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Abstract

Due to the increased prevalence of human infections with bird schistosome larvae (cercarial
dermatitis) associated with bathing in Danish lakes, a nationwide survey of infected inter-
mediate host snails was conducted in 2018–2020. Pulmonate snails (10,225 specimens)
were collected from 39 freshwater lakes (in the four major geographic regions in Denmark)
and subjected to shedding. Released schistosome cercariae were isolated and identified by
polymerase chain reaction and sequencing whereby Trichobilharzia regenti, Trichobilharzia
franki, Trichobilharzia szidati and Trichobilharzia anseri were recorded. Infections were
primarily determined by biotic factors such as the presence of final host birds and intermedi-
ate host snails and water temperature was noted as an important abiotic parameter associated
with the infection. No clear connection with other abiotic factors (conductivity, alkalinity, pH,
nitrogen, phosphorous) was seen. The widespread occurrence of infected snails, when com-
pared to previous investigations, suggests that climate changes at northern latitudes could
be responsible for the increased risk of contracting cercarial dermatitis.

Introduction

Avian schistosomes of the genus Trichobilharzia are digenean parasites occurring worldwide,
with an increasing presence at northern latitudes – for example, Denmark, Norway and
Sweden (Thors & Linder, 2001; Larsen et al., 2004; Soleng & Mehl, 2011; Tracz et al., 2019;
Al-Jubury et al., 2020). Several species within the genus are of medical importance as their cer-
cariae cause cercarial dermatitis (swimmer’s itch) in humans (Horák et al., 2015; Christiansen
et al., 2016; Zbikowska & Marszewska, 2018; Tracz et al., 2019; Al-Jubury et al., 2020). The first
connection between bird schistosomes and swimmer’s itch was described from Michigan,
USA, almost a century ago (Cort, 1928). In contrast, Denmark’s first case was reported
three decades later (Berg & Reiter, 1960).

The adult bird schistosomes occupy the visceral veins (visceral species) or the nasal mucosa
(nasal species) of birds, where they release eggs that subsequently hatch and release ciliated
larvae (miracidia) to the aquatic environment. They penetrate the intermediate pulmonate
snail host and transform to mother sporocysts, which subsequently produce daughter sporo-
cysts releasing furcocercariae able to penetrate the skin of the definitive host (waterfowl) for
completion of the life cycle (Horák et al., 2002). Bird schistosomes are zoonotic trematodes
as their cercariae may not only seek birds but also penetrate the skin of humans in the fresh-
water lake due to the similarity in skin lipid composition between aquatic birds and humans
(Haas & Van de Roemer, 1998). The resulting disease is termed cercarial dermatitis due to
marked skin reactions with an itchy maculopapular eruption induced by the dying or dead
parasite larvae (Haas & Pietsch, 1991; Horák & Kolářová, 2000, 2001; Bayssade-Dufour
et al., 2002). Re-infections of humans are generally more pronounced, possibly due to sensi-
tization and allergic responses, whereby swelling of larger skin areas, fever and nausea can be
seen (Kolárová et al., 2013; Tracz et al., 2019).

Recently, the occurrence of bird schistosomes and swimmer’s itch has become a more fre-
quent problem in recreational areas (Buchmann et al., 2004; Soldánová et al., 2013; Jouet et al.,
2015; Marszewska et al., 2016; Al-Jubury et al., 2020). Of special concern is the finding that
larvae of certain visceral avian schistosome species have been detected in the lungs of experi-
mentally infected murine hosts (Horák et al., 2002), and feet paralysis has been seen in mice
infected with the neurotropic species Trichobilharzia regenti (Horák et al., 1998; Hrádková &
Horák, 2002). Therefore, it is important to survey the occurrence of parasites at the species
level in lakes attended by the public for recreational purposes. For further risk analysis, it is
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relevant to correlate the parasite occurrence with physicochemical
environmental factors in the lakes, as the parameters such as pH,
alkalinity, nitrogen, phosphorous, chlorophyll and conductivity
were previously claimed to affect the survival of the intermediate
host snails and cercariae (Hunter & Wigington, 1972; Madsen
et al., 1988; Marcogliese, 2001). The present study presents the
results from an extensive survey, covering a representative part
of the Danish lake territory, elucidating the occurrence of avian
schistosome species in the lakes with different physicochemical
conditions.

Materials and methods

Lake sampling and snails examined

From August 2018 to October 2020, a total of 10,225 pulmonate
freshwater snails (Lymnaea stagnalis, Radix (syn. Ampullaceana)
balthica, Radix auricularia, Stagnicola palustris, Omphiscola glabra,
Planobarius corneus, Planorbis planorbis, Anisus vortex, Bithynia
tentaculata, Bithynia leachii) were collected from 39 (natural and
artificial) freshwater lakes distributed all over Denmark (table 1).

Snails were collected randomly by hand or forceps from stones
and aquatic plants along several parts of the shore in shallow
water (minimum three localities of each individual lake). Snails
were subsequently transported to the Laboratory of Aquatic
Pathobiology, University of Copenhagen, for further examination.
The sampled snails were rinsed by dechlorinated water for
removal of surface adhering organisms (preventing interference
of false positive results), after which each snail was identified to
species level based on morphometric features (Glöer, 2002), and
subsequently placed separately in a 200 ml plastic beaker contain-
ing 100 ml dechlorinated water. All beakers with snails were
placed in natural light and room temperature overnight. The
following morning all Trichobilharzia-positive snails were identi-
fied by examining the water in the beaker using a dissecting
microscope (Leica CLS 150X, Leica Microsystems, Wetzlar,
Germany, magnification ×4–40).

