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Abstract

We study the coupon collector’s problem with group drawings. Assume there are n dif-
ferent coupons. At each time precisely s of the n coupons are drawn, where all choices
are supposed to have equal probability. The focus lies on the fluctuations, as n → ∞, of
the number Zn,s(kn) of coupons that have not been drawn in the first kn drawings. Using
a size-biased coupling construction together with Stein’s method for normal approx-
imation, a quantitative central limit theorem for Zn,s(kn) is shown for the case that
kn = (n/s)(α log (n) + x), where 0 < α < 1 and x ∈R. The same coupling construction
is used to retrieve a quantitative Poisson limit theorem in the boundary case α = 1, again
using Stein’s method.
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1. Introduction

The coupon collector’s problem is an old problem of probability theory which in its sim-
plest form dates back to de Moivre, Laplace, and Euler [4, 6, 10]. While de Moivre used a die
with s faces to pose the problem, Euler and Laplace used a lottery interpretation as motiva-
tion. However, a more recent example for a situation in which the coupon collector’s problem
occurs is the collection of pictures of the participating players of all teams before and during
every World Cup. Typically, fans can buy the pictures in packages of five or six. Two natural
questions which arise are: How many packages need to be bought to get the full or a specific
portion of the full set of players? How many stickers are missing after buying k packages? The
first question was studied, for example, in [3, 8, 9, 18]. In the work at hand we will deal with the
latter of the two problems. The version of the coupon collector’s problem we consider can be
described as follows. Assume there are n different coupons. At each time we draw s of these
n coupons, where we assume that each of the

(
n
s

)
choices occurs with the same probability.

We are then interested in the distribution of the number Zn,s(kn) of coupons that have not been
drawn in the first k = kn drawings. In a conceptually equivalent interpretation the n coupons are
represented by n different cells numbered 1, . . . , n, and in each drawing we place s particles
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FIGURE 1. Illustration of the cell interpretation with n = 7 and s = 4 in the first three drawings.

into s distinct cells; see Fig. 1. We are then interested in the distribution of the number Zn,s(kn)
of empty cells after k = kn drawings.

The behaviour of Zn,s(kn) for the different regimes of kn has been the subject of numer-
ous research works over the years. In [11] convergence towards a normal limit is proved
for the sublinear and linear regime, i.e. for kn = o(n) and kn = αn, respectively. In [17] the
author proves a central limit theorem for a generalised coupon collector’s problem allow-
ing for random package sizes S in the lower superlinear regime, i.e. for kn/n → ∞ and
lim supn kn/(n log (n)) < 1/E[S] using a martingale representation. In [13] the method of
moments is used to prove normal approximation for the case where n[(kns)/n]r → ∞ for all
r ∈N and E[Zn,s(kn)] → ∞, which covers our regime of normal approximation introduced
below. However, no rates of convergence are given in either of the works mentioned so far.
In [19] the authors deduce rates of convergence in the Kolmogorov distance towards a normal
limit for kn = o(n log (n)) which are of order 1/

√
var(Zn,s(kn)) and thus optimal by a general

result of Englund [5, p. 692], which shows that for integer-valued random variables such as
Zn,s(kn) the order of this rate cannot be improved. We complement these bounds in the case
where kn is assumed to be of the form kn = (n/s)(α log (n) + x) for some α ∈ (0, 1) and x ∈R.
In the case α = 1, i.e. if kn = (n/s)(log(n) + x), the author in [12] uses the Stein–Chen method
to prove convergence towards a Poisson limit for the number of cells containing exactly r par-
ticles in a more general setting allowing for multiple particles being placed in one cell at each
step. The same question is also studied in [16], and a Poisson limit is deduced. The same work
shows that for the special case r = 0 the condition of equally probable group drawings can be
relaxed to a certain extent without losing the limiting Poisson distribution. In [2, Theorem 6.F]
the authors also prove rates of convergence of order log (n)/n towards a Poisson distribution in
this regime, which are optimal in view of [2, Theorem 3.D]. For r = 0 this covers our setting
of Poisson approximation with the same rates, which are included here only for completeness
and to demonstrate that both limit theorems can be based on the same coupling argument.

