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EXPONENTIAL STABILITY OF ABSTRACT DIFFERENTIAL
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Abstract

This paper is concerned with robustness with respect to small delays for the exponential
stability of abstract differential equations in Banach spaces. Some necessary and sufficient
conditions are given in terms of the uniformly square integrability of the fundamental
operator family and the uniform boundedness of its resolvent on the imaginary axis.
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1. Introduction and Preliminaries

Robustness of stability with respect to small delays, for example, as motivated by
feedback systems in control theory, is of great theoretical and practical importance,
but this property does not hold for many systems. In the literature (see, for example,
[4,5,7,9,10] and references therein), there are many examples of systems described
by distributed parameters which are exponentially stabilised by a feedback but which
are destabilised by arbitrary small delays in the feedback loop. Examples of this sort
first appeared in Huang [9] and Datko et al. [5] independently in 1986. Huang [9] gave
two abstract counterexamples and proved a well-known result that a system is robust to
small delays if operator A generates an immediately norm continuous C0-semigroup.
More recently, the problem of robustness of stability has received considerable atten-
tion. Logemann, Rebarber, Townley and Weiss ([13-16]) have presented a systematic
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treatment for some distributed parameter systems. More recently, Avalos et al. [1]
showed that it is not possible to construct a dynamic stabiliser of a general form such
that the stabilisation is robust with respect to small delays for a structural acoustics
model. Hale and Lunel [7] try to explain the underlying mechanisms and the role that
difference equations are playing in robustness results. Batkai and Piazzera [2] show
that those sufficient conditions derived in [10] and [14] also hold on the state space
£ = X x Lp([0, r0], X), which is a better choice for many applications.

Corduneanu [3] first introduced the fundamental matrix to study stability for
integro-differential equations in finite-dimensional spaces. Liang and Xiao ([11]
and [12]) extended the fundamental matrix to the fundamental operator to deal with
exponential stability for abstract autonomous functional differential equations with
infinite delay. In this paper we investigate whether exponential stability persists if
there is a small delay in the feedback term for the abstract differential equation by
using the fundamental operator family in Banach spaces.

Consider the following equation:

u(t) = Au(t) + Bu(t -r), t > 0,
u(0) = *, (1.1)

on a Banach space X, where (A, D(A)) generates a Co-semigroup T(t) satisfying
|| 7"(OII < M e m , w e R , M > \ \ B e C ( X ) , x o e X , f e L " ( [ - r , 0 ] ; X), p > 1. F o r
concepts and results involving the C0-semigroup, we refer the reader to [6,8] and [18].

To transform system (1.1) into operator-valued matrix form we introduce the fol-
lowing operator Ar on £ := X x Lp([-r, 0]; X):

/A Bi.,\
•*r ~ \0 dido) '

D(Ar) = {(x, f) e D(A) x Wl"([-r, 0]; X) : /(0) = *},

and system (1.1) is transformed into the equivalent Cauchy problem on £:

Under these assumptions on A and B, (A + B, D(A)) generates a C0-semigroup. It
is easy to prove that (Ar, D(Ar)) generates a Co-semigroup Tr(t) = ( " ^ on £. For
details, we refer to [2].

In the following section, we introduce the fundamental operator family and obtain
a representation of the solution of system (1.1). In Section 3, some necessary and
sufficient conditions are given in terms of the uniformly square integrability of the
fundamental operator family and the uniform boundedness of its resolvent on the
imaginary axis.
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2. Preliminaries

To characterise robustness with respect to small delays for the exponential stability
of system (1.1) on the state space £, we introduce the concept of the fundamental
operator family for system (1.1) by means of the following integral equation:

I T(t -Xr(t)x = T(t)x+ I T(t -s)BXr(s-r)xds, t > 0,

Xr(0) = / , t = 0, ( 2 1 )

*r(0 = 0, f € [ - r , 0 ) .

In this section, we first derive the existence of the strong continuous solution
Xr(t), t > 0, and an exponential estimate on Xr(t) which are basic to the application
of the Laplace transform and to obtaining a representation of the solution u(t) of
system (1.1). It is easy to prove the following theorem.