Cercariae

The cercarial type and genus were determined morphometrically
based on standard morphometric characters (Wesenberg-Lund,
1934; Schell, 1970; Horák et al., 2002; Marszewska et al., 2016).
Specimens identified to genus level as Trichobilharzia sp. were
isolated and preserved in 70–96% ethanol and kept at 4°C for sub-
sequent molecular species identification.

Bird collection

A total of 12 specimens of waterfowl were subjected to examin-
ation for the presence of bird schistosomes. Nine mallards
(Anas platyrhynchos, three males and six females, mean body
weight 1200 g) were shot by a hunter in Roskilde municipality,
Denmark, in 2019 and were within one day transported to
the Laboratory of Aquatic Pathobiology at the University of
Copenhagen for parasitological examination. In addition, three
specimens of mute swan Cygnus olor were found dead at three
different localities (Vanløse and Roskilde in Zealand and Norre
Alslev in Lolland). They were collected and treated likewise. All
birds were frozen at –18°C until autopsy and parasitological
examination.

Parasitological examination of birds

The dissection was performed according to Skírnisson & Kolářová
(2008) with some modifications: the gizzard was cut open, muscles
and content were checked by the naked eye, while heart, liver, lung
and pancreas were pressed carefully and individually placed in a
sieve and washed with tap water. The samples were transferred to
1000 ml beakers filled with approximately 700 ml tap water. After
60 min, the water and the suspension was then examined under
the dissecting microscope (Leica CLS 150X) for recovery of
fragments or complete adult worm. The spinal cord and cerebral
membranes were also carefully removed and placed in a petri dish
with phosphate-buffered saline and examined. Direct faecal and
nasal mucosal tissue examination were performed by placing the
stool or mucosa sample on a slide covered with a coverslip and
subsequently checked under a compound microscope (Leica
DM5000B, Leica Microsystems, Wetzlar, Germany). Digital
images was obtained using a Leica MC170 HD camera.

DNA extraction and polymerase chain reaction (PCR)

DNA extraction from cercariae
DNA was extracted from fresh or alcohol-preserved single furco-
cercaria with a QIAamp® DNA Mini Kit (QIAGEN GmbH,
GIAGEN strasse, Hilden, Germany) following the manufacturer’s
instruction protocol, with a minor modification (DNA was eluted
in 50 μl of elution buffer instead of 200 μl).

DNA extraction from waterfowl positive faecal and mucous
samples

DNA was extracted and purified from the individual positive faecal
samples using the QIAamp® Fast DNA Stool Mini Kit (QIAGEN),
while the QIAamp® DNA Mini Kit was used for DNA extraction
from the positive mucus samples (one mallard was positive for para-
site eggs in the nasal mucosa), as described above.

Molecular identification

By PCR, internal transcribed spacer 1 (ITS1)-5.8S-ITS2 regions of
the ribosomal DNA (rDNA) was amplified using the forward pri-
mer BD1 (5′AGG AAT TCC TGG TAA GTG CAAG′3) and the
reverse primer BD2 (5′TAT GCT TAA ATT CAG CGG GT′3)
(Galazzo et al., 2002). Reactions were run in a T100™ Thermal
Cycler (BioRad, Copenhagen, Denmark) in a total reaction vol-
ume of 60 μl containing: 1 μM of each primer (TAG
Copenhagen, Denmark), 1 mM of dNTP Mix (Life Technologies,
Copenhagen, Denmark), 1.25 units of BIOTAQ DNA polymerase
(Saveen Werner Aps, Copenhagen, Denmark), 1.5 mM magne-
sium chloride, and 6 μl 10 × PCR buffer and 2 μl DNA template.
Finally, DNase- and RNase-free water (Invitrogen™, Life
Technologies, Copenhagen, Denmark) was added to a final reac-
tion volume of 60 μl. Sterile water was used as negative control.
The following PCR protocol was used: initial denaturation at
94°C for 5 min, followed by 45 cycles of denaturation at 94°C
for 30 s, annealing at 57°C for 30 s and elongation at 72°C for
75 s. After cycling, a final elongation step at 72°C for 7 min was
performed. The PCR products were visualized by gel electrophor-
esis and subsequently purified using Illustra™ GFX™ PCR and
Gel Band Purification Kit (VWR, Copenhagen, Denmark). DNA
concentration and purity were measured using a Nanodrop 2000
spectrophotometer (Saveen & Werner ApS, Copenhagen,
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Denmark). Fragments were sequenced by Macrogen Inc.
(Amsterdam, the Netherlands) using the PCR primers used for
the amplification process.

In order to identify species with high molecular identities,
the obtained sequences were subjected to BLAST analysis at the

National Center for Biotechnology Information (NCBI).
Further, the annotations were established by a combination of
using the two web-based tools Rfam at http://rfam.xfam.org/
search – tabview = tab1 at Nucleic Acids Research web site
(2020) and the ITS Database at http://its2.bioapps.biozentrum.