As explained above, there exists a sharp asymptotic distributional phase transition at α = 1
in the sense that for α ∈ (0, 1) the random variable Zn,s(kn) asymptotically follows a normal
distribution, whereas for α = 1 we obtain a Poisson limit. However, in both cases we use Stein’s
method in combination with the same size-biased coupling construction to prove upper bounds
on the distance between Zn,s(kn) and a Gaussian or Poisson random variable, respectively.
Our results are presented in the next section, while the coupling construction is explained

https://doi.org/10.1017/jpr.2023.6 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2023.6


1354 C. BETKEN AND C. THÄLE

in Section 3. The proof of the normal approximation result for α ∈ (0, 1) is the content of
Section 4, while the Poisson limit theorem is derived in Section 5.

2. Results

Denote by (Ci)i=1,...n the collection of cells in the coupon collector’s problem, and let
Zn,s(kn) be the number of empty cells after kn drawings, i.e. Zn,s(kn) =∑n

j=1 1En,j(kn), where
En,j(k) = {|Cj| = 0 after kn drawings} and where |Cj| stands for the number of particles in cell
Cj. Moreover, for two random variables X and Y we denote by

dW(X, Y) := sup
h∈Lip(1)

∣∣E[h(X)] −E[h(Y)]
∣∣

the Wasserstein distance between X and Y , where the supremum runs over all Lipschitz func-
tions h : R→R with Lipschitz constant less than or equal to one. We consider the case where
kn = (n/s)(α log (n) + x) for fixed s ∈N, x ∈R, and α ∈ (0, 1). Note that since kn denotes the
number of drawings, we always assume implicitly that kn is an integer; in particular we assume
that n is large enough that kn ≥ 0. Furthermore, we define the centred and normalised random
variables

Z̃n,s(kn) := Zn,s(kn) −E[Zn,s(kn)]√
var(Zn,s(kn))

. (1)

Throughout the paper we use the notation C(x1, x2, . . .) to indicate that a constant C ∈ (0, ∞)
only depends on parameters x1, x2, . . . of the model.

Theorem 1. Put kn = (n/s)(α log (n) + x) for some s ∈N, x ∈R, and α ∈ (0, 1). Let Zn,s(kn)
be the number of empty cells after kn drawings as introduced above, and denote by G a
standard Gaussian random variable. Then there exist constants C = C(x, α) ∈ (0, ∞) and
N = N(s, x, α) ∈N such that, for all n ≥ N,

dW (Z̃n,s(kn), G) ≤ C

(√
log (n)

nα
+ s2

n(1−α)/2

)
. (2)

After this general bound we now consider the situation in which s behaves like a constant
multiple of a non-negative power of n. In particular, this covers the case where s is constant.
We denote by [y] the integer part of a real number y ∈R.

Corollary 1. In the situation of Theorem 1, suppose additionally that s is of the form s = [s0nβ ]
for some β ∈ [0, 1−α

4

)
and s0 ≥ 1. Then,

dW(Z̃n,s, G) ≤
⎧⎨⎩C

√
log n/nα for α ∈ (0, 1

3

]
,

Cn−(1−α)/2+2β for α ∈ ( 1
3 , 1

)
for n ≥ N, where C = C(x, α, s0) ∈ (0, ∞), N = N(x, α, s0, β) ∈ (0, ∞). In particular, if s ≡
s0 ≥ 1 is constant,

dW(Z̃n,s, G) ≤
⎧⎨⎩C

√
log n/nα for α ∈ (0, 1

3

]
,

Cn−(1−α)/2 for α ∈ ( 1
3 , 1

)
.

Proof. The bounds are immediate from Theorem 1 by plugging in the particular choice
for s. �
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Remark 1.

(i) Since n−(1−α)/2 is of the same order as 1/
√

var(Zn,s(kn)), we believe that the rate in
Corollary 1 is optimal in the regime α ∈ ( 1

3 , 1
)

and if s is constant (β = 0). We leave
it as an open problem to decide whether or not the rate is optimal for α ∈ (0, 1

3

]
. On

the other hand, Remark 4 shows that in this situation the rate cannot be improved by
arguments based on the general normal approximation bound (7) (although this does, of
course, exclude the possibility of improving the bound by other methods).

