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Abstract

Refinement techniques are being increasingly employed in all fields of animal research to try to ensure that the highest standards of
welfare are upheld. This review concerns one of the main emerging techniques for the assessment of welfare itself, namely the non-
invasive measurement of glucocorticoids (GCs) as indicators of stress. The paper is divided into three sections. The first discusses the
relationship between GCs and stress. The second section considers whether factors other than stress are linked to rises in GCs, eg
exercise, oestrus cycle and diet. The final part examines the reliability of the non-invasive techniques that measure GCs from samples
of saliva and faeces. Although it is important to take into account some caveats associated with the methodologies employed, it is
concluded, nevertheless, that these techniques can give accurate and reliable information regarding the welfare status of an individual
or group of animals without the procedures themselves causing any kind of distress to the subjects.
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Introduction

The assessment of welfare in animals is a developing field

of study with new methods being devised and tested. It is

now widely accepted that no single measure is sufficient

and that in order to achieve an accurate and robust evalua-

tion of the welfare of an animal a multifactorial approach

should be taken, entailing the use of both behavioural and

physiological parameters. Although there are many physio-

logical indicators of a body under stress that can be

measured non-invasively, it is usually not feasible to

measure them all due to financial and/or temporal

constraints. It is important, therefore, to determine which of

the options are the most reliable, appropriate and accurate

indicators of animal welfare.

It has been established for decades that stressful experiences

cause the synthesis and release of glucocorticoids (GCs)

(cortisol and/or corticosterone) from the adrenal gland

(Seyle 1935). Although there is no dispute over this physio-

logical event, the value of using levels of GCs in assessing

the welfare of animals is sometimes overlooked as it is

thought that these hormones are affected by too many other

factors to be reliable stress indicators. This omission is

especially unfortunate in the case of the non-invasive

assessments of salivary and faecal GCs that have clear

welfare benefits. The aim of this paper is to briefly discuss

the most commonly raised questions that cast doubt on the

validity of using GC levels to indicate animal stress; partic-

ularly measures from salivary and faecal samples.

Stress and glucocorticoids

When do stress parameters indicate poor welfare?

Stress is an integral part of all animals’ lives and the body

has developed many mechanisms to help it cope with both

psychological and physical stressors (see Broom & Johnson

2001 for review). Hormones, such as GCs linked to the

stress response, have beneficial and protective effects on the

body under normal conditions and are vital for the normal

functioning of the body on a day-to-day basis. Their

functions include the production of glucose for energy,

immune reactions and anti-inflammatory activity (Munck

et al 1984). Their importance is demonstrated by the fact

that the lack of these hormones, in conditions such as

Addison’s Disease, proves fatal, both in animals and man,

without appropriate treatment. However, the extensive or

prolonged production of GCs can cause wide-ranging and

deleterious effects on the psychological and physiological

health of animals, and in such cases the animals are said to

be suffering from stress.

The definition of stress is difficult and contentious since the

term is often used to indicate a whole range of symptoms

and levels of suffering. The medical definition of stress is

termed as “...reactions of the body to forces of a deleterious

nature… that tend to disturb its normal physiological equi-

librium” (Steadman’s Medical Dictionary 1995). However,

this is an oversimplification since disturbing homeostasis in

the body does not necessarily lead to adverse effects. To

clarify this point McEwen and Wingfield (2003) suggest the

use of new nomenclature for stress biology. They argue that
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the body’s ability to cope should be the ultimate factor in

deciding whether or not the animal is under ‘stress’ and that

the terms ‘allostasis’ (the maintenance of homeostasis

through change) and ‘allostatic overload’ (the state in which

energy requirements exceed the capacity of the animal to

replace that energy from environmental resources) should

be employed. Furthermore they suggest that only in the

latter of these cases should the term ‘stress’ be used. The

logic behind this is quite simple; if the body can react to a

stressor and retain homeostasis using reserves of biological

resources without impacting on other biological functions,

then the cost to the animal is minimal and using the term

‘stress’ to describe such events is confusing. However, if the

energy required cannot be met from body stores and other

biological functions (eg reproduction) need to be halted or

reduced in order to provide the necessary resources, the

persistence of this condition can be to the detriment of the

animals’ welfare. In this paper the term ‘stress’ is used only

when adverse welfare is predicted due to disruption to the

normal functioning of the animal.

The production of glucocorticoids

Stress activation of the different systems of the body

includes the stimulation of the hypothalamic-pituitary-

adrenal (HPA) axis. Initially this involves the synthesis of

corticotrophin releasing hormone (CRH) from many areas

of the brain (eg hypothalamus, amygdala, pre-frontal

cortex) which is then secreted from the neurosecretory cells

of the hypothalamus. This in turn stimulates the release of

adrenocorticotrophic hormone (ACTH) from the anterior

pituitary gland which acts directly on the cells of the zona

fasciculata in the adrenal cortex to produce the GCs. This is

all controlled by the GCs inhibiting ACTH and CRH

secretion through a series of negative feedback loops.

