ∈X as the state. A
PDF p(x) assigns a nonnegative, finite value to each element of X such that∫

X
p(x) dx = 1. (2)

It turns out that this condition provides challenges when it comes to defining Bayes space on an
infinite domain. As we will see, not all members of Bayes space (as we define it) will be PDFs and not
all PDFs will be members of Bayes space; however, there is a large enough intersection between the two
sets that Bayes space will be of practical use. Notationally, we will use p(x) to mean a member of Bayes
space throughout, indicating when the member is a valid PDF.

We provide a lightweight explanation of Bayes space, referring to [43] for more detail. We define the
following set of functions:

B2 =
{

p(x) = c exp ( − φ(x))

∣∣∣∣ 0< c<∞,
∫
X
φ(x)2 ν(x) dx<∞

}
, (3)

where ν(x) is an appropriate measure for X (loosely, a weighting function); we will assume that ν(x)
is in fact a PDF (and from B2) throughout although this is not necessary. Essentially, each member
of B2 is an exponentiated function from L2, the set of square-integrable functions under our chosen
measure. Importantly, there is no requirement for p(x) ∈B2 to be a valid PDF; however, if we have that
c−1 = ∫X exp (− φ(x)) dx, it will be so. Moreover, not all PDFs are members of B2 as we do not allow
members to take on the value of zero anywhere in the domain1, meaning only those PDFs that are strictly
positive are contained (e.g., Gaussians and other exponential families).

We say that two members, p1(x) = c1 exp (− φ1(x)), p2(x) = c2 exp (− φ2(x)) ∈B2, are equivalent
(equal) if and only if φ1(x) = φ2(x); in other words, the normalization constants, c1 and c2, need not
be the same. Under these conditions, we have that B2 is isomorphic to L2.

We define vector addition [42], ⊕ : B2 ×B2 →B2, between two elements p1, p2 ∈B2 to be p1 ⊕ p2:

(∀x ∈X ) (p1 ⊕ p2)(x) = p1(x)p2(x) = c1c2 exp ( − (φ1(x) + φ2(x))) ∈B2, (4)

and likewise scalar multiplication [42], · : R×B2 →B2, of p ∈B2 by α ∈R to be α · p:

(∀x ∈X ) (α · p)(x) = (p(x))α = cα exp ( − αφ(x)) ∈B2. (5)

1[43] explain the details around letting members of Bayes space take the value zero; our more restrictive definition sidesteps
some complications.
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With these operations, B2 is established as a vector space, termed a Bayesian linear space, over the
field R [42]. Notably, the zero vector2 is simply any constant function, c exp (0). Vector subtraction
[42] is defined in the usual way, p1 	 p2 = p1 ⊕ (−1) · p2:

(∀x ∈X ) (p1 	 p2)(x) = c1

c2

exp ( − (φ1(x) − φ2(x))) ∈B2. (6)

We note that subtraction, or the inverse additive operation, is equivalent to the Radon-Nikodym
derivative [42].

To turn a member of B2 into a valid PDF we define the normalization operator, ↓p:

(∀x ∈X ) (↓p)(x) = p(x)∫
X p(z) dz

∈B2. (7)

This operation can only be applied to those members of B2 that are equivalent to a valid PDF; in other
words, it must be that

∫
X p(x) dx<∞. We will refer to the subset of B2 whose members are equivalent

to a valid PDF as ↓B2 ⊂B2; note that this subset is not a subspace under our chosen addition and scalar
multiplication operators. As a point of order, the normalization operator is not strictly required in the
establishment of B2, only when we want to make the connection to a valid PDF.

As mentioned above, Bayes’ rule can be rendered as p(x|z) = p(z|x) ⊕ p(x). The normalizing
marginal p(z) is accounted for in the implied equivalence of the “=” operator. We could also write
p(x|z) = ↓(p(z|x) ⊕ p(x)), which then makes the right-hand side a valid PDF through normalization.

2.1. Inner product
We endow the vector space with an inner product [43] defined as

〈p1, p2〉 = 1

2

∫
X

∫
X

ln

(
p1(x)

p1(y)

)
ln

(
p2(x)

p2(y)

)
ν(x) ν(y) dx dy, (8)

where ν(·) is again a density function corresponding to an appropriate measure for X . Notably, we see
that because of the way the inner product is defined the normalization constants, c1 and c2, associated
with p1 and p2 play no role.

Because ν is a valid PDF, we can also write the inner product in (8) as

〈p1, p2〉 =Eν

[
ln p1 ln p2

]−Eν

[
ln p1

]
Eν

[
ln p2

]
, (9)

where Eν[·] is the expectation with respect to ν. To be clear, when we use expectations the argument,
f (x), and the measure (a PDF), ν(x), are defined over the same space, X :

Eν(x)[f (x)] =
∫
X

f (x)ν(x) dx, (10)

although sometimes we will abbreviate this as Eν[f ]. In this work, we shall always take the measure to
be a PDF (and from B2); however, we shall refer to it as the measure to distinguish it from the other
densities involved. Following [43], then, we can claim that B2 with inner product (8) forms a separable
Hilbert space, which is referred to as a Bayesian Hilbert space. We shall sometimes briefly refer to it as
a Bayesian space or Bayes space.

2.2. Information and divergence
The norm [43] of p ∈B2 can be taken as ‖p‖ = 〈p, p〉1/2. Accordingly, we can define the distance between
two members of B2, p and q, simply as d(p, q) = ‖p 	 q‖, which induces a metric on Bayes space.

2[43] make the point that the origin of Bayes space (i.e., the zero vector) can be shifted to be any valid member of B2 including
a PDF, although we do not find this necessary here.
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The norm of p can be used to express the information content of the PDF (if it is in B2). In fact, we
shall define

I(p) = 1

2
‖p‖2 = 1

2
〈p, p〉 (11)

as the information3 in p. (The reason for the factor of 1
2

will become evident.) As an example, consider
p =N (μ, σ 2) (over the domain R) and measure ν =N (0, 1). The information is I(p) = (1 + 2μ2)/4σ 4.
The smaller the variance, the larger the information indicating that the PDF concentrates its probability
mass more tightly about its mean; that is, we know better where to expect the state so we may say that
we have more information about it.

We shall furthermore find it useful to define a divergence between two members of B2, p and q, as

I(p 	 q) = 1

2
〈p 	 q, p 	 q〉 . (12)

This is the information contained in the difference of p and q. Unlike the KL divergence, this divergence
is symmetric in p and q and quadratic in Bayesian space. Clearly, p = q if and only if I(p 	 q) = 0.
Geometrically, the divergence is (half) the squared Euclidean distance between p and q in Bayes space.

2.3. Stochastic derivative
Accompanying this algebra is a functional calculus. Consider p(x|θ ) ∈B2 depending continuously on
some parameter θ . We define the stochastic partial derivative of p with respect to θ as [13, 22]

ðp

ðθ
= lim

λ→0

1

λ
· (p(x|θ + λ) 	 p(x|θ )

)
. (13)

Note that the result of this operation remains an element in B2. We can also define directional derivatives
and a gradient operator, but these will not be required here.

3. Subspaces and bases
While B2 is an infinite-dimensional space, it contains infinitely many finite-dimensional subspaces. We
can in fact build a subspace Q by taking the span of a set of M vectors B = {b1, . . . , bM}, namely,

Q= span {b1, . . . , bM} . (14)

If we choose B to be linearly independent, it will form a basis for Q. We can accordingly write every
vector q in Q as a linear combination of B, that is,

q =
M⊕

m=1

αm · bm, (15)

where αm ∈R are unique. We use the notation
⊕M

m=1 αm · bm to mean α1 · b1 ⊕ · · · ⊕ αM · bM, paralleling∑M
m=1 for normal addition.
As a shorthand, we will denote b = [b1 b2 · · · bM

]T as the basis. The inner products between all pairs
of basis vectors form the Gram matrix,

〈b, b〉 = [〈bm, bn〉
]

, (16)

where (m, n) are the indices of the matrix entries. We furthermore have an orthonormal basis if 〈bm, bn〉 =
δmn, the Kronecker delta, in which case 〈b, b〉 = 1, the identity matrix.

3This is different than the information of [39].
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Figure 1. Projection onto a subspace, Q, of the Bayesian Hilbert space, B2.

3.1. Projections
Given a subspaceQ ofB2 and p ∈B2, the q	 ∈Q that minimizes the distance to, as well as the divergence
(12) from, p is the projection of p onto Q, that is,

q	 = proj
Q

p. (17)

As in Euclidean geometry, we can view p as being decomposed into a component p‖ lying in Q and a
component p⊥ perpendicular to it; therefore q	 = p‖ (see Fig. 1).

The coordinates of q	 can be calculated as

α	 = 〈b, b〉−1 〈b, p〉 . (18)

We may also write the projection as an outer product operation on p, as detailed in Appendix B.

3.2. Example: one-dimensional Gaussian
To make the concept of Bayes space more tangible, consider the canonical one-dimensional Gaussian
PDF defined over x ∈R:

p(x) = 1√
2πσ 2

exp

(
−1

2

(x −μ)2

σ 2

)
, (19)

where μ is the mean and σ 2 the variance. In the language of B2, we can write this as

p(x) =
(
− μ

σ 2

)
︸ ︷︷ ︸

α1

· exp (−x)︸ ︷︷ ︸
b1

⊕
(

1√
2σ 2

)
︸ ︷︷ ︸

α2

· exp

(
− (x2 − 1)√

2

)
︸ ︷︷ ︸

b2

= α1 · b1 ⊕ α2 · b2. (20)

In other words, every Gaussian can be written as a linear combination of the two vectors, b1 and b2, where
the coefficients, α1 and α2, depend on the mean and variance. Note, we can neglect the normalizing
constant as equivalence is implied in the “=” operator.

