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Abstract

The following theorem is proved. Let m, k and n be positive integers. There exists a number
η = η(m, k, n) depending only on m, k and n such that if G is any residually finite group satisfying
the condition that the product of any η commutators of the form [xm , y1, . . . , yk ] is of order dividing n,
then the verbal subgroup of G corresponding to the word w = [xm , y1, . . . , yk ] is locally finite.
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1. Introduction

One immediate corollary of the solution of the restricted Burnside problem is that
every residually finite group of finite exponent is locally finite. The solution of the
problem for nilpotent groups was obtained by Zelmanov in [30, 31]while the reduction
to the nilpotent case was carried out by Hall and Higman [11]. The reduction was
based on certain conjectures about finite simple groups that were later confirmed by
the classification.

The methods used in the solution happened to be very effective in treating other
problems in group theory. In [22] the methods were used to prove the following
theorem.

THEOREM 1.1. Let n be a prime power and G a residually finite group satisfying the
identity [x, y]n ≡ 1. Then G ′ is locally finite.

Note that in general a periodic residually finite group need not be locally finite.
The corresponding examples have been constructed in [2, 7–9, 28]. Moreover, if the
assumption that G is residually finite is dropped from the hypothesis of Theorem 1.1,
the derived group need not even be periodic. Deryabina and Kozhevnikov showed that
for sufficiently large odd integers n there exist groups G in which all commutators have
order dividing n such that G ′ has elements of infinite order [4]. This was also proved
independently by Adian [1]. Later Ivanov constructed similar examples for arbitrary
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sufficiently large integers n [14]. In view of Theorem 1.1 the following problem was
raised in [24].

PROBLEM 1.2. Let n be a positive integer andw a word. Assume that G is a residually
finite group such that any w-value in G has order dividing n. Does it follow that the
verbal subgroup w(G) is locally finite?

At present the following is known with respect to the above problem.

(1) If G is a residually finite group in which every product of 68 commutators has
order dividing n, then G ′ is locally finite [26].

(2) Ifw is a multilinear commutator and G is a residually finite group in which every
product of 896 w-values has order dividing n, then w(G) is locally finite [21].

(3) There exists s depending only on n and k such that if G is a residually finite
group in which every product of s values of the kth Engel word is of order
dividing n, then the verbal subgroup corresponding to the kth Engel word is
locally finite [27].

A word w is called a multilinear commutator if it has form of a multilinear Lie
monomial. In other terminology these words are called outer commutator words.
Particular examples of multilinear commutators are the familiar derived words and
the lower central words. An example of the commutator word which is not a
multilinear commutator is provided by Engel words. Recall that Engel words are
defined inductively by

[x, 0 y] = x, [x, k y] = [[x, k−1 y], y].

Until now the Engel words are the only nonmultilinear words for which reasonable
progress with respect to Problem 1.2 has been achieved.

The aim of the present paper is to give a similar treatment for the case where
w = [xm, y1, . . . , yk]. Theorem 6.2 in Section 6 says that there exists a number
η = η(m, k, n) depending only on m, k and n such that if G is any residually finite
group satisfying the condition that the product of any η commutators of the form
[xm, y1, . . . , yk] is of order dividing n, then the verbal subgroup of G corresponding
to the word w = [xm, y1, . . . , yk] is locally finite.

The general plan of the proof of the above result follows rather closely that of the
main results in [25, 27] and, loosely, the same plan that led to the solution of the
restricted Burnside problem.

2. Notation and preliminary results

We use the expression ‘{a, b, c, . . .}-bounded’ to mean ‘bounded from above
by some function depending only on a, b, c, . . .’. Throughout the paper m and k
stand for fixed positive integers. Having fixed m and k, w will denote the word
[xm, y1, . . . , yk]. Given a group G, an element g ∈ G will be called a w-value if
there exist x, y1, . . . , yk ∈ G such that g = [xm, y1, . . . , yk]. The symbol w j will
denote the word that is the product of j w-values. Thus, for example, the symbol w2
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will denote the word [xm
1 , y1, . . . , yk][xm

2 , z1, . . . , zk]. It is clear that if an element
of a group G is a wi -value, then it is also a w j -value for any i ≤ j . Therefore, for any
i ≤ j , the identity wn

j ≡ 1 implies the identity wn
i ≡ 1 in G. Obviously, the identity

wn
j ≡ 1 implies that allw-values have order dividing n, and this fact will be used freely

without being explicitly mentioned.
The well-known Schur’s theorem says that if the center Z(G) of a group G has

finite index m, then G ′ is finite and has m-bounded order. Mann showed that for finite
groups the following result of similar nature holds [18]: if G is a finite group such that
G/Z(G) has exponent m, then the exponent of G ′ is m-bounded. Lemma 2.2 below
is an easy extension of Mann’s theorem. As usual, the symbol Zk(G) denotes the kth
term of the upper central series of a group G.