(ii) We might ask whether the Wasserstein distance in Theorem 1 and Corollary 1 can be
replaced by the Kolmogorov distance

dK
(
Z̃n,s(kn), N

)= sup
u∈R

∣∣P(Z̃n,s(kn) ≤ u
)− P(N ≤ u)

∣∣.
As explained in Remark 3 in more detail, this is not possible by means of the size-biased
coupling approach of Stein’s method for normal approximation using our coupling con-
struction. In fact, the resulting bound in this case does not even tend to zero with n.
On the other hand, a presumably suboptimal bound follows directly from the fact that
the Kolmogorov distance can always be bounded by the square root of the Wasserstein
distance.

(iii) Remark 5 demonstrates that it is possible to make the constants C and N appearing in
Theorem 1 (and thus Corollary 1) fully explicit in terms of the parameters x and α.
However, since the resulting expressions are rather involved, we decided to present our
results in a simplified form. A similar comment also applies to the constants appearing
in Theorem 2.

The next result complements Theorem 1 by considering the case α = 1 for which the upper
bound (2) does not tend to zero as n → ∞. As emphasised already, the result is known from
[2] and is included here only for completeness. As above, for two random variables X and Y
we denote by

dTV(X, Y) := sup
A

∣∣P(X ∈ A) − P(Y ∈ A)
∣∣

the total variation distance between X and Y , where the supremum is taken over all Borel sets
A ⊂R.

Theorem 2. Put kn = (n/s)(log(n) + x) for some s ∈N and x ∈R. Let Zn,s(kn) be the number
of empty cells after kn drawings, and denote by W a Poisson random variable with parameter
λn =E[Zn,s(kn)]. Then there exist constants C̃ = C̃(s, x) ∈ (0, ∞) and Ñ = Ñ(s, x) ∈N such
that, for all n ≥ Ñ,

dTV(Zn,s(kn), W) ≤ C̃ log (n)/n.

Remark 2. It has been shown in [2] that the rate in Theorem 2 is optimal in the sense that we
can find other constants Ĉ, N̂ ∈ (0, ∞), depending on s and x only, such that dTV(Zn,s(kn), W) ≥
Ĉ log (n)/n for all n ≥ N̂.

For the proof of both results we use Stein’s method in combination with a size-biased cou-
pling. We start by describing this coupling in the next section, which can be regarded as a
particular instant of the construction in [14, p. 623] (choosing pni = 1/n there).
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FIGURE 2. Illustration of the coupling construction (continuation of Fig. 1); the artificially isolated cell
with label I is the dashed one.

3. Coupling construction

We are dealing with the coupon collector’s problem with n coupons, which can be inter-
preted as n distinct cells. At each time step we place a fixed number s ≤ n of particles in
s different cells. In order to keep track of when particles are placed into cells, we label all
particles in the mth drawing with the letter m. Now, after kn placements, we choose one of
the n cells, which we denote by CI , uniformly at random and take all particles out of it. For
a particle labelled j taken from CI we now choose one of the n − s cells not containing a
particle with label j uniformly and place the particle into it. We proceed in the same man-
ner until all particles from cell I have been redistributed into the remaining n − 1 cells; see
Fig. 2.

Denote by FI
n,j the event that at least one particle from cell I is placed into cell j, and

put F̄I
n,j := (

FI
n,j

)c. Furthermore, we define EI
n,j(kn) := En,j(kn) ∩ F̄I

n,j. For any j �= I we then
have

P

(
EI

n,j(kn)
)

=
kn∑

�=0

P

(
En,j(kn) ∩ F̄I

n,j ∩ {|CI | = �}
)

=
kn∑

�=0

P

(
F̄I

n,j | En,j(kn) ∩ {|CI | = �}
)
P(|CI | = � | En,j(kn))P

(
En,j(kn)

)
. (3)

Note that by construction we have

P(En,j(kn)) =
(

1 − s

n

)kn
, (4)

P(|CI | = � | En,j(kn)) =
(

kn

�

)(
s

n − 1

)�(
1 − s

n − 1

)kn−�

, (5)

since conditioning on the event En,j(kn) simply means that we can only place particles in n − 1
instead of n cells. In addition,

