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Abstract

We consider a dilute fully spin-polarized Fermi gas at positive temperature in dimensions d € {1,2,3}. We show
that the pressure of the interacting gas is bounded from below by that of the free gas plus, to leading order, an
explicit term of order adp2+2/ 4 where a is the p-wave scattering length of the repulsive interaction and p is the
particle density. The results are valid for a wide range of repulsive interactions, including that of a hard core, and
uniform in temperatures at most of the order of the Fermi temperature. A central ingredient in the proof is a rigorous
implementation of the fermionic cluster expansion of Gaudin, Gillespie and Ripka (Nucl. Phys. A, 176.2 (1971),
pp. 237-260).

1. Introduction

The study of dilute quantum gases [GPS08] has received much interest from the mathematical physics
community in the recent decades. In particular, much work has been done pertaining to the ground state
energies of both Fermi and Bose gases in the thermodynamic limit.

For Bose gases in 3 dimensions, the leading term of the ground state energy was first shown by Dyson
[Dys57] as an upper bound and by Lieb—Yngvason [LY98] as a lower bound. The leading term depends
only on the density and the s-wave scattering length of the interaction. More recently, the second order
correction, known as the Lee—-Huang—Yang correction, was shown [FS20; FS23; YY09]. Also, the
2-dimensional [FGJIMO24; LYO1] and 1-dimensional [Age23; ARS22] settings have been studied.

The fermionic setting has been similarly studied in the 3-dimensional [FGHP21; Gia23; Lau23;
[.S24a; 1.S24b; L.SS05], 2-dimensional [L.S24a; [.S24b; L.SSO5] and 1-dimensional [Age23; ARS22;
[.S24b] case. For fermions, the spin is important. For nonzero spin, the leading correction to the energy
of the free gas is similar to the leading term for bosons and depends only on the density and the
s-wave scattering length of the interaction. For fully spin-polarized (i.e., effectively spin-0) fermions,
the behavior is different. By the Pauli exclusion principle, the probability of two fermions of the same
spin being close enough to interact is suppressed. As such, the leading correction to the energy of the
free gas depends on the p-wave scattering length of the interaction instead and is much smaller for dilute
gases, which makes its analysis significantly harder.

A natural question to consider is the extension of these results on the ground state energy to positive
temperature. This has been done both for bosons [DMS20; HHNST23; MS20; Sei08; Yin10] and nonzero
spin fermions [Sei06]. In this paper, we consider the extension for fully spin-polarized fermions. More
precisely, we consider the problem of finding the pressure ¢ (8, ) at positive temperature 7 = 1/8 and
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2 A. B. Lauritsen and R. Seiringer

chemical potential u in the setting of a spin-polarized Fermi gas. We are interested in the dilute limit
a%p < 1, where a denotes the p-wave scattering length of the interaction and p denotes the particle
density. In this dilute limit, we show the lower bound in dimensions d € {1,2, 3}

W(B, 1) = o(B, ) — ca(Br)a’p*™ (1 +0(1))  asa’p — 0,

for an explicit (temperature dependent) coefficient ¢ ;(Bu). Here, i, respectively ¢g, denotes the pressure
of the interacting respectively noninteracting system at inverse temperature 5 and chemical potential u.

As discussed in more details in Remark 1.6 below, the term ¢ 4( ,B,u)ad52+2/ 4 arises naturally from the
two-body interaction and the fact that the two-body density vanishes quadratically for incident particles.
In the low-temperature limit Su — oo, the coeflicients c¢4(Bu) converge to the corresponding zero-
temperature constants [ARS22; [.S24a; .S24b]. The temperature dependence of this term can then be
understood via the temperature dependence of the two-particle density of the free state.

The result is valid for temperatures 7 at most of the order of the Fermi temperature Tr ~ ,62/ d of
the free gas. For larger temperatures, one should expect thermal effects to become larger than quantum
effects, and thus the gas should behave more like a (high temperature) classical gas. The natural
parameter capturing the temperature is the fugacity z = e . In terms of the fugacity, the constraint that
the temperature satisfies T < Tr reads z 2 1.

In contrast, for nonzero spin fermions, the pressure in the dilute limit is in 3 dimensions [Sei06]

W) = wo(B ) ~ 4n(1 = ¢ Jasp? (1 +0(1)  asalp -0,

with ¢ and ¢ the pressures of the interacting, respectively noninteracting, system, g > 2 the number
of spin sectors and ay the s-wave scattering length of the interaction. Notably, here the coefficient
4r(1 - g~") does not depend on the temperature.

Our method of proof is split in two cases depending on the temperature. For sufficiently small
temperatures, the result follows by a simple comparison to the zero-temperature setting and using the
result of [LS24b]. In the more interesting case of higher temperatures, our method of proof consists of
computing the pressure of a Jastrow-type trial state using a rigorous implementation [Lau23; .S24b]
(given in Lemma 4.4) of the fermionic cluster expansion of Gaudin—Gillespie-Ripka [GGR71]. (More
precisely in [Lau23; LS24b], we found conditions under which the formulas of [GGR71] are convergent.)
A similar method was employed in the zero-temperature setting [LLS24b], with the important difference
that, because of the smoothness of the momentum distribution, the condition for convergence we obtain
at positive (not too small) temperature is uniform in the volume (see Theorem 4.3). Thus, we can
compute the thermodynamic limit directly, without appealing to a box method of localizing a trial state
into large but finite boxes as done in [L.S24b].

1.1. Precise statement

To state our main theorem precisely, define the (spin-polarized) fermionic Fock space
F =, L2([0,L]9";C) = Py A" L([0, L]¢;C). On this space, we define the free Hamiltonian
‘H, the number operator A and interaction operator V as follows (in natural units where % =1)

n
H=(0,H,...,Hy,...), H,,:Z—ij,

j=1
N=(0,1,...,n,..),
V=(0,0,Va,...,Vp,...), V= > vlxi—x)).

1<i<j<n
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The interacting Hamiltonian is then H + V. In the calculations below, we will use periodic boundary
conditions for convenience. The pressure does not depend on the choice of boundary conditions [Rob71],
and hence, we are free to choose the most convenient ones. We are interested in determining the pressure
of the system described by this Hamiltonian at inverse temperature 8 and chemical potential u. We
denote this by

V(B = lim supPII],  ~L4PLI] = Ter[(H — N + V)T - ésm,
—co

where S(I") = —TrI'log I is the entropy of the state I and P[I'] is the pressure functional. By state
we mean a density matrix (i.e., a positive trace-class operator on JF of unit trace). (We suppress from
the notation the dependence on the dimension d and the length L.) We denote moreover by

0o(Bon) = lim sup Pol), ~LUPoLT] = Ter (W= wAOT] - %S(r)

the pressure and pressure functional of the free gas. The supremum is a maximum and is achieved for
the Gibbs state

I'=Z"'exp(-B(H - uN)) =Z "o, N, ..., T, ...), I =ePHne Pt (1.1)
Then [Hua87, Equation (8.63)]

1 1 1
Yo(B.p) = Lli_r)rgoﬁ[—Trf[(H - NI + ES(F)} = Lli_IBOWIOgZ
(12)

1
= ﬁ(z—)d/ IOg(l +€BM—B|k|2)dk.
T R4

To state our main theorem, we moreover define the p-wave scattering length a. (See also [LYOI,
Appendix A] and [SY?20, Equations (2.9), (4.3)].)

Definition 1.1 [L.S24b, Definitions 1.1, 1.9 and 1.11]. The p-wave scattering length a of the interaction
v in dimension d is defined by

caa® = inf{ / d(IVfo(X)IZ 1@ fo(2 e £ fo(w) — 1 for x| — oo},

where
127 d =3,
cq=134n d=2, (1.3)
2 d=1.

The minimizer fy is the p-wave scattering function. (If v(x) = +oo for some x [for instance if v has a
hard core, v(x) = +co for |x| < Rg], we interpret v(x) dx as a measure. We suppress from the notation
the dependence of @ and fj on the dimension d.)

The dimensionless parameter measuring the diluteness is then a%p, with p the particle density! (in
infinite volume) given by p = d,(B, u). We are interested in a dilute limit, meaning that a‘p < 1.

1For the sake of simplicity of notation, we assume that the derivative 8,4 (3, ) exists. The function ¢ (3, u) being convex
in u always has left and right derivatives. Should these not coincide, we can just replace instances of 8, (8, u) with either the
left or right derivative.
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Moreover, we are considering temperatures 7 < Tr ~ ,52/ d meaning that z > 1. As mentioned in the
introduction, small z corresponds to a (high-temperature) classical gas.
We shall prove the following theorem.

Theorem 1.2. Let v > 0 be radial and of compact support. If d = 1, assume moreover that
f(|é‘f0|2 + %vfoz) dx < oo. For any zo > 0, there exists ¢ > 0 such that ifadﬁo < ¢, then, uniformly in
7 = ePH > 7o, we have the lower bound

—Ligp+1(=2) 4 24274
(“Ligp(—zyra® Po 11+l

(B, 1) = vo(B,u) —2mcq

where py = 0,¢0(B, ) is the particle density of the free gas (in infinite volume), the constants cq are
defined in Equation (1.3) and

C(a3,50)1/39|10g a3,50|12/13 d=3,
|64l < {C(a’py) ' Plloga®py|® d =2, (1.4)
C(apy)""|log apy|'?” d=1.

Here, Li; denotes the polylogarithm. It satisfies [NIS, Equation 25.12.16]

) . 1 0 ts—l
~Liy(=¢) = F(s)/o e (1.5)

with I' the Gamma function.
We expect that the lower bound of Theorem 1.2 is, in fact, an equality (with a potentially different
bound on the error term). It remains an open problem to prove this.

Remark 1.3. For better comparison with the zero-temperature result in [LS24b], we find it convenient
to write the correction to the pressure of the free gas in terms of the particle density (of the free gas) p,.
The latter is given explicitly as

Py = Ligj(-2). (1.6)

1
@np)n
This follows from an elementary computation, which we give in Lemma 3.6 below.

To leading order p ~ p,, more precisely,

Corollary 1.4. Under the same assumptions as in Theorem 1.2, we have for the particle density?

ﬁ = aﬂlﬁ(ﬂ’ #)
P =po|1+0((a’py)'?)|.

We shall give the proof at the end of this section. In particular, the conditions of small a%p and of
small a?p,, are equivalent. Moreover, the error terms of Theorem 1.2 can equally well be written with
po replaced by p.

Remark 1.5. The additional assumption on v in dimension d = 1 is discussed in [LS24b, Remark 1.13].
If v is either smooth or has a hard core (meaning that v(x) = 4oo for |x| < ag for some ag > 0), this
assumption is satisfied.