Table 1. Lake names, locations in Danish main regions (Zealand, Jutland, Funen and Lolland), coordinates and surface area of freshwater lakes examined.

Lakes Abbreviation Location Coordinates Surface area (km2)

Ringen Sø Rin Zealand 55.632178, 12.081913 0.007

Bagsværd Sø Bag Zealand 55.770882, 12.460077 1.21

Furesø Fur Zealand 55.796893, 12.415352 9.41

Farum Sø Far Zealand 55.802409, 12.360115 1.20

Esrum Sø Esr Zealand 56.006314, 12.378258 17.29

Arresø Arr Zealand 55.967530, 12.113605 39.87

Søndersø-Z Søn-Z Zealand 55.775017, 12.353888 1.44

Sjælsø Sjæ Zealand 55.866349, 12.443419 2.93

Himmelsøen Him Zealand 55.614694, 12.056722 0.1

Buresø Bur Zealand 55.824841, 12.220360 0.76

Tissø Tis Zealand 55.574686, 11.285756 12.33

Utteslev mose Utt Zealand 55.717188, 12.505587 2.00

Haraldsted Sø Har Zealand 55.485526, 11.799915 2.10

Gyrstinge Sø Gyr Zealand 55.504606, 11.686293 2.63

Svogerslev Sø Svo Zealand 55.642510, 12.003539 0.25

Søndersø Maribo Søn-L Lolland 54.759204, 11.494309 8.52

Røgbølle Sø Maribo Røg Lolland 54.722582, 11.568850 2.01

Lyngby Sø Lyn Zealand 55.774150, 12.485206 0.57

BrommeLille Sø Bro Zealand 55.481158, 11.514709 0.125

Horsholm Kirke Sø Hør Zealand 55.873825, 12.499957 0.3

Sankt Jørgens Sø San Zealand 55.675971, 12.557444 0.66

Sortedam Sø Sor Zealand 55.693424, 12.573894 1.44

Skanderborg Sø Ska Jutland 56.030073, 9.943827 8.60

Stubbe Sø Stu Jutland 56.256753, 10.692496 3.76

Mossø Mos Jutland 56.037874, 9.779143 16.90

Glenstrup Sø Gle Jutland 56.595083, 9.852658 3.84

Slivsø Sli Jutland 55.172519, 9.472084 1.64

Tange Sø Tan Jutland 56.323872, 9.582629 5.40

Kvie Sø Kvi Jutland 55.725525, 8.769138 0.3

Hampen Sø Ham Jutland 56.018553, 9.393947 0.75

Egå engsø Egå Jutland 56.218479, 10.223994 1.15

Tjele langsø Tje Jutland 56.531729, 9.626501 4.09

Hald Sø Hal Jutland 56.380309, 9.355170 3.42

Søndersø-J Søn-J Jutland 56.442607, 9.413825 1.45

Almind Sø Alm Jutland 56.149603, 9.542246 0.53

Vedsted Sø Ved Jutland 55.191228, 9.364211 0.08

Julsø Jul Jutland 56.117859, 9.677438 5.65

Arreskov Sø Ars Funen 55.157691, 10.308423 3.17

Langesø Lan Funen 55.434449, 10.194496 0.16
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uni-wuerzburg.de/ (Ankenbrand et al., 2015). In cases where 18S
and 28S ribosomal sequences were too short, alignment to closely
related and highly identical sequences with sufficient parts of 18S
and 28S supplemented the web-based tools.

Phylogenetic and molecular evolutionary analyses were con-
ducted using the software MEGA version X (Kumar et al.,
2018). Initially, an alignment was constructed using Muscle and
including three non-Trichobilharzia trematodes species
(Tylodelphys clavata (MW135143), Diplostomum paracaudum
(MW135073) and Posthodiplostomum cuticola (MW135111)) as
an outgroup. Muscle was chosen because Clustal W was not
capable of aligning the included 5.8S ribosomal RNA (rRNA)
properly. Due to the presence of a variable number of repeats
in the ITS1 of Trichobilharzia anseri and Trichobilharzia szi-
dati, some obvious editing of the alignment was necessary.
Subsequently, the best fitting model of the 24 models tested
by MEGA version X was, when using the Akaike criterion,
General Time Reversible + G. The evolutionary history was
inferred by using the maximum likelihood method and
General Time Reversible model (Nei & Kumar, 2020). The
tree with the highest log likelihood (−8272.16) was chosen.
Initial tree for the heuristic search were obtained automatically
by applying Neighbour-Join and BioNJ algorithms to a matrix
of pairwise distances estimated using the maximum composite
likelihood approach, and then selecting the topology with
superior log likelihood value. A discrete Gamma distribution
was used to model evolutionary rate differences among sites
(five categories (+G, parameter = 1.4441)). The tree is drawn
to scale, with branch lengths measured in the number of substi-
tutions per site.

Lake physicochemical parameters

Online data (ODA) at https://odaforalle.au.dk, delivered by
the municipalities for the lakes investigated, were accessed
and six parameters (temperature, pH, alkalinity, nitrogen,
phosphorus, chlorophyll and conductivity) were extracted.
Data in ODA are collected as part of the National
Monitoring Program for the Aquatic Environment and
Nature (NOVANA), the Danish Environmental Protection
Agency. The data have been through quality assurance before
being made available online. We then performed a Spearman
correlation coefficient test between the parameters and the
occurrence of infections (infected prevalence of snails and
number of human cases).