LEMMA 2.1. Let G be a group such that |G/Zk(G)| = m. Then the order of γk+1(G)
is {k, m}-bounded.

PROOF. Since Zk(G) is the marginal subgroup of the word γk+1, from the condition
that |G/Zk(G)| = m one obtains that γk+1 takes at most mk+1 values in G. It now
follows from [3, Theorem 3.1] that the order of γk+1(G) is {m, k}-bounded. 2

LEMMA 2.2. There exists a {k, m}-bounded number e = e(k, m) such that if G is a
finite group with the property that G/Zk(G) has exponent m, then the exponent of
γk+1(G) divides e.

PROOF. In the case where k = 1 this is Mann’s theorem. Assume that k ≥ 2 and
use induction on k. Let Z = Z(G). By induction the image of γk(G) in G/Z has
bounded exponent. Therefore, by Mann’s theorem, the derived group of γk(G) has
bounded exponent and we can pass to the quotient G/[γk(G), γk(G)]. Hence, without
loss of generality, we assume that γk(G) is abelian. Therefore it is sufficient to
show that for every x1, . . . , xk, xk+1 ∈ G the commutator x = [x1, . . . , xk, xk+1] has
bounded order. We now can assume that G = 〈x1, . . . , xk, xk+1〉. Since G/Zk(G)
has exponent m, it follows from the solution of the restricted Burnside problem that
G/Zk(G) has bounded order. Now the result is immediate from the previous lemma. 2

It will be useful to remark that G/Zk(G) has exponent m if and only if G satisfies
the identity [xm, y1, . . . , yk] ≡ 1. Having fixed m and k, we write e for e(m, k) as in
Lemma 2.2.

PROPOSITION 2.3. Let p be a prime and q a p-power. There exists a number
µ= µ(m, k, q) depending only on m, k and q with the following property: if G is
a finite p-group generated by 2k elements, each of order dividing eq, and if G satisfies
the identity wq

µ ≡ 1, then γk+1(G) has exponent dividing eq.

PROOF. Let G be a finite p-group generated by 2k elements, each of order dividing eq .
Let W be the verbal subgroup of G corresponding to the word w. The quotient G/W
satisfies the identity [xm, y1, . . . , yk] ≡ 1 so, by Lemma 2.2, W is contained in a
normal subgroup S such that G/S is nilpotent of class at most k and S/W is of
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exponent dividing e. As the orders of the generators of G are bounded, it follows
that G/S has {m, k, q}-bounded order. Hence, the minimal number of generators
of S/W is {m, k, q}-bounded. By the solution of the restricted Burnside problem
we conclude that S/W has {m, k, q}-bounded order. Let r be the minimal number
of generators of W . It follows that the number r is {m, k, q}-bounded. Applying
Burnside’s basis theorem [12, Ch. III, Section 3, Theorem 15], we derive that W is
generated by r w-values b1, . . . , br , say. Any element of W ′ can be written in the
form [x1, b1] · · · [xr , br ] for suitable x1, . . . , xr ∈W [5, Lemma 1.23]. We now put
µ= qr + qr and assume that G satisfies the identity wq

µ ≡ 1. Since each one of the
commutators [xi , bi ] is a product of a w-value and of the inverse of a w-value and
since the inverse is the (q − 1)th power of a w-value, we conclude that any element of
W ′ is a product of at most qr w-values. As W/W ′ is generated by w-values and has
order at most qr , it follows that any element of W is a product of at most µ w-values.
In particular, the exponent of W is at most q , whence that of S is at most eq . It remains
to remark that γk+1(G)≤ S. 2

3. A result about finite p-groups

According to the solution of the restricted Burnside problem the order of any finite
r -generated group of exponent n is {r, n}-bounded. The goal of this section is to prove
the following related result.