THEOREM 2.1. Suppose that the conditions on A and B are satisfied. Then there
exists a unique solution Xr{t),t > —r, of Equation (2.1) which is strongly continuous
on [0, oo). Furthermore, Xr(t) satisfies the inequality

\\Xr{t)x\\ <Me{w+MeM'm)'\\x\\, t>r.

From Theorem 2.1, we can define the fundamental operator family Xr(t), t > - r ,
as the unique solution of integral equation (2.1). From ||Xr(r)|| < Me""' (where
u>i = w + MeMr\\B\\), we obtain that the integral /0°° e~k'Xr(t)x dt converges for all
Re k > u>i and all x € X. Furthermore, we have the following theorem which implies
that A;'(A) := (A. - A - e~krB)-1 is the Laplace transform of Xr{t).

THEOREM 2.2. The fundamental operator family Xr(t) of Equation (1.1) satisfies

L
00

e~x'Xr{t)xdt = A,(k)x, ReA. > wx > w for x e X.
o

PROOF. Since Xr(t) satisfies

Xr{t)x = T(t)x + Tit - s)BXr(s - r)xds, t > 0 and x e X,
Jo

we have

/

OO y»OO pOO pt

e~k'Xr{t)xdt = / e-x'T(t)xdt+ e~u \ T(t - s)BXr(s - r)xdsdt
Jo Jo Jo
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/ e-k(l+s)T(t)BXr(s - r)x dt ds
Jo

r°°
= R(k, A)x + / R(\, A)e~ksBXr(s - r)x ds

Jo
r00

= /?(*., A)x + / R(k, A)e-ksBXr(s - r)x ds
Jr

r°°
= R(k, A)x + e~krR(X, A)B / e-

XsXr{s)x ds.
Jo

Therefore

(k-A- Be~kr) / e~k'Xr(t)xdt = x,
Jo

which yields that

Jo

for Re A. large enough, and hence it holds for Re A. > to,. D

THEOREM 2.3. Letu{t) be the mild solution of (1.1). Then u(t) is given by

Xr(t)x0+ f Xr(t-s)B(SQf)(s-r)ds, t>0,
u(t) = • Jo

fit), te[-r,O),

where

, otherwise.

PROOF, (a) Since Xr(t) satisfies (2.1), for t € [0, r] we have

Xr(t) = T(t) and

X,(t-s)B(SofKs-r)ds= f T(t-s)Bf(s-r)ds,
Jo

= T(t)xo+ T(t -s)Bu(s -r)ds
Jo

= Xr(t)x0 + f X,{t - s)Bf(s - r) ds
Jo

= Xr(t)x0 + / Xr(t - s)B(Sof)(s - r)ds. (2.2)
Jo

Jo
and consequently,
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For t e [r, 2r), from (2.1) it follows that

Xr(t)x0 = T(t)x0 + I T(t-s)BXr(s-r)xods
Jo

= T(t)x0 + [ T(t-s)B(s- r)xQ ds, (2.3)
Jo

and

I Xr(t-s)B(SofKs-r)ds
Jo

= I T(t~s)Bf(s-r)ds
Jo

+ 11 T(t-s-r)BXr(r-r)Bf(s-r)drds
Jo Jo

= [ T{t-s)Bf(s-r)ds
Jo

+ (j f +j n T(t-s)BXr(s-r-r)Bf(s-r)drds

= f
Jo

T(t-s)Bf(s-r)ds

+ I I T(t-s)BXr(s-r -r)Bf(s-r)drds. (2.4)

Using (2.3), (2.4), and the fact that u(t) is the mild solution of (1.1), we deduce
that