Remark 1.6. The term of order adﬁ(2)+2/ d depends on the temperature. This is different from the setting
of spin-% fermions, where the analogous term (in 3 dimensions) is Zﬂaﬁ(z) [Sei06] uniformly in the

2Should the left and right derivatives of i (3, ) not coincide, the statement holds for either derivative.
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temperature. That the term of order a p2+2/ 4 should depend on the temperature may be heuristically

understood as follows: This term arises from the fact that the two-body density vanishes quadratically
for incident particles. The rate at which it vanishes depends on the exact state, and thus the temperature.
Concretely, the two-particle density of the free gas (in infinite volume) satisfies

- —Lig/41(=2) 52+2/d
(= Ligj2(=z))1+2/d70

721, 0) = =P [1+0(5) -l

where 0(53/ dlxl - x2|2) is understood as being bounded by Cﬁg/ d|x1 — x5|? uniformly. This follows

from an elementary computation, which we give in Lemma 3.6 below.
In the low-temperature limit z — oo, we recover the zero-temperature constants in the terms of order
d/_)2+2/ 4. The zero- temperature results read [L.S24b, Theorems 1.3, 1.10, 1.12]

e(Bo) < eo(Bo) + co.aame ™ [1+64],

with e(py), eo(p) denoting the ground state energy density of the interacting, respectively the free, gas

and
IZTH(67T2)2/3 d=3, a252/3 d=3,
co.q = {4n? d=2, 164l < {a®py|loga’po|* d=2, (1.8)
22 d=1, (apo) ¥/ d=1.

Indeed, we claim that

—Lig/241(=2)
(=Ligj(=2)) ¥/

To see this, write (following [Wo0092])

1 0 ts—l 1 X | X tS—l 0 ts—l
—Liy(—€¥) = dr = 57 dr - —dr dr
is(=¢") r(s)/0 Py r(s)[/o /0 o+ 1 +/ Py }
Xt 1 /x (x—uw)' = (x+u)’” 1 / (x +u)s!
TTGs+D) Tk Jo et 1 T oy e

s—2)

2mcy =coq+0((logz)™?) asz— co. 1.9)

where we changed variables ¢t = x + u. The middle and last integrals can easily be bounded as O (x
and O (x%e™), respectively. Thus,

- Li(-") = = Y oY, (1.10)

(s+1)
and Equation (1.9) follows.

Remark 1.7. The error bounds in Theorem 1.2 are uniform in z. They arise as the worst cases of two
types of bounds, one good for z ~ 1 and one good for z > 1. In particular, for concrete values of z, the
error bounds can be improved. See Propositions 1.8 and 1.9 below.

Finally, we give the following:

Proof of Corollary 1.4. Note that (83, u) is a convex function of u. Thus, we may bound its derivative
by any difference quotient. More precisely, for any & > 0, we have

W(,BUU +‘9) - ‘ﬁ(ﬁa #) )

&

= 6;1‘”(:& M) <
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Using the trivial upper bound ¢ (8, u + €) < ¥o(B, u + ) (which is a consequence of the assumed
non-negativity of the interaction potential v) and the lower bound of Theorem 1.2, we conclude that

5 < Yo(B, pu+&) —Yo(B, 1) N Cad—2+2/d -1
E

=Do +0(|0”¢0|£)+0( 5 2+2/d _1)

Using the explicit formula for p, = d,4¢ and optimizing in &, we get that p < py(1 + 0((a%py)'7?)).
For &£ < 0, the argument is analogous only the direction of the inequalities is reversed. O

1.2. Strategy of the proof

To prove Theorem 1.2, we distinguish two cases: that of a ‘low-temperature’ setting and that of a
‘high-temperature’ setting. For sufficiently small temperatures, we compare to the ground state energy
studied in [LLS24b]. For larger temperatures, we consider a specific trial state I'; of Jastrow-type (defined
in Equation (3.1) below) and compute the pressure functional evaluated on this trial state. For these
computations, we use a rigorous implementation [Lau23; [.S24b] of the formal cluster expansion of
Gaudin—Gillespie-Ripka [GGR71].

Temperature-dependent errors naturally arise as powers of £ := 1 + |logz|. We shall prove the
following propositions.

Proposition 1.8. Let v > 0 be radial and of compact support. If d = 1, assume moreover that
/(|¢9f0|2 + %vfoz) dx < co. Then for sufficiently small a®p, and large 7 = eP*, we have

—Lig/p41(-2) d522/d |

(= Lig/(—z))1+?/d 1+64], (1.11)

Y (B, 1) = vo(B,u) —2mcq

where py is the particle density of the free gas, c4 is defined in Equation (1.3) and
—2/3 S

apy +(a’pg)'? d=

[6al S qa p0|loga p0| +(a®py) ¢ d

Cr +(apg) ¢ d

’

3
2, (1.12)
1

Proposition 1.9. Let v > 0 be radial and of compact support. If d = 1, assume moreover that
f(|(9f0|2 + %vfoz) dx < oco. Then for 7 = ePH satisfying z 2 1, there exists a constant ¢ > 0 such

that if a%py < ¢ and adﬁogd/zilog adﬁo| < ¢, then

—Lig/2+1(-2) —2+2/d[
(= Ligp (= —g)yrara

(B, 1) = vo(B,p) —2mcq 1+64],

where py is the particle density of the free gas, c4 is defined in Equation (1.3) and

(@50)* 15 + (a5e) P llog @Bl + (a*B0) P log @B d =3,
164l < 1 (a*Pg)" /27172 + (a*pg)¢log a®Py| + (a*Pg)|log a®po . d=2, (1.13)
(apy)'/*[log apy|'’? + apy¢ 2 |log apo’ d=1.
Proposition 1.8 is a simple corollary of [[.S24b, Theorems 1.3, 1.10, 1.13], extending the result to small
positive temperatures. Proposition 1.9 is the main new result of this paper. Most of the rest of the paper

is concerned with the proof of Proposition 1.9. Theorem 1.2 is an immediate consequence:
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Proof of Theorem 1.2. We use the lower bound in Proposition 1.8 for

(a3,50)’20/39|10g a3/—)0|76/13 d=3,
£ > & = (a*py) " |log a®p,| /3 d=2,
(apo) ™ |log apy |7 d=1

and the lower bound in Proposition 1.9 otherwise. Theorem 1.2 follows. O

We note that for { ~ £y, the last of the summands in Equation (1.13) (in all dimensions) dominate
the error term in Proposition 1.9.

Remark 1.10. The proof of Proposition 1.9 uses the Gaudin—Gillespie—Ripka expansion. This expansion
consists of formulas for the normalization constant Z; (defined in Equation (3.1) below) and the reduced
densities of the state I’y ; see Theorem 4.3. Both Z; and the reduced densities are given as infinite series of
diagrams (defined in Definition 4.1). Using these formulas, the ‘smallest” diagrams give the corrections
of Proposition 1.9 and the remaining diagrams are error terms. To bound the error terms, we calculate
the values of (finitely many) ‘small’ diagrams and give crude bounds for all (infinitely many) ‘larger’
diagrams.

Remark 1.11. We expect that with the method presented here, one could improve the error bounds
in Proposition 1.9 (and consequently Theorem 1.2) slightly by treating more diagrams in the Gaudin—
Gillespie—Ripka expansion as small (i.e., calculating their values more precisely). See also [L.S24b,
Remark 1.8]. This is similar to what is done in [BCGOPS23; Lau23]. (In [BCGOPS23], the hard core
Bose gas is treated with a method similar to a cluster expansion. Using such an expansion to sufficiently
high order proves the bounds of [BCGOPS23].)

More precisely, we expect that by treating more diagrams as small, one could improve the bounds in
Proposition 1.9 to

(a3/—)0)6/15€v—3/5 d=3 i}
164] < 0|4 (a2py) 11212 d=2|+ O((adﬁo)_z/d(ad/_)og“d/zhog ad/_)0|) ) (1.14)
(apg)'*llogapo|'?  d =1

for any n. This would then propagate to better error terms in Theorem 1.2. More precisely, by using the
bound in Proposition 1.8 for { > ¢ and the bound in Proposition 1.9 with error improved as in Equation
(1.14) otherwise and optimising in ¢y, one would improve the error bound in Theorem 1.2 to

Cg(a350)1/3—8 d=3
|64l < § (a®p)'/? d=2,
0
apy)'*llogapy|'? d=1
(ap) “[logap

for any & > 0, where C. depends on ¢, by taking n sufficiently large in Equation (1.14).

The first terms in Equation (1.14) come from the precise evaluation of certain small diagrams. In
dimension d = 2,3, one should not expect to get better bounds than this using the method presented
here. In dimension d = 1, one might be able to do a more precise analysis (see Remark 5.6) and thus
improve the bound.

The proof of Proposition 1.8 will be given in Section 2. It is mostly independent of the rest of the
paper (Sections 3, 4 and 5), which is devoted to the proof of Proposition 1.9.

Structure of the paper:

First, in Section 2, we give the proof of Proposition 1.8. Then, in Section 3, we define the trial state
I'y and give some preliminary computations. Next, in Section 4, we compute reduced densities of the
trial state Iy using the (rigorous implementation of the) Gaudin—Gillespie—Ripka expansion. Finally,
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in Section 5, we calculate the individual terms in the pressure functional and prove Proposition 1.9. In
Appendix A, we show that I'; has particle density ~ py.

2. Low temperature

In this section, we prove Proposition 1.8 by comparing to the zero-temperature problem.

Proof of Proposition 1.8. The pressures i, Y (of the interacting and noninteracting gas, respectively)
are the Legendre transforms of the corresponding free energy densities ¢, ¢o. That is,

¥ (B, p) = suplpp — ¢(B.p)] = por — $(B. po)
P

2.1
Yo (B, 1) = sup[pu — ¢o(B. P)] = port — ¢o(B. o) @b
p

with p, the density of the free gas at chemical potential u and inverse temperature S, given in Equation
(1.6). We may trivially bound the free energy density by the ground state energy density e. The latter is
bounded from above in [LS24b, Theorems 1.3, 1.10 and 1.13]. That is,

$(B, Do) < e(By) < eo(Bo) + co.aapy ' [1+64], 2.2)

with eg(jpy) denoting the ground state energy density of the free gas and cg 4 and 64 as in Equation
(1.8). By a straightforward calculation, the ground state energy density of the free gas is

2/d 21d 2/d=1+2/d
po) =dn——|=| T(d/2)*p <.
e0(po) ”d+2(2) (d/2)p,

By Equations (1.2), (1.6) and (1.10), we have for large z = ePH (see also [Hua87, Equation (11.31)]),

|sd-1|r(d/2)
2(2m)d

—_1+2/d _Lid/2+1(_e'8’u)
= 471'p =
O (=Ligp(—ePr))l+2/d

wo(B, ) = 712 (= Ligjas1 (—€PH))

2 + =
Seo(o) + 05y (b)),

where |Sd_1| = 2(7rd/2

Ty 1S the area of the (d — 1)-sphere. Thus,

#0(B.Po) = Pott = wo(B.11) = eo+ 05y (B) ).