PROPOSITION 3.1. Let µ= µ(m, k, q) be as in Proposition 2.3. Let l be a positive
integer and G a finite p-group generated by r elements a1, . . . , ar , each of order
dividing l. Suppose that G satisfies the identity wq

µ ≡ 1. Then the order of G is
{m, k, q, r, l}-bounded.

The proof of the above proposition is based on Lie methods in the spirit of
Zelmanov’s solution of the restricted Burnside problem. For the reader’s convenience
we collect some definitions and facts on Lie algebras associated with p-groups.

Let L be a Lie algebra over a field F. We use the left normed notation

[x1, x2, x3, . . . , xr ] = [· · · [[x1, x2], x3], . . . , xr ],

for all x1, x2, x3, . . . , xr ∈ L . An element y ∈ L is called ad-nilpotent if there exists
a positive integer r such that

[x, y, . . . , y︸ ︷︷ ︸
r

] = 0 for all x ∈ L .

If r is the least positive integer with the above property, then we say that y is ad-
nilpotent of index r .

If X ⊆ G is any subset of a group G, by a commutator in elements of X we mean
any element of G that could be obtained from elements of X by means of repeated
operation of commutation with an arbitrary system of brackets including the elements
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of X . In particular, the elements of X are viewed as commutators with the empty
system of brackets.

Let G be a finite p-group. The terms of the lower central series of G will be denoted
by γ j (G). Write

Di = Di (G)=
∏

j ·pk≥i

γ j (G)
pk
.

The subgroups Di form a central series of G known as the Zassenhaus–Jennings–
Lazard series (see [13, Ch. 8]). Set L(G)=

⊕
Di/Di+1. Then L(G) can naturally be

viewed as a Lie algebra over the field Fp with p elements. In fact L(G) even has the
structure of a restricted Lie algebra (Lie p-algebra), but we will treat it as just a Lie
algebra. We will denote by L p(G) the subalgebra of L(G) generated by D1/D2. Fix
a positive number c and assume that G is generated by a1, . . . , ar . Let ρ1, . . . , ρs

be the list of all commutators in a1, . . . , ar of weight at most c. Here s obviously is
{r, c}-bounded. The following lemma is implicit in Zelmanov [32, p. 71]. A detailed
proof can be found in [23, Proposition 2.11].

LEMMA 3.2. If L p(G) is nilpotent of class c then the group G can be written as a
product G = 〈ρ1〉〈ρ2〉 · · · 〈ρs〉 of cyclic subgroups generated by the ρ j .

Let x ∈ G and let i = i(x) be the largest integer such that x ∈ Di . We denote by x̃
the element x Di+1 ∈ L(G).

LEMMA 3.3 (Lazard [17]). For any x ∈ G we have (adx̃)p
= ad(x̃ p). In particular,

if xq
= 1 then x̃ is ad-nilpotent of index at most q.

Any group law that holds in G implies certain polynomial identity in the algebra
L p(G). In Wilson and Zelmanov [29, Theorem 1] one can find a description of an
effective algorithm allowing the polynomial identity to be written explicitly when the
group law is given. Thus, we have the following lemma.

LEMMA 3.4. Let G be a group satisfying an identity v ≡ 1. Then there exists a
nonzero Lie polynomial f whose form depends only on p and v such that the algebra
L p(G) satisfies the identity f ≡ 0.

In view of Lemma 3.2, it is important to have criteria for a Lie algebra to be nilpotent
of bounded class. The following result was proved in [16, Corollary of Theorem 4]
using a profound theorem of Zelmanov [32, III(0.4)].

THEOREM 3.5. Let L be a Lie algebra over Fp generated by r elements a1, . . . , ar .
Assume that L satisfies the identity f ≡ 0 and that each monomial in the generators
a1, . . . , ar is ad-nilpotent of index at most q. Then L is nilpotent of { f, r, q}-bounded
class.
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We are now in a position to prove Proposition 3.1.