Do the actions of glucocorticoids differ in acute 
versus chronic stress?

In most circumstances the effects of chronic stress are more

likely to cause welfare problems than acute stress. Chronic

stress is of particular concern since it can have major dele-

terious effects on the general health of the animal. For

example, chronic stress can make the animal more prone to

infections due to its suppression of the immune system;

whereas acute stress actually enhances immune function

leading to protection against disease. In addition, long-term

elevation of GCs can have severe effects on the central

nervous system. While acute stress enhances the memory of

events that are potentially threatening to the organism,

chronic stress causes adaptive plasticity in the brain

whereby local neurotransmitters and systemic hormones

interact to produce structural as well as functional changes

(eg the suppression of ongoing neurogenesis in the dentate

gyrus and the remodelling of dendrites in the Ammon’s horn

[Erickson & Drevets 2003]). The cells of the hippocampus

are particularly responsive to GCs and high levels of these

hormones can selectively reduce GC receptors in this part of

the brain (Romero 2004) leading to dendritic atrophy. Such

remodelling can result in impairment of functions and mood

disorders (Beck et al 1994; Sapolsky 1996a). Chronic

stress is, therefore, more likely than acute stress to lead to

pathological conditions of major concern for studies of

animal welfare.

However, acute stress cannot be ignored because it may

cause major welfare problems depending on the severity

and timing of the event. For example, acute stress is known

to disrupt ovulation (Rivier & Vale 1984; Rivier et al 1986),

which could have major implications in animals that only

have a single oestrus event. Similarly an acute stressor in

pregnancy can cause spontaneous abortion or premature

parturition (Sapolsky et al 2000). The effect of an acute

stressor can also have long-term psychological effects on an

animal resulting in symptoms more classically associated

with chronic stress. For example, dogs wearing shock

collars exhibit stress-related behaviours that persist even

after removal, with animals continuing to show outward

signs of stress for long periods (presumably due to the

unpredictability of the painful stimulus [Polsky 1994;

Schilder & van der Borg 2004]). Confounding factors can

also mean that acute stress events lead to pathological

conditions. This is particularly apparent in animals with a

heightened immune system (eg fighting infection), which

are then subjected to an acute stressor. Laugero and

Moberg (2000) demonstrated that mice injected with

lipopolysaccharide (as a model of mild infection) and then

subjected to a restraint stress showed suppressed growth

and metabolic reduction to a far greater extent than either

stressor acting alone.

Since both acute and chronic stress can lead to adverse

effects and pathological conditions, the key to using GCs in

assessing welfare must lie in ensuring that repeated

sampling is used wherever possible; a single stand-alone

measure of a GC can be misleading. Repeated measures of

these hormones provide a more accurate assessment of

whether the welfare of the animal is being compromised.

How are the functions of glucocorticoids mediated
by different receptors?

GCs have two very different modes of action depending on

the types of receptor through which the effects are mediated

(Romero 2004). The receptors are located in the limbic

system of the brain. The immediate response of the body to

a stressor is via the Type-1 or mineralocorticoid receptors

(MR) that mediate the behavioural, sympathetic and HPA

response in the short term. The effects of GCs in this

instance are to directly stimulate and facilitate other systems

(eg catecholamines) associated with the coping mechanisms

of the body (eg cardiovascular system) in order to retain

homeostasis (de Kloet 2003). The MRs have a high affinity

for GCs and are found in relatively low numbers. Therefore

they become quickly saturated at peak circadian levels and

are not available in chronically stressed situations. In these

instances the GCs bind to the Type II or Glucorticoid

Receptors (GR). These have a lower affinity for GCs and

hence GCs will only bind to them when the MRs are fully

saturated. GRs are associated with the accepted effects of
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GCs that include mobilisation of energy resources, gluco-

neogenesis and the inhibition of inflammatory responses. In

addition GRs prepare the body for future stressful events by

mediating behavioural adaptations and promoting the

storage of energy (Sapolsky et al 2000). The balance

between these two types of systems is thought to be

essential for homeostasis and imbalance due to chronic

stress can have implications for health as well as adverse

effects on mental well-being (Romero 2004). In essence, if

only MRs are activated there is no likelihood of adverse

effects from GCs being released. Although the study of

receptor numbers and dynamics is not a practical consider-

ation in animal welfare studies, the activation of GRs can be

presumed when levels of GCs exceed those normally found

under basal conditions (Romero 2004). It is for this reason

that whenever GCs are being used as a research tool in the

measurement of stress, hormone basal levels are known for

the species (or, preferably, the individual) in question.