Combining this with Equations (2.1) and (2.2), we conclude the proof of Proposition 1.8. m]

The rest of the paper concerns the proof of Proposition 1.9. We start with some preliminary compu-
tations.

3. Preliminaries

To prove Proposition 1.9, we will consider a finite system on a cubic box of side length L with periodic
boundary conditions and bound ¢ (3, 1) from below by the pressure functional evaluated on the trial
state

Z (o]
Iy = FIF, F:@Fn, F, = [_] fxi—x)), 3.1)

J n=0 1<i<j<n
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where f is some cut-off and rescaled scattering function defined in Equation (3.2) below, where I is
defined in Equation (1.1), and where Z; is such that this is normalized with Tr I'; = 1. Concretely, on
the n-particle space, I’y acts via the kernel

Z3 Fu(X) D (X, Yo) F (V).

(Recall that I acts via the kernel Z~'T;,(X,,,Y,).) The function f is more precisely

1
6 = {i s fo(0) [k <b 32

x| = b,

where fy(x) is the p-wave scattering function defined in Definition 1.1 and b is a length to be chosen
later. We will choose a < b < Cp,, “1/4 Here and in the following, pg denotes the particle density of the
free gas in finite volume. In particular, for a? pg small enough, b is larger than the range of v and so f is
continuous (since fy(x) =1 — % for x outside the support of v).

Notation 3.1.

o We will denote expectation values of operators in the free state I" by (), and in the trial state Iy by
(-)s. That s, {(A), = Trr[AI'] and (A); = Trz[.Al;] for any operator .4 on F.

We denote g(x) = f(x)> - 1.

For any function A, we write h, = h;; = h(x; — x;) for an edge e = (i, j).

Moreover, we write y( ) = l.(;) = y(‘)(x,-;xj) for an edge e = (i, j), where y(!) is the 1-particle
density matrix of I deﬁned in Equation (3.4) below (see also Notation 3.3).

o We write X, = (x1,...,%,) and X[, u] = (Xp, ..., %) if n < m. If n > m, then X, ,,,) = @.

O O

o

Remark 3.2. The trial state Iy does not have (average) particle density py. However, we have that

JH ), = po(1+ 0@ 0 +.0((a po) ¢ oz a)?) ). (33)

This is not needed for the proof of Proposition 1.9, however. We give the proof of (3.3) in Appendix A.

We normalize g-particle density matrices of a general state I" = (I, I7,...) as

(q)(Xq,Y ) _Z

(n—q)'/ /r( »Xig+1.n: ¥g: Xige1.n) dX{ge1.n)- (3.4)

Notation 3.3. For the Gibbs state I' = (Z7'I, Z7 17, .. .) and the trial state I, we denote their ¢-
particle density matrices by y(? (X, Y,) = y(q) (Xq4:Y,) and 73‘]) (Xg:Yy) = yl(_q) (X4:Y,), respectively.
The same applies to the g-particle densities, being then denoted p4) and p(q)

The Gibbs state I” is quasi-free and particle preserving. Thus, by Wick’s rule (see [BR97, Section
5.2.4], [Soll4, Theorem 10.2]), we have for the g-particle density

P (Xg) =77 (X X)—det[ (1)]1<ij<q.

Moreover, by translation invariance, we have that y!) (x; y) is a function of x — y only. With a slight
abuse of notation, we then write

1 A o
Yy ==y =17 ) 7V e,

2
ke3£zd
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A simple calculation shows that (see [Hua87, Equation (8.65)])

zeBIkP Bu-BIk?

5 (k) = =
VR = o BRE T T P

For the proof of Proposition 1.9, we compute the pressure of the trial state I’;. We have

Y (B, 1) = limsup Ld [—(H —uN +V); + lS(FJ)]
L—oo L ﬁ
. (3.5)
AT

1 1
[‘(7'0] - uN), - 3 //V]zpﬁz) dxy dxa + BS(FJ) ,

where pf) is the two-body reduced density of the trial state I';. We calculate p&z) in Section 4 using the
Gaudin—Gillespie-Ripka expansion, and we compute the individual terms of Equation (3.5) in Section 5
below. First, however, we need some preliminary bounds.

3.1. Useful bounds

We recall some useful bounds on the scattering function (defined in Equation (3.2)) from [LS24b].

Lemma 3.4. The scattering function f satisfies

Calogh/a n=0
1= f(x)*|Ix|" dx < 3.6
/' f) ||x| * {Cadb" n>0 (3-6)
1
/(|Vf(x)|2 + Ev(x)f(x)2)|x|2dx - cdad(l + O(ad/bd))) G.7)
| Catd-2 n+d<2d+1
/(|Vf(x)|2 + Ev(x)f(x)2)|x|" dx <{Ca™¥2logh/a n+d=2d+2 (3.8)
Ca?dpn—a-2 n+d>2d+3
Ca?-! n=0
‘/ FOIVF)||x|"dx| < { Ca%logh/a n=1 3.9
Ca?p! n>2,

where cq is defined in Equation (1.3).

Proof. Equations (3.6), (3.7), (3.8) and (3.9) all follow from the definition of the scattering length,
Definition 1.1, and the bounds [LYO1, Lemma A.1; LS24b, Lemma 2.2]

P 1 v dat
T +Sf0(X)S ; IV fo(x)| < o x| > a,
where the left inequality in the first inequality is an equality for x outside the support of v. We refer to
[LS24b, Equations (4.1) to (4.6)] for a detailed proof. |

We will need the following technical lemma.
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Lemma 3.5. Let §(k) = zeBIkE Let P, n, m be non-negative integers with 1 < n < m. Then

1 k|73 (k)" 1 |k|P9 (k)" » e

Ld = dk +O|L u) 2

Lt ;Z, (30" ~ o Jaa T30 7 pmax{p", u}
s

+d

< Cmax{g ' u} 2

for z = eP* > 1 and L sufficiently large.

Note that 7(k) # 71 (k). In fact, 7V (k) = 255

Proof. We interpret the sum as a Riemann sum and compare it with its corresponding integral
1 k| (k)"

Iy nm = - k.
P (2m)d Jga (1+9(k)™

k1P (k)"

Writing Fp, y m (k) = T+ (k)™

then

1 kIPy()" 1 !
ﬁ Z (1+f}’;(k))m - (Zﬂ)d ke;ZdA'—Z,Z]d(Fp’n’M(k-kf) ‘/0' 8tFp,n,m(k"'l‘é:)dt df‘

ke2zzd

The first term is the integral I, ,, ;. For the second term, we may bound by direct computation (defining
Fpnm=0forp <0)
iatFp,n,m(k + lf)' < C|{:| [prl,n,m(k + té:) +18Fp+l,n,m(k + IE)]
< C|§|6CB|§||/€+§|+CB|§|2 [Fp—],n,m(k + 6) +ﬁFp+],n,m(k + g)]

That is, the second term is bounded by the integral

CL™ s / T PE 1 (K) + BFp o (K)) k.
R

Next, to bound the integral, we note that F, ,, ,,, < F/, 1,1. First, consider z > e (i.e., B > 1). Then we
bound

; Vi ® -
/ eCLBKIE, 1 1(k) dk < c/ eCL Pk prrdt gy +c/ eCL Bl gp+d= =B Um0 g
Rd 0 \V2u

prd “1p,1)2 _pd 0 2 “1p1)2 prd
<Cuz ST L op / (Prd=le PHCLTAT 4 < Cu'™2
VBu

for L sufficiently large.
Next, for z < e, we bound

/ eCLBKIE, 1 1(k) dk < c/weCL"f”kkP”‘lze—BkZ dk
R4 0

co
_ptd 1 —¢2 -1g1/2 _ptd
Scﬁ 2/ tp+dl€t+CLB tdtSCﬁ >
0

for L sufficiently large. The equality in the lemma follows. We may bound I, , ;, in a similar manner
and conclude the proof of the lemma. O

Finally, we have the following lemma for the reduced densities of the free state.
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Lemma 3.6. The reduced densities of the free Fermi gas satisfy

1
(4”)d/2

pM(x1) = po = ﬁ‘d/z(—Lid/z(—z»[l +0(L¢py |, (3.10)

—Lig+1(=2) -
(- Lig) Copafe — [+ 00y b - 0Py + 0L gy ).
— Llgn2\(—

pP(x1,x7) =27
3.11)

Equations (3.10) and (3.11) are the finite volume analogues of Equations (1.6) and (1.7).

Remark 3.7. Note that 8 ~ ¢ paz/ d, (Recall that £ = 1 + |log z|.) Indeed, for z < C, this is clear from
Equation (3.10). For z > 1, this follows from the asymptotics of the polylogarithm, Equation (1.10).

Moreover, if Su > 1, then y ~ p(2)/ 4 In particular then, Lemma 3.5 may be reformulated as

! k1P (k)" 1 |k|P e Bl .
= kGZZL”:Zd (1+3()m - L9 ke%zd (1 + zeBIKE)™ 0

for z > 1 and L sufficiently large. This is the form we will later use.

Proof. By translation invariance,

(N) 1
po="7 =15 | PV @ dr=p"(0).
Moreover, by Lemma 3.5,
1 PHBIkI?
PO=1 2 e
L 1 + eBr-Blk|
ke2zzd

1 -Blk|? d+l
/ ¢ dk+O(L_1ﬁmax{,B_l,,u} 2 )

T 2m? Jra 1+ ze PP
['(d/2)|s?-!
= %ﬁ_d/z(—ldid/z(—z))(l + O(L—lﬁmax{ﬁ_l"u}l/z))’

where |Sd_1| = Fz(,;i//zz) is the surface area of the (d — 1)-sphere. Using that max{,B_l, u} ~ p(z)/ d (which

follow from this equation for L sufficiently large; see Remark 3.7), we conclude the proof of Equation
(3.10).
Next, we consider the 2-particle density. By Wick’s rule, we have

p@ (x1,x2) = PP ()™ (x2) =y (x1322)y D (23 x1).