The choice of b1 and b2 is not arbitrary in this example. They constitute the first two basis vectors
in an orthonormal basis for B2, which can be established using the probabilist’s Hermite polynomials;
Appendix C.1 provides the details of this Hermite basis. In fact, we can define a new space G as the
span of these two basis vectors:

G = span {b1, b2} , (21)

which is a subspace of B2. Importantly, every Gaussian PDF of the form in (19) is a member of G, but
not every member of G is a valid Gaussian PDF. Only those members of G that have σ 2 > 0 are valid
Gaussian PDFs. We shall refer to G as the indefinite-Gaussian subspace of B2 while ↓G ⊂ G will denote
the positive-definite-Gaussian subset. Figure 2 shows the relationships between the various spaces and
how we can view a Gaussian as a point in G.
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Figure 2. On the left is a depiction of the relationships between Bayes space,B2, and the set of all PDFs.
We see the subset of strictly positive PDFs, ↓B2, the indefinite-Gaussian subspace, G, and the posi-
tive-definite-Gaussian subset, ↓G. The right image shows how a valid Gaussian PDF can be viewed as
a point in a plane with coordinates that depend on its mean μ and variance σ 2; only the open upper-half
plane admits valid Gaussian PDFs since we must have σ 2 > 0.

3.3. Example: projecting to a Gaussian
Let us consider a simple one-dimensional, nonlinear estimation problem as a numerical example moti-
vated by the type of inverse-distance nonlinearity found in a stereo camera model. This same experiment
(with the same parameter settings) was used as a running example by [[10], Section 4]. We assume that
our true state is drawn from a Gaussian prior:

x ∼N (μp, σ
2
p ). (22)

We then generate a measurement according to

z = fb

x
+ n, n ∼N (0, σ 2

r ), (23)

where n is the measurement noise. The numerical values of the parameters used were

μp = 20 [m], σ 2
p = 9 [m2],

f = 400 [pixel], b = 0.1 [m], σ 2
r = 0.09 [pixel2].

(24)

The true posterior is given by

p(x|z) = ↓exp (− φ(x)), φ(x) = 1

2

(x −μp)2

σ 2
p︸ ︷︷ ︸

prior

+ 1

2

(
z − fb

x

)2

σ 2
r︸ ︷︷ ︸

measurement

. (25)

This problem can also be viewed as the correction step of the Bayes filter [26]: Start from a prior and
correct it based on the latest (nonlinear) measurement.

We seek to find q(x) ∈ ↓G that is a good approximation to the true posterior p(x|z). To do this, we
will simply project the posterior onto the indefinite-Gaussian subspace, using the method described
in Section 3.1, and then normalize the result. Figure 3 shows the results of doing this for two cases
that differ only in the measure ν that we associate with Bayes space. The expectations used in the
projections were computed with generic numerical integration although, as discussed by [14], there
are several other options including Gaussian quadrature. In the top case, the measure is chosen as the
prior estimate, while in the bottom case it is chosen to be closer to the posterior. In both cases, we see
that our projection method produces a valid PDF, but in the bottom case the result is much closer to the
true posterior. This simple example provides motivation for the main point of this paper, which is that
to use the tools of Bayes space effectively, we will seek to iteratively update the measure used to carry
out our projections such that we can best approximate a posterior. Intuitively, this makes sense since
the measure is providing a weighting to different parts of R so we would like to choose it to pay close
attention where the posterior ends up.
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Figure 3. An example of projecting a non-Gaussian posterior onto the indefinite-Gaussian subspace.
The top panel shows the case where the measure associated with B2 was chosen to be the same as the
(Gaussian) prior, ν(x) =N (20, 9). The bottom panel does the same with a Gaussian measure selected
to be closer to the posterior, ν(x) =N (24, 4). We see that the Gaussian projection of the posterior is
much closer to the true posterior in the bottom case.

4. Variational Bayesian inference
Motivated by the example in Section 3.3, we shall now address the problem of variational Bayesian
inference using the algebraic tools of Bayes space.

4.1. Variation on the KL divergence
In variational Bayesian inference, we seek to find an approximation, q, from some family of distributions
constituting a subspace Q to the true Bayesian posterior p ∈B2. In general,

Q⊆B2, (26)

where equality will always ensure that q = p will match the posterior exactly. But B2 is infinite-
dimensional and, in practice, Q⊂B2 is a finite-dimensional subspace.

There are many possible divergences that can be defined to characterize the “closeness” of q to p
including the KL divergence [28], Bregman divergence [19], Wasserstein divergence/Earth mover’s
distance [35], and Rényi divergence [38]. We shall focus on the KL divergence, which is defined as

KL(q||p) = −
∫
X

q(x) ln

(
p(x|z)

q(x)

)
dx = −Eq[ ln p − ln q]. (27)

Sometimes the reverse of this is used: KL(p||q). Note, we show the divergence with respect to the
posterior, p(x|z), but in practice during the calculations we use that p(x|z) = p(x, z)/p(z) = ↓p(x, z)
since the joint likelihood is easy to construct and then the p(z) can be dropped for it does not result in
a KL term that depends on x. We will generically use p in what follows to keep the notation clean.
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4.2. KL gradient
We assume a basis B = {b1, b2 · · · bM} for Q and we write q as

q = ↓
M⊕

m=1

αm · bm. (28)

We desire to minimize the KL divergence with respect to the coordinates αm. The gradient of KL(q||p)
can be computed as follows:

∂KL
∂αn

= −
∫
X

(
∂q

∂αn

( ln p − ln q) − q
∂ ln q

∂αn

)
dx. (29)

Exploiting (E4) and (E6), this reduces to
∂KL
∂αn

= −Eq[ln bn( ln p − ln q)] +Eq[ln bn]Eq[ln p − ln q] = − 〈bn, p 	 q〉q (30)

or, collecting these in matrix form,
∂KL
∂αT

= − 〈b, p 	 q〉q , (31)

where b = [b1 b2 · · · bM

]T . Implicit in this statement is that when employed as the measure, we have
normalized the current approximation, ↓q(i), since we always take the measure to be a valid PDF. The
necessary condition for a minimum of the KL divergence is that the gradient is zero. Newton’s method
suggests the manner in which we might iteratively solve for the optimal distribution. Following the
established procedure, the iteration for the coordinates is given by

α(i+1) = α(i) + H(i)−1 〈b, p 	 q(i)
〉
q(i) , (32)

where H is the Hessian of the KL divergence.

4.3. KL Hessian
The (m, n) entry of the Hessian is

∂2KL
∂αm∂αn

= − ∂

∂αm

〈bn, p 	 q〉q . (33)

This differentiation must take into account the effect of the “measure” q. The product rule applies here
and we can break down the differentiation as

∂2KL
∂αm∂αn

= −
(
∂

∂αm

〈bn, p 	 q〉
)

q

− 〈bn, p 	 q〉∂q/∂αm
, (34)

the first term of which is to be read as the derivative of the inner product holding the measure fixed
and the second of which deals with the derivative of the measure while holding the arguments of inner
product fixed. The first term is(

∂

∂αm

〈bn, p 	 q〉
)

q

=
(
∂

∂αm

〈bn, p〉 − ∂

∂αm

∑
k

αk 〈bn, bk〉
)

q

= − 〈bn, bm〉q = − 〈bm, bn〉q . (35)

As shown in Appendix E.2, the second becomes

〈bn, p 	 q〉∂q/∂αm
=
〈
bn,

∂ ln q

∂αm

· (p 	 q)

〉
q

−Eq[ln p − ln q] 〈bm, bn〉q . (36)

We advise that the coefficient ∂ ln q/∂αm of p 	 q is in fact a function of the state and as such cannot be
transferred to the other argument of the inner product as would be possible for a scalar in the field R.
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We also recognize the factor of the last term as KL(q||p). Therefore, substituting (35) and (36) into (34)
yields

∂2KL
∂αm∂αn

= (1 − KL(q||p)) 〈bm, bn〉q −
〈
bn,

∂ ln q

∂αm

· (p 	 q)

〉
q

. (37)

We observe that the second term on the right-hand side is symmetric in the indices as the substitution
of (E6) will attest. In matrix form, the Hessian is

H = ∂2KL
∂αT∂α

= (1 − KL(q||p)) Iα −
〈
b,
∂ ln q

∂αT
· (p 	 q)

〉
q

, (38)

where Iα is the Fisher information matrix (FIM) or Gram matrix and is described in detail in Appendix
E.1. Newton’s method (32) can now be implemented. But the Hessian bears a closer look.

The Hessian can also be explicitly written as

∂2KL
∂αm∂αn

= 〈bm, bn〉q −Eq[ln bm ln bn( ln p − ln q)]

+Eq[ln bm ln bn]Eq[ln p − ln q] +Eq[ln bn]Eq[ln bm( ln p − ln q)]

+Eq[ln bm]Eq[ln bn( ln p − ln q)] − 2Eq[ln bm]Eq[ln bn]Eq[ln p − ln q], (39)

the terms of which can be collected as
∂2KL
∂αm∂αn

= 〈bm, bn〉q + 〈−bmn ⊕Eq[ln bn] · bm ⊕Eq[ln bm] · bn, p 	 q
〉
q

, (40)

where bmn = exp ( ln bm ln bn). The symmetry in the Hessian is plainly evident in this version.

4.4. Iterative projection
In the vicinity of the optimal distribution, with a sufficiently large subspace Q, we may expect p 	 q to
be small almost everywhere. This makes all the terms in the Hessian of first order except Iα, which is
of zeroth order. The gradient (68) is also of first order. Thus to keep Newton’s descent to this order, we
may approximate the Hessian as H � Iα and the iterative procedure (32) becomes simply

α(i+1) = α(i) + I(i)
α

−1 〈b, p 	 q(i)
〉
q(i) . (41)

However, as q(i) = ↓⊕mα
(i)
m · bm,〈

b, p 	 q(i)
〉
q(i) = 〈b, p〉q(i) − 〈b, b〉q(i) α(i) = 〈b, p〉q(i) − I(i)

α α(i). (42)

Hence, (41) becomes

α(i+1) = I(i)
α

−1 〈b, p〉q(i) . (43)

The iterative update to q is q(i+1) = ↓⊕mα
(i+1)
m · bm. That is, the procedure can be viewed as an iterative

projection,

q(i+1) = ↓proj
(Q,q(i))

p, (44)

where we explicitly indicate that we normalize the result as the output of our algorithm should be a PDF.
Figure 4 depicts the scheme. The procedure is essentially the application of Newton’s method on the KL
divergence with the Hessian approximated as the FIM. This is precisely the approximation made in natu-
ral gradient descent [4]. In our Bayesian space, the operating point of the Newton step becomes the mea-
sure for the inner product. This highlights a key aspect of using the algebra associated with a Bayesian
space. It recognizes the dual role of q: On the one hand, it is the approximating PDF, and on the other
it serves as a measure that weights the difference between the approximation and the approximated.
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Figure 4. Iterative projection onto a sequence of Bayesian Hilbert spaces, (Q, q(i)).

