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A new formalism for the derivation of the cnoidal wave solution is presented by
introducing a new set of initial conditions and a subacoustic moving frame. The resulting
set of solutions is also constructed in a way that ensures the conservation of number
density. The solutions are illustrated in a variety of graphical representations, and the
effect of the amplitude’s magnitude on the cnoidal wave form is presented. Interestingly,
it is shown that the wavelength of the solutions decreases with amplitude. In addition, it
is shown that the small-amplitude cnoidal wave solutions converge to linear waves in the
small-amplitude limit.
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1. Introduction

Reductive perturbation analysis was introduced into plasma physics by Washimi &
Taniuti (1966), who illustrated its ability to study small-amplitude solitons, based on
the Korteweg–de Vries (KdV) equation for acoustic-type nonlinear modes. Such solitons
have been known for more than a century from the study of nonlinear waves on the
surface of shallow water by Korteweg & De Vries (1895). The introduction of these
ideas into plasma physics quickly gave rise to a never-ending stream of papers, expanding
into generalizations for other nonlinear evolution equations and extensions to various
multi-species plasma compositions. From this extensive literature only a relevant selection
can be cited.

The general properties of nonlinear solitary waves are twofold. First, there is an intricate
relation between speed, amplitude and width, with zero boundary conditions far from the
maximum of the structure. Amplitude and width are inversely related in the sense that
the amplitude decreases when the width increases, a property that precludes their having a
linear counterpart. The other typical characteristic is that larger and faster solitons overtake
smaller and slower ones, and the solitons come out of the overtaking nonlinear interaction
process seemingly unchanged. Again, such solitary waves have no linear counterpart.
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Noting that periodic modes are possible in many different media, we are quite familiar
with their description when the nonlinearities are omitted, yielding typical harmonic
profiles. Extensions to nonlinear periodic modes, in particular in plasma physics and for
not too large nonlinearities, have introduced cnoidal waves, with properties that are quite
different from the soliton properties. For cnoidal waves particular care has to be taken
with respect to the boundary or initial conditions, since for periodic modes the structure
pattern is repeated and one cannot rely on conditions at infinity, periodic functions having
no well-defined limits there.

In early studies of cnoidal wave solutions in plasmas, great care was taken in the
treatment of the boundary conditions, see, for example Konno, Mitsuhashi & Ichikawa
(1979), Ichikawa (1979), Tiwari, Jain & Chawla (2007) and Prudskikh (2009). An
important characteristic of these solutions is that they were constructed in a way that
ensures conservation of number density. The conservation of number density is related
to the conservation of mass, as is discussed in detail in Appendix A. Another important
result is the fact that solutions propagating at both superacoustic and subacoustic solutions
were reported, see for example figure 1 in Konno et al. (1979).

Unfortunately, more recent studies of cnoidal waves in plasmas have ignored these facts,
where conservation of number density has been completely ignored. Examples of this can
be found in Saini & Sethi (2016), Ur-Rehman, Mahmood & Hussain (2017), Tolba et al.
(2017), Singh et al. (2018), Liu et al. (2018), Farhadkiyaei & Dorranian (2018), Kaur et al.
(2018), Ur-Rehman, Mahmood & Kaladze (2019), Ur-Rehman & Mahmood (2019), Ali
et al. (2020), Tamang & Saha (2020) and Mehdipoor & Asri (2022). In addition, the
authors used similar boundary conditions to those satisfied by solitons. For the purpose of
this paper, we refer to this formalism as the soliton boundary approach to deriving cnoidal
wave solutions. The resulting solutions clearly violate number density conservation, as is
quickly verified by comparing the solutions with those illustrated in § 3 and in Appendix A.

In this paper, we deconstruct the soliton boundary approach, and show that the erroneous
boundary conditions can instead be expressed as a set of initial conditions that are
consistent with the solutions. Once these details are well understood, a straightforward
modification of the initial conditions allows one to obtain cnoidal wave solutions that
conserve number density.

It is worth pointing out that, in the original approach of Konno et al. (1979), a power
series expansion is used in order to obtain the final expression, that is expressed in
terms of the Jacobi elliptic parameter k2 (note that, in this paper, we use m = k2 as the
Jacobi elliptic parameter). One drawback of this approach is that the solutions break
down in the small-amplitude limit when k2 � 1. In our formalism, no approximations
are made. For the subacoustic cnoidal wave solutions considered here, one is able to
construct solutions in this limit. We use these solutions to show consistency with linear
theory. A detailed study of superacoustic cnoidal wave solutions that includes the soliton
limit k2 → 1 is beyond the scope of the present paper, and is a subject for future
investigation.

The paper is structured as follows: in § 2, the model is introduced, along with the
derivation of linear periodic solutions. In § 3 we provide a full derivation using the
soliton boundary approach, where all the mathematical inconsistencies of this approach
are highlighted. In addition, we deconstruct the method in the form of an initial value
problem rather than a boundary value problem. Section 4 deals with the new formalism in
the form of a new set of initial conditions. In § 5, the cnoidal wave solutions are derived,
where we limit ourselves to the subacoustic case. The resulting solutions are discussed in
detail in § 6. Finally, conclusions and future work are discussed in § 7.
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2. Fluid equations and linear study

For the purpose of this paper, we consider one of the simplest fluid models that
supports cnoidal wave solutions, namely a plasma consisting of cold singly charged ions
and inertialess Boltzmann-distributed electrons. This is done in order to simplify the
underlying algebra as much as possible, thus allowing us to focus on the main principles
behind the approach. To this end, we consider the normalized fluid equations, given by the
continuity, momentum and Poisson equations,

∂n
∂t

+ ∂

∂x
(nu) = 0, (2.1)

∂u
∂t

+ u
∂u
∂x

= −∂φ

∂x
, (2.2)

∂2φ

∂x2
= eφ − n, (2.3)

respectively. Here, the usual normalizations apply as follows: the ion number density n
is normalized with respect to the equilibrium number density n0, and the electrostatic
potential φ is normalized with respect to κBTe/e, where κB is the Boltzmann constant, Te is
the electron temperature and e is the electron charge. The space coordinate x is normalized
with respect to the Debye length λD = (ε0κBTe/n0e2)1/2, where ε0 is the permittivity of
free space, and Te is the electron temperature. The time variable t is normalized with
respect to the inverse plasma frequency (ε0mi/n0e2)1/2, where mi denotes the ion mass.
As a result, the ion fluid velocity u is normalized with respect to the ion acoustic speed
c = (κBTe/ε0mi).