P
(
F̄I

n,j | En,j(kn) ∩ {|CI | = �})=
(

1 − 1

n − s

)�

,
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since for each of the particles from cell I the probability that it is placed into an originally
empty cell is 1/(n − s). Putting these expressions back into (3), we obtain

P
(
EI

n,j(kn)
)=

kn∑
�=0

(
kn

�

)(
s

n − 1

)�(
1 − s

n − 1

)kn−�(
1 − 1

n − s

)�(
1 − s

n

)kn

=
(

1 − s

n − 1

)kn

= P
(
En,j(kn) | En,i(kn)

)
(6)

for any i �= j. We thus conclude that the random variable

ZI
n,s(kn) := 1 +

n∑
j=1
j �=I

1EI
n,j(kn)

has the Zn,s(kn)-size-biased distribution, meaning that

P
(
ZI

n,s(kn) = y
)= y

E[Zn,s(kn)]
P(Zn,s(kn) = y), y ∈ {0, 1, . . . , n};

see [1].

Remark 3. Theorem 5.6 in [1] provides a bound on the Kolmogorov distance between Z̃n,s(kn)
and a standard Gaussian random variable using a size-biased coupling. However, for this to
yield a central limit theorem we need |ZI

n,s − Zn,s| = o(
√

n) almost surely as n → ∞. For the
coupling described above we have |ZI

n,s − Zn,s| = n − s − 1 if in all kn drawings the same s
cells are filled and the remaining n − s cells are filled when redistributing the kn particles of
one of the filled cells. Consequently, the result in [1] does not lead to a meaningful bound on
the Komogorov distance, as explained in Remark 1(ii).

4. Proof of Theorem 1

Following [7, Theorem 1.1], the Wasserstein distance between Z̃n,s = Z̃n,s(kn) as defined in
(1) and a standard Gaussian random variable G is bounded by

dW
(
Z̃n,s, G

)≤ λn

σ 2
n

√
var
(
E[Zn,s − ZI

n,s|Cn(kn)]
)+ λn

σ 3
n
E
[(

Zn,s − ZI
n,s

)2]
, (7)

where Cn(kn) denotes the configuration of the n cells after kn drawings, λn =E[Zn,s(kn)], and
σ 2

n = var(Zn,s(kn)). In the next sections we further bound the right-hand side of (7) by dealing
with the individual terms.

4.1. Expectation and variance

We start by bounding from above the expectation, and from below the variance, of Zn,s.
First, we note that, for kn = n

s (α log (n) + x),

P(En,j(kn)) =
(

1 − s

n

)kn

=
((

1 − s

n

)n/s)α log (n)+x

∼ e−(α log (n)+x) = e−x

nα
, (8)
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1358 C. BETKEN AND C. THÄLE

where we write f (n) ∼ g(n) for two functions f , g : N→R if limn→∞ [f (n)/g(n)] = 1. Thus,

E[Zn,s(kn)] =
n∑

j=1

P(En,j(kn)) ∼ e−xn1−α . (9)

In particular, P(En,j(kn)) ≤ e−xn−α for all n ≥ 1. Similarly, we obtain

(
1 − s

n

)kn

−
(

1 − s

n − 1

)kn

=
(

1 − s

n

)kn
(

1 −
(

(n − 1 − s)n

(n − 1)(n − s)

)kn
)

≤
(

1 − s

n

)kn
(

− kn

(
(n − 1 − s)n

(n − 1)(n − s)
− 1

))
=
(

1 − s

n

)kn

kn
(n − 1)(n − s) − (n − 1 − s)n

(n − 1)(n − s)

=
(

1 − s

n

)kn kns

(n − 1)(n − s)

≤ 2e−x(α log (n) + x)

n1+α
(10)

for all n ≥ n1 for some n1 = n1(α, s) ∈N, where we have used that

1 − zk ≤ −k(z − 1) (11)

for z ∈ (0, 1). Using that var(1A) = P(A)(1 − P(A)) and Cov (1A, 1B) = P(A ∩ B) − P(A)P(B) =
P(B)(P(A | B) − P(A)), we see that

var(Zn,s) =
n∑

j=1

var
[
1En,j(kn)

]+ n∑
j=1

n∑
i=1
i �=j

Cov
[
1En,j(kn), 1En,i(kn)

]

=
n∑

j=1

P(En,j(kn))(1 − P(En,j(kn)))

+
n∑

j=1

n∑
i=1
i �=j

[P(En,i(kn))(P(En,j(kn) | En,i(kn)) − P(En,j(kn)))]

=
[

1 −
(

1 − s

n

)kn

+ (n − 1)

((
1 − s

n − 1

)kn

−
(

1 − s

n

)kn
)]

E[Zn,s].