Convergence of iterative projection is guaranteed if the Hessian is positive definite. Provided that the
subspace is large enough, we can expect convergence when we begin in a neighborhood of optimal q
where the first-order terms in the Hessian are sufficiently small.

It is notable that each step of the iterative projection is equivalent to the local minimization of the
divergence I(p 	 q) with the measure fixed at q(i) because

I
(
p 	 (q(i) ⊕ δq)

)= I(p 	 q(i)) + δαT

(
∂I

∂αT

)
q(i)

+ 1

2
δαT

(
∂2I

∂αT∂α

)
q(i)

δα, (45)

where δα = α(i+1) − α(i) and(
∂I

∂αT

)
q(i)

= − 〈b, p 	 q(i)
〉
q(i) ,

(
∂2I

∂αT∂α

)
q(i)

= 〈b, b〉q(i) ≡ I(i)
α , (46)

which are identical to the linearized forms for the KL divergence.
Throughout this section, we have assumed that the basis B remains constant across iterations, but

this need not be the case. We may also choose to update the basis along with the measure to maintain,
for example, orthonormality. This is explored in the next example and further in Section 5 on Gaussian
variational inference.

4.5. Example: iteratively projecting to a Gaussian
In the example of Section 3.3, we saw that selecting a measure that was closer to the posterior resulted
in a projection that was also closer to the posterior. We now redo this example using the iterative projec-
tion concepts from this section. We will still project onto the indefinite-Gaussian subspace and employ
a Gaussian measure, only now with each iteration the measure will be taken to be the (normalized)
projection from the previous iteration.

We initialized the estimate to the prior, which corresponds to the first panel in Fig. 5. The next three
panels show subsequent iterations of the estimate. The last panel shows the KL divergence between the
estimate and the true posterior for 10 iterations. We see the estimate converged in a few iterations.

Note that as the measure changes from one iteration to the next, we then have to update the basis to
retain the desired orthogonality. This can be accomplished by using the reparameterization “trick” (see
Appendix C.1) to adjust the basis to be orthogonal with respect to the current Gaussian measure.

4.6. Exploiting sparsity
One of the major advantages of thinking of B2 as a vector space with the definition of vector addition
⊕ is that Bayesian inference in general can be viewed as the addition of vectors. Consider the posterior
p(x|z) where z are some measurements. Bayes’ rule states that

p(x|z) = p(z|x)p(x)

p(z)
= p(z|x) ⊕ p(x), (47)
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Figure 5. Example of iterative projection onto the indefinite-Gaussian subspace spanned by two
Hermite basis functions, where the measure is taken to be the estimate q(i) at the previous iteration
and the basis reorthogonalized at each iteration as described in Section 5. The estimate was initialized
to the prior (first panel) and then iteratively updated (next three panels). The last panel shows the KL
divergence between the estimate and the true posterior for 10 iterations, with convergence occurring at
approximately 5 iterations.
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where p(x) is a prior, p(z|x) is a measurement factor and, as mentioned earlier, we need not introduce
the normalization constant p(z) explicitly when writing the posterior as a vector addition in Bayesian
space. To be clear, addition is defined for two members of the same Bayes space and here we interpret
p(z|x) as a function of x since z is a constant (e.g., a known measurement).

If we have several measurements that are statistically independent, then this can be factored as

p(x|z) = p(x) ⊕
K⊕

k=1

p(zk|xk), (48)

where xk = Pkx is a subset of the variables in x, Pk is a projection matrix, and zk is the kth measure-
ment. This expresses sparsity in the state description and in the measurements. To keep the notation
economical, we shall simply write

p =
K⊕

k=0

pk, (49)

where p is the posterior and the pk comprise the prior and the measurements, corresponding to sta-
tistically independent data. In other words, the factorization becomes a summation in the Bayesian
space B2.

Now consider our projective approach to inference. As usual, given a subspace Q⊂B2, the optimal
estimate to (49) is given by

q	 = proj
Q

p = proj
Q

K⊕
k=0

pk =
K⊕

k=0

proj
Q

pk. (50)

That is, the projection of the sum is the sum of the projections. Each individual projection can be done
separately because we are in a linear space. This is of enormous practical advantage because it means
that we do not need all of Q to represent each projection.

We can see this more clearly by defining B2
k ⊂B2 as the subspace corresponding to the variables xk.

Then

p =
K⊕

k=0

pk ∈B2
0 ⊕B2

1 ⊕ · · · ⊕B2
K ⊆B2. (51)

In other words, p is contained in the direct sum of the subspaces B2
k . Each constituent part pk may be

confined to a smaller subspace of B2, depending on the variable dependencies in each term.
If we wish to project pk ∈B2

k onto Q it will suffice to consider the projection on just Qk =B2
k ∩Q,

that is,

proj
Q

pk = proj
Qk

pk. (52)

The subspace Qk may, and ideally would, be smaller than Q. We may refer to Qk as the marginal
subspace of Q with respect to the subset of variables xk.

Therefore, the optimal estimate will be given by

q	 = proj
Q

p =
K⊕

k=0

proj
Qk

pk. (53)

This means that we can project the PDF associated with each measurement onto a smaller subspace
and simply add up the estimates, lifting the overall estimate up into a potentially much larger space.
Naturally, when employed in practice we will normalize q	 to ensure our algorithm outputs a valid PDF.
The decomposition and reconstitution are illustrated in Fig. 6. Just as with the total posterior, we may
describe q	 as being an element of a direct sum of the individual subspaces of Q, that is,

q	 ∈Q0 ⊕Q1 ⊕ · · · ⊕QK ⊆Q. (54)
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Figure 6. Exploiting sparsity by projecting individual measurements onto marginal subspaces, Qk, and
then recombining the results.

The subspace sum may be substantially smaller than Q but again it will depend on the variable
dependencies of each term.

This is the key result that allows most practical inference frameworks to function in a tractable way.
Depending on the chosen basis for Q, many of the coordinates can potentially be zero and thus it will
not be necessary to waste effort computing them or space storing them.

5. Application: Iterative projection for multivariate Gaussians
Let us investigate a little more closely iterative projection to multivariate Gaussian PDFs, given their
importance in statistics and estimation theory.

5.1. Projections
As mentioned at the end of the last section, we do not have to maintain the same basis from step
to step as long as each basis spans the same subspace. This is a particularly useful maneuver when
using the subspace G of indefinite Gaussians, which are discussed in detail for the multivariate case in
Appendix D.1. Denote the mean and variance of q(i) ∈ G as μ(i) and �(i) and let the basis g(i) be defined as
in (D3) and (D4). Note that this basis is orthonormal with respect to q(i). As such, I(i)

α = 〈g(i), g(i)〉q(i) = 1.
Imagine the PDF to be approximated is expressed as p = ↓exp (− φ(x)) ∈ ↓B2. The coordinates resulting
from the next projection are given by (D13), namely,

α
(i+1)
1 = 〈g(i)

1 , p
〉= L(i)T

Eq(i)

[
∂φ(x)

∂xT

]
,

α
(i+1)
2 = 〈g(i)

2 , p
〉=√ 1

2
DTD vech

(
L(i)T

Eq(i)

[
∂2φ(x)

∂xT∂x

]
L(i)

)
,

(55)

where L(i) issues from the Cholesky decomposition of �(i).
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The new iteration is

q(i+1) = ↓proj
(G,q(i))

p = ↓exp
(
−α

(i+1)
1

T
γ

(i)
1 − α

(i+1)
1

T
γ

(i)
1

)
. (56)

Using (D14), this becomes

q(i+1) = ↓exp

(
−(x − μ(i))T

Eq(i)

[
∂φ(x)

∂xT

]
− 1

2
(x − μ(i))T

Eq(i)

[
∂2φ(x)

∂xT∂x

]
(x − μ(i))

)
, (57)

which we may cast into the form,

q(i+1) = ↓exp

(
−1

2
(x − μ(i+1))T�(i+1)−1

(x − μ(i+1))

)
. (58)

Herein

�(i+1)−1 =Eq(i)

[
∂2φ(x)

∂xT∂x

]
, (59a)

�(i+1)−1
δμ = −Eq(i)

[
∂φ(x)

∂xT

]
, (59b)

μ(i+1) = μ(i) + δμ (59c)

give the updates from q(i) =N (μ(i), �(i)) to q(i+1) =N (μ(i+1), �(i+1)) and these are exactly the same as
those used in the iterative Gaussian variational inference approach presented by [14]. We have arrived
at the same variational updates but have done so from the framework of a Bayesian Hilbert space, where
it becomes abundantly clear that the minimization algorithm is in fact a slightly simplified version of
Newton’s method. This also provides the connection back to the classic Gaussian filtering and smoothing
algorithms as discussed by [14].