The equilibrium state of the plasma is given by n = 1, u = 0 and φ = 0. For linear
theory, we consider a small perturbation of the form

n = 1 + n1 exp(i (kx − ωt)), (2.4)

u = u1 exp(i (kx − ωt)), (2.5)

φ = φ1 exp(i (kx − ωt)), (2.6)

where n1, u1, φ1 ∼ O(ε) for some ε � 1. Substituting this into (2.1), (2.2) and (2.3), and
retaining only terms of order ε, one obtains the well-known dispersion relation

ω = k√
1 + k2

. (2.7)

From the dispersion relation, one can now construct sinusoidal solutions by means of
the superposition principle, giving

φsin = a sin (kx − ωt) . (2.8)

A fundamental property of the linear periodic solutions is that it conserves number
density. This means that ∫ x0+L

x0

[n(x, t) − n0] dx = 0 (2.9)

for all t, where n0 = 1 is the equilibrium density, the wavelength is given by L = 2π/k,
and x0 and t0 are arbitrary points in space and time, respectively. In Appendix A we show
that this conservation is an essential ingredient to obtain physically significant periodic
solutions. As such, we incorporate this condition into our construction of the periodic
solutions, as detailed in § 4.
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3. Soliton boundary approach to cnoidal wave derivation

In order to justify the need for our new approach, we start off with the so-called soliton
boundary approach. To this end, we apply this approach to the model under consideration.
In this derivation, we point out the questionable treatment and inconsistencies of the
integration constants. These issues arise due to an ill-posed set of the boundary conditions.
Despite these mathematical concerns, one does obtain cnoidal wave solutions. In § 3.2 we
deconstruct this method to show that the treatment of the boundary conditions instead
corresponds to a specific choice of initial conditions. In addition, we illustrate that the
resulting solutions fail to conserve the number density.

3.1. Methodology
In the soliton boundary approach, one looks for periodic solutions that satisfy the
boundary conditions

n → 1, u → 0, φ → 0, when x → ∞. (3.1)

Now, right at the onset, it should be noted that non-trivial (i.e. non-constant) periodic
functions have no asymptotic limit. As such, the very notion of introducing a limit when
x or ξ approaches infinity is deeply flawed. Despite this obvious mathematical error, we
proceed by introducing the usual reductive perturbation expansions

n = 1 + εn1 + ε2n2 + · · · , (3.2)

u = εu1 + ε2u2 + · · · , (3.3)

φ = εφ1 + ε2φ2 + · · · , (3.4)

along with the stretched coordinates

ξ = ε1/2 (x − Mt) , τ = ε3/2t. (3.5a,b)

Substitution of the expansions (3.2), (3.3), (3.4), along with the stretched coordinates
(3.5a,b) into the continuity equation (2.1) leads to an equation that yields terms of differing
orders of ε. At the lowest order O(ε3/2), one obtains

−M
∂n1

∂ξ
+ ∂u1

∂ξ
= 0, (3.6)

while the higher order O(ε5/2) yields

−M
∂n2

∂ξ
+ ∂n1

∂τ
+ ∂u2

∂ξ
+ ∂

∂ξ
(n1u1) = 0. (3.7)

Similarly, the momentum equation (2.2) gives

−M
∂u1

∂ξ
= −∂φ1

∂ξ
, (3.8)

at order O(ε3/2), and

−M
∂u2

∂ξ
+ ∂u1

∂τ
+ u1

∂u1

∂ξ
= −∂φ2

∂ξ
, (3.9)
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at order O(ε5/2). Finally, Poisson’s equation gives

0 = φ1 − n1, (3.10)

at order O(ε), and

∂2φ1

∂ξ 2
= φ2 + 1

2
φ2

1 − n2, (3.11)

at order O(ε2). Following the usual reductive perturbation approach, we start by solving
the lowest-order equations (3.6), (3.8) and (3.10), and use the resulting solutions to solve
the higher-order equations (3.7), (3.9) and (3.11).

One can solve (3.6) by integrating with respect to ξ, resulting in the equation

−Mn1 + u1 = C1, (3.12)

where C1 is an integration constant. To find C1, we use the ill-posed boundary conditions,
namely that n → 1 and u → 0 when x → ∞. It then follows that n1 → 0 and u1 → 0
when ξ → ∞, so that C1 = 0 and

u1 = Mn1. (3.13)

We now proceed to solve the lowest-order equation associated with the momentum
equation (3.8). Once again, a straightforward integration leads to

−Mu1 + φ1 = C2, (3.14)

where C2 is an integration constant. As before, the ill-posed boundary conditions u → 0
and φ → 0 yield that C2 = 0. From (3.13) it follows that

−Mu1 + φ1 = 0, (3.15)

so that

n1 = 1
M2

φ1. (3.16)

Substituting this expression of n1 into the lowest-order equation derived from Poisson’s
equation (3.10), one obtains the compatibility condition

(
1 − 1

M2

)
φ1 = 0. (3.17)

Hence, it follows that M = ±1. Since we are interested in waves propagating in the
direction of the magnetic field, we choose M = 1. From (3.13) and (3.16) it then follows
that n1 = u1 = φ1.
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We now proceed to the higher-order equations. Substituting M = 1, n1 = φ1 and
u1 = φ1 into (3.7) gives the following partial differential equation:

∂u2

∂ξ
= ∂n2

∂ξ
− ∂φ1

∂τ
− ∂

∂ξ

(
φ2

1

)
. (3.18)

Similarly, (3.9) gives

−∂u2

∂ξ
+ ∂φ1

∂τ
+ φ1

∂φ1

∂ξ
+ ∂φ2

∂ξ
= 0. (3.19)

Substituting (3.18) into (3.19) then leads to

∂n2

∂ξ
= 2

∂φ1

∂τ
+ 3φ1

∂φ1

∂ξ
+ ∂φ2

∂ξ
. (3.20)

Finally, the KdV equation is obtained by differentiating (3.11) with respect to ξ , and
substituting (3.20) into the resulting equation, giving

∂φ1

∂τ
+ 1

2
∂3φ1

∂ξ 3
+ φ1

∂φ1

∂ξ
= 0. (3.21)