By translation invariance, ‘" (x1;x>) is a function of x; — x, only. We expand it as a Taylor series in
X1 — x3. By symmetry of reflection in any of the axes, all odd orders and all off-diagonal second order
terms vanish. Additionally, all second order terms are equal by the symmetry of permutation of the axes.
That is,
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1
D in) = = 3 7D (ke
k

1
=77 ““(k)[l - —|k| et =322 + O (k[ —xzr‘)]
k
L4 2451 2 1 4 () 4
=p0- 55 EZIkI () [ =2l +0( |5 D k19D (k) ||t — xal
k

(Here, O(|k|*|x; —x2|*) means a term that is bounded by |k|*|x| —x,|* uniformly in |k|*|x; — x2|*, even
if it is large.) For the first sum, we have by and Equation (3.10) (and writing the error term in terms of
Po as above)

2
1 RGP ze Pk ) 4/d
77 2 W =G |k ak+0(L7'zpy")

ke2zzd

r(d/2+ st )
:T‘Llﬁ dj2— 1( Lig/1 (- z))(1+0(L 0 l/d))

- —Lid/2+l(—Z) 142/d
(= Lig(—z))#2/a’o

(1 +0(L—1§p(;‘/d)).

Using again Lemma 3.5 to bound the second sum, we conclude that

—Lid/2+1(—2) p1+2/d
(= Ligja(=2))1+2/4"0

+0(L [p1+1/d|x1 - x| )+0( 1+4/dlxl —x2|4).

y W (x13x0) = po—7 b1 — xp|?

We conclude the proof of Equation (3.11). O

4. Gaudin-Gillespie-Ripka expansion

We use the Gaudin—Gillespie—Ripka (GGR) expansion [GGR71] to compute Z; and p(q) the g-particle
reduced densities of the trial state I';. For this, we recall some notation from [LS24b].

Definition 4.1 [L.S24b, Definition 3.1]. We define Qg as the set of graphs on g external vertices {1, ..., g}
and p internal vertices {g + 1, ..., ¢ + p} such that there are no edges between external vertices and such
that all internal vertices have degree at least 1 (i.e., there is at least one edge incident to each internal
vertex). We replace g and/or p with sets V* and V, respectively, and write Q“,/* if we need the external
and/or internal vertices to have definite indices V*, respectively V. Concretely, this means that for a set
of edges E C {{i,j} : 1 <i < j < g+ p}, the corresponding graph is in G}, if and only if

Vig+1<i<qg+p)a(1 <j<q+p):{i,j} €E, V(l<i<j<gq):{i,j} ¢ E.

Define 7;1 C CZ c QZ as the subset of trees and connected graphs, respectively. (Define similarly
T, cCy’ c Gy Define the functions

Wg = Wg(xl, coXprg) = Z 1_[ Ze-

Gggg eeG

A diagram (7, G) (on q external and p internal vertices) is a pair of a permutation 7 € Sp44 and a graph
G e QZ. We view the permutation = as a directed graph on the p + g vertices. The set of all diagrams
on g external and p internal vertices is denoted DZ.
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st D G
i.b Vo

Figure 4.1. Example of a diagram (n,G) € Dg with three linked components with each linked compo-
nent containing two (left linked component), one (center top linked component) and two (right linked
component) clusters, respectively. Vertices labeled with = denote external vertices, dashed lines denote
g-edges and arrows denote y-edges (i.e., an arrow from i to j denotes that n(i) = j). Note that all inter-
nal vertices have at least one incident g-edge, that external vertices may have none, and that there are
no g-edges between external vertices.

For a diagram (7, G), we will refer to G as the g-graph and 7 as the y-graph. The value of a diagram
(m,G) € D}, is the function

ptq
o) = (07 [ /]‘[W(x,,xnm)ﬂgedxqﬂ -

eeG

A diagram (7, G) € D;’, is linked if the union of 7 and G is a connected graph. The subset of all linked
diagrams is denoted £}, C Dj.

For g > 1, define the set EZ c DZ as the set of all diagrams such that each linked component
contains at least one external vertex. For g = 0, we set /3([), = L'([),.

If g = 0, we write G} = G, etc. without a superscript g.

A cluster is a connected component of the graph G.

Notation 4.2. By a picture of a diagram, such as Figure 4.1, we will also denote the value of the pictured
diagram.

We shall in the remainder of this section prove the following theorem.

Theorem 4.3. For any qo, there exists a constant cq, > 0 independently of L such that if
apol??logb/a < Cqo» then

Z; = Zexp Z Z I 4.1

(nG)ELP
(@) _ | q
= ] AL ¥ @2
1<i<j<q p:O (n,G)eL}

for any q < qo.

Note that the p-sum in Equation (4.2) starts at p = 0 as opposed to that in Equation (4.1). This arises
from the fact that diagrams with at least one external vertex may have zero internal vertices, whereas
diagrams with no external vertices have at least two internal vertices.

In the proof, we will use the GGR expansion as formulated in [Lau23, Lemma 3.6] and [LS24b,
Theorem 3.4]. For convenience, we recall it here. Note that Ld Dike 2174 \y( )(k)| = po-. We continue to

abuse notation slightly and treat y!) as a function and write Hy(l) ||L1 = fl0 LJd|y(l) (x)’ dx.
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Lemma 4.4 [[Lau23, Lemma 3.6], [LS24b, Theorem 3.4]. For any integer q, there exists a constant
cqo > 0 such that if||g||L1||7(1)||L1po < cqy, then’

Z::l+ii‘ Z F”’G:expii‘ Z I'r.c|,
p=2P~ 14

(7,G)eD,, p=2"" (n,G)eLyp
1 1 - Sl -
z Z p! Z G~ Z p! Z .G
p=0 (n,G)eD} p=0 (n,G)eL

for any q < qo, the p-sums being absolutely convergent.

We shall bound ||y(1)||L1 and ||g|| ;1 in Lemma 4.6 below.

4.1. Calculation of Z;

We calculate Z;. This is analogous to the computation in [L.S24b, Section 3.0.1] and [Lau23, Section
3.1]. For simplicity, denote the diagonal of I}, by I}, = I,,(X,,) = I,(X,;; X,,). Then

zj=g)/~-/ﬂﬁ§rn<xn>dx =2/~~~/]‘[(1+gi,~>rn<xn>dxn.

i<j n= i<j
Expanding the product and grouping all terms where p variables x; appear in the factors g;;, we find the

function W,, (evaluated on the respective p coordinates x;). Noting further the permutation symmetry
of the coordinates, we have

N N n!
:;)/.../[szz(n_—p)!plwp(x,,) I(X,) dX,,

. ! . . .
since there are W many ways to choose p coordinates out of n coordinates. Now, if

22t e <o

n=0 p=2

then we may interchange the two sums. A criterion for this is given in Lemma 4.5 below. Thus, if the
condition of Lemma 4.5 is satisfied — namely, that pg||g|| ;1 is sufficiently small — we have

1 l « n!
Zy =27 1+pZ:2[7!/~~'/prWp z;m/“"/‘dx[pﬂ,njrn

> 1
=z 1+Z—‘/---/dxpwpp<!’> .
L pzzp.

3In [Lau23, Lemma 3.6] and [LS24b, Theorem 3.4], the sum Z(n G)eid 'Y _ is written by decomposing all diagrams
. p =G

(n,G) € E;I, into their linked components and noting that FZ G factorizes over linked components.
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The free Fermi gas is a quasi-free state, and thus by Wick’s rule, we have

Zr=27Z|1+ dXWdt “’ .
/ Z ./ / e I<i,j<p

Expanding W, and the determinant, we get

Z,_21+Z Z TGl

" (7,G) €Dy

Applying then Lemma 4.4, we conclude that if pg||g|| ||y(l)nL| and pol/gl||;1 are sufficiently small,
then Equation (4.1) holds.

4.2. Calculation of pﬁq)

Next, we calculate the reduced densities pgq) of the trial state I;. This is analogous to the computations
in [LLS24b, Sections 3.0.2-3.0.4] and [LLau23, Section 3.2]. We have

P (X,) = - Z(n_q)'/ /]_[ FE0(X0) dX (g1 ).

I<i<j<n

We write fs = 1+g;; if atleast one of 7, j is an internal vertex and expand the product of the (1+g;;)’s.

Grouping together those terms where p internal vertices are present, we find the function Wg. Using
additionally the symmetry of permutation of the coordinates, we find

n-q _ ‘

l<]<q

By Lemma 4.5 below, we may interchange the sums if pg||g||,1 is sufficiently small. Then

i’ = l_[ f”Zp/ / Z (n—p q)'/ /F igepsin

l<l<]<q n=p+q

H fuzp / /Wq (pra) dX[q+1 q+p]-

i<j<q p=0

dx [g+1.q+p]

ZJ]<

Expanding the Wg and using the Wick rule for the reduced densities of the free gas as above, we get

-7 11 £Y0 ¥ ¢

l<l<]<q p= 0 " (m, G)E'Dq

As above, by Lemma 4.4, we get that Equation (4.2) holds for p0||g||L1||7(l)||L1 and pol|gl|,1 small
enough (dependent on g).
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4.3. A convergence criterion

In this section, we show the following:

Lemma 4.5. There exists a constant ¢ > 0 such that if pol|g|l;1 < ¢, then

Z ZZ (n _p)| / / [WplI1] dX, < exp(CL?poligli1) < oo, (4.3)

and forany q > 1,

1 n!
gZZ—(n_q p! / / IWRIIE dXge1,n1 < Capg exp(CLpoligli) <0 (4.4)
n=q p=0
uniformly in xi, ..., xq.
Proof. Write
2 ]
3 W, Il dX,, = / /dX W, IT
7 22 iy DINTE

22 / / dx,|w, |pP).
P2

By splitting all graphs into their connected components, we have

/"‘/pr|Wp|p(p)=/"'/pr i% Z (nl p )X(Zn[ P)l—[ Z nge 7).
k 22 VPl

=1 G[ EC e‘gG('

We abused notation slightly and denote by C,, the set of connected graphs on n, specified vertices,
say {Dpcener +1,..., Xpr<p ner}, such that no two G’s share any vertices. Here, k is the number of
connected components having sizes ny, . . ., ng. Note that n, > 2 since each connected component needs
at least two vertices since any vertex in a graph G € G, is internal and hence connected to at least one
other vertex. The factor % comes from counting the possible labelings of the connected component, and
the factor (n1 P nk) comes from counting the possible labelings of the vertices in the different connected
components.
Next, we employ the tree-graph inequality [Uel18]. This reads (since 0 < g < 1)