5.2. Sparsity in Gaussian inference
The effect of sparsity as it applies to iterative Gaussian inference is of particular interest. Let us con-
sider the decomposition of a posterior p in accordance to the general sparsity discussion in Section 4.6,
that is,

p = ↓exp (− φ(x)) = ↓exp

(
−

K∑
k=0

φk(xk)

)
= ↓

K⊕
k=0

exp (−φk(xk))= ↓
K⊕

k=0

pk, (60)

where φk(xk) is the kth (negative log) factor expression and xk = Pkx.
As in (D14), we may express the variational estimate as

q(i+1) = ↓proj
(G,q(i))

p = ↓exp

(
−(x − μ(i))T

Eq(i)

[
∂φ(x)

∂xT

]
− 1

2
(x − μ(i))T

Eq(i)

[
∂2φ(x)

∂xT∂x

]
(x − μ(i))

)
, (61)

using the measure q(i) =N (μ(i), �(i)). To take advantage of sparsity, we need to have it reflected in the
expectations herein. The first one leads to

Eq(i)

[
∂φ(x)

∂xT

]
=

K∑
k=0

Eq(i)

[
∂φk(xk)

∂xT

]
=

K∑
k=0

(
∂xk

∂x

)T

Eq(i)

[
∂φk(xk)

∂xT
k

]

=
K∑

k=0

PT
k Eq(i)

[
∂φk(xk)

∂xT
k

]
=

K∑
k=0

PT
k Eq(i)

k

[
∂φk(xk)

∂xT
k

]
, (62)

given that xk = Pkx. For each factor k, then, we are able to shift the differentiation from x to xk. We draw
attention to the last equality, where the expectation simplifies to using q(i)

k = q(i)
k (xk), the marginal of the
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measure for just the variables in factor k. In a similar fashion,

Eq(i)

[
∂2φ(x)

∂xT∂x

]
=

K∑
k=0

PT
k Eq(i)

k

[
∂2φk(xk)

∂xT
k ∂xk

]
Pk (63)

accounts for the second expectation in (61).
The implication of the factorization is that each factor, identified by φk(xk), is projected onto Gk,

the marginal subspace associated with variables xk. The results can then be recombined for the full
variational estimate as

q(i+1) = ↓proj
(G,q(i))

p = ↓
K⊕

k=0

proj
(Gk ,q(i)

k )

pk = ↓
K⊕

k=0

q(i+1)
k . (64)

The individual projections of pk = ↓exp (− φk(xk)) onto (Gk, q(i)) are

q(i+1)
k = ↓proj

(Gk ,q(i)
k )

pk = ↓exp

(
−1

2
(xk − μ

(i+1)
k )T�(i+1)−1

k (xk − μ
(i+1)
k )

)
(65)

= ↓exp

(
−1

2
(x − PT

k μ
(i+1)
k )T

(
PT

k �
(i+1)−1

k Pk

)
(x − PT

k μ
(i+1)
k )

)
, (65)

where

μ
(i+1)
k = μ

(i)
k − �(i+1)

k Eq(i)
k

[
∂φk(xk)

∂xT
k

]
, �(i+1)−1

k =Eq(i)
k

[
∂2φk(xk)

∂xT
k ∂xk

]
. (66)

It is straightforward to show that the vector sum of qk from (65) reproduces (61). (Note that PkPT
k = 1 as

Pk is a projection matrix and PT
k the corresponding dilation.)

As explained in detail by [14], it would be too expensive for practical problems to construct first �(i)

and then extract the required blocks for the marginals, q(i)
k =N (μ(i)

k , �(i)
k ) =N (Pkμ

(i), Pk�
(i)PT

k ). We see
from the above development that we actually only require the blocks of �(i) corresponding to the nonzero
blocks of its inverse and the method of [41] can be used to extract the required blocks efficiently. In Ref.
[14], the authors provide numerical experiments showing the efficacy of this approach.

5.3. Example: SLAM
A main purpose in the current paper was to show the connection between Bayes space [43] and Gaussian
variational inference [14]. We see that minimizing the KL divergence between a true Bayesian posterior
and an approximation can be viewed as iterative projection in Bayes space. Moreover, by exploiting the
sparsity that Bayes space makes clear, the method has the potential to be applied to quite large inference
problems.

Following [14], we consider a batch SLAM problem with a robot driving around and building a map
of landmarks as depicted in Fig. 7. The robot is equipped with a laser rangefinder and wheel odometers
and must estimate its own trajectory and the locations of a number of tubular landmarks. This dataset
has been used previously by [15] to test SLAM algorithms. Groundtruth for both the robot trajectory and
landmark positions (this is a unique aspect of this dataset) is provided by a Vicon motion capture system.
The whole dataset is 12,000 timesteps long (approximately 20 min of real time). It was assumed that the
data association (i.e., which measurement corresponds to which landmark) is known in this experiment
to restrict testing to the state estimation part of the problem.
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Figure 7. A special case of the approach presented in this paper was previously demonstrated [14] to
be a useful and practical tool for robotic state estimation. The method, called exactly sparse Gaussian
variational inference (ESGVI), was used to solve the simultaneous localization and mapping (SLAM)
problem, outperforming the standard maximum a posteriori (MAP) estimation in certain cases. The
current paper reinterprets this earlier work in a new mathematical formalism. Figure reproduced
from [14].

The state to be estimated is

x =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x0

x1

...

xK

m1

...

mL

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, xk =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

xk

yk

θk

ẋk

ẏk

θ̇k

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, m� =
[

x�

y�

]
, (67)

where xk is a robot state (position, orientation, velocity, angular velocity) and m� a landmark position.
For the (linear) prior factor on the robot states, we have

ϕk =

⎧⎪⎪⎨
⎪⎪⎩

1

2
(x0 − x̌0)T P̌

−1
(x0 − x̌0) k = 0

1

2
(xk − Axk−1)TQ−1(xk − Axk−1) k> 0

, (68)

with

P̌ = diag(σ 2
x , σ 2

y , σ 2
θ
, σ 2

ẋ , σ 2
ẏ , σ 2

θ̇
), A =

⎡
⎣1 T1

0 1

⎤
⎦ ,

Q =

⎡
⎢⎢⎣

1

3
T3QC

1

2
T2QC

1

2
T2QC TQC

⎤
⎥⎥⎦ , QC = diag(QC,1, QC,2, QC,3), (69)
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where T is the discrete-time sampling period, QC,i are power spectral densities, and σ 2
x , σ 2

y ,σ 2
θ
, σ 2

ẋ , σ 2
ẏ ,

σ 2
θ̇

are variances. The robot state prior encourages constant velocity [[10], §3, p.85].
The (nonlinear) odometry factors, derived from wheel encoder measurements, are

ψk = 1

2
(vk − Ckxk)

T S−1
(vk − Ckxk) , (70)

where

vk =
⎡
⎢⎣

uk

vk

ωk

⎤
⎥⎦ , Ck =

⎡
⎢⎣

0 0 0 cos θk sin θk 0

0 0 0 − sin θk cos θk 0

0 0 0 0 0 1

⎤
⎥⎦ , S = diag

(
σ 2

u , σ 2
v , σ 2

ω

)
. (71)

The vk consists of measured forward, lateral, and rotational speeds in the robot frame, derived from
wheel encoders; we set vk = 0, which enforces the nonholonomy of the wheels as a soft constraint. The
σ 2

u , σ 2
v , and σ 2

ω
are measurement noise variances.

The (nonlinear) bearing measurement factors, derived from a laser rangefinder, are

ψ�,k = 1

2

(
β�,k − g(m�, xk)

)2

σ 2
r

, (72)

with

g(m�, xk) = tan−1(y� − yk − d sin θk, x� − xk − d cos θk) − θk, (73)

where β�,k is a bearing measurement from the kth robot pose to the �th landmark, d is the offset of the laser
rangefinder from the robot center in the longitudinal direction, and σ 2

r is the measurement noise variance.
Although the dataset provides range to the landmarks as well, we chose to neglect these measurements to
make the problem difficult and therefore show the benefit of taking a variational inference approach. Our
setup is similar to a monocular camera situation, which is known to be a challenging SLAM problem.

Putting all the factors together, the posterior that we would like to project to a Gaussian is

p(x) = ↓exp(− φ(x)), φ(x) =
K∑

k=0

ϕk +
K∑

k=0

ψk +
K∑

k=1

L∑
�=1

ψ�,k + constant, (74)

where it is understood that not all L = 17 landmarks are actually seen at each timestep and thus we must
remove the factors for unseen landmarks.

We then carry out iterative projection to a multivariate Gaussian estimate, q(i) =N (μ(i), �(i)),
according to

q(i+1) = ↓proj
(G,q(i))

p, (75)

where we use (59) at implementation.
In a sub-sequence of the full dataset comprising 2000 timestamps with (x, y, θ , ẋ, ẏ, θ̇) for the robot

state at each time and 17 landmarks with (x, y) position, the dimension of the state estimation problem
is N = 12034. Spanning the indefinite-Gaussian subspace requires N basis functions for the mean and
1
2
N(N + 3) basis functions for the covariance, or 72, 438, 663 basis functions total. To naively apply the

idea of iterative projection to Bayes space would be intractable. However, by exploiting the sparsity that
Bayes space affords (see Sections 4.6 and 5.2) we are able to do this in a very computationally efficient
way. In Ref. [14], the authors provide further implementation details of this experiment.

Figure 8 shows estimation error plots for the section of the robot’s trajectory in Fig. 7. Not only does
this show the concepts of Bayes space can be applied to a large problem (N in the range of thousands)
but also that there are some situations where it performs slightly better than the standard MAP Gauss-
Newton (GN) algorithm.
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Figure 8. Error plots for a portion of the trajectory in the SLAM problem conducted by [14] and
discussed in Section 5.3. The exactly sparse Gaussian variational inference (ESGVI) algorithm (red)
is equivalent to the iterative projection approach described herein. The maximum a posteriori (MAP)
Gauss-Newton (GN) algorithm (blue) is the more standard approach to solving this type of problem.
Here, we see ESGVI performing slightly better than MAP GN in terms of smaller errors and more
consistency (i.e., errors staying within covariance envelope). Note, in the heading error plot, the red
mean line is hidden behind the blue one.

6. Discussion
6.1. Beyond Gaussians
Much of our discussion has centered on projection to the indefinite-Gaussian subspace and also the use
of Gaussian measures in our definition of Bayes space. This is primarily because we wanted to show the
connection between Bayes space and the Gaussian variational inference framework of [14]. However,
we have attempted to lay out the framework to be as general as possible.

As a teaser of applying the methods beyond Gaussians, we can use M ≥ 2 Hermite basis functions to
see if we can better approximate a PDF. Figure 9 shows that indeed as we project to a higher-dimensional
subspace, we are able to better approximate the stereo camera posterior introduced in Section 3.3. Here
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Figure 9. An example of projection of a posterior onto a finite basis with increasing number of basis
functions. The top panel qualitatively shows that adding more basis functions brings the approximation
closer to the posterior. The bottom shows the same quantitatively where I(p 	 q) decreases exponentially
fast with more basis functions. The measure was taken to be the prior in this example.

we took the measure ν to be equal to the prior for the problem. This shows that even without iteratively
updating the measure, we can better approximate the posterior by using more basis functions.