In order to derive the cnoidal wave solutions for the KdV equation (3.21), it is customary
to look for solutions that remain constant in the moving frame that propagate slightly faster
than the acoustic speed. We therefore introduce the variable

η = ξ − vτ. (3.22)

In terms of the original coordinates, this is given by

η = ε1/2 [x − (1 + εv)t] . (3.23)

By substituting the variable (3.22) into the KdV equation (3.21), one reduces the KdV
equation to the following third-order ordinary differential equation (ODE):

−v
dφ1

dη
+ 1

2
d3φ1

dη3
+ φ1

dφ1

dη
= 0. (3.24)

Integrating this equation once with respect to η gives

−vφ1 + 1
2

d2φ1

dη2
+ 1

2
φ2

1 = C3, (3.25)

where C3 is a constant of integration. The usual approach is to choose C3 = 0, based on
the argument that if φ → 0 in the limit when η → ∞, then d2φ1/dη2 → 0 in the same
limit. The resulting second-order ODE is then given by

−vφ1 + 1
2

d2φ1

dη2
+ 1

2
φ2

1 = 0. (3.26)

In order to perform another integration, (3.25) is then multiplied with dφ1/dη and
integrated to get

1
2

(
dφ1

dη

)2

+ 1
3
φ3

1 − vφ2
1 = C4, (3.27)

where C4 is a constant of integration. If one were to stay mathematically consistent, one
would note that, since φ1 → 0 when η → ∞, one must then have that dφ1/dη → 0 when
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η → ∞, similarly to the argument used to obtain C3 = 0. In this case, the constant C4 = 0,
so that the equilibrium is recovered, and no periodic solutions are found. However, here,
the soliton boundary approach contradicts itself by choosing C4 to be an arbitrary constant.
This implies that dφ1/dη approaches a non-zero value in the limit η → ∞. Not only does
this contradict the use of the previous limits, but it clearly also implies that the solutions
are unbounded rather than periodic. Nevertheless, by following this reasoning one obtains
the following equation:

1
2

(
dφ1

dη

)2

+ 1
3
φ3

1 − vφ2
1 − C4 = 0. (3.28)

The differential equation (3.28) has cnoidal wave solutions of the form

φ1(η) = μ2 + (μ3 − μ2) cn2

[√
μ3 − μ1

6
η, m

]
, (3.29)

where μ1 < μ2 < μ3 are the real roots of the ‘Sagdeev potential’, i.e. the cubic polynomial
1
3φ

3
1 − vφ2

1 − C4 = 0, (3.30)

and

m = μ3 − μ2

μ3 − μ1
. (3.31)

The solution (3.29) is periodic with period L = 12K(m)/(μ3 − μ1), where K(m) is the
complete elliptic integral of the first kind.

Clearly, a necessary condition for the existence of cnoidal wave solutions is that the
equation (3.30) must have three distinct real roots. This depends on the choices of v and
C4. Indeed, for a fixed choice of v, one can show that the polynomial (3.30) has three real
roots provided that

0 < C4 < 4
3v

3. (3.32)

As an example, let us consider cnoidal wave solutions associated with the soliton
boundary approach corresponding to periodic waves propagating with a velocity of
M = 1.01. To achieve this, we set ε = 0.01, v = 1, and use different choices of
C4 ∈ (0, 4/3). To this end, we let C4 = 4

3 a, where 0 < a < 1. The solutions are shown
in figure 1. Here, panel (a) shows the phase portraits for six different choices of a. It is
worth pointing out that all these solutions are inconsistent with the original set of boundary
conditions. Clearly all choices of a result in solutions that remain positive for all values
of η. Indeed, if φ1 remains positive, it can never approach 0 in any limit, and therefore
violates the original set of boundary conditions. Moreover, these results are inconsistent
with the conservation of number density. To show this, consider figure 1(b), where the
number density is plotted in the original coordinates at t = 0. The blue curve corresponds
to a = 0.2, and the red curve corresponds to a = 0.99. In addition, the black dotted line
shows the equilibrium number density. It is clear that neither of these solutions conserves
the number density due to the fact that the perturbed periodic wave oscillates above the
equilibrium n = 1 level. As such, it is clear that

1
L

∫ L

0
(n − 1) dx > 0, (3.33)

where L is the spatial period of the solution, so that the conservation of number density is
violated.
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(a) (b)

FIGURE 1. Cnoidal wave solutions obtained by means of the soliton boundary approach. In the
left panel, a phase portrait is shown for different choices of a, as shown on the outside of each
curve. In (b), the solution of n is shown in the original spatial coordinate x at t = 0. The blue
curve corresponds to a = 0.2 and the red curve corresponds to a = 0.99. The dashed line shows
the equilibrium number density.

3.2. Deconstruction of the method
As we mentioned above, there are a number of mathematical flaws and contradictions in
the derivation of the cnoidal wave solutions. In particular, the boundary conditions for the
number density n, fluid velocity u and electrostatic potential φ are all inconsistent with
periodic solutions. In addition, the integration constant C4 is constructed in a way that
implies that the derivative dφ1dη approaches a non-zero value in the limit η → ∞, clearly
contradicting the boundary condition stating that φ1 → 0 when η → ∞. Despite these
fundamental flaws, one obtains cnoidal wave solutions.

As it turns out, the calculation of the integration constants can instead be obtained
through the application of a set of initial conditions. The key idea here is to notice that
the integration constants are determined at a specific choice of ξ or η, rather than at the
boundaries.

To simplify the deconstruction, we look to express the conditions that allow us to
determine the integration constants as an initial condition. To do so, we set t = 0, so that
ξ = ε1/2x and η = ε1/2x. Let us start with the integration constant C1. By setting C1 = 0,
it follows that there exists a ξ0 such that n1(ξ0) = 0 and u1(ξ0) = 0. By setting t = 0,
it follows that n(x0, 0) = 1 and u(x0, 0) = 0, where x0 = ε−1/2ξ0. Similarly, the second
integration constant can be obtained by setting φ(x0, 0) = 0. This implies that the function
φ(x, 0) has a position x = x0 where the solution satisfies the equilibrium conditions.