DTl < D) [ el

GeC, eeG TeT, eeT

1 o 1 1
‘/-'-/pr E'Wpip(p) < ZF Z nE 'X(ch P)/ / l_[ l_[ |gel p(p)

k=1 """ np,..., nk>2 0=1|T; €Ty, ecTy
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Next, we bound p(P) analogously to [L.S24b, Lemma 3.10]. First, p(P) = det[yf;)]lg, j<p by the Wick

rule. Next, define a; (k) = L=4/2¢*xi5() (k) € Zz(zf”Zd). Then 71‘(;) = <ai|aj>{2(z,,zd) and so by the
L
Gram-Hadamard inequality [GMR21, Lemma D.1],

P
1 | |

(p) det[)/( )] <ij<p < ”ai”fﬂ(%zd) :pg
- i=1

Thus,

o0 o k

Soi [ Javmer <3 3 o 1) 3 [ [ T]e
p=2 k=1 """ ny,..., ny =2 =1 |Tr €Ty, ecTy

For each tree, the integration is over all variables; thus, by the translation invariance, the integration
over the variables in the tree 7, gives L¢( f lg|)™~!. Using moreover Cayley’s formula #7,, = n"~2 <
C"n!, we get

IA

1 § 1 c&n ‘ [dk
>n
‘ l" PO ge fnl (/ |g|)

Alyenns ng =2
k

Mz TTMg

| =

CPoLdZ(CPOHg”LI)" 1
n=2

>~
Il

1

exp

—

CLpylgls) < o0

if pollg|lz1 is sufficiently small.
The proof of Equation (4.4) is in spirit the same. Write

_Zz(n—q p)'p! /M/qur'dxqﬂ"]_z

n=q p=0 pOp

/ / dX [q+1,q9+p] |WQ|p(q+p)

By decomposing the graphs into their connected components, we have

// dX[q+l,q+p] |Wg|p(q+p)
q
1
:// dX[q+l,q+p] ZF Z Z Zk‘ Z X(Zany+3e ne=p)

k=1 " (V5o V) nje, Ny seens g 22
partition of {1,...,q }
V;#@
p K k
+
(oo TS T1e| (1] S T s
12 i 1s.-., 1k =1 G Cv/[eec =1 G[EC eEGg

Here, « is the number of connected components having external vertices, and k is the number of
connected components only with internal vertices. The partition (V7, ..., V) partitions the external

M

vertices into the « different connected components with external vertices, and the numbers n’;, RN
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are the number of internal vertices in the connected components with external vertices. The numbers
ni,...,ni and the combinatorial factors are as above.

Using the tree-graph inequality as above, we will obtain a sum of trees. (Technically, we need to use
a trivial modification of the tree-graph bound adapted to the setting with external vertices as in [LLS24b,
Section 3.1.3; Lau23, Section 4.2]. One simply defines g, = O for a disallowed edge e between external
vertices.) Namely, we will have factors like

We bound these as follows. If #V = 1, we do nothing and define 7} | = T). Otherwise, iteratively pick
any edge on the path between any two external vertices and bound the factor |gel < 1. Remove this edge
from T). Repeating this procedure #V; — 1 many times results in #V; many trees all with exactly one
external vertex. Label these as T;,l’ We then have the bound

/l #V
#Vy
[Tleel <TT [T lgel-
EET,I* v=1 eET’l*’v

Using this bound together with the Gram—Hadamard inequality as above, we get

> 1
Yooi [ [ Xt WElp
p=o P
DD M I e i
< - ‘
! k! T, m T, e

ny >0 k=0 Nlyeens ny =2

VI¢®

< 5 SIS/ D[l -/ ]

T* 7_ lTpE'Tnf A=1 v=1 eeT ecTy

In the integrations, each tree T , is integrated over all but the one external vertex and so gives a

value ( / lg)* e~ and each tree T, is integrated over all coordinates giving the value ( f lg)me 1L,
Moreover, ZV(#T;V — 1) = n}. Thus, using additionally Cayley’s formula (trivially extended to the

. ) , v R
setting with external vertices: #7 ' < cmattVy (n +#VD,
A

q
N X% Z 2 s IR
- 1 | K * ) k | 0
= W e o =0k ko Tl iy Ty !
part. of {1,....q}
Vito
K k Zanytiene—k
« CItTany+Sene l_[(nfl +#V))! 1—[ I’l[!(/ |g|) Lak
A=1 =1

Next, we may bound the binomial coefficients as (n +m)! < 2""nlm! so [[_,(n} + #V})! <
2Zamad [, n 1 (#V5) 1. Thus,
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00 K
Z(Cpollgﬂu)"*l
n*=0

< cqi% > ﬁ(#v;)!

k=1 =" (V.. VE)  a=1

Vi+o

s k
CLdponpongnLl)"‘ll
n=2

o 1
q
X pO Z F
k=0 "
< Cypf exp(CLpollgllL ) < o0

if pollgllz1 is small enough. O

4.4. Calculation of ||g||.1, ”7(1)“L1

In this section, we bound the quantities ||g|;1 and ||y(l)HL1 = f‘y(l)(x)idx. We show (recall
¢ =1+]logzl|)

Lemma 4.6. The quantities ||g||;1 and H),(I)HL1 satisfy
gl < Ca?logb/a, HY(I)HU <cri,

Note that these bounds are uniform in the volume L<.

Proof. The bound ||g|l1 < Ca?logb/a follows from Equation (3.6). For ||yV||.1, we have for any

(length) 2 > 0,
ol-
[o,L]4

1/2 1/2
< (‘/Rd|y(l) (x)|2(/12 + |x|2)2 dx) (/Rd —(/12 +1|x|2)2 dx)

12
1 S
=422 Ta Z |(/12+|x|2)7“)(k)|2 .

2n7d
kedZ

YO

Moreover, (with 7(k) = ze#!¥I" is as in Equation (3.12)),

P2+ Py O () = [42 - A9 (k)
_ 29k + (22 = 4B K2 — 2dB)F(K)? + (A% + 4B2 K[> — 2dB) 7(K)
. (1+79(k))3 )

Using Equation (3.12), we conclude that

% 2 ‘(ﬂzmy(l)(k))z = Cpo(’ﬁ +B' +/32) = CPO(A“ + {2ﬁ2).

keZzzd
Thus, for A = 81/2¢1/2, we have ||y (V||1 < C£?/%. (Recall that 8 ~ gpgz/" by Remark 3.7.) O
We conclude that po||g|| 1 ||y(1) ”L1 < Ca®po?/?1og b/a. This concludes the proof of Theorem 4.3.
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5. Calculation of terms in Equation (3.5)

In this section, we compute and bound the different terms in Equation (3.5) and thereby prove Proposi-
tion 1.9.

5.1. Energy

The kinetic energy of the trial state I’y is

<H>J = ZL‘] ;/ te / [(_AXn)[Fn(Xn)rn(Xn,Yn)Fn(Yn)]]Yn:Xn dX,

1 [ee)
= Z_J Z/ t / (|VXnF|2rn(Xn;Xn) - Ff(Aanz)(Xn;Xn)) an
n=1
The second term may be calculated as (recall that (-) ; means expectation in the state )
1 © Z
7 2 / - / F(=0x,T3) (Xu: X) dX,, = == Te[FPHT]
7 = Zy

= ZL Tr[F*(=0p(ZT) + uNZIN)]
J
=-dglog Z; + u(N),.

Here, we used that I” is differentiable in g in the topology of trace-class operators. This may be easily
verified. For the first term, we have that

VF:VF:
|VXnFn|2— Z fjk Z flj f/k F,%-
=l Jix G Julix
all distinct

Thus, the full energy is

<H ,UN+V>J = —BﬁlogZ1+[/”Vfﬁz

2]932) dxy dxp

s (5.1)
12Vf13 3

+ —_— dx1 de d)C3.

[/] S12f13 s

5.2. Entropy

We note that I} = ZZ—jFI”F is isospectral to Z%Fl/zFZFl/z. Moreover, since F < 1, we have

I''2F2r'2 < I as operators. Thus, by operator monotonicity of the logarithm,
Tr[Iylogly] = —Tr[Fl/zefl/z(log +10gF1/2F2F1/2)]
Z Z
<log = + = Tr[r‘/zer‘/2 logf]
Zy Zy
Z
=—logZ; —BZ— Tr[F?I(H - puN) ]
7
1
=—logZ; + ——Bdg Tr[F?Zr |
7

=-logZ; +pBoglogZ,.
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We conclude the bound on the entropy

1 1 1
—ES(F_/)ZETI‘[F_/IOgFJ] S—BlOgZJ +6ﬁ10ng. 5.2)

5.3. Pressure

Combining Equations (5.1) and (5.2), the terms +dg log Z; cancel, and we conclude the bound for the
pressure

LYPIIY] = —(H - uN + V), + lS(m

\Y V f1,V

o
Remark 5.1. The cancellation of the terms +dg log Z; is not essential. Namely, the energy of the trial
state I'; is the energy of the free gas plus the relevant interaction term up to small errors. And the entropy
of the trial state I’y is bounded from above by the entropy of the free gas up to small errors. To see this,
write

Z Z
—dglogZ; =—6‘,310gZ—6510g7] = (’H—,u/\/)o—aﬁlog%.

One can show that dg log % is small compared to the interaction of order L¢a p2+2/ 4 Thus, the energy

of the trial state I'; is

(H— N+ V), = (H - #N>o+//”Vf12

v g]pf) dx; dx, + small error.
Similarly, for the entropy,

1 1 1 Zy Zy
——logZ;+dglogZ; =—-—1logZ +dglogZ — —log — + dg log —
B ? B ? gz "

Z
1 1 Zy Zy
=—=8S({I') - =log = +dglog —.
5 () ploe toploe
We show below that + log Z7J is small compared to the interaction term of size L%a? p2+2/ d Thus, the

entropy of the trial state I may be bounded as
1 1
—=S(Iy) < —=8(I') + small error.
B B

The proof that dg log % is small is somewhat analogous to the proof of Lemma 5.2 in Section 5.4. As
we will not need it, we omit the details.

By Equation (4.2), we have for a?py?/? log b/a sufficiently small that

(2) f p<2)+Z Z F

=1 " (n,G) el
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We may then write
LP[Iy]

1 5 1 5 2 1 Zy
> EIOgZ_//[|Vf12| +§V12f12]/0( ) dx dX2+E10g7

————

1 Sl VViiz 3
_.//[|Vf12|2+§v12f122]217! Z Fi’GdXIdxz_‘/// fizfiz pg)dx]dxzd)Q'

p=1 (m,G)el?,

&2 €3

(5.3)

The first term is the pressure of the free gas (times the volume), the second term leads to the leading
order correction, and the remaining terms are error terms. We shall show in Section 5.4 below the
following bounds. (Recall that £ = 1 + |log z]|.)