Results

Lakes and snails

A total of 10,225 freshwater snails from 39 different freshwater
localities distributed in Zealand (22), Jutland (15) and Funen
(2) were collected (fig. 1). The freshwater snails collected and
examined in this study were belonging to three families and ten
different species: Lymnaeidae (L. stagnalis (2524), R. balthica
(3175), R. auricularia (72), S. palustris (1078) and O. glabra
(10)), Planorbidae (P. corneus (899), P. planorbis (27), A. vortex
(1851)) and Bithyniidae (B. leachii (66), B. tentaculata (523)).
The samples were dominated by R. balthica, followed by L. stag-
nalis and S. palustris. Eight snail species were sampled in Furesø,
seven species in Farum Sø, six species in Bagsværd Sø and
Esrum Sø, five species from Søndersø Zealand, Buresø,

Haraldsted Sø, Hørsholm kirke Sø and Skanderborg Sø. Other
lakes, such as the artificial lakes Ringen Sø and Svogerslev Sø,
merely contained one snail species, L. stagnalis and R. balthica,
respectively.

Prevalence of Trichobilharzia infection in snails in the
investigated lakes

Thirteen lakes were positive with regard to Trichobilharzia spp.
(cercarial shedding), seven of them located in Zealand and six
in Jutland. The remaining 26 locations were negative for
Trichobilharzia spp. – as judged from cercarial shedding from
snails. Lakes (written in bold in fig. 1) were positive for
Trichobilhariza cercarial shedding. Of the 10,225 snails, 37
released Trichobilharzia cercariae, resulting in an overall preva-
lence of 0.4%. Lymnaea stagnalis and Radix balthica were the
only snail species found infected with Trichobilharzia spp. (overall
prevalences 1 and 0.4%, respectively). The highest total prevalence
(6%) was recorded in Ringen Sø, followed by Arresø (4.9%).
Cercariae released from snails in the positive lakes were identified
both morphologically and molecularly.

Furesø and Hørsholm Kirke Sø were the only lakes in which
two Trichobilharzia species were found. In those lakes, T. franki
and T. regenti were isolated from four individual snails (preva-
lence 0.4%, 0.4% and 0.75% and 0.75%, respectively). The re-
maining positive lakes hosted only one species of Trichobilharzia
(table 2). Cercariae released from snails in Ringen Sø, Mossø and
Tjele langsø were identified as T. szidati, while cercariae from
Bagsværd Sø, Furesø, Hørsholm kirke Sø, Himmelsø, Glenstrup
Sø, Kvie Sø and Egå Engsø were T. franki.

Prevalence of infection in birds

Four of the 12 birds (33.3%) were positive for avian schistosome
eggs. Three A. platyrhynchos (one male and two females) were
positive for Trichobilharzia spp. (egg screening). Subsequent
molecular sequencing of DNA recovered from faeces showed
that one female bird and one male bird carried T. szidati, while
the other female carried eggs identified as T. regenti in the
nasal mucosa (table 3) . One swan (C. olor) was positive for
Trichobilharzia sp. by faecal examination. Identification to the
genus level was done based on the egg morphology and molecular
characteristics (Skírnisson & Kolářová, 2008), as the PCR was not
conclusive at the species level.

Molecular identification of cercariae

Cercariae released from 15 infected snails in the positive lakes and
three samples from birds were identified molecularly and have
been assigned GenBank accession numbers from MW482435 to
MW482450, MW538530 and MW538531. At NCBI, the BLAST
tool was used to reveal similarity/identity to sequences submitted
to GenBank prior to this study (supplementary table S1). In add-
ition, phylogenetic analysis was performed (supplementary fig.
S2). Seven cercariae were identified as T. franki in Furesø,
Bagsværd Sø, Hørsholm Kirke Sø, Himmelsøen, Kvie Sø, Egå
Engsø and Glenstrup Sø. Five sequences identified the samples
as T. szidati. Two of these were from cercariae in Ringen Sø,
and one in Mossø. Two T. szidati sequences were from birds sam-
ples in Roskilde municipality. Three sequences identified the sam-
ples as T. regenti in Furesø, Hørsholm Kirke Sø and Roskilde
municipality (bird sample). Three cercariae were identified as
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T. anseri in Arresø, Hampen Sø and Farum Sø (for more details,
see table 3). The sequences from the T. anseri specimens were dif-
ficult to align to each other. First of all, sequences designated T.
anseri covering either ITS1 or ITS2 – but not both – were avail-
able at GenBank. However, three sequences (FJ469784, FJ469785
and FJ469791), designated as Trichobilharzia sp., contained parts
that were identical to ITS1 and ITS2 sequences of T. anseri at
GenBank. In addition, these sequences included a part of 18S,
the complete 5.8S and a part of 28S. Secondly, a repeated
sequence (105 bp long) in ITS1 occurred in one, three, five or
seven copies. Thirdly, MW482445 of this study included a
151-bp-long insertion in ITS1. Finally, another sample
(MW538530) from Farum Sø identified as T. anseri
(MW538530) had a stretch of 503 bp double sequence across
the insertion mentioned above, thus resulting in a gap. The
obtained parts of ITS1 and ITS2 of MW538530 were identical
to MW482435 from Arresø, including two heterozygote bases
in ITS1. In the case of MW482435 (recovered from Arresø),
we obtained parts of 18s and 28S; these rRNAs were identical
to the 18S and 28S parts of FJ469784, FJ469785 and FJ469791
from GenBank. Therefore, based on the molecular analysis of

this study, the three sequences FJ469784, FJ469785 and
FJ469791 previously deposited at GenBank having the de-
signation Trichobilharzia sp. in GenBank may be designated
T. anseri.