Moreover, we can repeat the iterative projection experiment from Section 4.5, this time with both 2
and 4 basis functions for the approximation. Figure 10 shows the results. We see that the 4-basis-function
estimate requires a few more iterations to converge than the 2-basis-function one, but it arrives at a better
final approximation as demonstrated by the lower final KL divergence.

6.2. Limitations and future work
While the results of the previous section make the use of high-dimensional subspaces look promising,
there are some limitations still to overcome, which we discuss here.

First, while the establishment of B2 is mathematically sound, it is actually ↓B2 that we are primarily
interested in, since we want to approximate valid PDFs by other valid (simpler) PDFs. It seems through
our experiments that we have been lucky in the sense that the results of our projections to Bayesian
subspaces are valid PDFs, but there is nothing that actually guarantees this for some of our approximation
problems. For example, consider our one-dimensional Gaussian again:

p(x) =
(
− μ

σ 2

)
︸ ︷︷ ︸

α1

· exp (− x)︸ ︷︷ ︸
b1

⊕
(

1√
2

1

σ 2

)
︸ ︷︷ ︸

α2

· exp

(
− (x2 − 1)√

2

)
︸ ︷︷ ︸

b2

= α1 · b1 ⊕ α2 · b2, (76)

which is a member of ↓G when σ 2 > 0. If we project this vector onto span{b1}, just the first Hermite
basis vector, the result is

proj
span{b1}

p = α1 · b1, (77)

which is no longer a member of ↓G since it cannot be normalized to become a valid PDF. Extrapolating
from this simple example, it means that truncating a Fourier series at some arbitrary number of terms
does not guarantee that the result will be a valid PDF. If we want to extend the Gaussian results to
higher-dimensional subspaces, we need to better understand this issue.
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Figure 10. Example of iterative projection onto subspaces spanned by 2 and 4 Hermite basis functions,
where the measure is taken to be the estimate q(i) at the previous iteration (projected to the indefinite–
Gaussian subspace) and the basis reorthogonalized at each iteration as described in Section 5. The
estimates were initialized to the prior (first panel) and then iteratively updated (next three panels). The
last panel shows the KL divergence between the estimates and the true posterior for 10 iterations. We
see that the estimate using 4 basis functions took slightly longer to converge but in the end produced a
better approximation of the posterior.
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Second, even in the case of projecting to the indefinite-Gaussian subspace, guaranteeing that the
result is in ↓G is quite restrictive. If the PDF to be projected is

p(x) = c exp ( − φ(x)), (78)
we saw that the projection to the indefinite-Gaussian subspace (see Appendix D.2) has the form

proj
(G,ν)

p = exp

(
−(x − μ)T

Eν

[
∂φ(x)

∂xT

]
− 1

2
(x − μ)T

Eν

[
∂2φ(x)

∂xT∂x

]
︸ ︷︷ ︸

�−1

(x − μ)

)
, (79)

where we have indicated the resulting inverse covariance is �−1 =Eν

[
∂2φ(x)

∂xT∂x

]
. To guarantee �−1 > 0

which would make this a valid PDF for any choice of the measure ν, we require that φ(x) is a con-
vex function of x. This is clearly too restrictive for most real estimation problems involving nonlinear
measurement models. If φ(x) is locally convex, it suggests the measure ν must be chosen so that its
probability mass coincides with this region of local convexity. This perhaps emphasizes the need to iter-
atively update the measure in our proposed projection scheme. However, when the Bayesian posterior
and prior are far apart, there is work to be done to understand how best to initialize the measure to ensure
the projections wind up in ↓B2 in the general setup.

Finally, in the general case of projecting to a high-dimensional subspace, the measure itself could also
be something other than a Gaussian, depending on the basis that is established. How to carry out the
expectations in a computationally efficient and stable way in this case is again future work. The Hermite
basis is cooperative in that the basis functions are orthonormal with respect to a Gaussian measure. In
the high-dimensional SLAM problem that we discussed in Section 5.3, we (i) exploited sparsity inherent
in the problem to require only taking expectations over marginals for each measurement factor, and (ii)
were also able to exploit the fact that the measure was Gaussian in order to use Gaussian cubature to
carry out the expectations somewhat efficiently [14]. Perhaps there are other bases that could be used
for certain problems that admit similar computational conveniences.

It is worth noting that many of the challenges in working with Bayes space stem from the fact that
we are attempting to work on infinite domains. If our interest lies with practical robotic state estimation,
Bayes space defined over a finite domain [23] may be both mathematically simpler and more realistic
from a practical point of view. This would of course mean giving up on using Gaussians, for example,
which could be replaced by a truncated alternative.

7. Concluding remarks
Our principal goal in this work has been to provide a new perspective on the problem of variational
inference. This new vantage point is afforded by considering PDFs as elements in a Bayesian Hilbert
space, where vector addition is a multiplication (perturbation) that accounts for Bayes’ rule and scalar
multiplication is an exponentiation (powering). Gaussians and, more generally, exponential families,
which are often used in variational inference, are associated with subspaces. We thus have at our disposal
all the familiar instruments of linear algebra.

The use of the KL divergence KL(q‖p) in variational inference to find the best approximation q to a
given posterior p is widespread. In most approaches, the canvas on which the minimization is carried
out is a set, usually convex, or a manifold of admissible functions [1, 3, 5, 20, 21]. “Projections” of p
onto the set or manifold are ipso facto the PDF q that minimizes the divergence. However, in Bayesian
space, we may interpret projections as standard linear-algebraic projections, reminding us of a Euclidean
world.

We take particular note of the information geometry of Csiszár and Amari. They along with their
colleagues [6, 21] separately developed the em algorithm—not to be confused with the EM (expectation-
maximization) algorithm although the two are in many cases equivalent—to solve the generalized
variational problem, which involves a dual minimization of q over its manifold and p over its own.
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(The minimum is therefore the minimum “distance” between manifolds.) The e-step of the algorithm
is performed by making the manifold “flat,” that is, linear, as a result of using an exponential family of
densities. This flattening is equivalent to thinking in terms of a Bayesian space as we have done here.
Indeed, as we have shown, the natural-gradient-descent algorithm of [4] can be explained using this
framework as a Newton-like iterative projection.

Based on the inner product of our Bayesian space, we have employed an information measure. It is
proportional to the squared norm of a probability distribution, which can be used to establish a (symmet-
ric and quadratic) divergence between two PDFs. The connection to the KL divergence is worthwhile
mentioning. Each step in the iterative projection algorithm presented here for variational inference based
on the KL divergence amounts to a local minimization of our Bayesian-space divergence. Admittedly,
our iterative projection approach has some limitations and open issues to resolve. Particularly, we as yet
cannot guarantee that the result of a projection will be a valid PDF and hence starting far from the final
posterior estimate can pose challenges. We hope others may pick up where we have left off to further
develop these ideas and overcome current limitations.

The linear structure of Bayes space furthermore allows us to treat sparsity in measurement data very
neatly as the vector sum of the measurements, each of which can be expressed as an element in a subspace
restricted to the local variables dictated by the sparsity of the problem, for example, as in the SLAM
problem in robotics [14]. The mean-field approximation in variational inference can be handled in much
the same way in this framework. The factorization of a distribution with respect to a desired family of
distributions would again be rendered as a vector sum of PDFs.

In his fictional autobiography, Zen and the Art of Motorcycle Maintenance, Robert M. Pirsig notes
that “One geometry cannot be more true than another; it can only be more convenient.” The same can be
said of algebra. Whether one takes a geometric or algebraic tack in analyzing a problem, it can be agreed
that different perspectives offer different views and given a particular problem or even a particular class
of problem one tack may sometimes be more convenient than others. We hope the perspective presented
here on variational inference using a Bayesian Hilbert space offers not only convenience in some respects
but insight and a degree of elegance as well.
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Appendix A. Kronecker Product, vec and vech Operators, and Duplication Matrices
For the benefit of the reader, we summarize several identities, which will be used in subsequent appen-
dices, involving the Kronecker product ⊗ and the vectorization operator vec(·) that stacks the columns
of a matrix:

vec(a) ≡ a

vec(abT) ≡ b ⊗ a

vec(ABC) ≡ (CT ⊗ A) vec(B)

vec(A)Tvec(B) ≡ tr(ATB)

(A ⊗ B)(C ⊗ D) ≡ (AC) ⊗ (BD)

(A ⊗ B)−1 ≡ A−1 ⊗ B−1

(A ⊗ B)T ≡ AT ⊗ BT .

(A1)

It is worth noting that ⊗ and vec(·) are linear operators.
As we will be working with (symmetric) covariance matrices when discussing Gaussians, we would

like to be able to represent them parsimoniously in terms of only their unique variables. Following [32,
§18], we introduce the half-vectorization operator vech(·) that stacks up the elements in a column matrix,
excluding all the elements above the main diagonal. The duplication matrix D allows us to recover a full
symmetric matrix from its unique parts:

vec(A) = D vech(A) (symmetric A). (A2)

It is helpful to consider a simple 2 × 2 example:

A =
[

a b

b c

]
, vec(A) =

⎡
⎢⎢⎢⎢⎣

a

b

b

c

⎤
⎥⎥⎥⎥⎦ , D =

⎡
⎢⎢⎢⎢⎣

1 0 0

0 1 0

0 1 0

0 0 1

⎤
⎥⎥⎥⎥⎦ , vech(A) =

⎡
⎢⎣

a

b

c

⎤
⎥⎦ . (A3)

The Moore-Penrose pseudoinverse of D will be denoted D† and is given by

D† = (DTD
)−1 DT . (A4)

We can then use D† to convert the vectorization of a matrix into its half-vectorization:

vech(A) = D†vec(A) (symmetric A). (A5)

For our 2 × 2 example, we have

D† =
⎡
⎢⎣

1 0 0 0

0 1
2

1
2

0

0 0 0 1

⎤
⎥⎦ . (A6)

Useful identities involving D are then

D†D ≡ 1

D†TDT ≡ DD†

DD†vec(A) ≡ vec(A) (symmetric A)

DD†
(A ⊗ A)D ≡ (A ⊗ A)D (any A),

(A7)

which can be found in ref. [31].
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Appendix B. Outer Products
The outer product �:B2 →B2 of two vectors b = b(x), c = c(x′) ∈B2, denoted �(x, x′) = b(x)〉〈c(x′) or
briefly �= b〉〈c, is defined by its operation on arbitrary d = d(x′) ∈B2 as