Lemma 5.2. For 7 2 1, there exists a constant ¢ > 0 such that if a pg(d/2|loga po’ < ¢, then, for
sufficently large L, the error terms are bounded as

|ifl| < Cap? 2+4/d{ +Cad 3+2/d d/z l(logb/a)2
o2l _ [Ca*p S og bja+Ca*®2p3 3 (logb/a)® d =2,
Ld ~ Cabpg logb/a + Ca’p)¢*(log b/a)? d=1,

@ . Ca*p?p 3+4/d+Ca3d -2 4{d/210gb/a d>2,
L4 - Cang{(logb/a)2 d=1.

In particular, we have the bounds (recalling thata < b < p, 1/ d)

Ca’b? 10/3§ +Cab ll/341/2(10gb/a)2+Calo 5g’g/z(logb/a)3 d=3,
lez| + |ea] + |&s]

T < (Ca’b?pad~" + Catpyllogb/a + Ca®pi* (logb/a)’ d=2,
Cabpylogb/a + Ca2p8§3/2(log b/a)? d=1.
(5.4)

Note that this is increasing in b. For the second term in Equation (5.3) above, we use Equations (3.7),
(3.8) and (3.11); thus,

1
//[lW"lﬂZ + §V12f122},0(2) dxq dx;

—Liy /e (—ePH . )
) ,T(_Li;/(z_;(ﬁﬂe))lgz/dpg L /(Wfl2 fz)lx|2dx(1+0(L—1§Pol/d))

1d 2+4/d 2, 1o} 4
+O( /(IVf| +2vf )|x| dx) (5.5)

—Lig41 (—ePH)
(= Ligy(—ePr))l+2/d

O(Ldad+2p§+4/d log b/a) d>?2
O(Laszg) d=1,

=2ncy 1444 2+2/d(1+0(ad/bd)+0(L é,pol/d))

+
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where ¢ is defined in Equation (1.3). Note that the first error term is decreasing in b. This competes
with the other error terms and leads to the choice of b below. Combining Equations (5.3), (5.4) and
(5.5), we thus conclude the bound

¥ (B, 1)
> limsup P[I}]

L—oo
—Lid/2+1(—€'8“) 4@ 2+2/d
(= Liga(—ePr))1+2/d

—2ncy

L—co

1
> lim [ﬁ logZ

0(a6b—3pg/3 32 10/3§ +ab “/34“‘/2(10gb/a)2 +a‘0p8{9/2(10gb/a)3) d=3.
+ 0(a4b‘2p(3) + azbngg‘l + a4pg§10g bla+ a6p8§3(log b/a)3) d=2,

0( 2p=1p% + abp? logb/a+a2p8§3/2(10gb/a)3) d=1.

Using that limz e [
-1 /d)

IZr] logZ ] Yo(B, n) and optimizing in b, we find for the choices (recall that we

require b < Py
min{a(a3p0)—2/15§1/5,p61/3} d 3

b= min{a(a2p0)—1/4§1/4’pal/z} d=2,

a(apo)~?|log apo|™'1? J=1

that

—Ligye1(—€PH) 4 2+2/d[

(B, 1) Z'ﬁo(ﬁ,ﬂ)—z"cd( Lig/ (- eﬁu))1+z/d

1+6d]

where 64 is as in Equation (1.13). The calculations above are valid as long as the conditions of
Theorem 4.3 are satisfied — that is, if a? po/?|log a po| is sufficiently small. This concludes the proof
of Proposition 1.9. It remains to give the proof of Lemma 5.2.

5.4. Error terms (proof of Lemma 5.2)
In this section we give the following:

Proof of Lemma 5.2. To better illustrate where the different error terms come from, we will write them
in terms of the quantities ||g]| 1, ||y(1)||L1 and ||| - |"gll = fRd |x|"|g(x)|dx, n > 1. By Lemma 4.6 and
Equation (3.6), we have the bounds

gl < Calogh/a, Hy(l)”U < C? =1+ ogz)??, |- "¢l < Cab".
For the analysis of the error terms, we use the bounds [Lau23, Equation (4}.13)] and [L.S24b, Equations
(4.10) and (4.22)]. To state these, we define for any diagram (7, G) € L]} the numbers k = k(G) =
k(m, G) as the number of clusters (connected components of G; recall Definition 4.1) entirely with

internal vertices (of sizes ny,...,n;) and k = k(G) = (7, G) as the number of clusters with each at
least one external vertex (of sizes [meaning number of internal vertices] n*l‘, ...,ny). Define

K k
v = Zn}, y = an —2k.
=1 =1

https://doi.org/10.1017/fms.2024.56 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2024.56

Forum of Mathematics, Sigma 25

As discussed around [Lau23, Equation (4.13)] and [LS24b, Equations (4.10) and (4.22)], the numbers
v* and v count the ‘number of added vertices’. Concretely, a diagram with k clusters of only internal
vertices has at least 2k internal vertices. Then v* is the number of additional internal vertices in clusters
with external vertices, and v is the number of additional internal vertices in clusters with only internal
vertices.

The bounds [Lau23, Equation (4.13)], [LS24b, Equations (4.10) and (4.22)] (note that there bounds
on ||gll 1, ||'y(1) H 11 analogous to those of Lemma 4.6 are already used) then read for any ko, v

1 CLpy(C Vool (Dlko=t -y — ),
- Z el < { ZO( p0||g”Ll)vo+ko “721) |1|<%l 0 p =2ko+vg, (5.6)
p' (n,G)Eﬁg’ Cmp() (CPOHg”L‘) ||7 ”Ll m >0,
k(7,G)=ko
v(m,G)+v*(m,G)=wy
where the constants C, C,,, depend only on m but not on v or kg (in particular, not on p). m]

Remark 5.3. The case m = 0 is not included in the statement in [LLau23, Equation (4.13)] and [L.S24b,
Equations (4.10) and (4.22)]. It follows from the analysis in [L.S24b, Section 3.1.1] (see also [Lau23,
Section 4.1]), however.

More precisely, the analysis in [LS24b, Section 3.1.1] consists of the following steps: (1), decompose
the linked diagrams in £, according to the connected components of the graphs, (2) use the tree-graph
inequality [Uel18] to bound each sum over graphs by a sum over trees in each connected component
of the graph, (3) use the Brydges—Battle—Federbush formula (see [GMR21, Appendix D]) to bound the
truncated correlations, (4) compute the integrals, each being now an integral of either |g| or |y("].

In any of the equations in [L.S24b, Section 3.1.1], the only effect of the p-summation is to eliminate
the factor x(y,n,=p) present in the very first equation (where there is no p-summation). That is,
not performing the p-summation, all equations in [L.S24b, Section 3.1.1] remain valid, only with no
p-summation on their left-hand sides and with an additional factor x(y, n,=p) on their right-hand sides.
Thus, from the analysis in [[L.S24b, Section 3.1.1], modified by not performing the p-summation, we
find the following modification of the final formula in [LS24b, Section 3.1.1]:

Teg|< CN”y“>

ko—1 _
o1 WY (ollgll)E N, p =2k +

|(r.Gyec, n,. iy 22
k(ﬂ,G)=k0 Z[ ne=2ko+vo
v(n,G)=vy

from which Equation (5.6) in the case m = 0 follows.

From this bound, the natural ‘size’ of a diagram (7, G) € ﬁ["} is not p but rather v + v* + k, since
its value is (neglecting log’s and dependence on z) < p(’)"(adpo)"J“"*J’k. For the bounds of the terms
&), €3,&z, we will bound sufficiently large diagrams by the bound in Equation (5.6) and do a more
precise computation for small diagrams.

Additionally, we have the following:

Lemma 5.4. The reduced densities p® and p'® satisfy

3+4/d
o My = 2Py = 232,

446/d
pW (x1,x2,x3,x4) < Cpy* My = xa Py = xa P = xal.

p¥ (x1,x2,x3) < Cp

Proof. Note that both p® and p® vanish whenever two particles are incident and are invariant
under permutation of the particle positions. Thus, for fixed x; as functions of x;, j # 1, they vanish
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quadratically around x; = x. Writing p@ = det[ ij ]1<l ,j<q using the Wick rule, Taylor expanding in
xj, j # 1 around x; = x| and using Equation (3.12) to bound the derivatives, we conclude the proof of

the lemma. o

We first bound .

5.4.1. Bound of ¢,
‘We have by Theorem 4.3
o 1

1.z
SZZ——IOg—:—— Z 1—‘71'G
B z ’Bp (7r G)eL,

‘We use the bound in Equation (5.6) above for m = 0 and for diagrams with v+ k& > 2. These are precisely
the diagrams with p > 3 (note that k > 1 for any diagram (7, G) € £},). Thus,

(1>Hko 1

o 1
=l D> Tag|<CL%0 D (Cpollgli)™
p

|
=3 p: (m, G)E[, ko>1
vo+ko =2
ko—1
= CLo| D (Cpollgliz)™™ + > " (Cpollgli) ™o lly [k l
vo=1 ko=2 vp=0

< cLipdliglz, (14 )

for sufficiently small pgl/gl||;: and po”g”LlH’}/(l)“Ll. For the diagrams with v + kK = 1, we do a more
precise calculation. These are precisely the diagrams with p = 2. In particular, these diagrams have
v =0 and k£ = 1. We have then (recall that pictures of diagrams refer to their values)

Z F,,G_: + :y

(n,G)eLy ‘
D) vy

=//p(2)(x,y)g(x—y)dxdy

= o(L1- Pl 037"

using Equation (3.11). Thus, using Lemma 4.6 and recalling that § ~ ¢ poz/ 4 from Remark 3.7, we

conclude that

1 -
[z L < i Pellupg e+ Cllgli, [V + 1)o7

lez| = log —

BLY

< Cadb2pé+4/dé,—l + Cade(3)+2/d§d/27l (log b/a)z.
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5.4.2. Bound of &3
We have by Theorem 4.3

(3) _ f2 22 £2 3 | 3
Py —f12f13f23p()+zlj Z el

p=1"" (n,G)el}

We use the bound in Lemma 5.4 to bound p©® and the bound in Equation (5.6) on the remaining terms.
(That is, a precise calculation for diagrams with v + v* + k = 0 and the bound in Equation (5.6) for
diagrams with v + v* + k > 1.) Thus, by a similar computation as for £,

Z Z F:zG—CPO

p=1 " (n,G)el,

(I)Hkol

Z(Cpongnmvo * Z Z(Cpollg||u)v°+k°
Vo= 1

ko 1V0 0

< Cpdliglr (1+]p]|r)

for sufficiently small pol/g||;1 and p0||g||L1||y“)||L1. Moreover, f < 1, and the support of Vf is
contained a ball of radius ~ b. Thus, by Equation (3.9) and Lemma 4.6,

orl < cLtpy | [ f|Vf||x|2)2+CL"||g||Ll (e 1)es( / fIVfI)Z

< L) 3+4/d+CLd 3d-2 4§d/210gb/a

Refined analysis in dimension d = 1.