The next integration constant was chosen in a way that C3 = 0. At x = x0 and t = 0, this
implies that

∂2φ

∂x2
(x0, 0) = 0. (3.34)

In other words, this boundary condition shows that the function φ1(x, 0) has a spatial
inflection point at x = x0 and t = 0.

For the final integration constant C4, it follows that (dφ1/dη)(η0) = ±√
2C4. By

choosing the point where the slope reaches its maximum, we can use the positive + sign.
If we rewrite this in the original coordinates at t = 0, it follows that

∂φ

∂x
(x0, 0) = ε3/2

√
2C4. (3.35)
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In other words, at t = 0 and x0 = ε−1/2ξ0, the function φ(x, 0) satisfies three conditions,
namely (i) the function reaches its equilibrium value, (ii) the function has a non-zero slope
and (iii) the function has an inflection point. The latter implies that the function reaches
its maximum slope at x0.

When expressed in the form of an initial condition problem, the soliton limit approach
is mathematically sound. However, the problem of number density conservation still
remains. This is due to the fact that the solutions are forced to reach their equilibrium
state at the inflection points. In the next section, we derive a new formalism by relaxing
this condition.

4. New reductive perturbation formalism for nonlinear periodic waves

In order to address the problem of number density conservation, we now introduce a new
formalism that is a modified variation of the deconstructed initial value problem discussed
above. To this end, we define the initial conditions at an inflection point x0 satisfying

∂2φ

∂x2
(x0, 0) = 0. (4.1)

The deconstructed method assumes that one recovers the equilibrium values of the density,
fluid velocity and electrostatic potential at the inflection point. However, in our formalism,
we relax this requirement by introducing the following initial conditions at the inflection
point:

n(x0, 0) = 1 + εn10, u (x0, 0) = εu10, φ (x0, 0) = εφ10. (4.2a–c)

Based on the expression shown in (3.35), we introduce the following condition on the first
derivative at the inflection point:

∂φ

∂x
(x0, 0) =

√
2ε3/2α. (4.3)

The role of α in the final solution is to produce solutions of different amplitudes, where
larger choices of α correspond to solutions with larger amplitudes. Finally, we look for
solutions that satisfy the conservation of number density (2.9).

In this formalism we apply the same perturbation expansions (3.2)–(3.4), and the same
stretching coordinates (3.5a,b). As such, the continuity equation yields the same lower- and
higher-order equations (3.6) and (3.7), respectively. Similarly, the momentum equation
yields equations (3.8) and (3.9), respectively, while Poisson’s equation yields equations
(3.10) and (3.11), respectively.

In order to derive the KdV equation, one must integrate each of the lower-order
equations. For the continuity equation, integration of the resulting lower-order equation
(3.6) gives

−Mn1 + u1 = C1, (4.4)

where C1 is an integration constant. To find C1, we use the initial conditions. Since
n(x0, 0) = 1 + εn10 and u(x0, 0) = εu10, it follows that n1(ξ0, 0) = n10 and u1(ξ0, 0) = u10,
where ξ0 = ε1/2x0. It follows that C1 = −Mn10 + u10, so that

u1 − u10 = M (n1 − n10) . (4.5)

We now proceed to solve the lowest-order equation associated with the momentum
equation, given by (3.8). Once again, a straightforward integration leads to

−Mu1 + φ1 = C2, (4.6)
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where C2 is an integration constant. Once more, the initial conditions u(x0, 0) = εu10 and
φ(x0, 0) = εφ10 yield that C2 = −Mu10 + φ10. From (4.5) it follows that

−M (u1 − u10) + φ1 − φ10 = 0, (4.7)

so that

n1 − n10 = 1
M2

(φ1 − φ10) . (4.8)

Substituting this expression of n1 into the lowest-order equation derived from Poisson’s
equation (3.10), one obtains the compatibility condition

(
1 − 1

M2

)
(φ1 − φ10) = 0. (4.9)

Since φ1(x0, 0) = φ10, it follows that M = ±1, where once more we choose M = 1 to
study waves that propagate in the direction of the magnetic field. Assuming that u1 = φ1,
it follows from (4.5) and (4.8) that n1 = u1 = φ1 and n10 = u10 = φ10. Importantly, since
φ1 = n1, it follows that the conservation of number density requires that

∫ x0+L

x0

φ1(x, t) dx = 0, (4.10)

for all t, where L is the spatial period of the periodic wave.
We now proceed to the higher-order equations. Substituting M = 1, n1 = φ1 and u1 =

φ1 into the higher-order continuity equation (3.7), one recovers the partial differential
equation (3.18). From a similar treatment of the higher-order momentum equation (3.9),
one recovers (3.19). Substituting (3.18) into (3.19) then leads to (3.20). Finally, the KdV
equation is obtained by differentiating (3.11) with respect to ξ , and substituting (3.20) into
the resulting equation, giving

∂φ1

∂τ
+ 1

2
∂3φ1

∂ξ 3
+ φ1

∂φ1

∂ξ
= 0. (4.11)

Notice that, despite the different choice of boundary conditions, one obtains a KdV
equation with identical coefficients as the one produced by the soliton limit method (3.21).

To study subacoustic cnoidal wave solutions, we consider solutions for the KdV equation
(4.11) that propagate slightly below the acoustic speed moving frame ξ = ε1/2(x − t). To
this end, we introduce the moving frame

η = ξ + vτ. (4.12)

In terms of the original coordinates, this is given by

η = ε1/2 [x − (1 − εv)t] . (4.13)

That is to say, solutions that are stationary in the frame with velocity M = 1 − εv.
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By substituting the variable (4.12) into the KdV equation (4.11), one obtains

v
dφ1

dη
+ 1

2
d3φ1

dη3
+ φ1

dφ1

dη
= 0. (4.14)

Integrating this equation once with respect to η gives

vφ1 + 1
2

d2φ1

dη2
+ 1

2
φ2

1 = C3, (4.15)

where C3 is a constant of integration. From the initial conditions φ1(x0, 0) = φ10 and
(∂2φ/∂x2)(x0, 0) = 0 it follows that C3 = vφ10 + 1

2φ
2
10, so that

vφ1 + 1
2

d2φ1

dη2
+ 1

2
φ2

1 − vφ10 − 1
2
φ2

10 = 0. (4.16)

To perform another integration, we multiply (4.15) with dφ1/dη and integrate to get