Are circadian rhythms of glucocorticoids important?

Like most hormones circulating in the body GCs are

produced in a circadian manner under basal conditions

(Fulkerson & Tang 1979; Cavigelli et al 2005). This

circadian rhythm is ACTH-dependent and is demonstrated

with peak levels pre- and post-wakening and a nadir imme-

diately prior to the main sleep period. In diurnally active

animals this translates as a peak early in the morning with a

plateau phase until a fall at night time; this pattern is thought

to be linked to gearing the body for action in the morning

with the drop at night time facilitating uninterrupted sleep.

This rhythm can be disrupted by chronically stressful condi-

tions or events (Fulkerson & Tang 1979). Stress-induced

changes to the rhythm normally manifest themselves

through a blunted morning peak and a higher plateau phase,

thus resulting in an overall flatter pattern. Alterations of this

kind have been demonstrated in both man and animals

suffering from chronic stress, for example post-traumatic

stress disorder (PTSD) in man (Yehuda et al 2005) and pigs

housed under barren conditions for prolonged periods (Ruis

et al 1997). Although short-term stress (eg transportation)

leads to an immediate increase in GCs it does not seem to

affect the overall pattern of circadian output (Becker et al

1985). Similarly, under basal conditions the GC circadian

rhythm remains relatively stable, although young and

adolescent animals can show a less robust rhythm (Ekkel

et al 1996).

Why should glucocorticoids be measured in 
preference to other stress-linked hormones?

Many hormones are linked to the stress response and all of

these have been investigated thoroughly. Stress has been

shown to be a huge factor in disease aetiology and it is for

this reason that much of the research that underpins stress

physiology has its origins in clinical studies. Cortisol is

routinely used in clinical evaluations and is medically

termed ‘the stress hormone’. The study of anxiety and

stress-related illnesses remains complex and relatively

poorly understood and is well beyond the scope of this

paper. However, the importance of GCs in relation to certain

depressive states does demonstrate the robust connection

these hormones have with the perception and response of

the body to stressful events even though they are by no

means the definitive indicators of these conditions. For

example, cortisol has been shown to be chronically elevated

in anxiety illnesses such as depression (eg Bakke et al 2004;

Tse 2004; van Praag 2004) and is also used as a measure of

post-traumatic stress disorder (Sher 2004). Moreover it has

been shown that very high levels of cortisol are present in

people who are suicidal (Westrin et al 1999) as well as in

individuals who rarely experience joy and pleasure (Vincent

1994; Messina et al 2003; Luby et al 2004). These findings

have considerable implications for the welfare of animals

that demonstrate high levels of these hormones. Learned

helplessness in animals is perhaps the closest correlate to

depressive states in humans and very high levels of GCs

have been found in animals suffering from this condition

(Gregory 2004).

Unlike other hormones associated with cardiovascular regu-

lation, such as adrenaline and endorphins, cortisol does not

seem to increase in many activities that would be deemed

pleasurable as opposed to stressful (Few 1974; Hawkes

1992; Esch & Stefano 2004); for example, sexual excite-

ment in humans has no influence on cortisol (Exton et al

1999) whereas levels decrease when we laugh (Berk et al

1988). Similarly what we would perceive to be pleasurable

experiences for animals, such as environmental enrichment

in capuchin monkeys (Boinski et al 1999) and the petting of

dogs (Hennessey et al 1998) have been shown to reduce the

GC response.

The fact that GCs are so closely linked to stressful events,

rather than being consistently produced in all energy height-

ened states, is, perhaps, not surprising when we consider the

action these hormones have on the body. GCs cause

catabolic production of glucose by breaking down muscle

protein, directing this energy resource towards the central

nervous system and simultaneously releasing fatty acids for

muscle use. This combination of actions is very energy

demanding and results in a cost that the body is not going to

pay unless absolutely necessary.

Are factors other than stress linked to rises in

glucocorticoids?

Are glucocorticoid levels affected by species 
differences?

Corticoids differ from species to species, not only in the

amount of circulating hormone but also in the type of GC,

ie whether it is predominately corticosterone (eg rats),

cortisol (eg man), or an equal mixture of both (eg pig).

Furthermore, as basal levels of GCs are seen to vary hugely

between species it precludes any direct species comparisons

(Schatz & Palme 2001; von der Ohe & Servheen 2002;

Meyer et al 2004). However, the fact that stressful events

increase GC levels is universal and has now been demon-

strated in every vertebrate genus (Klein 2000). The basal
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GC levels of a species need to be assessed before any meas-

urement or inference of stress can be made and stand-alone

time point samples cannot be compared between different

species. This, however, is analogous to most physiological

and behavioural parameters.

Are glucocorticoid levels affected by sex differences?