K(/) = nO*o+ f T(t -s)Bu(s -r)ds+ I T(t - s)Bf{s - r)ds
Jr Jo

= T(t)xo+ [ T(t -s)BT(s-r)xods+ [ T(t - s)Bf(s - r)ds
Jr Jo

+ f [ T{t-s)BT{s-r-x)Bf{x-r)dxds
Jo Jo

= Xr(t)x0+ I Xr(t-s)B(Sof)(s-r)ds.
Jo

(b) Suppose that (2.2) holds for t € [0, (n + l)r). Now for t e[(n + l)r, (n + 2)r),
we have

u(t) = T(t)x0 4- / T(t -s)Bu(s -r)ds+ j T(t - s)Bf(s - r)ds
Jr Jo

f T{f- s)BXr(s - r)xods
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f T(t-r)BXr(r-r-s)B(Sof)(s-r)dsdT[ f
Jr JO

+ / T(t - s)Bf(s -r)ds+ f T(t - s)Bf(s - r) ds
Jo Jo

= Xr(t)x0+ f f T(t-s-r)BXr(T-r)Bf(s-r)dzds

+ f T(t-s)Bf(s-r)ds, (2.5)
Jo

and

I Xr(t-s)B(Sof)(s-r)ds
Jo

= I T(t -s)Bf(s-r)ds
Jo

+ 1 1 T(t -s -r)BXr(r - r)Bf(s - r)dr ds. (2.6)
Jo Jr

From (2.5) and (2.6), it follows that

u(t) = Xr(t)x0 + f Xr(t - s)B(Sof)(s - r) ds, t € [(n + l)r, (n + 2)r),
Jo

which completes the proof of the theorem. D

3. Robustness with respect to small delays

In this section, we first introduce the concept of robustness with respect to small
delays for exponential stability on the state space S = X x Lp([—r, 0]; X). Secondly,
the robustness is characterised via the fundamental operators. Finally, we show
the analyticity of the resolvent A~*(k) and the resolvent identity, and furthermore,
characterise the robustness in terms of the resolvent A71 (A).

DEFINITION 1. System (1.1) is said to be robust with respect to small delays for expo-
nential stability if there exists r0 > 0 such that for any r € [0, r0], f € Lp([—r, 0]; X)
and x e X, system (1.1) is exponentially stable, that is, there exist constants M, w > 0
such that
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THEOREM 3.1. System (1.1) is robust with respect to small delays for exponential
stability if and only if there exists r0 > 0 such that Xr(t) is uniformly exponentially
stable for r e [0, r0], that is, there exist constants r0, M, w > 0 such that

\\Xr(t)\\ < Me~wl, t > 0, uniformly for r e [0, r0].

PROOF. For any x e X, let / = 0. We deduce that the mild solution u(t) of (1.1)
satisfies

, , \Xr(jt)X, t>0,
u(t) = {

[0, t € [-r, 0).
Therefore, robustness shows that ||«(r)|| = l|Xr(0*ll 5 Me~""\\x\\, x e X, which
implies ||Xr(OII < Me~w' uniformly forr € [0, r0]-

On the other hand, for t > r, noticing that B(Sof)(s — r) = 0, s > r, and

n(0 = *r(0* + / Xr(t-s)B(Sof)(s-r)ds,
Jo

we get

< Me-W'\\x\\ + I Me-M'-s)\\B\\\\f(s-r)\\ds
Jo

( 1 V/

< Me-W'\\x\\ + M\\B\\e-wl —(e«wr° -

< M'e-»"2(\\x\\p + \\f\\"LHl-,o];xy/P>

where l/p + \/q = 1. Similarly, we have

||ii(r+0)|| < Me-WIe-wB\\x\\ + f Me-wlewse-we\\B\\\\f(s-r)\\ds,
Jo

and consequently,

—{e<""'° - \)\
pw )

e^'WBW (—(epwr° - 1)) I ewsf(s - r)ds
\pw ) Jo

From the above discussion, we deduce that

T(t) (X
f)\ =

ut\)/ £

which implies robustness. •
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THEOREM 3.2. Xr(t) is uniformly exponentially stable for r € [0, r0] if and only if
there exists M > 0 such that

aoo \ 1/2

\\Xr(t)x\\2dt J < M\\x\\, for x eX and uniformly for r € [0, r0].
PROOF. It suffices to show sufficiency for p = 2. Indeed, if u(t) is the mild solution

of (1.1), then for t > 0, we have

u(t) = Xr(t)x+ f Xr(t-s)B(Sof)(s-r)ds,
Jo

which implies

+ \J (J \\Xr(t-s)B(SofHs-r)\\ds\ dt\

ij \\Xr(t-s)B(Sof)(s-r)\\2dt) ds

M\\B(Sof)(s-r)\\ds

<M'(| |x| |2 + ||/||2,2([_rO);X))
1/2. (3.1)