PROOF OF PROPOSITION 3.1. Let W be the verbal subgroup of G corresponding to
the word w. The group G/W satisfies the identity [xm, y1, . . . , yk] ≡ 1. Therefore,
by Lemma 2.2, G/W is an extension of a group of exponent dividing e by a nilpotent
group of class at most k. The positive solution of the restricted Burnside problem now
allows us to conclude that G/W has {m, k, r, l}-bounded order. Hence, it is sufficient
to prove that the order of W is {m, k, q, r, l}-bounded. Proposition 2.3 tells us that if
x1, . . . , x2k ∈W are any elements of order dividing eq, then γk+1(〈x1, . . . , x2k〉) has
exponent dividing eq. Let

S = {[x1, . . . , xd ] : k + 1≤ d ≤ 2k; x1, . . . , xd ∈W ; xeq
1 = · · · = xeq

d = 1}.

It is clear that S consists of elements of order dividing eq . We will now show
that [x, y] ∈ S whenever x, y ∈ S. Suppose that x = [x1, . . . , xd ]. If d ≤ 2k − 1,
then we write [x, y] = [x1, . . . , xd , y], and this clearly belongs to S. If d = 2k, set
z = [x1, . . . , xk+1]. Now write [x, y] = [z, xk+2, . . . , x2k, y]. Written in this way,
the commutator has weight k + 1 with all entries of order dividing eq . Thus, in all
cases [x, y] ∈ S.

Let T = 〈S〉 be the subgroup of W generated by the set S. Since W is generated by
elements of order dividing q , it follows that γk+1(W )≤ T . We know that the index
of W in G is {m, k, r, l}-bounded. Therefore so is the minimal number of generators
of W . We conclude that the proof of the proposition will be complete once it is shown
that the order of T is {m, k, q, l, r}-bounded.

Note that if t is the minimal number of generators of T , then t is {m, k, q, l, r}-
bounded. Applying Burnside’s basis theorem, we derive that T is generated by some t
elements b1, . . . , bt ∈ S.

We know that the identity [xm, y1, . . . , yk]
q
≡ 1 holds in T , so it follows by

Lemma 3.4 that there exists a nonzero Lie polynomial f over Fp, whose form depends
only on m, k and q , such that the algebra L p(T ) satisfies the identity f ≡ 0.

Consider an arbitrary Lie monomial σ in the generators b̃1, . . . , b̃t of L p(T ) and
let ρ be the group commutator in b1, . . . , bt having the same arrangement of brackets
as σ . The definition of L p(T ) yields that either σ = 0 or σ = ρ̃. Since ρeq

= 1,
Lemma 3.3 implies that σ is ad-nilpotent of index at most eq. Theorem 3.5 now says
that L p(T ) is nilpotent of class depending only on m, k, t and q . Combining this with
Lemma 3.2, we conclude that there exists an {m, k, q, r, l}-bounded number s such
that T can be written as a product of at most s cyclic subgroups, each of order at
most eq. Therefore T is of order at most esqs , as required. 2

4. Bounding the Fitting height of a soluble group

Recall that the Fitting subgroup F(G) of G is the product of all normal nilpotent
subgroups of G. The Fitting series of G can be defined by the rules: F0(G)= 1,
F1(G)= F(G), Fi+1(G)/Fi (G)= F(G/Fi (G)) for i = 1, 2, . . . . If G is a finite
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soluble group, then the minimal number h = h(G) such that Fh(G)= G is called the
Fitting height of G. We will require the following proposition.

PROPOSITION 4.1. Let G be a finite group and x ∈ G. Suppose that every subgroup
of G that can be generated by four conjugates of x is soluble with Fitting height at
most h. Then x ∈ Fh(G).

Essentially, the above proposition is due to Flavell et al. [6]. A detailed proof can
be found in [21].

In the proof of Theorem 6.2 we need to consider subgroups of a finite soluble
group that can be generated by four w-values. Segal showed that every element
in the derived group of a finite soluble d-generated group is a product of at most
72d2

+ 46d commutators [20]. In a later paper Nikolov and Segal obtained a better
bound. Working through the proofs given in [19], one deduces that every element of
the derived group of a finite soluble d-generated group is a product of at most

min{d(6d2
+ 3d + 4), 8d(3d + 2)}

commutators. In the case where d = 4 this is 448.
A well-known corollary of the Hall–Higman theory says that the Fitting height of

any finite soluble group of exponent n is bounded in terms of the number of prime
divisors of n, counting multiplicities. We will denote the bound by h(n).

LEMMA 4.2. Let j and n be positive integers with the property that j ≥ 448n + n4.
Let G be a finite soluble group satisfying the identity wn

j ≡ 1. Then the Fitting height
of the verbal subgroup w(G) corresponding to the word w is at most h(n).