1
2

(
dφ1

dη

)2

+ 1
3
φ3

1 + vφ2
1 − (

2vφ10 + φ2
10

)
φ1 = C4, (4.17)

where C4 is a constant of integration. At x = x0 and t = 0, it follows from the initial
conditions that φ1 = φ10, and

dφ1

dη
= ε−1/2 ∂

∂x

(
φ

ε

)
= ε−3/2 ∂φ

∂x
. (4.18)

From the initial condition (∂φ/∂x)(x0, 0) = √
2ε3/2α, it therefore follows that

dφ1

dη
(η0) =

√
2α, (4.19)

where η0 = ε1/2x0. Consequently, the coefficient in (4.17) is given by C4 = α2 − 2
3φ

3
10 −

vφ2
10, so that

1
2

(
dφ1

dη

)2

+ 1
3
φ3

1 + vφ2
1 − (

2vφ10 + φ2
10

)
φ1 −

(
α2 − 2

3
φ3

10 − vφ2
10

)
= 0. (4.20)

Here, φ10 �= 0 to prevent the reduction to the deconstructed soliton boundary approach, v

is a fixed velocity and α2 can be varied to produce different amplitudes of periodic waves
travelling at the same speed, similar to the role of the amplitude a in the linear periodic
solutions (2.8).

Finally, the differential equation (4.20) has cnoidal wave solutions of the form

φ1(η) = μ2 + (μ3 − μ2) cn2

[√
μ3 − μ1

6
η, m

]
, (4.21)

where μ1 < μ2 < μ3 are the real roots of the cubic polynomial satisfying
1
3φ

3
1 + vφ2

1 − (
2vφ10 + φ2

10

)
φ1 − (

α2 − 2
3φ

3
10 − vφ2

10

) = 0, (4.22)

and

m = μ3 − μ2

μ3 − μ1
. (4.23)

The solution (4.21) is periodic with period L = 12K(m)/(μ3 − μ1), where K(m) is the
complete elliptic integral of the first kind.
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5. Analysis of cnoidal wave solutions

One of the main advantages of our derivation is the fact that it allows the roots of the
cubic polynomial μ1, μ2 and μ3 to be expressed analytically. This property allows us
to construct cnoidal wave solutions that conserve the number density of the plasma in
equilibrium. In the following, details of this approach are provided.

5.1. Necessary condition for existence of solutions
The analysis of the cnoidal wave solution is complicated by the fact that the solution has
three free variables, namely v, α2 and φ10. Here, v is directly related to the propagation
speed of the periodic wave. On the other hand, α2 is related to the slope of the periodic
solution at the inflection point ξ = 0. In addition, φ10 is chosen in a way that ensures
that the number density is conserved. For the cnoidal wave solution, larger values of α2

correspond to larger fluctuations.
It is clear from the solution (4.21) that finding three real roots to the polynomial (4.22)

is crucial in order to analyse the periodic waves. For our analysis, we treat v as a fixed
parameter, while α2 is varied within this choice of v, and φ10 depends on the choice of α.

It is well known that the nature of the roots of a generalized cubic polynomial of the
form

ax3 + bx2 + cx + d = 0, (5.1)

depends on the discriminant

Δ = 18abcd − 4b3d + b2c2 − 4ac3 − 27a2d2, (5.2)

see for example Abramowitz & Stegun (1965). In particular, if Δ > 0, the polynomial
has three distinct real roots. This is a necessary condition for the existence of cnoidal
wave solutions. For the polynomial (4.22) we have a = 1

3 , b = v, c = − (2vφ10 + φ2
10

)
and d = −(α2 − 2

3φ
3
10 − vφ2

10).
In the following, we assume that v, α and φ10 are chosen in a way that ensures that the

discriminant Δ is strictly positive. The relationship between α2 and φ10 will be considered
in more detail after the final solution has been derived.

5.2. Analytical expressions for the roots μ1, μ2 and μ3

The three real roots of the cubic polynomial (4.22) satisfying Δ > 0 can be expressed in
terms of trigonometric functions as follows:

rj = tj − b
3a

(5.3)

for j = 0, 1, 2, where

tj = 2
√

−p
3

cos

[
1
3

arccos

(
3q
2p

√
−3

p

)
+ 2π

3
j

]
, (5.4)

p = 3ac − b2

3a2
, (5.5)

and

q = 2b3 − 9abc + 27a2d
27a3

. (5.6)
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For the polynomial (4.22), one then obtains the following roots:

r0 = 2 (v + φ10) cos
θ

3
− v, (5.7)

r1 = 2 (v + φ10) cos
θ + 2π

3
− v, (5.8)

and

r2 = 2 (v + φ10) cos
θ + 4π

3
− v, (5.9)

where

θ = arccos
[

3α2 − 2 (v + φ10)
3

2 (v + φ10)
3

]
. (5.10)

Since 0 ≤ θ ≤ π, one can easily confirm by plotting the functions cos(θ/3),
cos((θ + 2π)/3) and cos((θ + 4π)/3) that

r1 < r2 < r0, (5.11)

whenever the polynomial has three real roots. As such, we have that,

μ1 = r1, μ2 = r2, μ3 = r0. (5.12a–c)

By substituting these expressions into (4.21), it follows that the solution can be expressed
as

φ1(ξ, τ ) = β0 + β1cn2 (β2(ξ + vτ), β3) , (5.13)

where

β0 = 2 (v + φ10) cos
θ + 4π

3
− v, (5.14)

β1 =
√

12 (v + φ10) cos
2θ + π

6
, (5.15)

β2 = 3−1/4

√
(v + φ10) cos

2θ − π

6
, (5.16)

and

β3 =
cos

2θ + π

6

cos
2θ − π

6

. (5.17)

5.3. Choice of φ10

The general solution (5.13) depends on three free parameters, namely α, v and φ10. In
order to construct solutions, we consider a fixed choice of the velocity v. For the resulting
propagation speed we then construct periodic solutions with different amplitudes. These
solutions are obtained by varying α. Finally, for each choice of α we look for the value of
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φ10 such that the conservation of number density (4.10) is satisfied. That is, we look for a
choice of φ10 such that the following identity holds:∫ L

0
φ1(ξ, τ ) dξ = 0 (5.18)

for all τ . Here, L is the wavelength, given by

L = 2K (β3)

β2
, (5.19)

where K(β3) is the complete elliptic integral of the first kind.
The integral (5.18) can be expressed analytically, thanks to the following indefinite

integral:

∫
cn2(z, m) dz = z − z

m
+

E [am (z | m)| m]
[

cn2 (z | m) + 1
m

− 1
]

dn(z | m)
√

1 − msn2(z | m)
+ C. (5.20)

Here, the functions sn(z | m), cn(z | m) and dn(z | m) are Jacobi elliptic functions, am(z | m)
is the Jacobi elliptic amplitude function and E(z | m) is the incomplete elliptic integral of
the second kind.