Abiotic parameters

We found a clear association between lake temperature and occur-
rence of infected snails. During the first months of the year the
water temperature was low, and no shedding occurred from
sampled snails. When temperature increased in spring the infec-
tion prevalence increased and peaked in high and late summer
(August) (fig. 2). However, other abiotic parameters were not
clearly associated with infection. Table 4 lists the physicochemical
parameters measured from May to September, including pH,
alkalinity, nitrogen, phosphorus, chlorophyll and conductivity
from 18 different freshwater lakes from where snails were col-
lected and from which data were available online (ten lakes
from Zealand, five from Jutland, two from Funen and one from
Lolland). We found no significant correlation between

Fig. 1. Sampling locations (number) in Danish (natural and artificial) freshwater lakes. Lake name and sampling size (x) reported as follows (lakes written in bold
are negative): 1. Ringen (359), 2. Bagsværd Sø (495), 3. Furesø (1270), 4. Farum Sø (766), 5. Esrum Sø (1600), 6. Arresø (92), 7. Søndersø-Z (197), 8.Sjælsø (203),
9.Himmelsøen (30), 10.Buresø (88), 11.Tissø (296), 12.Utterslev mose (81), 13.Haraldsted Sø (234), 14.Gyrstinge Sø (30), 15.Svogerslev Sø (8), 16.Søndersø Maribo
(201), 17.Røgbølle Maribo (217), 18.Lyngby Sø (250), 19.BrommeLille Sø (135), 20.Horsholm kirke Sø (182), 21.Sankt Jørgens Sø (255), 22.Sortedam Sø (169),
23.Skanderborg Sø (496), 24.Stubbe sø (116), 25.Mossø (100), 26.Glenstrup Sø (490), 27.Slivsø (137), 28.Tange Sø (209), 29.Kvie Sø (162), 30.Hampen Sø
(140), 31.Egå Engsø (183), 32.Tjele langsø (287), 33.Hald Sø (181), 34.Søndersø-J (151), 35.Almind Sø (18), 36.Vedsted Sø (36), 37.Julsø (22), 38.Arreskov Sø
(183), 39.Langesø (156).
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Table 2. Overall prevalence of 13 Trichobilharzia spp.-positive lakes (snails shedding) with species identification.

Snail Parasite

Lake

Rin Bag Fur Far Arr Him Hør Mos Gle Kvi Ham Egå Tje

Lymnaeidae

Lymnaea stagnalis Examined T. szidati 359 54 198 63 33 – 11 52 52 39 37 – 214

Prevalence 6 – – – – – – 1.9 – – – – 0.5

Radix balthica Examined T. regenti – 196 261 190 41 30 129 46 193 123 103 115 73

Prevalence – 0.4 – – – 0.75 – – – – – –

Prevalence T. franki – 0.5 0.4 – – 3.3 0.75 – 0.5 0.8 – 0.8 –

Prevalence T. anseri – – – 0.5 4.9 – – – – – 1 – –

Radix auricularia Examined – – – 63 – – – – – – – – –

Prevalence – – – – – – – – – – – – –

Stagnicola palustris Examined – 21 30 – – – 10 – – – – 68 –

Prevalence – – – – – – – – – – – – –

Omphiscola glabra Examined – – 10 – – – – – – – – – –

Prevalence – – – – – – – – – – – – –

Planorbidae

Planorbarius corneus Examined – 178 296 45 18 – – 1 – – – – –

Prevalence – – – – – – – – – – – – –

Planorbis planorbis Examined – – – – – – – – – – – – –

Prevalence – – – – – – – – – – – – –

Anisus vortex Examined – 25 452 321 – – 29 1 – – – – –

Prevalence – – – – – – – – – – – – –

Bithyniidae

Bithynia leachii Examined – – 10 56 – – – – – – – – –

Prevalence – – – – – – – – – – – – –

Bithynia tentaculata Examined – 21 – 28 – – 3 – 245 – – – –

Prevalence – – – – – – – – – – – – –

Consult table 1 for abbreviations of lake names.
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physicochemical parameters and the prevalence of infection in
snails or number of cercarial dermatitis cases reported (table 5).
The range of pH was from 5.8 in Kvie Sø to 10.5 in Sortedam
Sø. The range of alkalinity was from 50 μM in Kvie Sø to
4.4 mM in Haraldsted Sø. The range of nitrogen measure
recorded was from 0.49 mg/l in Esrum Sø to 4.8 mg/l in Tissø.
The range of phosphorus was from 0.01 mg/l in Tissø to
0.36 mg/l in Søndersø Jutland. The range of chlorophyll was
from 1.6 μg/l in Tange Sø to 210 μg/l in Slivsø. The range of
the conductivity measurements was from 10 mS/m in Kvie Sø
to 90 mS/m in Sortedam Sø.