On the other hand, for t > r, we can deduce

—r /

+ ( / / ( / ||Xr(*+0-*)*($>/)(* - Olid*) rfflrfr)
1/2

/ f° I""0 \' /2

+ (f f f \\XAt+0-s)B(S0f)(s-r)\\2dtdsde)
\J-r Jo Jr /

0rO roc x ' / 2

/ M\\B(S0f)(s-r)\\2dsde)
-T JO J

< M"(\\X\\ + ||/||t'(|-r.Ol;X,). (3-2)
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From (3.1) and (3.2), it follows that

563

no W
V/ 2

dt < +oo.AfxL?([-/-.0];X)

By Datko-Pazy's theorem ([6,18]) for exponential stability, we obtain that T(t) is
exponentially stable which implies that Xr(t) is uniformly exponentially stable for
r e [0, r0]. •

In what follows, suppose that Dr := {k e C | A^'(X) exists and A;r'(A.) 6
We will show the £(X)-valued analyticity and the resolvent identity of A~l (A.) on Dr,
and characterise the robustness of the stability by A~l(k).

THEOREM 3.3. (i) For all ix, k 6 Dr, we have the following resolvent identity:

A ; V ) - Kl(k) = A;\fiKk - /x + Be^r - Be-kr)A;\k). (3.3)

(ii) The resolvent A~l (•) is analytic on Dr, and

^rA;\k) = -Ar-'(X)2 - re-krA;l(k)BA;l(k), k e Dr.ak

PROOF. For /x, k € Dr, we have

A,"1 (At) = A7V)(A - A - Be-^JA^'O.)

or equivalently,

A ; 1 Oi) - A ; 1 (A.) = A;'(At)(A. - M + fi«-/ur - B

Next, for k0 € Dr, we get

Ar(X) = Xo - A - e"XorB + (k - k0) - Be~Xr

= Ar(X0)(/ + Ar-'(A.0)(A. -k0- Be~kr

Let k — A-o be small enough such that

1
\\k - k0 + e~k°rB - e'*-'B\\ < (3.4)

which yields that (/ + A;l(k0)(k - k0 + e~wB - e~krB))~i exists and belongs
to£(X),and ||(/ + A;'(A.0)(A. -ko + e~krB -e~XrB))-l\\ < 2. Therefore, we obtain

- k0 ~krB))~x A;^B - e~krB))
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O n the other hand, for A. satisfying (3.4), using the resolvent identity (3.3), w e
d e d u c e that

A ; ' ( X ) - A r - ' (X 0 ) = A ; 1 (k)(kQ - X + Be~kr - B ^ \

and consequent ly ,

II A,"1 (X) - Ar-'tto)|| < IIA^'WHIIXo - k + Be~kr -

< 2\\A;1(ko)\\\\Xo-k + Be~Xr - Be~k°r\\ ^ 0,

which shows the continuity of A~'(-). Finally, using continuity and the resolvent
identity (3.3) of Ajr'O. it is easy to see the analyticity. Indeed, for A,, /x e Dr, from
(3.3) it follows that

-A,-0.) - A,-(X) _ . / _ BL^

Let (i -> A., then using the continuity of A7'(), we obtain

- ^ - A ; 1 ^ ) = - A ; ' ( X ) 2 -re-kr&;l(\)BA;l(k). n
dk

THEOREM 3.4. Let \\Xr(t)\\ < Mew", sr
0 := inf{ReX | k € Dr and \\A;\k)\\ <

+oo}( wr
Q := inf[w 6 R \ there exists M > 1 such that \\Xr(t)\\ < Mewl, t > 0},

and let Ti > r2 > SQ. Then for all x € X we have lim^i^oo || A~'(r + is)x\\ — 0,
uniformly for r e [T,, r2].