There have been relatively few studies that have investi-

gated gender differences in GC levels. The available data

however, suggest that over a range of species (eg monkey

[Tilbrook et al 2000], alligator [Medler & Lance 1998],

sheep [van Lier et al 2003], deer [Huber et al 2003] and

tortoise [Lance et al 2001]) only minor differences exist in

the basal levels of GC between males and females.

Similarly, many clinical studies of the stress response have

shown that the basal cortical levels of men and women do

not differ significantly (eg Kirschbaum et al 1999) although

women do tend to have slightly raised levels compared to

men. However, these clinical studies have found significant

sex differences in GCs when the body is challenged (eg

Klein et al 2000). ACTH challenges in women evoke larger

cortisol responses than in men (Silva et al 2002), and this

phenomenon has also been demonstrated in sheep (van Lier

et al 2003). This difference is probably linked to the positive

feedback effect that oestrogens have on the HPA axis (Coe

et al 1986). Oestrogens act positively on the anterior

pituitary gland by both stimulating ACTH production

directly and increasing the reactivity of the gland to CRH,

thereby stimulating GC production (Kitay 1963).

Interestingly, when specific stressors are implemented, men

and women are shown to offer differing responses based on

the type of stressor. For example, women show a signifi-

cantly greater cortisol response to social rejection stressors

(Kirschbaum et al 1992; Stroud et al 2002) while men show

larger responses to achievement challenges, such as mental

arithmetic (Stroud et al 2002). The differential GC response

to stress between men and women, therefore, seems to be

related to the perception of the stressor rather than the

stressor itself. Whether perception of stressors differs with

gender in animals is yet to be determined but it would

appear likely due to the differing social stressors that males

and females are exposed to. For example, males might show

a greater response to a conspecific challenge due to sexual

competition pressure (see Schaffner & French 2004)

whereas females may respond more to a predator’s call due

to their protective maternal instincts (see Blanchard et al

1998, Romero 2002). Studies have also shown that there are

sex differences in the ratios of GC metabolites in the urine

of women and men (Raven & Taylor 1996; Zimmer et al

2003) and in faecal samples of mice (Touma et al 2003;

Touma et al 2004).

As both sexes show increases in GCs to the same stressors

it is possible to use these hormones as indicators of

stressful events within mixed sex populations. However,

gender differences in the respective magnitudes of the GC

response to a given stressor should be borne in mind when

analysing data; and separating the sexes will aid interpre-

tation of the results.

Are glucocorticoids affected by oestrus cycle and
reproduction?

By tradition many laboratory studies of endocrine stress

responses have used only males to ensure that oestrus

cycling could not be a confounding factor in the results.

However several studies have found that the oestrus cycle

seemingly has little affect on GC levels in a variety of

species that includes tortoises (Ott et al 2000), sheep

(Orihuela et al 2002) and hyenas (van Jaarsveld & Skinner

1992) under both basal and stressful conditions.

Nevertheless, as already stated, there is a physiological link

between oestrogens and GCs and in some cases the interac-

tion between these hormones can have an effect on the

resulting GC levels, particularly if oestrogen levels are high

(Cavigelli et al 2003). Therefore, caution must be exercised

when GCs are measured in cycling females even though it

is, by no means, an impossible task.

Pregnant animals are an altogether different matter.

Increases in the level of GCs are directly linked with

increases in oestrogen levels during gestation, probably as a

direct result of the positive effect of high levels of oestro-

gens on the HPA axis (eg Coe et al 1986; Stavisky et al

2001) and the release of CRH from the placenta (McLean &

Smith 1999). This relationship is particularly robust, so

much so that some studies have attempted to use GC levels

as indicators of parturition (Hodges 1998; Sanson et al

2005). Thus GCs should never be used as indicators of

stress during the latter stages of gestation.

The influence of the onset of mating and associated behav-

iours on GC levels in females is unclear. Although Schmil

and Rissman (1999) found increases in GCs in conjunction

with sexual receptiveness in female musk shrews, on the

whole females show no changes in GC levels during or post

mating, and in the majority of species there is also no effect

prior to mating (eg Coe & Levine 1995; Strier et al 2003).

In contrast to this the majority of the evidence in males

suggests that the act of mating itself (eg Tamanini et al

1983; Howland et al 1985; Rabb et al 1989; Borg et al

1991; Colborn et al 1991; Levis et al 1995) and, in certain

species, the onset of mating seasons (eg Strier et al 2003;

Sands & Creel 2004) have positive effects on GC levels.

These GC increases in males may be attributed to increases

in aggression and conflict during mating periods and other

changes in the endocrine system associated with the mating

act. However, this theory is contradicted by one study in

which no changes in GCs were found in the silver fox after

mating although significant increases in testosterone and

oestradiol were detected (Osadchuk 1996). Hence, the use

of GCs as measures of external stressors in males during

mating periods may also prove inaccurate.