PROOF. Set h = h(n). It is sufficient to prove that anyw-value in G belongs to Fh(G).
Given a w-value v ∈ G, let H be the subgroup of G generated by four conjugates of
v. If H has Fitting height at most h then v ∈ Fh(G). Now we apply Proposition 4.1.

Let a1 be a w-value in G and a2, a3, a4 conjugates of a1. Put H = 〈a1, a2, a3, a4〉.
Since conjugates of a w-value are again w-values, each of the elements ai has order
dividing n. We know from [19] that every element of H ′ can be written as a product
of 448 commutators of the form [bi , ci ], where bi ∈ H and ci ∈ {a1, a2, a3, a4}. We
can write each of them as c(n−1)bi

i ci . So if x ∈ H ′ then x is a product of at most 448n
conjugates of ai . Since H/H ′ is generated by elements of order dividing n and the
order of H/H ′ is at most n4, it follows that any element of H is a product of at most
448n + n4 conjugates of ai . By the hypothesis any such product has order dividing n.
So H is of exponent n, whence h(H)≤ h. 2

COROLLARY 4.3. Under the hypothesis of Lemma 4.2, we have h(G)≤ h(n)+ h(m).

PROOF. Let W is the verbal subgroup of G corresponding to the word w. By
the previous lemma, h(W )≤ h(n). The quotient G = G/W satisfies the identity
[xm, y1, . . . , yk] ≡ 1. So G/Zk(G) has exponent m. The result follows. 2
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5. Bounding the order of a finite group

Following the terminology used by Hall and Higman [11] we call a finite group G
monolithic if it has a unique minimal normal subgroup which is nonabelian simple. In
the modern literature such groups are very often called ‘almost simple’.

PROPOSITION 5.1. Let j , j1 and n be positive integers with the property that j ≥
j1n + 1 and let G be a finite group satisfying the identity wn

j ≡ 1. Assume that G has
no nontrivial normal soluble subgroups. Then G possesses a normal subgroup L such
that L is residually monolithic and G/L residually belongs to the class of finite groups
satisfying an identity wn/p

j1
≡ 1 for some prime divisor p of n.

PROOF. Let M be a minimal normal subgroup of G. We know that M ∼= S1 × S2 ×

· · · × Sr , where S1, S2, . . . , Sr are isomorphic simple groups. The group G acts on M
by permuting the simple factors, so we obtain a representation of G by permutations
of the set {S1, S2, . . . , Sr }. Let L M be the kernel of the representation. Choose in
S1 a nontrivial element b of the form w1. This is possible because S1 is not soluble.
Let p be a prime divisor of the order of b. We want to show that G/L M satisfies the
identity wn/p

j1
≡ 1. Suppose that this is not true. Let q = pα be the largest power of

p dividing n. Since the identity wn/p
j1
≡ 1 does not hold in G/L M , there exists an

element a ∈ G of the form w j1 such that q divides the order of a modulo L M . Write
n = n1q and a1 = an1 . Then a1 is an element of the form w j1n1 that has order q and
permute regularly some q factors in {S1, S2, . . . , Sr }. With no loss of generality, we
will assume that S1 is one of those factors. Write

(ba1)
q
= bba1

−1
ba1
−2
· · · ba1 .

Since each of the elements ba1
−i

belongs to a different subgroup Si , the product
bba1

−1
ba1
−2
· · · ba1 has the same order as b. Thus, (ba1)

q has order divisible by p so
the order of ba1 is divisible by pα+1. However, ba1 is of the form w j so its order must
divide n. This contradiction shows that G/L M does indeed satisfy the identity
w

n/p
j1
≡ 1.