By using the incomplete integral (5.20) along with the identities

sn(0 | m) = sn [2K(m) | m] = am(0 | m) = E(0 | m) = 0, (5.21)

and

cn [2K(m) | m] = −1, dn [2K(m) | m] = 1, am [2K(m) | m] = π, (5.22a–c)

it follows that ∫ L

0
φ1(ξ, τ ) dξ = (β0 + β1) β3 − β1

β3
L + β1

β2β3
E (π |β3) . (5.23)

Notice that, for a fixed choice of v and α, this integral depends on φ10, as is obvious from
(5.10) and (5.14)–(5.17). As a result, finding φ10 becomes a root-finding problem for the
function I(φ10), given by the right-hand side of (5.23).

In order to show the relationship between α and φ10, consider the special case where
v = 1. The dependence of φ10 on α is shown in figure 2. The figure clearly shows that φ10
increases with α. In terms of the solution, this means that the vertical position of φ1, the
point where the spatial slope reaches its maximum, must increase in order to compensate
for the increased asymmetry associated with larger amplitudes. These aspects are explored
in more detail in § 6.

6. Results

After obtaining an analytical expression for the solution, and obtaining a compatibility
condition resulting in a root-finding problem, we now consider solutions. To investigate
the solutions numerically, we note that we can set v = 1 without loss of generality. This
is due to the fact that, for the same set of results for φ1, one can vary the velocity by
choosing different values of ε. The only restriction here is that ε must be sufficiently
small to ensure that higher-order nonlinear effects remain negligible. With this in mind,
we start by investigating the solutions of φ1 with v = 1 in detail in terms of the stretched
coordinate η. After this, we consider the effect of variations in ε on the solutions in terms
of the original normalized variables φ, x and t.
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FIGURE 2. Dependence of φ10 on α for v = 1.

6.1. Effect of α on φ1 solutions
As discussed earlier, the parameter α is a free parameter that produces different solutions,
all propagating with the same speed. The choice of α is related to the slope at the
inflection points, and in general, larger choices of α will produce solutions with larger
amplitudes. Here, we consider the effect of α on the φ1 solutions for 0 < α ≤ 5. It
should be pointed out that, when α is chosen too large, the solutions may violate the
small-amplitude assumptions associated with the reductive perturbation theory. As such,
we did not consider solutions beyond α = 5.

To start off our conversation, we consider the solution associated with α = 1. We use
this solution to illustrate some important aspects of the relationship between the choice of
initial conditions and the resulting solutions.

The solution for α = 1 is shown in figure 3 for 0 ≤ η ≤ 2L, where L ≈ 4.364096 is
the wavelength. For α = 1, one obtains φ10 ≈ 0.206277. Here, we want to point out two
important aspects about these solutions. Firstly, φ10 is chosen in a way that ensures that

∫ η0+L

η0

φ1 dx = 0. (6.1)

This means that the shaded area below the line (shown in the light blue shading) is equal to
the shaded area above the line (shown with the grey shading). For each choice of α, there
is a unique value of φ10 that ensures this conserved quantity. Secondly, the value of φ10
corresponds to the value that φ1 obtains at the inflection points. These points correspond
to the maximum (positive) and minimum (negative) slopes dφ1/dη. To illustrate this, we
show the tangent line of the inflection point at η ≈ 7.837211 and φ1 = φ10 ≈ 0.206277,

indicated with the black dot. The slope of the tangent line is given by
√

2α, with α = 1
in this instance. Notice that this is only one of four inflection points visible in the figure,
each occurring where the solution intersects the horizontal φ1 = φ10 line.

Having established some general properties of the cnoidal wave solutions, we now turn
our attention to the effect that α has on the solutions. To do this, we plot the solutions
for various choices of α. Figure 4(a) shows the solutions for α = 0.1, α = 0.5 and α = 1.
Here, it is obvious that the amplitude of the wave increases with α, as is expected. For
α = 0.1, the solution closely resembles a sinusoidal wave. On the other hand, for α = 1
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FIGURE 3. Solution of φ1 for v = 1 and α = 1.

we see that the maximum value is greater than φ1 = 1, whereas the minimum value does
not reach φ1 = −1. This is indicative of the asymmetry associated with nonlinear effects.

In figure 4(b) we show the solutions for α = 1, 2, 3, 4 and α = 5. Here, we see that
the asymmetry increases with α. This is most obvious for the α = 5 solution, where the
maximum exceeds η = 4, whereas the minimum does not even reach the η = −3 level. In
addition, the asymmetry of this solution is clear when comparing the part of the solution
below the φ1 axis with that of the solution above the φ1 axis for the α = 5 solution.
Interestingly, the panel also shows that the wavelength decreases with α.

Many papers in the literature represent the solutions in terms of phase space portraits.
These solutions are plotted in figure 4(c) for various choices of 0.5 ≤ α ≤ 5. Here, we see
that all trajectories intersect the vertical dφ1/dη axis. This is in contrast to those shown
in many recent papers, where small-amplitude trajectories never intersect this axis. That
is, they remain either to the left or to the right of the dφ1/dη axis, in clear violation of
the conservation of number density. Our results therefore provide an important departure
from these results. In addition to this, the phase portrait also clearly shows the increased
asymmetry resulting from larger choices of α. For α = 0.5, the trajectory is nearly elliptic,
corresponding to a sinusoidal solution. However, as α is increased, the trajectories are
further and further deformed to a teardrop shape, with the difference in magnitudes
between the minimum and maximum φ1 values increasingly widening.

The solutions were also plotted in Sagdeev potential form in figure 4(d), as is commonly
done in the literature. Here, we clearly see that the two relevant roots are on opposite sides
of the φ1 axis, again indicating that the solutions oscillate around the equilibrium value of
φ1 = 0. Interestingly, this representation clearly shows that the values of φ10, represented
by the φ1 value at the local minimum, increase with α.