Applying (10), we conclude that there exists a constant c1(x) ∈ (0, ∞) such that, for n ≥ n1, we
have the lower variance bound

var(Zn,s) ≥
(

1 − e−x

nα
− 2e−x (α log (n) + x)

nα

)
E[Zn,s] ≥ c1(x) E[Zn,s]. (12)
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4.2. Bounding var
(
E

[
Zn,s − ZI

n,s|n(kn)
])

For the variance of the conditional expectation on the right-hand side in (7) we obtain

var
(
E
[
Zn,s − ZI

n,s|Cn(kn)
])= var

(
E

[
n∑

j=1

1En,j(kn)∩FI
n,j

| Cn(kn)

])

=E

[(
n∑

j=1

E

[
1En,j(kn)∩FI

n,j
| Cn(kn)

])2]
−E

[
n∑

j=1

E

[
1En,j(kn)∩FI

n,j
| Cn(kn)

]]2

=E

[
n∑

j=1

E

[
1En,j(kn)∩FI

n,j
| Cn(kn)

]2
]

+
(
E

[
n∑

j=1

n∑
i=1
i �=j

E

[
1En,j(kn)∩FI

n,j
| Cn(kn)

]
E

[
1En,i(kn)∩FI

n,i
| Cn(kn)

]]
−
[

n∑
j=1

E

[
1En,j(kn)∩FI

n,j

]]2)

=: T1 + T2. (13)

We start by dealing with T1. Note that, conditionally on the event En,j(kn),

E

[
1FI

n,j
| Cn(kn)

]
= 1 −

(
1 − 1

n − s

)|CI |
, (14)

so that, with (11), we obtain

T1 =E

[
n∑

j=1

1En,j(kn)

(
1 −

(
1 − 1

n − s

)|CI |)2
]

≤ 1

(n − s)2
E

[
n∑

j=1

1En,j(kn) | CI |2
]

.

Denoting by DI
m the event that a particle is placed into cell CI in the mth drawing for some

m ∈ {1, . . . , kn}, we see that

E
[
1En,j(kn) | CI |2

]=E

[
1En,j(kn)

( kn∑
m=1

1DI
m

)2]

=E

[ kn∑
m=1

1En,j(kn)1DI
m

]
+E

[ kn∑
m=1

kn∑
r=1
r �=m

1En,j(kn)1DI
m

1DI
r

]

= P(En,j(kn))

( kn∑
m=1

P

(
DI

m | En,j(kn)
)

+
kn∑

m=1

kn∑
r=1
r �=m

P

(
DI

m ∩ DI
r | En,j(kn)

))
.

Since all s-placements occur with the same probability, and conditioning on the event En,j(kn)
simply means that we can only place particles into n − 1 cells, we have P

(
DI

m | En,j(kn)
)=
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s/(n − 1). As the drawings are independent of each other,

kn∑
m=1

P
(
DI

m | En,j(kn)
)+

kn∑
m=1

kn∑
r=1
r �=m

P
(
DI

m ∩ DI
r | En,j(kn)

)

=
kn∑

m=1

P
(
DI

m | En,j(kn)
)+

kn∑
m=1

kn∑
r=1
r �=m

P
(
DI

m | En,j(kn)
)
P
(
DI

r | En,j(kn)
)= kns

n − 1
+ kn(kn − 1)s2

(n − 1)2
.