Now let L be the intersection of all the subgroups L M , where M ranges through the
minimal normal subgroups of G. The previous paragraph implies that the proof of the
proposition will be completed once it is shown that L is residually monolithic. If T is
the product of the minimal normal subgroups of G, it is clear that T is the product of
pairwise commuting simple groups S1, S2, . . . , St and that L is the intersection of the
normalizers of Si . Since G has no nontrivial normal soluble subgroups, it follows that
CG(T )= 1 and therefore any element of L induces a nontrivial automorphism of some
the Si . Let ρi be the natural homomorphism of L into the group of automorphisms
of Si . It is easy to see that the image of ρi is monolithic and that the intersection of the
kernels of all ρi is trivial. Hence, L is residually monolithic. 2

Let µ= µ(m, k, n) have the same meaning as in Proposition 2.3. Let us choose a
function η(x, y, z) defined for positive integers x, y, z with the following properties.
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[9] On verbal subgroups in residually finite groups 167

(1) η(x, y, z)≥ 448z + z4 for all x, y, z.
(2) η(x, y, z)≥ µ(x, y, z) whenever z is a prime power.
(3) η(x, y, z)≥ z · η(x, y, t)+ 1 for all x, y, z, t such that t is a proper divisor of z.

Such a function can be constructed using induction on z. Indeed, fix a pair of positive
integers x and y and define η(x, y, 1) to be the maximum of the numbers 449 and
µ(x, y, 1). Now suppose that η(x, y, z) is defined for all z ≤ n − 1. If n is a prime
power, put η(x, y, n)= µ(x, y, n). Otherwise, let M be the maximal value among
448n + n4 and n · η(x, y, t)+ 1, where t ranges through the set of all proper divisors
of n. Put η(x, y, n)= M . This can be done for any pair x and y, thus establishing the
existence of a function with the desired properties. Eventually, it will be shown that
the chosen function satisfies the hypothesis of Theorem 6.2.

PROPOSITION 5.2. Let m, k, n, l be positive integers and η = η(m, k, n). Let G
be a finite group satisfying the identity wn

η ≡ 1. Assume that G can be generated
by r elements g1, . . . , gr such that each gi and each commutator of the form [g, x],
where g ∈ {g1, . . . , gr } and x ∈ G, have order dividing l. Then the order of G is
{m, k, n, l, r}-bounded.

PROOF. If n = 1, G is a finite group satisfying [xm, y1, . . . , yk] ≡ 1. By Lemma 2.2,
there exists a number e = e(m, k) depending only on m and k with the property that G
has a normal subgroup N such that N is of exponent dividing e and G/N is a nilpotent
group of class at most k. It is easy to see that G/N has {m, k, n, l, r}-bounded order.
The minimal number of generators of N is bounded in terms of r and |G : N |. The
positive solution of the restricted Burnside problem allows us to conclude that |N | and,
therefore, |G| are {m, k, n, l, r}-bounded.

We will now use induction on n. The case n = 1 having been covered in the previous
paragraph, suppose that n ≥ 2 and that the proposition is true for groups satisfying an
identity wn/p

η(m,k,n/p) ≡ 1 for a prime divisor p of n. In other words, the induction
hypothesis is that there exists an {m, k, n, l, r}-bounded number N0 such that if G
is a finite group satisfying the identity wn/p

η(m,k,n/p) ≡ 1 that can be generated by r
elements g1, . . . , gr such that each gi and each commutator of the form [g, x] have
order dividing l, then |G| ≤ N0.

Suppose for a moment that G has no nontrivial normal soluble subgroups. Since
η(m, k, n)≥ n · η(m, k, n/p)+ 1, Proposition 5.1 tells us that G possesses a normal
subgroup L such that L is residually monolithic and G/L residually belongs to the
class of finite groups satisfying an identity wn/p

η(m,k,n/p) ≡ 1 for some prime divisor p
of n. It follows that G/L is residually of order at most N0. Since G/L is r -generated,
by [10, Theorem 7.2.9], the number of normal subgroups of index at most N0 in G/L is
{r, N0}-bounded. Therefore |G/L| is {m, k, n, l, r}-bounded. In particular, it follows
that L can be generated by t elements for some {m, k, n, l}-bounded number t .

A result of Jones [15] says that any infinite family of finite simple groups generates
the variety of all groups. It follows that up to isomorphism there exist only finitely
many monolithic groups satisfying the identity wn

η ≡ 1. Let N1 = N1(n, η) be the
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maximum of their orders. Then L is residually of order at most N1. Since L is
t-generated, the number of distinct normal subgroups of index at most N1 in L is
{t, N1}-bounded. Therefore L has {m, k, n, l, r}-bounded order. We conclude that
|G| is {m, k, n, l, r}-bounded.