Based on these results, we take a closer look at the effect of α on two critical
characteristics of the solutions, namely the wavelength and extreme values of the solutions.
To investigate the former, we plotted the wavelength of φ1 on the interval 0 < α ≤ 5 in
figure 5(a). Note that the wavelength is simply given by

W(α) = 2K (β3)

β2
. (6.2)

Here, we can clearly see that the wavelength decreases with α, in agreement with the
results of figure 4(b). This result is somewhat surprising due to the fact that β3 increases
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(a) (b)

(c) (d )

FIGURE 4. Cnoidal wave solutions for v = 1 for different choices of α. In (a) the solutions are
shown for α = 0.1, α = 0.5 and α = 1. In (b), the solutions are shown for all integer values of
1 ≤ α ≤ 5. In (c), the phase space portraits are plotted. Here, the numerical values indicate the
values of α. In (d), the Sagdeev potentials are plotted for the values of α marked on the figure.

(a) (b)

FIGURE 5. Characteristics of the cnoidal wave solutions for v = 1 and 0 < α ≤ 5. In (a), the
wavelength is plotted as a function of α, and in (b) the minimum and maximum values of φ1 are
plotted as a function of α.

with α, combined with the fact that K(β3) is unbounded in the limit when β3 → 1.
However, it turns out that the increase of β2 is faster than the increase of K(β3) associated
with increasing values of α. It should be noted that this is a direct result of including φ10
in the initial conditions. As such, this is a novel result.
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In addition, we calculated the maximum and minimum values of φ1 for different values
of α. These quantities are simply given by

max
η∈R

φ1 = β0 + β1, min
η∈R

φ1 = β0. (6.3a,b)

The results are shown in figure 5(b) for 0 < α ≤ 5. Here, we can clearly see that the
maximum value of φ1 increases much faster than the decrease in the minimum of φ1
associated with an increase in α. This also reflects the asymmetry that is associated with
large values of α.

6.2. Solutions of φ in original coordinates
Until now, we only considered the solution φ1 in the stretched coordinates. A crucial aspect
of the derivation of the KdV equation (4.11) from reductive perturbation analysis is the fact
that ε must be sufficiently small to ensure that higher-order nonlinear effects are negligible.
In the following, we consider how this limitation affects the solution in the original frame
of reference, that is, in terms of the original coordinates x and t.

To start the analysis, we remind the reader that

φ = εφ1, (6.4)

so that smaller choices of ε reduce the amplitude of the wave. Secondly, notice that

η = ε1/2 [x − (1 − εv) t] , (6.5)

so that the velocity associated with the moving frame is given by

M = 1 − εv. (6.6)

For our choice of ε and v, it therefore follows that the choice of a small ε corresponds to a
propagation speed that is marginally smaller than the acoustic speed Ma = 1. Thirdly, for
a fixed time t one obtains that

x = ε−1/2η + γ, (6.7)
where γ = −(1 − εv)t is a constant. This shows that a small choice of ε corresponds to a
large stretching in the x-coordinate (relative to the η coordinate).

To illustrate these effects, we consider solutions of φ(x, t) in the original coordinates for
v = 1, ε = 0.001 and α = 1. Here, the propagation speed is given by

M = 1 − εvt = 0.999, (6.8)

and the wavelength is given by

L = 2ε−(1/2)K (β3) /β2 = 138.004832. (6.9)

The period, in other words the smallest T > 0 satisfying φ(x, t + T) = φ(x, t), is given by

T = L/M = 138.142975. (6.10)

In figure 6 the solution is shown across five wavelengths 0 ≤ x ≤ 5L and over two periods
0 ≤ t ≤ 2T . This figure clearly illustrates that the cnoidal wave solutions correspond to the
small-amplitude long wavelength limit, and are associated with large periods. Indeed, the
x coordinate is normalized with respect to the Debye length λD, and the time coordinate
t is normalized with respect to the inverse plasma frequency ω−1

p . From the solution,
it therefore follows that the wavelength stretches over more than 100 Debye lengths,
while the period exceeds the inverse plasma frequency by a factor of more than 100. To
summarize, the cnoidal wave solutions correspond to the low-amplitude, long wavelength
and low frequency oscillations.
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FIGURE 6. The cnoidal wave solution φ associated with ε = 0.001, v = 1 and α = 1 in terms
of the original (normalized) coordinates x and t.

6.3. Comparison between linear and cnoidal wave solutions
Another advantage of transforming the cnoidal wave solutions back to the original
coordinates is that it provides an easy comparison with the linear waves associated with
the dispersion relation. Indeed, the linear waves are given by

φ�(x, t) = a cos(kx − ωt), (6.11)

where the free parameter a � 1 must be sufficiently small to avoid nonlinear effects, while
ω satisfies the dispersion relation (2.7). In order to compare the linear and cnoidal waves,
it should be noted that the propagation speed M of the cnoidal wave must be equal to the
phase speed, giving

k =
√

1 − M2

M
. (6.12)

In terms of amplitude, one can compare the two solution sets by setting the amplitude of
the linear wave equal to the maximum value of the cnoidal wave, that is, by choosing

a = ε (β0 + β1) . (6.13)

As a concrete example, we once again consider the cnoidal wave solutions associated
with v = 1 and ε = 0.001. The solutions for α = 0.01, α = 0.1, α = 1 and α = 5 at t = 0
are shown in figure 7(a–d), respectively. In these panels, the blue curves correspond to
the cnoidal wave, whereas the red curve corresponds to the linear wave. In figure 7(a)
we see that these two curves are indistinguishable. This shows that, for sufficiently
small α, associated with small amplitudes, the linear approximation provides a very
accurate approximation of the cnoidal wave solution. Similarly, figure 7(b) shows that
this strong agreement is maintained for α = 0.1. While there is a discrepancy around the
minima, the remainder of the solutions are very similar in terms of shape and wavelength.
This agreement, however, wanes for larger choices of α, as is clear from figure 7(c),
corresponding to α = 1. Here, we see that the linear solution overestimates the magnitude
of the local minima. In addition, the wavelength of the linear solution is slightly larger than
that of the cnoidal wave, as is clearly seen in the interval 250 ≤ t ≤ 300. For larger choices
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(a) (b)

(c) (d )

FIGURE 7. Comparison between the cnoidal waves (blue lines) and linear waves (red lines) for
ε = 0.001, v = 1 and t = 0. Here, α = 0.01 in (a), α = 0.1 in (b), α = 1 in (c) and α = 5 in (d).

of α, the contrast between the two sets of solutions grows even starker, as is clear from
figure 7(d) showing the solutions for α = 5. Clearly, the magnitude of the local minima
is greatly overestimated by the linear wave solution, along with a larger overestimation of
the wavelength.