PROOF. Upon replacing r2 by some large number, we may assume that r2 > wr
Q.

By the Riemann-Lebesgue lemma, for x e X we have limij^oo || A~l (r2 + is)x || = 0.
Using the resolvent identity (3.3), for all T € [ri, r2], we deduce

Ar"'(r + is)x = {/ + Ar"'(T + is)(r2 - r - B^-(t2+'l)r + Be-
(r+is)r))

x A7 ' (T 2 + is)x,

and hence

|| A ; ' ( T + «)* | | < {1 + || Ar"'(T + «)||(|r2 - T| < ) ( + i ) ) }

sup
relz,.t2]

uniformly for r € [tj, r2].
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THEOREM 3.5. Let Xr(t) be the fundamental operator family of system (1.1). Then
for all x e X and co > sr

Qwe have

Xr(})x = - ! - ( C , 1) / e"'A;\X)xdX,

where (C, 1) denotes convergence of the integral in the Cesaro mean, that is,

(C,l) / f(s)ds:= lim - / / f{s)dsdx.

j-oo '-*+o° t Jo y_r

PROOF. Form > wr
0, see the definition in Theorem 3.4. FromFejer's theorem [17],

it follows that

e-mXr(f)x = ^-(C, 1) f eis'e-^xX-)x(s)ds,
2n JR

where A denotes the Fourier transform. On the other hand, by Theorem 2.2, we have

e-(w+h)'Xr(t)xdt = e~wXr(-)x(s).

Therefore, we have

ewt f
Xr(t)x = — ( C , 1) / eis'A;l(w + is)xds

2n JR

euA;\k)xdX.

Finally, for general w > sr
0, using Theorem 3.4 and Cauchy's theorem to shift the path

of the integral to a vertical line to the right of a)r
0, we obtain

(C, 1) / eklA;1 (k)xdX = (C,l) f ek'A;\X)xdX. •

THEOREM 3.6. If there exists an w' > wr
0 and Mr > 0 such that

f \\A;l(w' + is)x\\2ds<Mr\\x\\2, xeX, (3.5)
JR

and

[ &;\w' + isyx*\\2ds<M,\\x\\2, x*eX\ (3.6)

then wr
0 = sr

0.
Suppose that (3.5M3.6) are satisfied uniformly for r e [0, r0] ands\ip[\\Ar

 l(X)\\ :
Re A. > 0} < M, uniformly for r € [0, r0]. Then Xr(t) is uniformly exponentially
stable for r € [0, rQ].
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PROOF. It suffices to prove s^ > wr
0. Indeed, for any e > 0, from (3.3), we deduce

r - ' (^ + E + is) = A; V + is) + A;\sr
0 is)

x (u/ -sr
0-s + Be-(sr"+c+is)r - Be-(w'+is)r)A;l(w' + is),

and hence

(C, 1) / eis'A;l(sr
0 +e + is)x ds

JR

= (C, 1) / e'"A~\w' + is)x ds
JR

+ (C, 1) f eis'A;\sr
0 + e + is)(w' -sr

0-E
JR

+ Be-{s'°+E+is)r - Be-{w'+is)ryl A;\w' + is)x ds. (3.7)

On the other hand, we estimate

—(C, 1) f eiuA;l(w' + ii
2n JR

and from (3.5) and (3.6) we estimate

(C, l ) f eis'A;\sr
0 + £ + is)(w

JR

x A~l(w' + is)x ds

f isi _,

JR

is)xds < \\e-*'Xr(!)x\\ < M\\x\\, (3.8)

-sr
0-e •"'r _ Be~^w+is)r)