In dimension d = 1, we need also to analyze diagrams with k + v + v* = 1 in more detail. Intuitively,
this follows by ‘counting powers of pgy’: the claimed leading term in Theorem 1.2 is of order apg. Thus,
we need to compute precisely all diagrams for which the naive bound Equation (5.6) only gives a power
<4of Po-

The diagrams with k£ + v + v* = 1 have either p = 1, in which case v* = 1, or p = 2, in which case
k = 1. For the diagrams with p = 1 for any graph, any permutation makes each linked component have
at least one external vertex, and thus, we get

Z FnG_ Z/ ()(xl,xz,xz,m)l—[gedm

(m,G)eLl3 Geg; eeG

Bound all but one g-factor, by symmetry say gi4, by |g;;| < 1, and bound p™® using Lemma 5.4. We
conclude

10 2 2 2
-1 < CpOket = xaPlxr - x| /|g<z)||z| dz
< Cab?py’|xy — 2P Jxy — x3]%.

By Equation (3.9), this gives the contribution La3b4

%’s label external vertices)

9 to &3. For p = 2, we have the graph (recall that
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The only n’s for which (7, G) ¢ E; are those not connecting {4, 5} to {1, 2, 3}. Thus,

Z P :/[P(S)(xl,--.,xs)—P(3)(Xl,xz,x3),0(2)(x4,x5) 845 dxg dxs.
(n,G)Ef,;

This vanishes (quadratically) whenever any x; and x;, i, j = 1,2, 3 are incident. Thus, as with p(3> and
p™ . we bound the derivatives and use Taylor’s theorem. Denote the derivative w.r.t. x j by Ox;. We are
thus interested in bounding 83,03, T, . By explicit computation (with the permutation denoted 7~ for
convenience of notation), we have

03,05,

x3© n1-1,G

:332333 (_1),,% Z f,<1>(kl)...?(1)(,{5)//ei(kl—kn<1>>x1 el s hx )35 g < Ay dis
ki,....ks

1 . o
=== D (ka= k@) (ks = kny)*91) (ki) -9 (ks)
kl k5

.....

i (ky—k i (k3—k A
« ez( 1 (1)) X1 _..el( 3 (3))x3g(k4 _ kﬂ'(4))X(ks—kn(5)+k4—k,r(4)=0)’

where y denotes a characteristic function. Any permutation such that (xr, G) € E% has w({4,5}) # {4,5}.
In particular, for the relevant permutations, the characteristic function is not identically one, and thus
effectively it reduces the number of k-sums by 1. More precisely, we get for the permutations with
n(5), n(4) # 5 (the others are similar)

1 . N N
=-(-D"3 Z (k2 = kr(2)* (k3 = ke ()90 (k1) -9V (ka) 9V (=ka + k() + krs)
ki..ns ky

% ei(kl*kn(l))xl . ,ei(krkna)))(sg(k4 _ k,,(4)).

Bounding |)7<1) (kg + k4 + k,,(s))\ < 1 and |g| < |lgllzr £ Calogb/a, the k-sums are readily
bounded by Equation (3.12). Thus, for any valid permutation 7, we have

03,0512 ’ < Capgtlogb/a.

x3° n,G

By Taylor’s theorem, we conclude that

Fi’G‘ < Capgtlogb/alx) — x2|*|x1 — x3]*.

We thus get the contribution to &3 of La3b2pg log b/a by Equation (3.9). Finally, using the bound
in Equation (5.6) for diagrams with k + v + v* > 2, we get (again for suffiently small pgl|gl||;: and

pollgl |yl

|
le Z Ffr,G SCa3p(5)§(logb/a)2.
p=2"" (n.G)el?

(k+v+v*)(7r,§)22
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By Equation (3.9), this gives a contribution to &3 of Lang(log b/a)*. We conclude the bound

les| < CL (a2b4p(9) + a3b4p(])0 + a3b2p§ logb/a + angg(log b/a)z)
< CLazp(S)g"(log b/a)?

in dimension d = 1.

5.4.3. Bound of &,
We use the bound in Equation (5.6) for diagrams with v + v* + k > 3 and a more precise analysis for the
small diagrams. Write

i% Z r; 7.G =é=1 & +&x3, 5.7

p=2 (n.G)el?

where &-; is the sum of the values of all diagrams with v + v* + k = j and &3 is the sum of the values
of all diagrams with v +v* + k > 3.

For the large diagrams with v+v*+k > 3, we have similarly as above for pg||g|| .1 and po||g|| 11 ||y(1) ||L1
sufficiently small

Sl
eal=>— > gl < cadligl (1+ ) (5:8)

=2 P (n.G)el?,
(k+v+v*) (m,G) =2

Diagrams with k + v +v* = 1.
For the diagrams with p = 1 and p = 2 with k = 1, we do a more precise calculation. For p = 1,
there are three possible g-graphs: (Recall that *’s label the external vertices)

Any permutation makes any of these diagrams have at least one external vertex in each linked component,
and thus,

Z L :/p(3)(x1,x2,x3)[g13 +823 + g13823] dxs.
(n,G)eﬁ%

3+4/d

Bounding |g13823] < |g13] and recalling the bound p® (x1,x2,x3) < Cpy™“Ix; — x2|?|x; — x3]* from

Lemma 5.4, we get by symmetry

3 4/d 3+4/d
D, Thal <oy -l / g@IzPdz = [l Pelliog™ ki P (59
(m,G)el?
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The diagrams with p = 2 and k = 1 have g-graph

1 2
* o * o
G= (5.10)

The only permutations 7 such that (7,G) ¢ ﬁ% are those connecting only external to external and
internal to internal (i.e., those with either 7(3) = 3, 7(4) =4 or 7(3) = 4, 7(4) = 3). Thus,

Z Fi,G :'[/[P(4)(x1,..-,X4)—P(Z)(xl,xz),o(z)(x3,x4) 834 dx3 dixs.

(7,G)el
k(n,G)=

(5.11)

2
2
1

Clearly, this vanishes quadratically in x| —x; since both determinants do; thus, we bound it using Taylor’s
theorem, expanding in x; around x| = x, analogously to what we did for (some of the diagrams for) &3
above. We treat each diagram separately. (For convenience, we denote the permutation 7~!.) Denoting
the derivative with respect to x*' by %, , we have

1 X A . A
AN 6= 7o (sl = ) (T = R )70 e 9D ()3 O (ka) 7D (k)
k.
x el tki=kx (1) X1 yi (ka=Kz(2)) %2 // et (ksmkn)xs i (ka—kan))%s o (3 — xg) dxs ds
= > (K= (kT = R )90 0P )3 (k)9 (k)
k

X 8(kx(3) = k3) X (ky—kp(ay=kn(3)—k3) -

The only permutations for which the characteristic function is identically 1 are those with either
n(3) =3,7(4) = 4 or 7(3) = 4,7(4) = 3. These are exactly the permutations that do not appear in
Equation (5.11) above. Thus, similarly as for (some of the diagrams for) €3 above, the characteristic
function effectively reduces the number of k-sums by 1. Bounding |g| < ||g|l1, 7" < 1 for one of the
¥ factors, and using Equation (3.12) to bound the k-sums, we have for any diagram (7, G) € LN% with
G as in Equation (5.10)

04,6, T 6| < Cllgllipg™.

‘We conclude the bound

3+2/d
Z 2 6l < Cligllpipg ™ x1 - xal (5.12)
(n,G)E,CN%
k(n,G)=1

In particular, by combining Equations (5.9) and (5.12), we have
o] < Cliglzipg™ ey = xal?. (5.13)
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Diagrams with k +v +v* = 2.
Finally, consider all diagrams with k + v + v* = 2 more precisely. We split these into three groups.

G vi=2
(i) v* =1 and vertices {1} and {2} are connected
(iii) Remaining diagrams

We will use a Taylor expansion to bound the values of the diagrams in group (iii). Write

&=2 = &ay + &ai) + i),

(2

Then as p;

(x2;x2) = 0, we get from Equation (5.7)

|£in) (62, x2)| < [éiy (2, x2) | + [y (52, X2) | + 1€21 (2, x2) | + 1€53 (x2, x2) .

Moreover, &Gy is symmetric in exchange of x; and x,, so the first order vanishes. We conclude by
Taylor’s theorem that

|€ain) (e x02) | < (& (e, x2) | + [y (2, x2) | + 121 (X2, x2) | + |53 (22, x2) |

+ C sup sup|d%, 8. iy (21, 22)|Ix1 — x2|%,
M,V 21,22

(5.14)

where again 6)’; denotes the derivative w.r.t. x’l‘ . Bounding 6)’61I 0y, iy is analogous to the argument in
[L.S24b, Proof of Lemmas 4.1 and 4.8]: For diagrams with an internal vertex connected to {1} with a g-
edge, we do a precise calculation as in [L.S24b, Proof of Lemma 4.8]. For the remaining diagrams where
{1} has no incident g-edges, we modify the proof of the absolute convergence of the GGR expansion as
in [LS24b, Proof of Lemma 4.1].

First, the diagrams in group (iii) with an internal vertex connected to {1} with a g-edge all have

g-graph

G = (5.15)

since v* =1 and k + v+ v* = 2. Then

1 A R . .
Fi—l,cz(—l)”ﬁ Z 7(1)(761)"'7(])(k5)[[/€l(k‘ Kr)xn . of(hs~hn)35 013045 dg divy dis

— (_l)ﬂ# Z f/(l)(kl) .. ,;)’}(1)(ks)ei(kl_kﬂ(1)+k3_k7r(3))xl et (ka—kn(2))x2
ki, ks

X 8(k3 = kr(3))8(ks = kz(5)) X (ky—ky(3)+ks—ksn(s)=0) -

The characteristic function y is identically 1 only if 7({4,5}) = {4, 5}, but then (7,G) ¢ /3% so these
permutations do not appear in &) Taking the derivative, bounding |§| < ||g]|z: and using Equation
(3.12) to bound the k-sums, we conclude as above that
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4+2/d
T 6| < Coy gl

xX1° a-1.G

for all diagrams (7, G) € ﬁ% with G as in Equation (5.15).