Are glucocorticoid levels affected by diet?

Diet is easily controlled in laboratory animals and tends to

be relatively consistent within, and often between, estab-

lishments. However, fluctuations are often seen in the diets

of farm, zoo and especially wild animals, and, although it’s

possible to document these variations in zoo, laboratory and
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farm animals, it is seldom possible for wild animals. It is

clearly important that the dietary effects on GCs are known

and taken into account. A number of studies have investi-

gated the effect that varying dietary content has on salivary

and serum GC levels. These have sought to cover a wide

range of nutritional factors and species of animal. These

include: increased chromium ions in fish (Sahin et al 1997)

and calf foods (Arthington et al 1997), increased lipid

(Lochmann et al 2002) and nucleotide content (Leonardi

et al 2003) in fish foods, increased dietary vitamin C in

turtles (Zhou et al 2003), high-fibre diets in pigs (Rushen

et al 1999), mineral content in the diets of hyenas (Dloniak

et al 2004), and high fat diets in humans (Venkatraman

et al 2001). Although all of these experimental manipula-

tions involved considerable changes to the animals’

dietary habits, not one of these studies revealed any

significant effect on the levels of GCs. It would,

therefore, appear that dietary changes that occur on a day-

to-day basis do not have a major impact on the basal or

stress levels of salivary or serum GCs.

Although dietary content does not markedly affect GC

levels, the general nutritional state of the animal can have a

considerable effect on the HPA axis. Clinical studies have

demonstrated that people on restricted diets do have higher

levels of GCs than normal (eg Hainer et al 2001; Anderson

et al 2002). The same trend has been noted in animals when

food resources are scarce (eg Abbott et al 2003; von der Ohe

et al 2004). Variation in food availability could also be the

underlying factor in studies that have found seasonal

variation in GC levels (see below). Lack of sufficient food

of an appropriate nature would be expected to increase GCs

for two main reasons: First, starvation would be perceived

as a large stressor from both a physiological and psycholog-

ical standpoint and second, as already stated, GCs are

needed to breakdown muscle protein to provide an energy

supply once fat and carbohydrate stores have been depleted.

Further possible effects of diet could be alterations to gut

transit time, directly affecting the time lag between a

stressful event and the presence of GCs in the faeces.

However, as faecal GC metabolites are generally used as a

measure of long term or chronic stress the fact that the lag

time differs in the region of a few hours is generally not

important (see later).

In summary, subtle changes in the day-to-day diet of both

free-living and captive animals are unlikely to affect levels

of GCs, but drastic changes in nutritional status leading to

starvation will have a significant effect on GC levels.

Are GC levels affected by seasonality?

This is a difficult question to answer because seasonality

has many diverse effects that are dependant on variables

such as availability of food, weather clemency, presence of

mating partners etc. Therefore in a study to investigate the

effects of seasonality per se it may be impossible to tease

out all the major factors that would have a direct effect on

GCs, or indeed on any other welfare measure for that matter.

For example, as already discussed, a severe lack of food can

increase GC levels and such conditions are far more likely

to show greater prevalence at certain times of the year

compared to others.

Seasonal differences in GC basal levels have been demon-

strated in animals with well-defined breeding seasons (eg

Romero 2002) (see later). Other studies, however, have

found no seasonal differences in basal GC levels across

seasons. For example, over-wintering and autumn and

spring migrations do not affect basal GC levels in sand-

pipers (O’Reilly & Wingfield 2003), although seasonal

differences were found in the stress response of GCs

when challenged.

When considering the effects of seasonality the real

question is not whether or not seasonality affects GC levels,

but whether different stressors are linked to different

seasons. A few studies have investigated specific factors

within different seasons rather than looking at seasonality as

a whole. Increases in GC levels were most closely associ-

ated with low ambient temperatures and adverse weather

conditions, such as snow (eg Romero 2000; Lanctot et al

2003). This would be expected since harsh environmental

factors will reduce food availability, increase the metabolic

stressors on the body and require catabolic production of

energy resources; thereby necessitating an increase in GCs.

In addition, different seasons in many species are likely to

be associated with specific mating periods, which will result

in altered effects on GC levels (eg Cooperman et al 2004)

(see later).

Seasonality involves many factors that could be detrimental

to welfare (Romero 2002) and, thus, measuring levels of

GCs could be a useful tool for assessing the welfare of

animals in differing seasons. However, if the welfare status

of the animals in question is being assessed for factors

extraneous to seasonality then it would be prudent to carry

out such work where environmental stressors are likely to

be few, for example, summer months with good food avail-

ability and ambient weather conditions.

Are GC levels affected by social status?