Biotic parameters in lakes

During snail collection, the occurrence of waterfowl (mallards and
swans) was recorded in all of the freshwater habitats visited – both

infected and non-infected. The only biotic parameter associated
with infection in lakes was the presence of intermediate hosts
(snails) and final hosts (waterfowl).

Discussion

During the warm summer of 2018, Danish dermatologists
reported an unusually high number of clinical cases of cercarial
dermatitis (swimmer’s itch) (Tracz et al., 2019). Children and
adults became infected due to contact with water in several fresh-
water lakes. Although the disease is considered benign and the
invading cercariae are supposed to die in the skin of the patient,
it cannot be ruled out that some cercariae of at least two species
may migrate further in a mammalian host (Horák & Kolářová,
2000; Horák et al., 2009). We have, therefore, performed an exten-
sive survey of the occurrence of different species of

Table 3. Overview of isolated specimens of Trichobilharzia spp. identification, lake and GenBank accession number.

GenBank acc. no. Species Lake Host

MW482445 Trichobilharzia anseri Hampen Sø Radix balthica

MW538530 Trichobilharzia anseri Farumsø Radix balthica

MW482439 Trichobilharzia franki Furesø Radix balthica

MW482440 Trichobilharzia franki Bagsværd Sø Radix balthica

MW482441 Trichobilharzia franki Hørsholm Kirke Sø Radix balthica

MW482443 Trichobilharzia franki Himmelsøen Radix balthica

MW482444 Trichobilharzia franki Kvie Sø Radix balthica

MW482446 Trichobilharzia franki Egå Engsø Radix balthica

MW538531 Trichobilharzia franki Glenstrup Sø Radix balthica

MW482438 Trichobilharzia regenti Furesø Radix balthica

MW482442 Trichobilharzia regenti Hørsholm Kirke Sø Radix balthica

MW482450 Trichobilharzia regenti Roskilde Municipality Anas platyrhynchos

MW482436 Trichobilharzia szidati Ringen at Roskilde Lymnaea stagnalis

MW482437 Trichobilharzia szidati Ringen at Roskilde Lymnaea stagnalis

MW482447 Trichobilharzia szidati Mossø Lymnaea stagnalis

MW482448 Trichobilharzia szidati Roskilde Municipality Anas platyrhynchos

MW482449 Trichobilharzia szidati Roskilde Municipality Anas platyrhynchos

Fig. 2. Water temperature recorded during the period of investigation (August 2018–September 2020). Months with positive and negative snails are indicated (dark
and grey, respectively), together with months where snails could not be recovered (white).
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Trichobilharzia in freshwater lakes. The low prevalence corre-
sponds well with several extensive studies from other freshwater
bodies in Europe (Kolářová et al., 1992; Loy & Haas, 2001;
Ferte et al., 2005; Skírnisson et al., 2009) and the infection level
previously found in Danish lakes (Larsen et al., 2004).
However, since the snails were sampled in different seasons
(from spring until autumn) (fig. 2), and infection is highly
temperature-dependent, precaution is required with respect to
interpretation of data as the infection level may vary consider-
ably over a season (Loy & Haas, 2001; Zbikowska & Nowak,
2009; Brown et al., 2011; Al-Jubury et al., 2020). The species
identified were T. franki, T. szidati, T. regenti and T. anseri.
The first three species have been previously reported from sev-
eral countries in Europe, including Denmark (Horák et al.,
2009, 2015; Cichy et al., 2011; Soldánová et al., 2013;
Christiansen et al., 2016; De Liberato et al., 2019). However,
this is the first report on the identification of T. anseri from
Danish lakes, which links this work to a few previous findings
in Europe (Jouet et al., 2015).

We showed that three schistosome species may use the same
snail host, R. balthica, corresponding to previous reports showing
this species as the most important snail host in the life cycle of
avian schistosomes (Jouet et al., 2008, 2010, 2015; Skírnisson &
Kolářová, 2008). In the present work, T. szidati appeared only
in L. stagnalis, supporting previous Danish reports (Al-Jubury
et al., 2020). However, T. szidati and T. regenti may infect and,

under certain circumstances, establish in other related snail spe-
cies, at least under experimental settings (Kock, 2001;
Korsunenko et al., 2010; Hunova et al., 2012). This suggests
that expanded field investigations may be able to expand the list
of intermediate hosts for this species. Further systematic analyses
of the snail genus Radix, including R. balthica, would also
enlighten the problem of some cryptic species possibly covered
under the same name. A molecular approach would be suitable
in this regard.

It is noteworthy that several cercarial dermatitis cases have
been reported from the lake Esrum Sø (Tracz et al., 2019).
Although in this particular lake we sampled the highest number
of snails from one location, no Trichobilharzia-positive snails
were detected. This may be explained by the fact that Esrum Sø
is the second largest lake in Denmark, whereby the precise habitat
with infected snails may be difficult to locate. It may also illustrate
that snail sampling is not always sufficient for mapping the occur-
rence of the parasite.