= sup

x (u/ - sr
0 - £ + Be-{s'"+e+is)r - Be-(w'+is)r)A;\w' + is)x] ds

< sup

x \\(w'- sr
0 - £ + Be-(s°+£+is)r - Be-(w'+is)r)A;\w' + is)x\\ ds

\ f 2 1 '/2

< sup I I || A (SQ +e + is) x\\ ds\
B l̂lsi I JR J

x (fUw'-sr
0-E + Be~(s«+e+is)r-Be'^^fWA^iw' + is)xfds\

< Mdw' -^ -e l + llfill^+^+e1^0)) T / ||A;'(U;' + J

1/2

< M'\M\. (3.9)
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Therefore, using Theorem 3.5 and Equations (3.7)-(3.9), we obtain

fr(O*ll =
1 r is,+e+is)l

2n ' J/ r S° e + is)x ds

2n — JR

< MEeis'°+e)'\\x\\,

which, observing the arbitrariness of e > 0, completes the proof. D

Acknowledgements

This research was partially supported by the National Natural Science Foundation
of China and the Postdoctoral Science Foundation of China.

References

[1] G. Avalos, I. Lasiecka and R. Rebarber, "Lack of time-delay robustness for stabilization of a
structural acoustics model", SIAM J. Control Optim. 37 (1999) 1394-1428.

[2] A. Batkai and S. Piazzera, "Partial differential equations with unbounded operators in the delay
term", Tiibinger Berchte Funktionalanalysis 9 (2000) 69-83.

[3] C. Corduneanu, "Some differential equations with delay", in Proceedings, Equadiff. 3, (Czechoslo-
vak Conference on Differential Equations and Applications), (Springer, London, 1972), 105-114.

[4] R. Datko, "Not all feedback stabilized systems are robust with respect to small delays in their
feedback", SIAM J. Control Optim. 26 (1988) 697-7113.

[5] R. Datko, J. Lagnese and M. P. Polis, "An example on the effect of time delays in boundary
feedback of wave equations", SIAM J. Control Optim. 24 (1986) 69-83.

[6] K. J. Engel and R. Nagel, One-parameter semigroups for linear evolution equations, Graduate
Texts in Math. 194 (Springer, New York, 1999).

[7] J. K. Hale and S. M. Verduyn Lunel, "Effects of small delays on stability and control", Oper.
Theory Adv. Appl. Ill (2001) 275-301.

[8] F. L. Huang, "Characteristic conditions for exponential stability of linear dynamical systems in
Hilbert spaces", Ann. Differential Equations 1 (1985) 45-53.

[91 F. L. Huang, "On the stability with respect to small delays for linear differential equations on
Banach spaces", Chinese J. Math. 6 (1986) 183-191, (in Chinese).

[10] X. J. Li and K. S. Liu, 'The effect of small delays in the feedbacks on boundary stabilization", Sci.
China Ser. A 36 (1993) 1453-1443.

[11] J. Liang and T. J. Xiao, "Functional differential equations with infinite delay in Banach spaces".
Internal. J. Math. Math. Sci. 14 (1991) 1331-1341.

[12] J. Liang and T. J. Xiao, "Exponential stability for abstract autonomous functional differential
equations with infinite delay". Internal. J. Math. Math. Sci. 21 (1998) 255-260.

[13] H. Logemann, "Destabilizing effect of small delays on feedback-controlled descriptor systems".
Linear Algebra Appl. Ill (1998) 131-153.

https://doi.org/10.1017/S1446181100010130 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181100010130


568 Faming Guo, Bin Tang and Falun Huang [14]

[14] H. Logemann and R. Rebarber, 'The effect of small delays on the closed-loop stability of boundary
control systems", Math. Control Signals Systems 9 (1996) 123-151.

[15] H. Logemann, R. Rebarber and G. Weiss, "Conditions for robustness and nonrobustness of the
stability of feedback systems with respect to small delays in the feedback loop", SIAM J. Control
Optim. 37 (1996) 572-600.

[16] R. Rebarber and S. Townley, "Robustness with respect to delays for exponential stability of
distributed parameter systems", SIAM J. Control Optim. 37 (1998) 230-214.

[17] 1. M. A. M. van Neerven, The asymptotic behaviour of semigroups of linear operators. Operator
Theory: Advances and Applications 88 (Birkhauser Verlag, Basel, 1996).

[18] Q. Zhang, Strongly continuous semigroups of linear operator, (in Chinese) (Huangzhong University
of Science and Technology Press, Wuhan, 1994).

https://doi.org/10.1017/S1446181100010130 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181100010130