Next, for the diagrams with no g-edges connected to {1}, the argument is as for the bound of 8%, ay,éo
in [L.S24b, Proof of Lemma 4.1]. Analogously to [LLS24b, Equations (4.19) and (4.20)], we conclude
the bound (the term 1 in the factor Hym || 11 + 1 arises similarly as in the bounds above from the value
of diagrams with k = 1)

2 2
6x1 Z Fn’l .G
(m,G) Ef%
nog-edges incident to {1}

~——

[ 2/d 1/d
< Cofllgl, (P + 1) [0y Vs + 2o or | + ]2y ||

where with a similar abuse of notation,

H&)/(I)HU = max/
M [O,L]‘I

Recall that Hy(l) “Ll < €% by Lemma 4.6. By a simple modification of the proof of Lemma 4.6, we
may bound ||ay ||, < ngﬂpé/d and [[02y V|1 < C{d/ng/d. Thus,

aﬂavy<U‘dx

3#7(1)’dx’ ”627(1)HL‘ _ max/
mv [O,L]‘i

|62 &Gin (21, 22)| < Cog ™ Nlgll? &2 (5.16)

Next, we bound ;). For the diagrams with v* = 2, if G is any graph with v*(G) = 2, then for any
permutation 7 € Sy, we have (7,G) € E%. Thus, using Lemma 5.4 to bound p® and bounding some
g-factors by 1, we get similarly to Equation (5.9)

fo= ), //p(4)l_[gedx3dx4

Geg% eeG
v (G)=2
et (5.17)
|éw| < Cpy" Mxy —X2|2/ lg(z) 1218 (22) P (21 ]* + |z2|* + |x1 — x2[*)* dzy dzo
4+6/d
< Cllgl2 gt by = (B2 + 1y = xa)2
Finally, we bound &i). All diagrams with v* = 1 and {1} and {2} connected have g-graph
1 3 2
o-—-———-—0————@%
Go = (5.18)
AN
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For convenience of notation, we denote the permutation in the diagram 7~!. Then

2
ﬂ_l,G()
1 . .
=(-D70g Pk (k)
kiy..., ks
X ”/// el ikt ol s=hr5)%s o (1) — x3) g (xxa — x3)g (x4 — X5) dx3 dxg dxs
k3—k ky—k
1 R . i(kl_kn(])_ 2 ”(3)))(1 i(kz—kn(z)—i3 "(3)))62
=(-D70g Q30K D ks)e T e i
kioooks
T _Xptx - + X X1 —X2 X1+xp
x | eitskn) (xs=152) (uw__ ) (__+__ )dx
/ e 8 ) ) X318 ) ) X3 3
X ﬂ g(xs _xs)ei(k4_kn(4))(x4_x5)ei(kS_kn(5)+k4_k7r(4))x5 dxg doxs
1 . .
= (0" D k) k)
kiyeens ks
. k3-kz(3) . k3-kz(3)
ilki—kz(1)— )Xl l(kz—knm— )xz A R
X e ( ’ e ’ G1(ks = kz(3)8(kr(4) = Ka) X (ks—kpp(s) ha—kn()=0) >
where

Gi(k) = / e‘”‘zg(}% +z)g(—¥ + z) dz.

We group together pairs of diagrams 7 and (using cycle notation) 7 - (45) = (n(4) n(5)) - 7, meaning
where 7(4) and n(5) are swapped. These have opposite signs. Thus,

+T72

2
Fﬂ_l,Go (7!'(45))_1,G0

ksy—k ky—k
i(kl_k”(])_w)xl i(kz_k”(z)_w)m
e

.....

x Gl (k3 = k”(3))X(kS_kn(5)+k4_k7r(4)=O) [é(kﬂ(4) —kg) = 8(kn(s) — k4)] .
We Taylor expand g (k »(s) — k4) in k (s5) around k (5) = k(4). That is,
8(kn(s) — ka) = 8(kr(ay — ka) + O(VR)|kra) — k(s)),

where O(Vg) should be interpreted as being bounded by |Vg (k)| < f |x|lg(x)] = |I| - |gllz1 uniformly
in k z(4) — kx(s5). Moreover, |Gl| < |lgllz1- Thus,

2 2
r L r@sn1.6o

771,Go

1 A "
< Cliglelll- sl x 27 P ) -9 (k) kr () = k() (ks —konis Hha—kny=0)-
k

The characteristic function is not identically 1 for linked diagrams. Indeed, if 7({4,5}) = {4,5}, then
the diagram would not be linked. Thus, the characteristic function effectively reduces the number of
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k-sums by 1. Bounding similarly as above (1) < 1 and using finally Equation (3.12) to bound the
k-sums, we conclude for any permutation n such that (7, Gg) € E% that

2 2 4+1/d
r + T 4516 Il

2 G gl llglz.

<

Since 7 and 7 (4 5) either both give rise to linked diagrams or neither do, we conclude that

4+1/d
ewl =5 >0 Toao| < Cog™ Il lellur gl (5.19)
(7!' Go)EL‘,z

Combining then Equations (5.8), (5.13), (5.14), (5.16), (5.17) and (5.19) and using Lemma 4.6, we
conclude the bound

‘f(m)| < CaZdbpSH/d logb/a + CanpO{M/Z(log b/a)® + Ca* 4+2/d{ (log b/a)?|x; — x2)2.

We conclude the bound

Z Z F2 < Ca‘p 3+2/d log b/alx; — x»|? +adb2p3+4/d|x1 - x)?
p= 1 P " (n,G)el
+Ca? 4+6/d|x —x22(b* + |x1 — x2]?)? (logb/a)2+Ca2dbp4+l/d10gb/a

+Ca*p ¢ log bja)’ v - xal + Ca*p3 P (log ba)’.

Thus, using Lemma 3.4, we get

|zfl| < Ca ) 1ogbla+ Ca® b2 p) ! + Ca*dp*=4pi*o (log ba)? + Ca®*2bpg " log bja

+Ca* ¢ (log b/a)* + Ca** 2 p 34 (log bla)’.

Ca*p 3+2/d logb/a+Ca*2p)342 (logb/a)® d > 2,
Cabpo logb/a + Ca*p}**(logb/a)? d=1.

This concludes the proof of Lemma 5.2.

Remark 5.5 (Necessity of precise analysis of diagrams with k£ + v + v* = 2). For the bound of &,, we
give here a precise analysis of the diagrams with k +v +v* = 2. In general, one should not expect this to
be needed in dimensions d = 2, 3. More precisely, by just considering powers of pg, one would expect
that diagrams with k& + v +v* > 1 are all subleading as they carry a higher power of pg (using Equation
(5.6)) than the claimed leading term, with exponent 2 + 2/d.

The reason we need a precise analysis here is the temperature dependence of our bounds: for some
regime of temperatures, the bound one would get by using Equation (5.6) is not good enough.

Remark 5.6 (Optimality of the error bounds). One should not expect the bound given in Equation (5.19)
to be optimal. More precisely, in Equation (5.19), we only took into account the cancellations of pairs
of diagrams. However, one should expect much more cancellations. We have

1
Eaiy = 3 /[/[P(s) (X150, x5) = pP (x1,x2,x3) p? (x4,x5)]813823g45 dx3 dx4 dxs.
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Naively, just using that p(s) (X1,...,x5) — p(3) (x1,x2, x3)p(2) (x4, x5) vanishes whenever any two of the
particles 1, 2, 3 or the particles 4, 5 are incident, we get by Taylor expansion

PO a1 xs) = p (52, 0)p @ (e, 05)| < Cpp ™ = aP vy = xaPls - w3 (520)
Using this bound and bounding |g23| < 1, we get
gl < pp" @b LYy - o, (5.21)

This bound is too large by a volume factor. (This arises since we ‘forget’ that the relevant diagrams are
linked when we do the Taylor expansion.) It, however, illustrates how many more cancellations between
the different permutations are present than what we used in the bound Equation (5.19) — it carries a
higher power of pg. Using these cancellations but losing the information that diagrams are linked is
what we did in [[.S24b].

If one could somehow see these cancellations, while still keeping the information that the diagrams
have to be linked, one might be able to improve upon the bound Equation (5.19). In one dimension, this
error term is actually (for some regime of temperatures) the dominant error term. Thus, by improving
the analysis of these diagrams, one might improve the error term in Proposition 1.9 in d = 1.

A. Particle density of the trial state

In this section, we give the following:

Proof of Equation (3.3). We calculate ('), and compare it to (N}, = poL?. We have by Equation
(4.2)

Wy, = [ o= “)+Z S —(/\/>0+LdZ S

=1 (7r G)EL1 =1 (7r G)Ell1

Next, we bound 37 [% ZrGyec, T ! G- We use the bound in Equation (5.6) for diagrams with
k+v+v*>2ie.,for p=2withk =0,v" =2 and for p > 3. That is,

S| 2 Tha|=Cligl g, Z >, Tho|=Clgl? (1+ [y )ed

(7'r GecLl p= 3P (n, G)eL),
k(7,G)=0
for sufficiently small pol|g||;1 and pollg|| 11 ”y(l)”Ll. Thus, we get
D2 3
S T Te= 3 Tory 3 orofisth (b 1)ed)
(7,.G)eL), (n,G)eL] (7r G)eL)

k(7r,G)=1

For the p = 1-term, there are two diagrams. Thus (where * labels the external vertex),

g(x)dx = OWI%MWMM)

Z Fﬂ'G:

*
[ ]
|
|
|
(7,G)eL! .

N TR
() JRS ettt
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For the p = 2-term with k = 1, there are 4 diagrams. Thus,

1 1
Zl//o Jr A A
k(x,G)=1

L3d kioka, k3/ dxa drs 90 (k)P (k)9 (k3)g (x2 — x3)

% [ei(kl—kz)(xl—xz) etk (Xl—xz)eikz(xz—xz)eikz(xrxl)]

1 . . . .
= T2 Z PV (k1) 7D (k2)7 D (k3)g (k= k2) [ X (k=) = X (ky=ks) ]
ki,ka,k3

dez?(”(">2 W(0)[8(0) - g(k - 0)].

k,t

Taylor expanding ¢ and using that f xg(x) =0s0Vg(0) =0, we get

S rhg| <l Pellup.

(n.G)eL)
k(7,G)=1
Thus, by Lemma 4.6,
2+2/d
Z >, Tho| =l Pellueg™ + Cligh, |y O[5+ Clisl g

p=i P " (n.G)eL),

< Cadbzp(2)+2/d + Cazdpgg’d(log b/a)>.

That is, Equation (3.3) is satisfied. O
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