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DECOMPOSITION OF A VON NEUMANN ALGEBRA
RELATIVE TO A*-~AUTOMORPHISM

by A. B. THAHEEM
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Let X be any real or complex Banach space. If T is a bounded linear operator on
X then denote by N(T) the null space of T and by R(T) the range space of T.

Now if X is finite dimensional and N(T)= N(T? then also R(T)= R(T?>.
Therefore X admits a direct sum decomposition

X=N(TY®DR().

Indeed it is easy to see that N(T) = N(T? implies that N(T)N R(T) = {0} and, using
dimension theory of finite dimensional spaces, that N(T) and R(T) span the whole
space (see, for example, (2, pp. 271-73)).

Now this result is no longer true when X is infinite dimensional. In fact, one
cannot even expect a weaker result that N(T)+ R(T) is dense in X. For instance, one
can find an injective operator whose range is not dense.

However, in the case of a *-automorphism on a von Neumann algebra we are able
to show:

Proposition 1. Let M be a von Neumann algebra and a a *-automorphism of M.
Then (N(a — 1)+ R(a — 1) is o-weakly dense in M.

Proof. Suppose that N(a — 1)+ R(a — 1) is not o-weakly dense. Then there is a
non-zero o-weakly continuous linear functional ¢ on M vanishing on N(a — 1) and
R(a —1). From the fact that ¢ vanishes on R(a—1) we have ¢(a(x)—x)=0 or
$(a(x)) = ¢p(x) for all xE M. So ¢ is a-invariant. Now let ¢ =|¢|U be the polar
decomposition of ¢ (see, e.g. (1, p.62)). Then by the uniqueness of the polar
decomposition, we must have that |¢| is also a-invariant and «(U)= U. Then
a(U*)= U* and as ¢ also vanishes on N(a — 1), we get

d(U*) =6 (UU*) =0.
Now UU* is the support projection of |¢| and therefore |¢| = 0 and hence ¢ = 0. This
contradiction proves the resuit.
Remark. Here also N(a — 1)N R(a — 1) ={0}. Indeed, let y = a(x)— x for some
x € M and (a — 1)(y) =0 so that a(y) = y, then

a(x)=y+x
al(x)=a(y)+a(x)=y+y+x=2y+x
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and by induction a”(x) = ny + x for all integers n = 1. But then

nllyll = inyll = lla™ Cx) = x| <l o) + [l x|
< 2x]|

so that nl|y[| < 2|lx| for all positive integers. This implies that [y = 0 and hence y = 0.
Note that we only used here that |la|| <1, so this result appears to be true for any
contraction on a Banach space. We now come to the following.

Theorem 2. The smallest weakly closed subalgebra M, containing R(a —1) is a
two-sided ideal, invariant under «. If e is the central projection in M such that
M,= Me, and if f =1~ e, then f is the largest projection such that a(fx) = fx for all
xEM.

Proof. We first remark that xy and yx € R(a-—1) for all x€ N(a—1) and
y €E R(a —1). Now any element in the algebra generated by R(a —1) is a linear
combination of products of elements in R(a — 1) so that still xy and yx belong to the
algebra generated by R(a — 1) for all x & N(a —1) and y in the algebra generated by
R(a —1). By continuity also xy, yx € M, for all x € N(a — 1) and y € M,. Obviously
this is true for all x € R(a — 1) and hence for all x € N(a — 1)+ R(a — 1). Then again
by continuity this is true for all x € M.

As R(a —1) is invariant under a so is M, Therefore a(e)=e¢ and a(f)=f.
Moreover as R(a — 1)C M, = Me, we will have f(a(x)—x)=0 for all x € M, and as
a(f) =f, we get

a(fx)=fxfor xe M.

On the other hand let f, be a projection such that a(f,x) = fx for all x € M. Then this
is true for x =1, so that a(f,) = f, and f,(a(x)) = fix or fi(a(x)—x) =0 for all x € M.
Then f,y =0 for all y € M,, in particular fie =0 and hence f, < f. This completes the
proof of the theorem.
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