We selected a number of freshwater lakes for our investiga-
tions, seeking to cover the main areas of Denmark (Zealand,
Lolland, Funen and Jutland). Trichobilharzia regenti was distrib-
uted only in Zealand, while T. szidati, T. franki and T. anseri
were noted in lakes also from Jutland and Zealand. However, as
mentioned above, this does not exclude that all species may
occur nationwide. In some cases, only a low number of snails
were collected at some locations (Almind Sø, Julsø, Vedsted Sø,

Table 4. Abiotic parameters recorded during summertime (May–September 2018–2020) in 18 lakes, with records of previous and current cercarial dermatitis clinical
cases.

Lake Location

Cercarial
dermatitis
recorded

pH
geometric
mean/GSD

Alkalinity
mM Mean

± SD

Nitrogen
mg/l

Mean ± SD

Phosphor
mg/l Mean

± SD

Chlorophyl
μg/l Mean ±

SD

Conductivity
mS/m Mean ±

SD

Arresø Zealand − 8.6 /1.01 2.7 ± 0.2 2.3 ± 0.1 0.09 ± 0.0 65.4 ± 13.4 58.98 ± 0.8

Furesø Zealand + 8.6 /1.02 2.0 ± 0.2 0.7 ± 0.1 0.04 ± 0.01 14.6 ± 7.9 46.62 ± 2.0

Bagsværd Sø Zealand − 7.7 /1.0 3.3 ± 0.0 0.8 ± 0.0 0.13 ± 0.0 3.5 ± 0.0 44 ± 0.0

Tissøa Zealand − 8.4 /1.008 3.6 ± 0.3 2.8 ± 1.2 0.01 ± 0.0 9.9 ± 2.9 57.62 ± 2.4

Søndersø-Zb Zealand + 8.2 /1.02 2.3 ± 0.3 0.8 ± 0.2 0.02 ± 0.02 7.6 ± 8.8 54.54 ± 3.7

Haraldsted
Søa

Zealand + 8.1 /1.005 3.9 ± 0.3 1.8 ± 1.0 0.03 ± 0.02 6.2 ± 4.0 53.24 ± 5.7

Søndersø-Lc Lolland + 8.5 /1.05 1.8 ± 0.6 1.6 ± 0.1 0.04 ± 0.0 12.4 ± 3.4 33.62 ± 4.3

Kvie Sø Jutland + 6.9 /1.17 0.08 ± 0.02 1.8 ± 0.4 0.15 ± 0.08 65.7 ± 76.7 10.68 ± 0.7

Egå engsø Jutland − 8.7 /1.08 2.1 ± 0.6 1.2 ± 0.2 0.09 ± 0.05 26.8 ± 26.8 52.9 ± 16.7

Esrum Sø Zealand + 8.6 /1.02 2.2 ± 0.1 0.5 ± 0.1 0.06 ± 0.02 5.4 ± 3.0 35.72 ± 1.5

Sjælsø Zealand − 8.0 /1.02 3.0 ± 0.4 0.7 ± 0.05 0.08 ± 0.04 7.0 ± 3.9 44 ± 11.2

Sortedam Sø Zealand − 10.0 /1.03 1.5 ± 0.04 1.0 ± 0.3 0.14 ± 0.02 14.7 ± 8.6 80.58 ± 7.6

BrommeLille
Sø

Zealand − 7.8 /1.02 3.0 ± 0.05 1.4 ± 0.1 0.04 ± 0.0 24.2 ± 7.8 39.24 ± 3.9

Slivsø Jutland − 8.6 /1.04 2.8 ± 0.1 1.1 ± 0.4 0.15 ± 0.11 79.0 ± 88.7 46.7 ± 2.1

Søndersø-J Jutland − 8.9 /1.03 1.8 ± 0.05 1.3 ± 0.6 0.18 ± 0.12 66.0 ± 47.7 38.44 ± 2.2

Tange Sø Jutland + 7.0 /1.02 0.9 ± 0.1 1.2 ± 0.2 0.08 ± 0.04 9.8 ± 11.5 25.34 ± 1.6

Arreskov Sø Funen − 8.2 /1.005 2.9 ± 0.08 1.0 ± 0.1 0.05 ± 0.03 10.5 ± 3.3 48.96 ± 3.5

Langesø Funen − 8.6 /1.04 3.1 ± 0.01 1.7 ± 0.8 0.16 ± 0.15 33.6 ± 34.2 45.66 ± 3.1

The first nine lakes listed contained Trichobilharzia spp.-positive snails revealed by cercarial shedding, and the subsequent nine lakes did not contain snails with Trichobilharzia spp.-positive
snails.
aLarsen et al. (2004); bChristiansen et al. (2016); cunpublished data (Jørgensen & Buchmann). GSD, geometric standard deviation; SD, standard deviation.
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Svogerslev Sø and Gyrsting Sø) due to limited access to private
property, physical inaccessibility, elevated water levels and inferior
weather conditions (Duan et al., 2021).