Now let us drop the assumption that G has no nontrivial normal soluble subgroups.
Let S be the product of all normal soluble subgroups of G. The above paragraph
shows that G/S has {m, k, n, l, r}-bounded order. Since η(m, k, n)≥ 448n + n4, by
Corollary 4.3 the Fitting height of S is {m, k, n, l, r}-bounded. Let F = F(G) be the
Fitting subgroup of G. Using induction on the Fitting height of S, we assume that F
has {m, k, n, l, r}-bounded index in G.

Suppose first that F is central. In this case, |G : Z(G)| is {m, k, n, l, r}-bounded
and Schur’s theorem guarantees that so is |G ′|. Since G can be generated by r elements
of order dividing l, it follows that |G| is {m, k, n, l, r}-bounded.

If F is not central, consider the subgroup

N = 〈[g1, F], . . . , [gr , F]〉.

It is easy to see that N is normal in G. Applying the results of the previous paragraph
to the quotient G/N , it follows that |G : N | is {m, k, n, l, r}-bounded. We will show
that |N |, and therefore also |G|, are {m, k, n, l, r}-bounded.

We know that N can be generated by an {m, k, n, l, r}-bounded number of
elements. Let d be the minimal number of generators of N . Denote by π(N ) the
set of prime divisors of |N |. Since N is nilpotent, π(N ) consists of prime divisors
of l. Thus, it is sufficient to bound the order of the Sylow p-subgroup of N for every
prime p ∈ π(N ). Let P be the Sylow p-subgroup of N and write N = P × Op′(N ). If
y1, y2, . . . is the list of all elements of the form [gi , y], where 1≤ i ≤ r and y ∈ F , we
write b1, b2, . . . for the corresponding projections of y j in P . Then P = 〈b1, b2, . . .〉.
Since P is a finite d-generated p-group, Burnside’s basis theorem shows that P is
actually generated by d elements in the list b1, b2, . . . . By the hypothesis, the order
of each of these divides l. Let q be the maximal power of p dividing n. Since
η(m, k, n)≥ µ(m, k, q), by Proposition 3.1 we conclude that P has {m, k, n, l, r}-
bounded order. The proof is complete. 2

6. Main results

Recall that variety is a class of groups defined by equations. More precisely, if W
is a set of words in x1, x2, . . . , the class of all groups G such that W (G)= 1 is called
the variety determined by W . By a well-known theorem of Birkhoff, varieties are
precisely classes of groups closed with respect to taking quotients, subgroups and
Cartesian products of their members.

THEOREM 6.1. Let η = η(m, k, n) be as in Proposition 5.2. Let X denote the class of
all groups with the identity wn

η ≡ 1 and the verbal subgroup w(G) corresponding to
the word w locally finite. Then X is a variety.
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PROOF. It is easy to see that the class X is closed to taking subgroups and quotients
of its members. Hence, we only need to show that if D is a Cartesian product of
groups from X, then D ∈ X. Obviously, the identity wn

η ≡ 1 holds in D so it remains
only to show that the verbal subgroup W of D corresponding to the word w is locally
finite. Let S be any finite subset of W . Clearly one can find finitely many w-values
h1, . . . , hs ∈ D such that S ≤ 〈h1, . . . , hs〉 = H . Thus it is sufficient to prove that the
subgroup H is finite. The order of each hi divides n. Moreover, if h ∈ {h1, . . . , hs}

and x ∈ H , then each commutator of the form [h, x] is a product of at most n w-values.
It is clear from the choice of η that η(m, k, n)≥ n for any n ≥ 2. So the order of each
of the commutators divides n. Note that W is residually locally finite. If Q is any
locally finite quotient of W , by Proposition 5.2 the order of the image of H in Q is
finite and {m, k, n, s}-bounded, so it follows that this order actually does not depend
on Q. We conclude that H is finite, as required. 2

THEOREM 6.2. There exists a number η = η(m, k, n) depending only on m, k and n
such that if G is any residually finite group satisfying the condition that the product of
any η commutators of the form [xm, y1, . . . , yk] is of order dividing n, then the verbal
subgroup of G corresponding to the word w = [xm, y1, . . . , yk] is locally finite.

PROOF. Let X have the same meaning as in Theorem 6.1 and let G satisfy the
hypothesis of the theorem. Then G residually belongs to X. Now, Theorem 6.1 tells
us that X is a variety. It follows that actually G ∈ X, that is, the verbal subgroup of G
corresponding to the word w is locally finite. 2
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