Based on these results, we can conclude that the cnoidal wave solutions are consistent
with linear theory in the small-amplitude limit α � 1. As the amplitudes increase,
however, the nonlinear effects become more important. The result of this is that the two
sets of solutions diverge more and more with increasing amplitude. In particular, the
magnitude of the local minimum of the cnoidal waves is overestimated by the linear waves,
while the wavelength of the cnoidal waves is also overestimated by the linear waves.

7. Conclusions

In recent years, a new approach to studying cnoidal wave solutions was introduced.
In this approach, one uses boundary conditions similar to those used to obtain soliton
solutions. In this paper, we demonstrate some of the flawed reasoning behind this
implementation, and show that the resulting solutions violate the conservation of number
density.

To address this, we propose a new formalism based on a set of initial conditions instead
of boundary conditions. In this approach, solutions are constructed in a way that ensures
the conservation of number density, as was done in the early works on this topic. While the
early works used a power series expansion to simplify the solutions, our approach requires
no approximations. One advantage is that one can study the small-amplitude limit where
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m → 0. We use this to show that the solutions are consistent with linear theory in this
limit.

It is important to note that the scope of this paper is limited to subacoustic cnoidal
wave solutions. For this case, the cnoidal wave solutions do not approach the soliton limit
m → 1 in the large-amplitude limit. For this limit, one must consider superacoustic cnoidal
waves, a topic for future investigation.

To summarize, this paper provides a new approach that allows the derivation of the
cnoidal wave solution in a much more detailed form than previously reported. This
improved level of detail makes it easier to construct the solutions, and also ensures that a
fundamental quantity is conserved, namely the number density.

Acknowledgements

Editor Thierry Passot thanks the referees for their advice in evaluating this article.

Funding

This work is based on the research supported wholly/in part by the National Research
Foundation of South Africa (Grant numbers 145712).

Declaration of interests

The authors report no conflict of interest.

Appendix A. Conservation of number density

In order to see where the problems lie with many papers on cnoidal plasma waves, we
start from the description of nonlinear waves on the surface of water. These are the oldest
well-studied nonlinear waves, and provide the imagery that we often keep at the back of
our mind when we think of waves and their properties. Totally leaving aside the nonlinear
solitary waves, we now refer to linear or nonlinear periodic waves, often described by
cnoidal functions. To this end, consider a narrow water canal where one may assume that
the water height is uniform across the width of the canal (say, the y-coordinate). Therefore,
the water volume depends only on the height (z-coordinate) of the water along the length
(x-coordinate) of the canal. If the water in the canal is undisturbed, i.e. in equilibrium, then
the volume of water along one unit in the x-direction is given by

Ve =
∫ h

0

∫ w

0

∫ 1

0
1 dx dy dz = hw, (A1)

where w is the width of the canal, and h is the equilibrium height (i.e. depth) of the water
canal.

When we look for periodic wave solutions, we look for solutions that conserve the
mass of the water in the equilibrium state. This conservation ensures that these waves
can be generated through some perturbation (wind, for example) of the undisturbed water
mass. Since the water mass is directly proportional to the water volume, one can ensure
conservation of mass by ensuring conservation of volume.

Now, suppose that a periodic solution z = f (x, t) exists with period L, that is,
f (x + L, t) = f (x, t) for all x and t. The average mass per unit of x is then proportional
to the average volume, given by

V̄p(t) = 1
L

∫ h

0

∫ w

0

∫ L

0
f (x, t) dx dy dz. (A2)
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FIGURE 8. Periodic nonlinear waves of a fixed character, positive or negative.

To ensure conservation of mass, one must have that Ve = V̄p(t) for all t. This condition can
be reduced to the following condition:

1
L

∫ L

0
f (x, t) dx = h, (A3)

that is, the normalized average height of the periodic solution must be equal to the
equilibrium height.

Suppose that we would have solutions with graphs as in figure 8, we first address the
positive solutions, in terms of the elevation above the equilibrium level surface. Here, the
black line corresponds to the equilibrium height of the water, and the blue curve shows
the solution. Since the wave remains above the equilibrium water height, it is clear that
the average height will exceed the equilibrium height, so that the condition (A3) is not
satisfied. This shows that these positive humps cannot be generated by a small or large
disturbance of the water at rest, because it would need the addition of an infinite layer of
water (local height times a length from minus to plus infinity). A similar reasoning shows
that the negative solutions will have an average height below the equilibrium height. This
would imply that some of the water must be removed before the solution can be generated,
thus violating the conservation of mass.

Let us now turn our attention to electrostatic waves in plasmas. Unlike the water
medium, the volume is unaffected by the wave. Instead, the number density fluctuates
in a periodic fashion. For the plasma, the ion mass within a given volume is directly
proportional to the total number of ions within this volume. The number of ions in a given
volume can be determined by integrating the ion number density over that volume.

To derive a condition that ensures conservation of ion mass, consider a square of length
� that is perpendicular to the direction of the flow, i.e. the direction of the magnetic field.
We assume that the number density remains constant within the square, and only varies
along the direction of the magnetic field x. In normalized terms, the total number of ions
within one unit of x (i.e. one Debye length) is given by

Ne =
∫ �

0

∫ �

0

∫ 1

0
n0 dx dy dz = �2, (A4)

since the (normalized) equilibrium number density is given by n0 = 1.
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Suppose now that n(x, t) is a periodic solution with period L that describes the number
density along the magnetic field direction x. To ensure the conservation of ion mass, one
must then have that

N̄p(t) = 1
L

∫ �

0

∫ �

0

∫ L

0
n(x, t) dx dy dz = �2. (A5)

This can be reduced to the condition that

1
L

∫ L

0
[n(x, t) − n0] dx = 0. (A6)

This condition ensures the conservation of ion mass.
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