DECOMPOSITION OF A VON NEUMANN ALGEBRA RELATIVE TO A*-AUTOMORPHISM

by A. B. THAHEEM (Received 17th May 1977)

Let X be any real or complex Banach space. If T is a bounded linear operator on X then denote by N(T) the null space of T and by R(T) the range space of T.

Now if X is finite dimensional and $N(T) = N(T^2)$ then also $R(T) = R(T^2)$. Therefore X admits a direct sum decomposition

$$X = N(T) \oplus R(T)$$
.

Indeed it is easy to see that $N(T) = N(T^2)$ implies that $N(T) \cap R(T) = \{0\}$ and, using dimension theory of finite dimensional spaces, that N(T) and R(T) span the whole space (see, for example, (2, pp. 271-73)).

Now this result is no longer true when X is infinite dimensional. In fact, one cannot even expect a weaker result that N(T) + R(T) is dense in X. For instance, one can find an injective operator whose range is not dense.

However, in the case of a *-automorphism on a von Neumann algebra we are able to show:

Proposition 1. Let M be a von Neumann algebra and α a *-automorphism of M. Then $(N(\alpha - 1) + R(\alpha - 1))$ is σ -weakly dense in M.

Proof. Suppose that $N(\alpha-1)+R(\alpha-1)$ is not σ -weakly dense. Then there is a non-zero σ -weakly continuous linear functional ϕ on M vanishing on $N(\alpha-1)$ and $R(\alpha-1)$. From the fact that ϕ vanishes on $R(\alpha-1)$ we have $\phi(\alpha(x)-x)=0$ or $\phi(\alpha(x))=\phi(x)$ for all $x\in M$. So ϕ is α -invariant. Now let $\phi=|\phi|U$ be the polar decomposition of ϕ (see, e.g. (1, p. 62)). Then by the uniqueness of the polar decomposition, we must have that $|\phi|$ is also α -invariant and $\alpha(U)=U$. Then $\alpha(U^*)=U^*$ and as ϕ also vanishes on $N(\alpha-1)$, we get

$$\phi(U^*) = |\phi|(UU^*) = 0.$$

Now UU^* is the support projection of $|\phi|$ and therefore $|\phi| = 0$ and hence $\phi = 0$. This contradiction proves the result.

Remark. Here also $N(\alpha - 1) \cap R(\alpha - 1) = \{0\}$. Indeed, let $y = \alpha(x) - x$ for some $x \in M$ and $(\alpha - 1)(y) = 0$ so that $\alpha(y) = y$, then

$$\alpha(x) = y + x$$

$$\alpha^{2}(x) = \alpha(y) + \alpha(x) = y + y + x = 2y + x$$

and by induction $\alpha^n(x) = ny + x$ for all integers $n \ge 1$. But then

$$|n||y|| = ||ny|| = ||\alpha^n(x) - x|| \le ||\alpha^n(x)|| + ||x||| \le 2||x|||$$

so that $n||y|| \le 2||x||$ for all positive integers. This implies that ||y|| = 0 and hence y = 0. Note that we only used here that $||\alpha|| \le 1$, so this result appears to be true for any contraction on a Banach space. We now come to the following.

Theorem 2. The smallest weakly closed subalgebra M_1 containing $R(\alpha - 1)$ is a two-sided ideal, invariant under α . If e is the central projection in M such that $M_1 = Me$, and if f = 1 - e, then f is the largest projection such that $\alpha(fx) = fx$ for all $x \in M$.

Proof. We first remark that xy and $yx \in R(\alpha - 1)$ for all $x \in N(\alpha - 1)$ and $y \in R(\alpha - 1)$. Now any element in the algebra generated by $R(\alpha - 1)$ is a linear combination of products of elements in $R(\alpha - 1)$ so that still xy and yx belong to the algebra generated by $R(\alpha - 1)$ for all $x \in N(\alpha - 1)$ and y in the algebra generated by $R(\alpha - 1)$. By continuity also xy, $yx \in M_1$ for all $x \in N(\alpha - 1)$ and $y \in M_1$. Obviously this is true for all $x \in R(\alpha - 1)$ and hence for all $x \in N(\alpha - 1) + R(\alpha - 1)$. Then again by continuity this is true for all $x \in M$.

As $R(\alpha-1)$ is invariant under α so is M_1 . Therefore $\alpha(e)=e$ and $\alpha(f)=f$. Moreover as $R(\alpha-1)\subseteq M_1=Me$, we will have $f(\alpha(x)-x)=0$ for all $x\in M$, and as $\alpha(f)=f$, we get

$$\alpha(fx) = fx \text{ for } x \in M.$$

On the other hand let f_1 be a projection such that $\alpha(f_1x) = f_1x$ for all $x \in M$. Then this is true for x = 1, so that $\alpha(f_1) = f_1$ and $f_1(\alpha(x)) = f_1x$ or $f_1(\alpha(x) - x) = 0$ for all $x \in M$. Then $f_1y = 0$ for all $y \in M_1$, in particular $f_1e = 0$ and hence $f_1 \le f$. This completes the proof of the theorem.

Acknowledgement. I wish to express my sincere thanks to Professor A. Van Daele for his instructive guidance and many helpful discussions during my stay at the University of Leuven.

REFERENCES

- (1) J. DIXMIER, Les Algèbres d'opérateurs dans l'Espace Hilbertien (Gauthier-Villars, Paris, 2nd ed. 1969).
- (2) A. E. TAYLOR, Introduction to Functional Analysis (John Wiley & Sons, New York, Top con Co, Ltd. Tokyo, 1958).

Quaid-i-Azam University Islamabad Pakistan