�(x, x′) � d(x′) = b(x)〉〈c(x′) � d(x′) = b(x) · 〈c, d〉 = 〈c, d〉 · b(x). (B1)
Thus, dropping the functional dependence,

〈a,�� d〉 = 〈a, b〉 〈c, d〉 (B2)
for arbitrary a ∈B2. More generally,

�=
M⊕

i=1

N⊕
j=1

φij · bi〉〈cj, (B3)

where bi, cj ∈B2 and φij ∈R, so that

�� d =
M⊕

i=1

N∑
j=1

φij

〈
cj, d

〉 · bi (B4)

and

〈a,�� d〉 =
M∑

i=1

N∑
j=1

φij 〈a, bi〉
〈
cj, d

〉
. (B5)

Defining the matrix � = [φij] ∈RM×N and

b(x) =

⎡
⎢⎢⎢⎢⎢⎣

b1(x)

b2(x)

...

bM(x)

⎤
⎥⎥⎥⎥⎥⎦ , c(x) =

⎡
⎢⎢⎢⎢⎢⎣

c1(x)

c2(x)

...

cN(x)

⎤
⎥⎥⎥⎥⎥⎦ , (B6)

we may abbreviate (B3) to
�(x, x′) = b(x)〉�〈c(x′) (B7)

and hence 〈a,�� d〉 = �〈c, d〉, where 〈a, b〉 is interpreted as a row and 〈c, d〉 as a column.
Given an orthonormal basis {b1, b2 · · · bM} for a subspace S ⊂B2, we define

Q =
M⊕

m=1

bm〉〈bm ≡ b〉〈b, (B8)

and thus, for any s ∈ S , Q � s = s [33]. For a nonorthonormal basis,

Q =
M⊕

m=1

M⊕
n=1

κmn · bm〉〈bn ≡ b〉 〈b, b〉−1 〈b, (B9)

where κmn is the (m, n) entry in 〈b, b〉−1. Notationally, ·〉A〈· indicates an outer product weighted in
the middle by an appropriately sized matrix A, which in the above example serves to normalize the
basis. In normal matrix algebra, it would be equivalent, for example, to writing a(aTa)−1aT , for some
column a.

Using the outer product, we can write a projection as
q	(x) = Q(x, x′) � p(x′), (B10)

where
Q(x, x′) = b(x)〉 〈b, b〉−1 〈b(x′), (B11)

which plays a similar role to projection matrix.
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Appendix C. Hermite Basis
C.1. Basis for R
Consider the domain over which members of B2 are defined to be R. We can use the exponentiated
Hermite polynomials as a basis for our infinite-dimensional B2; in fact, they prove to be a natural choice
[43]. In one dimension, the first few probabilist’s Hermite polynomials are

H1(ξ ) = ξ , H2(ξ ) = ξ 2 − 1, H3(ξ ) = ξ 3 − 3ξ , H4(ξ ) = ξ 4 − 6ξ 2 + 3. (C1)

(We exclude H0(ξ ) = 1 as the resulting vector is the zero vector; however, it will need to be introduced
when considering the domain RN as explained in Appendix C.2.) Owing to the properties of the Hermite
polynomials, namely, that∫ ∞

−∞
Hn(ξ )ν(ξ ) dξ = 0,

∫ ∞

−∞
Hm(ξ )Hn(ξ )ν(ξ ) dξ = n! δmn, m, n = 1, 2, 3 . . . , (C2)

where ν(ξ ) =N (0, 1) is the standard normal density, we can construct an orthonormal basis for B2

following [23]. Accordingly,

Eν[Hn] = 0, Eν[HmHn] = n! δmn, m, n = 1, 2, 3 . . . (C3)

Our basis functions are

hn(ξ ) = exp (−ηn(ξ )) , ηn(ξ ) = 1√
n!Hn(ξ ). (C4)

Orthogonality follows as

〈hm, hn〉 =Eν[ηmηn] −Eν [ηm] Eν[ηn]

= 1√
m!n!

∫ ∞

−∞
Hm(ξ )Hn(ξ )

1√
2π

exp

(
−1

2
ξ 2

)
dξ = δmn. (C5)

An arbitrary member p of B2 can be expanded in terms of this Hermite basis. However, we first need
two lemmata, resting on the recursive definition of Hermite polynomials; these are

Lemma C.1. For the standard normal measure, ν ∼N (0, 1),

Eν

[
Hn+1(ξ )f (ξ )

]=Eν

[
Hn(ξ )

∂f (ξ )

∂ξ

]
. (C6)

where f (ξ ) is a differentiable function and is such that the expectations exist.

Proof. The n = 0 case,

Eν

[
ξ f
]=Eν

[
∂f

∂ξ

]
, (C7)

is immediately true by Stein’s lemma [40]. For general case n,

Eν

[
Hn+1f

]=Eν

[(
ξHn − ∂Hn

∂ξ

)
f

]
=Eν

[
∂

∂ξ
(Hnf )− ∂Hn

∂ξ
f

]
=Eν

[
∂Hn

∂ξ
f + Hn

∂f

∂ξ
− ∂Hn

∂ξ
f

]

=Eν

[
Hn

∂f

∂ξ

]
, (C8)

where we have used the recurrence relation,
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Hn+1 = ξHn − ∂Hn

∂ξ
, (C9)

for the Hermite polynomials.

Lemma C.2. For the standard normal measure, ν ∼N (0, 1),

Eν

[
Hn(ξ )f (ξ )

]=Eν

[
∂nf (ξ )

∂ξ n

]
, (C10)

where f (ξ ) is an n-fold differentiable function and is such that the expectations exist.

Proof. Repeatedly applying Lemma C.1,

Eν

[
Hnf

]=Eν

[
Hn−1

∂f

∂ξ

]
=Eν

[
Hn−2

∂2f

∂ξ 2

]
= · · · =Eν

[
H1

∂n−1f

∂ξ n−1

]
=Eν

[
H0

∂nf

∂ξ n

]
=Eν

[
∂nf

∂ξ n

]
, (C11)

yields the desired result.

Now consider any p ∈B2 expressed as p(ξ ) = c exp (− φ(ξ )). The coordinates are given by

αn = 〈hn, p〉 = 1√
n!Eν

[
∂nφ(ξ )

∂ξ n

]
(C12)

and hence

p(ξ ) =
∞⊕

n=1

αn · hn(ξ ) = exp

(
−

∞∑
n=1

1

n!Eν

[
∂nφ(ξ )

∂ξ n

]
Hn(ξ )

)
. (C13)

We can account for measures other than the standard normal density, say ν ∼N (μ, σ 2), by the well-
known reparameterization “trick,”

x =μ+ σξ , (C14)

which leads to

p(x) =
∞⊕

n=1

αn · hn

(
x −μ

σ

)
= exp

(
−

∞∑
n=1

σ n

n! Eν

[
∂nφ(x)

∂xn

]
Hn

(
x −μ

σ

))
. (C15)

It is instructive to rewrite this expression by replacing −φ with ln p giving

p(x) = exp

( ∞∑
n=1

σ n

n! Eν

[
∂n ln p(x)

∂xn

]
Hn

(
x −μ

σ

))
. (C16)

This is a Taylor-like expansion of p pivoting on a given mean μ and standard deviation σ .
Any subset of the basis functions {h1, h2, . . .} establishes a subspace of B2; however, as far as such

subspaces are concerned, it would be natural to choose an M-dimensional subspace H spanned by the
first M basis functions. As the basis is orthonormal, the Gram matrix is 〈h, h〉 = 1.

The Hermite functions can also be used to generate a basis for B2 on the domain RN , which we detail
in the next subsection.

C.2. Basis for RN

We can extend the results of the previous subsection to create a Hermite basis for B2 on RN . Let

η(ξ ) = 1√
n!

⎡
⎢⎢⎢⎢⎢⎣

H0(ξ )

H1(ξ )

...

HM(ξ )

⎤
⎥⎥⎥⎥⎥⎦ . (C17)
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Note that we have reintroduced H0(ξ ) because the basis will be created by all possible combinatorial
N-products of these functions, one for each variable in ξ ∈RN . However, we will have to exclude the
combination made up of only H0 because once again this function gives the zero vector of B2. We may
express this operation as a Kronecker product, that is,

η(ξ ) = C (η(ξ1) ⊗ η(ξ2) ⊗ · · · ⊗ η(ξN)) , (C18)

where C = [ 0 1 ] contains zero in the first column followed by the identity matrix; this removes the
offending function. Observe that CCT = 1. The basis is then

h(ξ ) = exp (−η(ξ )). (C19)

The total number of basis functions is (M + 1)N − 1.
This set of basis functions retains its orthonormality because

〈h(ξ ), h(ξ )〉 =Eν

[
(Cη(ξ1) ⊗ · · · ⊗ η(ξN)) (Cη(ξ1) ⊗ · · · ⊗ η(ξN))T

]
= CEν

[
η(ξ1)η(ξ1)

T ⊗ · · · ⊗ η(ξN)η(ξN)T
]

CT (C20)

by a property of the Kronecker product (Appendix A). Now

Eν

[
η(ξ1)η(ξ1)

T ⊗ · · · ⊗ η(ξN)η(ξN)T
]

=
∫ ∞

−∞
η(ξ1)η(ξ1)

Tν(ξ1) dξ1 ⊗ · · · ⊗
∫ ∞

−∞
η(ξN)η(ξN)Tν(ξN) dξN = 1(M+1)N×(M+1)N , (C21)

wherein each of the integrals expresses the orthonormality of the Hermite functions and results in an
(M + 1) × (M + 1) identity matrix. Hence

〈h(ξ ), h(ξ )〉 = C 1(M+1)N×(M+1)N CT = 1[(M+1)N−1]×[(M+1)N−1]. (C22)

To determine the coordinates of an arbitrary p ∈B2, we shall require the multivariate version of
Lemma 2:

Lemma C.3. For the standard normal measure, ν ∼N (0, 1),

Eν

[
Hn1 (ξ1)Hn2 (ξ2) · · · HnN (ξN)f (ξ )

]=Eν

[
∂n1+n2+···+nN f (ξ )

∂ξ
n1
1 ∂ξ

n2
2 · · · ∂ξ nN

N

]
, nk = 1, 2 · · · M. (C23)

where f : RN →R is nk-fold differentiable in ξk and is such that the expectations exist.