The establishment of social ranking within a group of

animals may involve conditions that are stressful. Often

determination of rank is decided through aggression and in

such situations both the victor and the loser are likely to

have experienced stress as a result (eg Abbot et al 2003;

Schaffner & French 2004). Elevated GCs have been associ-

ated with both social subordination (eg Cavigelli et al 2003)

and dominance (eg Correa et al 2003) especially in pack

animals such as dogs (Creel 2001) and wolves (Sands &

Creel 2004). Factors known to affect GC levels can also be

modified due to social status. For example, in periods of

low food availability nutritional deficits are far more likely

to occur in subordinate animals and, as a result, GC levels

would increase in these individuals. Muller and Wrangham

(2004) concluded that the differences in GC levels in a

group of chimpanzees were due to exposure to metabolic

stress rather than social rank per se. In cases where the

social ranking of the group is relatively stable, and hence

there are few challenges by subordinates, the levels of GCs

show no association with rank. This has been demonstrated
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in primates (eg Bercovitch & Clarke 1995; Stavisky et al

2001; Bercovitch & Ziegler 2002; Weingrill et al 2004;

Bergman et al 2005) and in other social animals, such as

Nile tilapia (Correa et al 2003) and the naked mole rat

(Clarke & Faulkes 1998). In summary the majority of

evidence suggests that social dominance is unlikely to have

a significant effect on GC levels; any differences due to

rank are more than likely to be relatively minor in compar-

ison to a true stress response.

Do GC levels increase with exercise?

It has been suggested that exercise is a variable that needs

to be considered when using GCs to assess the welfare of

free-running animals. As one of the main functions of GCs

is to break down proteins to synthesise glucose for energy,

it would seem logical for these hormones to be involved in

some way with the energy expenditure associated with

exercise. However, in experiments where the level of

exercise has been documented, significant increases of GCs

have only been seen to occur at extreme levels of exercise;

mild and moderate exercise seemingly having no effect on

GC levels (eg McCarthy et al 1992; Stupnicki & Obminski

1992; Duclos et al 1997; Del Corral et al 1999; Jacks et al

2002). Such studies indicate that if energy expenditure can

be met by fat mobilisation and carbohydrate stores then

there is no measurable increase in GCs. However, if these

stores are depleted and catabolism is required, as is seen

during prolonged and heavy exercise, then GC levels are

increased (eg Maestu et al 2003; Jurimae et al 2004;

Ratamess et al 2005). Extreme exercise is, in itself, a major

physiological stressor and, in such circumstances, the GCs

are, in effect, acting as stress markers. The fact that GCs are

raised only in exercise when catabolism is necessary is

demonstrated by the fact that high intensity exercise of short

duration (eg Volek et al 1997) and long duration exercise of

low intensity do not cause a significant increase in these

hormones (Kraemer et al 1989; Monnazzi et al 2002).

Are the non-invasive methods of measuring

GCs reliable?

Non-invasive measures of physiology and behaviour would

seem the ideal choice for assessing welfare both from a

practical and an ethical standpoint. Urinary GCs are used

relatively infrequently in contrast to salivary and faecal

measures, mainly due to the practical problems of collecting

this type of sample and the fact that the diuresis of the

sample needs to be taken into account. Hence this section of

the paper concentrates on salivary and faecal samples and

their associated benefits and problems.

Do salivary GC levels accurately reflect plasma 
levels?

A few studies have argued that salivary GCs are not consis-

tent with the GC levels measured in the plasma (Dorn &

Susman 1993; Anderson et al 1999; Wong et al 2004) and

have advocated the use of blood sampling to obtain GC

measures. However, apart from the obvious welfare issues,

there are other problems associated with measuring plasma

GC levels. Cortisol in the circulation exists principally

bound to cortisol-binding proteins (transcortins); only

approximately 10% of plasma cortisol is ever actually in the

‘free’ state and it is only whilst in this free state that cortisol

has any biological activity (eg Vining et al 1983). Most

ELISA (Enzyme-Linked Immunosorbent Assay) and RIA

(radioimmunoassay) techniques measure both the free and

the bound cortisol (eg Cooper et al 1989). Although the

ratio of free to bound cortisol remains constant under most

normal conditions, during times of stress the total cortisol

concentration increases and, as the binding proteins become

increasingly saturated, the proportion of the hormone in the

free form increases disproportionately to the total concen-

tration (Cook et al 1997). Therefore, when comparing basal

levels of plasma cortisol to those of an animal under stress

the true extent of the increase is not realised. In contrast

salivary cortisol is directly and accurately correlated with

the free fraction of cortisol (eg Riad-Fahmy et al 1982;

