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Abstract

Recent reports suggest the ON and OFF pathways are differentially susceptible to selective
vision loss in glaucoma. Thus, perimetric assessment of ON- and OFF-pathway function may
serve as a useful diagnostic. However, this necessitates a developed understanding of normal
ON/OFF pathway function around the visual field and as a function of input intensity. Here,
using electroencephalography, we measured ON- and OFF-pathway biased contrast response
functions in the upper and lower visual fields. Using the steady-state visually evoked potential
paradigm, we flickered achromatic luminance probes according to a saw-tooth waveform, the
fast phase of which biased responses towards the ON or OFF pathways. Neural responses from
the upper and lower visual fields were simultaneously measured using frequency tagging -
probes in the upper visual field modulated at 3.75 Hz, while those in the lower visual field
modulated at 3 Hz.We find that responses to OFF/decrements are larger than ON/increments,
especially in the lower visual field. In the lower visual field, both ON and OFF responses were
well described by a sigmoidal non-linearity. In the upper visual field, the ON pathway function
was very similar to that of the lower, but the OFF pathway function showed reduced saturation
and more cross-subject variability. Overall, this demonstrates that the relationship between the
ON and OFF pathways depends on the visual field location and contrast level, potentially
reflective of natural scene statistics.

Introduction

Differences in psychophysical performance, physiology, and anatomyhave been reported between
the upper and lower visual fields (the UVF and LVF, respectively). Examples of a performance
advantage in the LVF come fromstudies of contrast sensitivity (Abrams et al., 2012;Cameron et al.,
2002), hue discrimination (Levine & McAnany, 2005), motion and shape perception (Zito et al.,
2016) (to name a few, see (Himmelberg et al., 2023) for a review). As early as in the retina, an LVF
bias has been observed in the density ofmidget retinal ganglion cells (Curcio&Allen, 1990), and in
the human cortex, the LVF is represented by a disproportionately large amount of V1 (Benson
et al., 2021). A potential contribution from the cortex is supported by recent detailed work that
simulated known VF asymmetries in retinal structure and function in a computational observer
(Kupers et al., 2022).Despite the additionof a simplified retinal ganglion cell (RGC)model,Kupers
and colleagues’ simulation did not produce the behavioral VF asymmetries observed in humans.
This result implies that retinal asymmetry is enhanced by the cortex, although not all RGCs in the
retina were included in their computational observer model.

A prominent bifurcation of the RGCs is their division into ON and OFF subdivisions, which
encode local increments and decrements in light (respectively) (Kremers et al., 1993). The ON-
and OFF-pathways remain segregated at the primate lateral geniculate nucleus (Reid & Shapley,
1992), and are the building blocks of cortical simple-cell ON and OFF sub-regions. In the
absence of functional asymmetry, a parallel encoding of local increments and decrements alone
is advantageous as it reduces metabolic costs while preserving informational capacity
(Gjorgjieva et al., 2014). Indeed, early work considered the ON and OFF subdivisions to be
functionally symmetric (Schiller, 1992). However, there is a growing corpus indicating that the
humanON andOFF pathways are not symmetric; both from psychophysics (Bowen et al., 1989;
Komban et al., 2011) and electrophysiology (Norcia et al., 2020; Zemon et al., 1988; Zemon &
Gordon, 2006). It should be noted that ON-pathway & OFF-pathway symmetry is implicitly
assumed when experimenters use an unsigned definition of luminance contrast, as many
do. Unsigned contrast definitions (like Michelson contrast) are often used for stimuli with
periodic spatial patterns, like gratings or checkerboards. They do not distinguish between a dark
element on a grey background, and a light element on a grey background (while ON- and OFF-
RGCs do). The Weber contrast is a signed definition of contrast that retains this contrast
polarity, making it more useful for probing the ON and OFF pathways. See Westheimer (2007)
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for a historical perspective on the dominance of unsigned contrast.
Crucially, if the ON and OFF pathways are differently tuned, it is
possible that this tuning interacts with visual field location and
contributes to VF performance asymmetries. Describing the degree
of ON- and OFF-pathway VF asymmetry may then allow us to
better simulate human behavior. Additionally, it would provide a
more detailed understanding of the perceptual experiences of
individuals with pathology that affect one pathway more than the
other, like amblyopia (Pons et al., 2019) and glaucoma (Norcia
et al., 2022).