The proof relies on the use of Lemma 2 for each individual partial derivative; for example, with
respect to the variable ξ1,

Eν

[
Hn1 (ξ1)Hn2 (ξ2) · · · HnN (ξN)f (ξ )

]=Eν

[
Hn1−1(ξ1)Hn2 (ξ2) · · · HnN (ξN)

∂f (ξ )

∂ξ1

]
. (C24)

The product Hn1 (ξ2) · · · HnN (ξN) has no dependence on ξ1 and can therefore be treated as a constant.
Doing the same for all the other variables and for the indicated number of times leads to the stated
result.

We can streamline the notation by defining

∂ ξ =
[

1
∂

∂ξ

∂2

∂ξ 2
· · · ∂M

∂ξM

]
(C25)

and, as above,

∂ξ = C(∂ ξ1 ⊗ ∂ ξ2 ⊗ · · · ⊗ ∂ ξN ). (C26)

Using the measure ν =N (0, 1), then,

α = 〈h(ξ ), p(ξ )〉 =Eν[∂ξ p(ξ )] (C27)

are the coordinates of p(ξ ) ∈B2, truncated to however many basis functions we decide to keep.
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Appendix D. Multivariate Gaussians
D.1. Basis for multivariate Gaussians
Multivariate Gaussians are quintessentially important to statistics and estimation theory. Gaussians, as
traditionally defined with a positive-definite covariance matrix, do not in themselves form a subspace of
B2. We need to expand the set to include covariance matrices that are sign-indefinite. Let us accordingly
define an N-dimensional indefinite-Gaussian PDF as

p(x) = c exp

(
−1

2
(x − μ)T�−1(x − μ)

)
, (D1)

which has mean, μ, and symmetric covariance, �. The set of all N-dimensional, indefinite Gaussians is

G =
{

p(x) = c exp

(
−1

2
(x − μ)T�−1(x − μ)

) ∣∣∣∣μ ∈R
N , � ∈R

N×N , 0< c<∞
}

. (D2)

It is easy to show that G is in fact a subspace of B2 as the zero vector is contained therein (�−1 = O,
allowing that � → ∞) and the set is closed under vector addition and scalar multiplication.

To establish G as a Bayesian Hilbert space, we must have an appropriate measure, ν. In our case, we
choose the measure to also be a Gaussian, ν =N (μ, �) ∈ G. We may thus declare G to be a Bayesian
Hilbert space for a measure ν ∈ G. We will refer to the set of Gaussian PDFs with positive-definite
covariance, � > 0, as ↓G ⊂ G.

Several possibilities exist to parameterize Gaussians [11]. There are 1
2
N(N + 3) unique elements con-

tained in the mean and the symmetric covariance matrix on RN ; hence the dimension of G is 1
2
N(N + 3).

We shall construct our basis on a positive-definite choice of covariance � that we can decompose in
Cholesky fashion, that is, � = LLT . Now consider

γ 1(x) = L−1(x − μ), γ 2(x) =
√

1
2
DTD vech (L−1(x − μ)(x − μ)TL−T), (D3)

wherein vech (·) is the half-vectorization of its matrix argument and D is the associated duplication
matrix (see Appendix A). Note that γ 1 is an N × 1 column and γ 2 is an 1

2
N(N + 1) × 1 column. With a

little abuse of notation, we set the basis functions as

g(x) =
[

g1(x)

g2(x)

]
= exp

(
−
[
γ 1(x)

γ 2(x)

])
; (D4)

that is, the exponential is applied elementwise. We claim that g(x) is a basis for G.
It is instructive to show that g(x) spans G as well as serving as the proof that it is a basis. Consider

again the reparameterization “trick” given by

x = μ + Lξ (D5)

with ξ ∼N (0, 1). This renders (D4) as
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g(ξ ) =
[

g1(ξ )

g2(ξ )

]
= exp

(
−
[
γ 1(ξ )

γ 2(ξ )

])
= exp

⎛
⎝−

⎡
⎣ ξ√

1
2
DTD vech ξξ

T

⎤
⎦
⎞
⎠ . (D6)

A (normalized) linear combination of the basis functions can be written as

p(ξ ) = ↓exp
(−αT

1 γ 1(ξ ) − αT
2 γ 2(ξ )

)
. (D7)

Now

αT
1 γ 1 = αT

1 ξ . (D8)

Also, we can in general express the second set of coordinates as

α2 =
√

1
2
DTD vech S (D9)

for some symmetric S that can easily be reconstructed from α2. Hence

αT
2 γ 2 = 1

2
(vech S)TDTDvech ξξ

T = 1

2
(vec S)Tvec ξξ

T (D10)

given the identities vech A = D†vec A and DD†vec A = vec A, where D† is the Moore-Penrose inverse
of D (Appendix A). Moreover, the identity (vec A)Tvec b = tr AB leads to

αT
2 γ 2 = 1

2
tr
(
Sξξ

T)= 1

2
ξ

TSξ . (D11)

Then

p(x) = ↓exp

(
−αT

1 ξ − 1

2
ξ

TSξ

)
= ↓exp

(
−1

2

(
ξ + S−1α1)TS(ξ + S−1α1

))

= ↓exp

(
−1

2

(
x − (μ − LS−1α1)

)T L−TSL−1
(
x − (μ − LS−1α1)

))
. (D12)

This can represent any Gaussian distribution, where the mean is μ − LS−1α1 and the covariance LS−1LT .
Thus, g spans G. Furthermore, as the dimension of G is 1

2
N(N + 3), the number of functions in g, g is a

basis for G.
This basis is, in addition, orthonormal as can be proven in a straightforward fashion by using the

reparameterized form g(ξ ) and recognizing that the entries in γ 1(ξ ) are ξi and those in γ 2(ξ ) are either
ξiξj (i �= j) or ξ 2

i /
√

2. Hence, 〈g, g〉 = 1.
It can be shown that

α1 = 〈g1, p
〉= LT

Eν

[
∂φ(x)

∂xT

]
,

α2 = 〈g2, p
〉=√ 1

2
DTD vech

(
LT

Eν

[
∂2φ(x)

∂xT∂x

]
L
)

(D13)

are the coordinates for p(x) = ↓exp (− φ(x)) ∈ G. Another rendering of (D12) is
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p(x) = ↓exp

(
−(x − μ)T

Eν

[
∂φ(x)

∂xT

]
− 1

2
(x − μ)T

Eν

[
∂2φ(x)

∂xT∂x

]
(x − μ)

)
, (D14)

which also expresses the projection of a PDF in B2 onto G.

D.2. Coordinates of multivariate Gaussian projection
Let p(x) = c exp ( − φ(x)) ∈B2. Projecting onto G, the coordinates associated with basis functions
g1 are

α1 = 〈
g1, p

〉
= Eν

[
γ 1(x)φ(x)

]−Eν

[
γ 1(x)

]
Eν[φ(x)]

= Eν

[
L−1(x − μ)φ(x)

]−Eν

[
L−1(x − μ)

]︸ ︷︷ ︸
0

Eν[φ(x)] (D15)

= L−1� Eν

[
∂φ(x)

∂xT

]

= LT
Eν

[
∂φ(x)

∂xT

]
,

where we have employed Stein’s lemma [40] to go from the third line to the fourth. Taking the inner
product of these coefficients with the associated basis functions, we have

αT
1 γ 1(x) =Eν

[
∂φ(x)

∂xT

]T

LL−1(x − μ) =Eν

[
∂φ(x)

∂xT

]T

(x − μ). (D16)

The coordinates associated with basis functions g2 are

α2 = 〈
g2, p

〉
= Eν

[
γ 2(x)φ(x)

]−Eν

[
γ 2(x)

]
Eν[φ(x)]

= Eν

[√
1
2
DTDvech

(
L−1(x − μ)(x − μ)TL−T

)
φ(x)

]

−Eν

[√
1
2
DTDvech

(
L−1(x − μ)(x − μ)TL−T

)]
Eν[φ(x)] (D17)

=
√

1
2
DTDvech

(
L−1

(
Eν

[
(x − μ)(x − μ)Tφ(x)

]− �Eν[φ(x)]
)

L−T
)

=
√

1
2
DTDvech

(
L−1� Eν

[
∂2φ(x)

∂xT∂x

]
�L−T

)

=
√

1
2
DTDvech

(
LT

Eν

[
∂2φ(x)

∂xT∂x

]
L
)

,

where we have again used Stein’s lemma to go from the fourth line to the fifth, this time a double
application. Taking the inner product of these coefficients with the associated basis functions, we have
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αT
2 γ 2(x) = 1

2
vech

(
LT

Eν

[
∂2φ(x)

∂xT∂x

]
L
)T

DTD vech
(
L−1(x − μ)(x − μ)TL−T

)

= 1

2
vec

(
LT

Eν

[
∂2φ(x)

∂xT∂x

]
L
)T

D†T DTD︸ ︷︷ ︸
D

D†vec
(
L−1(x − μ)(x − μ)TL−T

)

= 1

2
vec

(
LT

Eν

[
∂2φ(x)

∂xT∂x

]
L
)T

DD†vec
(
L−1(x − μ)(x − μ)TL−T

)︸ ︷︷ ︸
use (A7) third line

= 1

2
vec

(
LT

Eν

[
∂2φ(x)

∂xT∂x

]
L
)T

vec
(
L−1(x − μ)(x − μ)TL−T

)
(D18)

= 1

2
tr
(

LT
Eν

[
∂2φ(x)

∂xT∂x

]
LL−1(x − μ)(x − μ)TL−T

)

= 1

2
tr
(

(x − μ)TL−TLT
Eν

[
∂2φ(x)

∂xT∂x

]
LL−1(x − μ)

)

= 1

2
(x − μ)T

Eν

[
∂2φ(x)

∂xT∂x

]
(x − μ).