In Europe, a number of waterbird species, including mallard and
mute swan, serve as definitive hosts and have been reported to host
both visceral and nasal species of Trichobilharzia (Horák et al.,
2002; Rudolfová et al., 2002; Skírnisson & Kolářová, 2008;
Soldánová et al., 2013). This study identified two final hosts of
bird schistosomes. We observed, by light microscopic examination,
crescentic eggs in three A. platyrhynchos (two in stool and one in
nasal mucosa), giving a prevalence of 33%. This finding corresponds
to previous records in wild freshwater birds from Poland and
Czechia, with prevalences of 29% and 23%, respectively
(Rudolfová et al., 2007). In addition, Skírnisson & Kolářová
(2008) reported 35.5% prevalence of avian schistosomes in anseri-
form birds in Iceland. Two schistosome species were found in
birds in our study. Their identification was based on sequencing
of the ITS region, which showed that eggs recovered from the
stool were T. szidati, while the parasite from the nasal region was
T. regenti. This connects the final hosts for T. regenti and T. szidati
to infections of snails in the Danish freshwater bodies.

The presence of intermediate snail hosts and final bird hosts is
the main biotic factor crucial for the life cycle of the parasites, and
in all lakes examined both types of hosts were observed. However,
snails and released infective cercariae are directly exposed to and
may be affected by environmental biotic and other abiotic factors
(Pietrock & Marcogliese, 1992; Al-Jubury et al., 2020).
Temperature was clearly associated with infection, as documented
previously (Al-Jubury et al., 2020). However, we also included
data on other physicochemical parameters and evaluated any con-
nection between the occurrence of infective parasites and pH, alka-
linity, nitrogen, phosphorus, chlorophyll and conductivity. A low
pH was suggested to affect the presence of host snails (Hunter,
1988, 1990; Okland, 2007), whereas Cañete et al. (2004) claimed
that pH is rarely a factor affecting the distributions of aquatic snails.
The pH range (6.9–10) presented in this study did not seem to
affect the occurrence of snails. The values recorded in this study
correspond to values presented by other reports (Ntonifor &
Ajayi, 2007; Njoku-Tony, 2011; Usman et al., 2017). Another factor
analysed for an effect on the development and existence of snail
infection was chlorophyll. The mean concentration recorded in
the summer period from May to September was between 3.5 and
67 μg/l, which complies with the finding that snails and cases of
cercarial dermatitis can occur under 5 μg/l (Van Donk et al.,
1989), but otherwise no clear association was noted. This study
showed that snails could live and release cercariae in water lakes
with a conductivity of 10–80 mS/m, which supplements the range
of 56–344 mS/m reported by Dida et al. (2014). The contents of
nitrogen and phosphorus, in this and other studies, did not impact
snail distribution in the water bodies (Krist et al., 2014; Hill &
Griffiths, 2017). We cannot exclude that some species of snails,
as well as parasites, have different tolerance levels for abiotic factors,
but the physicochemical parameters investigated in this study did
not exclude snail and parasite occurrence. The distribution of fresh-
water snails may be a result of more complex interactions of differ-
ent factors (Utzinger et al., 2017), and with regard to the
occurrence of parasites, it was clear that the presence of intermedi-
ate snail hosts and the final hosts determine the infection risk. As
long as the abiotic conditions allow the presence of snails and birds,
there is a risk for bird schistosome infections. With climate change,
there is a risk of an increased occurrence of the parasites because of
temperature elevation, which leads to increased shedding ofTa
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cercariae in water bodies (Al-Jubury et al., 2020). In addition, cer-
cariae may be predated upon by aquatic invertebrates such as cope-
pods (Courmes et al., 1964; Holliman & Mecham, 1971; Bulaev,
1982). This was supported by recent studies showing that ambient
communities can lower disease risk for hosts, via predation on free-
living stages of parasites (predation effect). This suggests that a
higher biodiversity may influence the occurrence of infective cer-
cariae in water bodies (Goedknegt et al., 2015; Al-Jubury et al.,
2020). Future studies should, therefore, focus on the importance
of predatory plankton organisms and their influence on infection
risk.

In conclusion, recreational freshwater lakes in Denmark are
known to have highly favourable natural conditions for avian
schistosomes. We documented the occurrence of at least four
different avian schistosome species in Danish freshwater lakes.
Cercariae belonging to the species T. franki, T. szidati, T. regenti
and T. anseri were detected from east to west in Danish lakes
commonly used for recreational activities such as bathing, swim-
ming and fishing. The wide distribution is of public health con-
cern due to the skin pathologies that may accompany bathing
in infested water. It cannot be excluded that at least some
Trichobilharzia species may perform extra-dermal migrations in
the human host. Particularly noteworthy in this context is the
finding of the neurotropic species, T. regenti. The parasite occur-
rence was associated with presence of final bird hosts (mallards
and swans) and first intermediate lymnaeid host snails, but a
nationwide bird survey is recommended to elucidate the role of
other avian host species. The measurement of the physico-
chemical parameters under natural conditions of the Danish
freshwater lakes documented an association between temperature
and infections, whereas other abiotic parameters were of low or
no importance. It was clear that the presence of intermediate
snail hosts and the final hosts determines the infection risk.
As long as the abiotic conditions allow the presence of snails
and birds, there is a risk for bird schistosome infections. The pos-
sible neurotropic pathology of T. regenti and other avian schisto-
somes in humans (Lichtenbergová & Horák, 2012) calls for
further controlled studies on the fate of cercariae in the human
host. Routine surveillance of lakes used for recreational activities
should be implemented and sensitive and species-specific molecu-
lar methods for detection of infective agents should be developed
(Bass et al., 2015; Sengupta et al., 1970).

Supplementary material. To view supplementary material for this article,
please visit https://doi.org/10.1017/S0022149X21000122
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