Aardal & Holm 1995). Cortisol enters the saliva mainly by

passive diffusion and, as the bound fraction of the hormone

is unable to cross the blood-saliva barrier due to its size,

only the free hormone enters the saliva. Antibodies have

been produced that will only recognise and measure the free

form of cortisol and these can be used effectively for plasma

measurement (Lewis et al 2003). The use of these anti-

bodies has confirmed that the level of the hormone in saliva

is a direct reflection of the free cortisol in plasma (Le Roux

et al 2002). Consequently, measurement of salivary cortisol

by ELISA or RIA is a direct reflection of the free, ie biolog-

ically active, hormone in the circulation. The clinical use of

salivary cortisol has been commonplace since the early

1980s and has gradually gained acceptance as both a

reliable ‘stress-marker’ and a diagnostic test of HPA

malfunction in humans (eg Guechot et al 1982). The level

of salivary GCs has, therefore, been shown to be an accurate

measure of circulating levels and the non-invasive methods

by which it can be measured have obvious practical and

welfare benefits (Morgan Jones 1996).

Although the use of saliva provides many benefits by

allowing the assessment of short-term stressors that may be

difficult with other non-invasive techniques (eg faecal

samples), there are some caveats attached to the use of this

technique. First, the influence of the circadian rhythm on

the levels of these hormones needs to be taken into account.

Where possible this can be overcome by limiting sampling

to the middle portion of the day (ie the plateau phase) and/or

by taking saliva samples as time-matched replicates and

controls. Second, although GCs in the saliva are inde-

pendent of salivary flow rate, the time lag that exists

between the appearance of GCs in the saliva after they have

been released into the bloodstream is subject to individual

variation (eg McCracken & Poland 1989; Shinkai et al

1993). This should not lead to any problems when one

source of potential stress is being investigated since

repeated sampling can be employed. However, it may pose

a problem if the animal is exposed to a chain of stressors
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and in such cases it may be necessary to introduce pilot

studies to determine lag times for each animal.

Are faecal GC levels reliable?

Particular sources of error and variability have been linked

with the measurement of faecal GC metabolites and these

include dietary effects on the gastrointestinal system and

possible time lag factors when collecting samples from the

wild. It has been suggested that dietary differences may

affect the pooling time of steroids and increase metabolite

variability (von der Ohe & Servheen 2002). While we

should be aware of this possibility it is unlikely to have a

major impact on the reliability of faecal measures. A

day–to–day change in dietary fibre may have a significant

effect on gastrointestinal time but, as faecal measurements

of GC metabolites tend to be part of long-term studies, a

change in the time lag of a few hours is unlikely to impact

on the accuracy of the final data.

Millspaugh and Washburn (2004) have suggested that

differences in faecal collection and storage time could

have a significant effect on the relative amounts of GC

metabolites measured in the faeces. Khan et al (2004)

found increases in GCs over time, whilst Terio et al (2002)

report decreases. Rather than storage time per se it may be

that the method of storage has an effect on the measure-

ment of faecal GCs; in particular the presence of water in

the sample enabling metabolic processes to occur. This is

demonstrated by fluctuations in GC levels occurring when

samples are desiccated in a solar oven (Terio et al 2002),

or when they are kept on ice for extended periods as

opposed to immersion in liquid nitrogen (Tempel &

Gutierrez 2004). Nevertheless, one of the main advantages

of using faecal steroid hormone metabolites is that they are

relatively inert, stable compounds. Studies have shown

that faecal measurements of GC metabolites are not

affected by: (i) time of day of faecal deposit, (ii) number

of deposits, (iii) time elapsed between collection and

analysis or freezing, (iv) time elapsed between deposition

and collection, (v) elution by different solvents, and

(vi) storage duration — with GC levels shown to be unaf-

fected after 40 days at ambient temperatures and 400 days

when frozen (eg Lynch et al 2003; Beehner & Whitten

2004; Mashburn & Atkinson 2004).

There may be a number of reasons for the variability found

in the literature. First, species differences can be important,

for example avian faecal samples contaminated with caecal

material can yield much higher GC levels and, in addition,

variability may be higher in bird species since the faeces

and urine are excreted together in a manner that changes

with species (eg Tempel & Gutierrez 2004; Goymann

2005). Second, samples tend to have large variations in

water content and hence they should be lypophilised where

possible. In addition, if wet samples are used and stopped

from metabolising with the use of ethanol, then the storage

of these samples for differing periods can affect the amount

of metabolites that are present and detected, leading to

another source of variation (Hunt & Wasser 2003) Third, the

faecal samples of some species may not be homogenous and

in such cases a sample should be taken from a homogenate

of the whole bolus (Palme 2005). Fourth, and probably most

importantly, is the significant effect of type of antibody and

assay. One confounding factor of GC assays is that the assay

measures metabolites rather than the whole hormone. It is,

therefore, conceivable that the recognition of smaller GC

metabolites by the antibody/assay could result in increases

in GCs over time rather than decreases. It is vitally

important that the antibody used is known to have a high

cross-reactivity with the major faecal metabolites. It is also

essential that if samples are not to be purified and separated

by High Performance Liquid Chromatography (HPLC)