Using (8), there exists a constant c2(x) ∈ (0, ∞) such that we can bound T1 by

T1 ≤
(

1 − s

n

)kn n

(n − s)2

(
kns

n − 1
+ kn(kn − 1)s2

(n − 1)2

)
≤ 6(s + 1)2e−x (α log n + x)2

n1+α
≤ c2(x)

s2α2 log (n)2

n1+α
. (15)

To deal with the term T2, first note that, by (4) and (5),

E

[
1En,j(kn)∩FI

n,j

]
= P(En,j(kn))P

(
FI

n,j | En,j(kn)
)

= P(En,j(kn))
kn∑

�=0

P
(
FI

n,j | En,j(kn) ∩ {|CI | = �})P(|CI | = � | En,j(kn)
)

=
(

1 − s

n

)kn kn∑
�=0

(
1 −

(
1 − 1

n − s

)�)(kn

�

)(
s

n − 1

)�(
1 − s

n − 1

)kn−�

=
(

1 − s

n

)kn
(

1 −
kn∑

�=0

(
1 − 1

n − s

)� (kn

�

)(
s

n − 1

)�(
1 − s

n − 1

)kn−�
)

=
(

1 − s

n

)kn
(

1 −
(

1 − s

(n − s)(n − 1)

)kn
)

. (16)

Using (14) and slightly adapting (5), the first part of T2 can be handled in the following way:

E

[
E

[
1En,j(kn)∩FI

n,j
| Cn(kn)

]
E

[
1En,i(kn)∩FI

n,i
| Cn(kn)

]]
=E

[
1En,i(kn)1En,j(kn)

(
1 −

(
1 − 1

n − s

)|CI |)2]

=
kn∑

�=0

(
1 −

(
1 − 1

n − s

)�)2

P(|CI | = � | En,i(kn) ∩ En,j(kn)) P(En,i(kn) ∩ En,j(kn))

=
(

1 − s

n

)kn
(

1 − s

n − 1

)kn kn∑
�=0

(
1 −

(
1 − 1

n − s

)�)2 (kn

�

)(
s

n − 2

)�(
1 − s

n − 2

)kn−�
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=
(

1 − s

n

)kn
(

1 − s

n − 1

)kn

×
kn∑

�=0

(
1 − 2

(
1 − 1

n − s

)�

+
(

1 − 1

n − s

)2�) (
kn

�

)(
s

n − 2

)�(
1 − s

n − 2

)kn−�

=
(

1 − s

n

)kn
(

1 − s

n − 1

)kn

×
(

1 − 2

(
1 − s

(n − 2)(n − s)

)kn

+
(

1 − 2s

(n − 2)(n − s)
+ s

(n − 2)(n − s)2

)kn
)

,

independently of i and j. Combining this with (16) yields

T2 ≤ n2
(

1 − s

n

)2kn
[

2

((
1 − s

(n − s)(n − 1)

)kn

−
(

1 − s

(n − s)(n − 2)

)kn
)

+
(

1 − 2s

(n − s)(n − 2)
+ s

(n − 2)(n − s)2

)kn

−
(

1 − s

(n − s)(n − 1)

)2kn
]

.

Now, there exists n2 = n2(α, s) such that, for all n ≥ n2,(
1 − s

(n − s)(n − 1)

)kn

−
(

1 − s

(n − s)(n − 2)

)kn

≤ 2
α log (n) + x

n2
,(

1 − 2s

(n − s)(n − 2)
+ s

(n − 2)(n − s)2

)kn

−
(

1 − s

(n − s)(n − 1)

)2kn

≤ 2
α log (n) + x

n2
.

Combining this with (8) we can conclude that there exists a constant c3(x) ∈ (0, ∞) such that,
for all n ≥ max{3, n2},

T2 ≤ c3(x)
α log (n)

n2α
. (17)

Putting the bounds in (15) and (17) into (13), we see that there exists a constant c4(x) ∈ (0, ∞)
such that, for all n ≥ max{3, n2},

var
(
E
[
Zn,s − ZI

n,s | Cn(kn)
])≤ c2(x)

s2α2 log (n)2

n1+α
+ c3(x)

α log (n)

n2α

≤ c4(x)

(
s2α2 log (n)2

n1+α
+ α log (n)

n2α

)
. (18)

Remark 4. Using (13) and the exact expressions for the probabilities appearing there, it can
be shown that for constant s the order of (18) is optimal, in the sense that we can find constants
c, C ∈ (0, ∞) only depending on s and x such that

c
α log (n)

n2α
≤ var

(
E
[
Zn,s − ZI

n,s | Cn(kn)
])≤ C

α log (n)

n2α

for sufficiently large n.
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4.3. Bounding E
[(