Combining these, we have

↓proj
(G,ν)

p = ↓exp

(
−(x − μ)T

Eν

[
∂φ(x)

∂xT

]
− 1

2
(x − μ)T

Eν

[
∂2φ(x)

∂xT∂x

]
(x − μ)

)
(D19)

for the projection in terms of its Gaussian basis.

D.3. Gaussian information
We calculate here the information I contained in a multivariate Gaussian distribution, g(x) =
N (μ′, � ′) ∈ ↓G. We have

g(x) = ↓exp (−φ(x)) (D20)

with

φ(x) = 1

2

(
x − μ′)T

� ′−1
(
x − μ′) . (D21)

The measure is taken as ν =N (μ, �).
Using our orthonormal basis for G, the information in g is

I(g) = 1

2
‖g‖2 = 1

2
〈g, g〉 = 1

2
(αT

1 α1 + αT
2 α2), (D22)

where α1 and α2 are the coordinates. As

Eν

[
∂φ(x)

∂xT

]
= � ′−1(μ − μ′), Eν

[
∂2φ(x)

∂xT∂x

]
= � ′−1, (D23)

these coordinates are, by (D13),

α1 = LT� ′−1
(
μ − μ′) , α2 =

√
1
2
DTD D†vec

(
LT� ′−1L

)
. (D24)

Hence, from (D22),

I(g) = 1

2

((
μ − μ′)T

� ′−1�� ′−1
(
μ − μ′)+ 1

2
tr � ′−1�� ′−1�

)
, (D25)
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where the second term is a result of the fourth identity in (A1) and the third in (A7). It will, however, be
instructive to rewrite the terms as(

μ − μ′)T
� ′−1�� ′−1

(
μ − μ′)= μ′T � ′−1�� ′−1μ′ − 2μ′T � ′−1�

(
μT ⊗ 1

)
vec � ′−1

+ (vec � ′−1
)T
(μ ⊗ 1)�

(
μT ⊗ 1

)
vec � ′−1 (D26)

tr � ′−1�� ′−1� = (vec � ′−1
)T

(� ⊗ �) vec � ′−1, (D27)

with the help of the third and fourth identities in (A1). Now (D25) can be neatly expressed as

I(g) = 1

2

[
� ′−1μ′

vec � ′−1

]T [
� −�

(
μT ⊗ 1

)
− (μ ⊗ 1)� 1

2
(� ⊗ �)+ (μ ⊗ 1)�

(
μT ⊗ 1

)
] [

� ′−1μ′

vec � ′−1

]
. (D28)

This is the information contained in the Gaussian N (μ′, � ′) although it is conditioned by the choice
of measure N (μ, �) used to the define the inner product. Note that as � ′−1 tends to zero, indicating
a broadening of the distribution, the information also goes to zero. The expression (D28) can also be
interpreted as simply writing the information using a different basis associated with the so-called natural
parameters of a Gaussian [11].

Appendix E. Variational Inference Details
E.1. Fisher information matrix
This section reviews the Fisher information matrix (FIM) and shows that with respect to the coordinates
used in a given subspace it is simply the Gram matrix of the chosen basis.

Let q(x|θ ) ∈Q, a finite-dimensional subspace of B2 with basis B, depending on some parameter θ .
The Fisher information on θ with respect to the measure ν is defined to be the covariance of the score
[24], that is,

Iθ =Eν

[(
∂ ln q

∂θ
−Eν

[
∂ ln q

∂θ

])2
]

=Eν

[(
∂ ln q

∂θ

)2
]

−
(
Eν

[
∂ ln q

∂θ

])2

. (E1)

While our Fisher information may appear slightly unfamiliar, by taking the measure to be the density
ν = ↓q then Eq[∂ ln q/∂θ ] = 0 and we have the traditional version. We purposely delay setting ν = ↓q
to show the connection to Bayes space.

Take q to be expressed as a normalized linear combination of the basis functions bn, that is,

q(x|θ ) = ↓
⊕

n

αn(θ ) · bn. (E2)

The score is
∂ ln q

∂θ
= 1

q

∂q

∂θ
. (E3)

As q =∏n bαn
n /
∫ ∏

n bαn
n dx,

∂q

∂θ
= ∂

∂θ

( ∏
n bαn

n∫ ∏
n bαn

n dx

)

=
∑

m

(
∂αm

∂θ

)
ln bm

∏
n bαn

n∫ ∏
n bαn

n dx
−

∏
n bαn

n∫ ∏
n bαn

n dx

∑
m (∂αm/∂θ )

∫
ln bm

∏
n bαn

n∫ ∏
n bαn

n dx

= q
∑

m

(
∂αm

∂θ

)
( ln bm −Eq[ln bm]). (E4)
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Hence
∂ ln q

∂θ
=
∑

m

(
∂αm

∂θ

)
( ln bm −Eq[ln bm]). (E5)

Substituting (E5) into (E1) produces

Iθ =
∑

m

∑
n

(
∂αm

∂θ

)(
∂αn

∂θ

)
(Eν[ln bm ln bn] −Eν[ln bm]Eν[ln bn]) =

(
∂α

∂θ

)T

〈b, b〉
(
∂α

∂θ

)
. (E6)

The traditional Fisher information uses ↓q as the measure and we will indicate that explicitly with
a subscript on the inner product, for example, 〈b, b〉q. We also note that (E6) still holds in the event that
q is not normalized, owing to the nature of the inner product.

We mention for interest that the stochastic derivative of q(x|θ ) with respect to θ is
ðq

ðθ
=
⊕

m

(
∂αm

∂θ

)
· bm(x) (E7)

and so

Iθ =
(
∂α

∂θ

)T

〈b, b〉
(
∂α

∂θ

)
=
〈⊕

m

(
∂αm

∂θ

)
· bm,

⊕
n

(
∂αn

∂θ

)
· bn

〉
=
〈
ðq

ðθ
,
ðq

ðθ

〉
, (E8)

which makes the inner product expression of the Fisher information coordinate free.
For multiple parameters, θ1, θ2 . . . θK , the (m, n) entry in the Fisher information matrix (FIM) is

Iθ ,mn =Eν

[(
∂ ln q

∂θm

−Eν

[
∂ ln q

∂θm

]) (
∂ ln q

∂θn

−Eν

[
∂ ln q

∂θn

])]

=Eν

[
∂ ln q

∂θm

∂ ln q

∂θn

]
−Eν

[
∂ ln q

∂θm

]
Eν

[
∂ ln q

∂θn

]
(E9)

leading to

Iθ =
(
∂α

∂θ

)T

〈b, b〉
(
∂α

∂θ

)
. (E10)

We shall be particularly interested in the FIM with respect to the coordinates for a given basis, that is,
when θ = α. In this case, the FIM is simply the Gram matrix,

Iα = 〈b, b〉 . (E11)

When q is used as the measure, we shall write Iα = 〈b, b〉q.

E.2. Derivation of Eq. (36): Derivative of the measure in the inner product
We consider the inner product

〈p, q〉ν =Eν[ln p ln q] −Eν[ln p]Eν[ln q] (E12)

with

ν =
⊕

m

αm · bm. (E13)

We emphasize that here p and q are held fixed. The partial derivative with respect to αn is
∂

∂αn

〈p, q〉ν = ∂

∂αn

Eν[ln p ln q] −
(
∂

∂αn

Eν[ln p]

)
Eν[ln q] −Eν[ln p]

(
∂

∂αn

Eν[ln q]

)
. (E14)

In general,
∂

∂αn

Eν[ln r] =
∫

∂ν

∂αn

ln rdx =
∫
ν
∂ ln ν

∂αn

ln rdx =Eν

[
∂ ln ν

∂αn

ln r

]
. (E15)
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(This quantity may in fact alternatively be written as 〈bn, r〉ν .) The last two derivatives in (E14) are
accounted for; as for the first, replacing ln r with ln p ln q above, gives

∂

∂αn

Eν[ln p ln q] =Eν

[
∂ ln ν

∂αn

ln p ln q

]
. (E16)

Thus
∂

∂αn

〈p, q〉ν =Eν

[
∂ ln ν

∂αn

ln p ln q

]
−Eν

[
∂ ln ν

∂αn

ln p

]
Eν[ln q] −Eν[ln p]Eν

[
∂ ln ν

∂αn

ln q

]
. (E17)

Now we may rewrite this as
∂

∂αn

〈p, q〉ν =Eν

[
ln p ln q∂ ln ν/∂αn

]−Eν[ln p]Eν

[
ln q∂ ln ν/∂αn

]−Eν

[
∂ ln ν

∂αn

ln p

]
Eν[ln q]. (E18)

We recognize that q∂ ln ν/∂αn is not a PDF; however, the self-normalizing feature of the inner product
allows us to write

Eν

[
ln p ln q∂ ln ν/∂αn

]−Eν[ln p]Eν

[
ln q∂ ln ν/∂αn

]= 〈p, q∂ ln ν/∂αn
〉
ν
=
〈
p,
∂ ln ν

∂αn

· q

〉
ν

. (E19)

For the last term in (E18), we use (E5) yielding

Eν

[
∂ ln ν

∂αn

ln p

]
Eν[ln q] = (Eν[ln bn ln p] −Eν[ln bn]Eν[ln p])Eν[ln q] =Eν[ln q] 〈bn, p〉ν . (E20)

Finally then
∂

∂αn

〈p, q〉ν =
〈
p,
∂ ln ν

∂αn

· q

〉
ν

−Eν[ln q] 〈bn, p〉ν . (E21)

As the inner product is symmetric in its arguments, this is also
∂

∂αn

〈p, q〉ν = ∂

∂αn

〈q, p〉ν =
〈
q,
∂ ln ν

∂αn

· p

〉
ν

−Eν[ln p] 〈bn, q〉ν . (E22)

There is a caveat, however, in that we cannot transfer ∂ν/∂αn as the coefficient of p to that of q; this is
because the coefficient is a function of the domain variables of the PDFs. That transformation, though,
may be expressed as〈

q,
∂ ln ν

∂αn

· p

〉
ν

=
〈
p,
∂ ln ν

∂αn

· q

〉
ν

+Eν[ln p] 〈bn, q〉ν −Eν[ln q] 〈bn, p〉ν . (E23)

We have used the shorthand 〈p, q〉∂ν/∂αn to denote the derivative in (E21) as in (36).
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