(Palme 2005), then cross reactivity with other steroids and

their metabolites needs to be discounted. Ignoring these

factors has shown to result in high variability between

samples which, in turn, has lead to the measurement of

faecal GC metabolites receiving a bad press. It is essential,

therefore, that before embarking on any research involving

the measurement of faecal GCs the most appropriate

antibody and assay is carefully selected and/or validation

studies are carried out (see Wasser et al 2000; Mostl et al

2005; Palme 2005; Touma & Palme 2005). If this is done

then the technique is reliable and faecal GC metabolites

have now been validated over a large number of species

using both ACTH challenges (eg Mashburn & Atkinson

2004; Morrow et al 2002; Touma et al 2004; Young et al

2004) and radio-labelling studies (eg Graham & Brown

1997; Mohle et al 2002; Turner et al 2002; Rettenbacher

et al 2004; see also review by Palme et al 2005).

When faecal measurement of GC metabolites is carried out

by a suitable and validated technique it can be an incredibly

useful method with very few limiting factors. Faecal

sampling is relatively simple and can usually be conducted

without disturbing the subject and without interfering with

other welfare measures running in parallel, for example

behavioural assessment. As samples can be collected at

leisure rather than at the specific time they are deposited,

this technique has grown in favour particularly with zoo

practitioners (eg Talling et al 2002; Mashburn & Atkinson

2004; Shepherdson et al 2004) and wildlife scientists (eg

Armitage 1991; Teskey-Gerstl et al 2000; von der Ohe et al

2004; Gusset 2005).

Conclusions

The nature of the potential stressor needs to be taken into

account when deciding whether GCs should be measured in

saliva or faecal samples. In cases of chronic stress faecal

samples are normally more reliable as they negate possible

circadian effects and short-term stressors that could affect

the overall profile. On the other hand short-term or

immediate stressors are best investigated using salivary

samples since these can be time linked more reliably to the

stressor than faecal samples due to the variability in gut

transit time. However, it is often the case that the type of

sampling will be dictated by the species and/or the condi-

tions in which the animals are kept. For example it is

difficult to obtain saliva samples from a small animal like a

mouse or from a dangerous animal like a tiger, and it is
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difficult to gain faecal samples from animals like pigs that

are group housed under normal farming conditions.

One of the main advantages of using non-invasive

measures of GCs is the fact that carrying-out repeated

sampling need not be to the detriment of the animal, and,

in the case of faecal sampling, with very little, if any,

disturbance to their normal routine. A single stand-alone

measure of GC is not an accurate method to assess stress

or welfare. Sudden, ephemeral increases in these

hormones could be attributed to a number of factors many

of which would have very little impact on the welfare of

the animal. The use of non-invasive technology, particu-

larly faecal measures, not only allows many samples to be

taken without fear of compromising the animals’ welfare

but also yields as accurate a representation of the animals’

physiological status as possible.

The aim of this paper was to briefly discuss the factors most

often credited with rendering GC measures unreliable.

Some of these factors, such as starvation and exhaustion

only have significant effects in the type of extreme circum-

stances that would generally be accepted as stressors in

themselves. While others, such as species and/or gender,

also affect most other welfare measures, including behav-

ioural monitoring. Many factors influence behavioural and

physiological welfare parameters and it is the responsibility

of the investigator to minimise and be aware of such effects,

as opposed to ignoring certain methods and/or disregarding

results obtained through their use. In order to utilise any

welfare measure the more information available on the

lifestyle and experience of the individual animal the more

accurate the measure is likely to be. However, even if a

comprehensive data set is unavailable for a given animal

concerning details such as social rank, it does not neces-

sarily follow that welfare measures cannot be useful or

accurate, as long as care is taken over the interpretation of

any data gained. For example, in a recent study we investi-

gated feather plucking in parrots (Owen & Lane 2006),

behaviour usually ascribed to a stress response when all

other physical factors (eg mites) have been ruled out. Faecal

GC metabolites were compared between pet parrots

(residing in their own homes) that did and did not self-

feather pluck. There were significantly higher levels of

faecal GC metabolites in the feather plucking parrots

despite the fact that in this study diet, gender, housing,

reproductive status and general lifestyle could not be

controlled.

In conclusion, non-invasive GC measurement, especially

when used in conjunction with other parameters such as

behaviour, can give an accurate and important insight into

the welfare status of an individual or a group of animals

without the procedure itself causing any kind of distress or

detrimental effects. It is clear that the use of non-invasive

GCs should have a major place in animal welfare science.
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