Zn,s − ZI
n,s

)2]

For the second term in (7) it remains to bound E
[(

Zn,s − ZI
n,s

)2]. We have

E
[(

Zn,s − ZI
n,s

)2]≤E

[(
n∑

j=1
j �=I

1En,j(kn)∩FI
n,j

− 1

)2]

=E

[(
n∑

j=1
j �=I

1En,j(kn)∩FI
n,j

)2]
− 2E

[
n∑

j=1
j �=I

1En,j(kn)∩Fn,j

]
+ 1

≤E

[
n∑

j=1
j �=I

n∑
i=1

i �=j,I

1En,j(kn)∩FI
n,j

1En,i(kn)∩FI
n,i

]
+ 1, (19)

where the −1 in the first line comes from the artificially isolated cell with index I. For the first
sum, note that

P
(
En,i(kn) ∩ FI

n,i ∩ En,j(kn) ∩ FI
n,j

)= P
(
FI

n,i(kn) ∩ FI
n,j | En,j(kn) ∩ En,i

)
P
(
En,j(kn) ∩ En,j

)
,

where P(En,j(kn) ∩ En,j(kn)) can be bounded using (6) and (8). To bound the remaining
probability, we observe that, similarly to the considerations in (16), we have

P
(
FI

n,j | En,i(kn) ∩ En,j(kn)
)

=
kn∑

�=0

P
(
FI

n,j | En,i(kn) ∩ En,j(kn) ∩ {|CI | = �})P(|CI | = � | En,i(kn) ∩ En,j(kn)
)

=
kn∑

�=0

(
kn

�

)(
1 −

(
1 − 1

n − s

)�)( s

n − 2

)�(
1 − s

n − 2

)kn−�

= 1 −
(

1 − s

(n − 2)(n − s)

)kn

,

independently of the choice of i and j. So, we are left to deal with P
(
FI

n,i | En,i(kn) ∩ En,j(kn) ∩
FI

n,j

)
. For i �= j,

P
(
FI

n,i | En,j(kn) ∩ En,i(kn) ∩ FI
n,j

)≤ P
(
FI

n,i | En,i(kn) ∩ En,j(kn)
)
,

since the event FI
n,j implies that at least one particle from cell I is placed into cell Cj, reducing

the chances of cell Ci receiving a particle. Hence,

P
(
FI

n,i ∩ FI
n,j | En,i(kn) ∩ En,j(kn)

)≤
(

1 −
(

1 − s

(n − 2)(n − s)

)kn
)2

,
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and we finally obtain, for n ≥ s,

E

[
n∑

j=1
j �=I

n∑
i=1

i �=j,I

1En,j(kn)∩FI
n,j

1En,i(kn)∩FI
n,i

]

=
n∑

j=1
j �=I

n∑
i=1

i �=j,I

P
(
FI

n,i ∩ FI
n,j | En,i(kn) ∩ En,j(kn)

)
P(En,i(kn) ∩ En,j(kn))

≤ (n − 1)(n − 2)

(
1 −

(
1 − s

(n − 2)(n − s)

)kn
)2(

1 − s

n

)2kn

≤ (n − 1)(n − 2)

(
kn

s

(n − 2)(n − s)

)2(
1 − s

n

)2kn

≤ (n − 1)(n − 2)

(
3(s + 1)(α log (n) + x)

n

)2(e−xα log (n)

nα

)2

≤ 9(s + 1)2e−2x (α log (n) + x)2α2 log (n)2

n2α
,

where we used (11) to arrive at the third line. Plugging this back into (19), we conclude that
there exists a constant c5(x) ∈ (0, ∞) such that, for all n ≥ s,

E
[(

Zn,s − ZI
n,s

)2]≤ c5(x)s2. (20)

Combining the normal approximation bound (7) with the estimates (9), (12), (18), and (20),
we arrive at

dW
(
Z̃n,s, G

)≤ λn

c1(x)λn

√
c4(x)

(
s2α2 log (n)2

n1+α
+ α log (n)

n2α

)
+ λn

(c1(x)λn)3/2
c5(x)s2

≤
√

c4(x) α

c1(x)

s log n

n(1+α)/2
+

√
c4(x)

√
α

c1(x)

√
log (n)

nα
+ c5(x)

c1(x)3/2

√
2s2

n(1−α)/2e−x/2

≤ C

(√
log (n)

nα
+ s2

n(1−α)/2

)

for some constant C = C(x, α) ∈ (0, ∞) and for all n ≥ N := max{n1, n2, 3, s, e−x}. Here, we
used that E[Zn,s] ≥ 1

2 e−xn1−α for n ≥ 2 in the second step. Note that in the last step we also
used that

s log n

n(1+α)/2
≤ s2

n(1−α)/2
,

which is equivalent to log n ≤ snα and thus automatically satisfied. This proves
Theorem 1. �
Remark 5. The constants C and N in Theorem 1 can be made fully explicit in terms of the
parameters x and α. To see this, we start by noting that in (8) the asymptotic equivalence ‘∼’
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FIGURE 3. Dependence of the normal approximation bound on the parameters α, x, s, and n. Top left:

α ∈
[

1
3 , 1

)
, while x = 0, s = 5, n = 1000. Top right: x ∈ [0, 10], while α = 1

2 , s = 5, n = 1000. Bottom

left: s ∈ {1, . . . , 10}, while α = 1
2 , x = 0, n = 1000. Bottom right: n ∈ {1000, . . . , 10 000}, while α = 1

2 ,
x = 0, s = 5.

can be replaced by ‘≤’, and that E[Zn,s] ≥ 1
2 e−xn1−α for n ≥ 2. With this inequality we can

conclude from the computations in Section 4.1 that

λn

σ 2
n

≤
(

1 − e−x

nα
− 2e−x(α log (n) + x)

nα

)−1

,

λn

σ 3
n

≤
(

1 − e−x

nα
− 2e−x(α log (n) + x)

nα

)−3/2(1

2
e−xn1−α

)−1/2

.

Furthermore, an inspection of Sections 4.2 and 4.3 shows that

var
(
E
[
Zn,s − ZI

n,s | Cn(kn)
])≤ 6(s + 1)2e−x (α log (n) + x)2

n1+α
+ 4e−2x α log (n) + x

n2α
,

E
[(

Zn,s − ZI
n,s

)2]≤ 9(s + 1)2e−2x (α log (n) + x)2α2 log (n)2

n2α
+ 1,

which in view of (7) leads to a fully explicit error bound (which is valid whenever the resulting
expression is positive). In particular, the dependence of this bound on the parameters s, x,
α, and n can be studied as demonstrated in Fig. 3 (note that in contrast to the Kolmogorov
distance, which is bounded by 1, the Wasserstein distance can take arbitrarily large values).
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5. Proof of Theorem 2

As already mentioned in the introduction, rates of convergence towards a Poisson limit in
the case α = 1 can be concluded from [2, Theorem 6.F]. Nevertheless, we give an alternative
self-contained proof using the coupling from Section 3.

Proof of Theorem 2. It follows from [15, Theorem 4.13] that the total variation distance
between the number of empty cells in the coupon collector’s problem and a Poisson random
variable W with parameter λn =E[Zn,s(kn)] can be bounded using the following inequality:

dTV(Zn,s(kn), W) ≤ min{1, λn}E
[
Zn,s(kn) + 1 − ZI

n,s(kn)
]
. (21)

For the expectation on the right, the definitions of Zn,s(kn) and ZI
n,s(kn) yield

E
[
Zn,s(kn) + 1 − ZI

n,s(kn)
]=E[1En,I (kn)] +E

[∑
j �=I

1En,j(kn) − 1EI
n,j(kn)

]

=
(

1 − s

n

)k

+ (n − 1)

((
1 − s

n

)k

−
(

1 − s

n − 1

)k)
.

Combining (8) and (10) for α = 1 with (21) yields

dTV(Zn,s(kn), W) ≤ min{1, λn}E
[
Zn,s(kn) + 1 − ZI

n,s(kn)
]

=
(

1 − s

n

)k

+ (n − 1)

((
1 − s

n

)k

−
(

1 − s

n − 1

)k)
≤ e−x

n
(log(n) + x + 1)

for n ≥ Ñ := max
{
n1, e−(x+1)

}
, which completes the proof of Theorem 2. �
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