Why might we expect ON- and OFF-pathway spatiotemporal
tuning to vary by visual field location? One driving force for tuning
asymmetry is an asymmetric distribution of information in natural
scenes. Neurons have a limited range of response magnitudes, and
large-magnitude responses are metabolically costly. So, it is meta-
bolically efficient to represent the most commonly encountered
contrasts at low response magnitudes and with greater granularity
(i.e., using a sigmoidal non-linearity). The notion of allocating
neural sensitivity based on the frequency of occurrence is a form
of “tuning” central to information theory (Barlow et al., 1987). If
information theory holds, biases in contrast sensitivity & discrim-
inability across the visual field can be predicted by spatial biases in
contrast information. Interestingly, recent work has suggested that
the statistics of natural scenes differ between the upper and lower
visual fields in terms of their distributions of luminance and
luminance contrast. Using a natural scene database captured to
reflect the visual environment of mice, Abballe & Asari (2022)
found that the relative contrast in the visible and UV parts of the
spectrum of natural scenes differ between the upper and lower
visual fields, with the difference or “chromatic contrast” being
larger in the upper than lower visual fields. Using signed contrast,
Qiu et al. (2021) found that natural scenes were biased towards dark
contrasts, especially in the upper visual field, and that this was
paralleled by more light-offset-sensitive ganglion cells in the ven-
tral mouse retina. A dark bias in natural scenes has also been
reported in previous work on full-field natural images (Cooper &
Norcia, 2015; Ratliff et al., 2010) and several physiological studies
have found a dark bias in responses at the level of V1 (Jin et al.,
2008; Xing et al., 2010; Yeh et al., 2009), particularly at low spatial
frequencies (Jansen et al., 2019) and in the human visual evoked
potential (Norcia et al., 2020). The work by Norcia et al. also
demonstrated that an OFF bias is present in both the UVF and
the LVF, but this was only measured at a single suprathreshold
contrast. Importantly, Qiu et al.’s data in mice suggests that the
natural scene dark bias may be field-dependent, warranting an
investigation of the ON/OFF biases in the UVF and LVF in human
observers.

A necessary step towards understanding whether the visual
system is adapted to prevailing scene statistics is the measurement
of visual responses as a function of stimulus contrast. Laughlin
(1981) showed that contrast responses of fly large monopolar cells
could be directly related to the cumulative probability distribution
of scene contrasts. This suggested that contrast coding in the fly
efficiently mapped visual responses onto the distribution of con-
trast in natural scenes. Only three small-scale studies have mea-
sured contrast response functions for contrast increments and
decrements (Kremkow et al., 2014; Rahimi-Nasrabadi et al.,
2021; Zemon & Gordon, 2006), but they did not assess visual field
asymmetry. The studies of Kremkow et al. and Rahimi-Nasrebadi
et al. both report that OFF-contrasts were represented by a more
linear contrast response function that failed to saturate, while the
responses to ON-contrasts followed an accelerating and saturating

non-linearity. Conversely, Zemon and colleagues reported the
opposite: responses to OFF contrasts did saturate, and did so at a
lower contrast than ON. Given the initial evidence that CRF shape
may differ for increments and decrements, we asked whether these
differences may also depend on visual field location. We find that
ON and OFF contrast responses are highly nonlinear in the lower
visual field, classically accelerating across low contrasts as contrast
increases and saturating at high contrast. In the upper visual field,
however, decremental/OFF responses are quasi-linear, while incre-
mental/ON responses remain sigmoidal.

Materials and methods

Participants

Twenty-seven participants were recruited from the Stanford Uni-
versity Psychology Department course credit pool (mean
age = 23 yrs, SD = 5 yrs; 19 female). Participants were instructed
to wear their most recent optical correction. Visual acuity was
measured using a Bailey-Lovey chart (chart #5, Precision Vision,
Woodstock, IL, USA) at 4 m, and participants had to achieve a
visual acuity of at least 0.2 LogMAR in each eye. Near-field stereo
acuity was assessed with a Randot Stereotest (Stereo Optical Co.,
Inc., Chicago, IL, USA) at 41 cm with a passing score of 70 arc
seconds or better. One subject was assessed for Stereo-acuity using
the Frisby stereo test. Two near-sighted participants had forgotten
their distance correction and failed the Bailey–Lovey chart at 4 m,
but were allowed to participate on the basis of passing the near-field
stereo-acuity test at 41 cm. Informed written and verbal consent
was obtained from all participants prior to participation under a
protocol approved by the Institutional Review Board of Stanford
University.

Visual stimuli

Contrast response functions for ON- and OFF-pathway biasing
stimuli weremeasured for each observer in response to a hexagonal
array of flickering probes. The entire array subtended 42° × 25° of
visual angle (see Fig. 1A). Two types of hexagonal elements are
present in the array: probes and pedestals. Pedestal hexagons are
larger elements that have a fixed luminance of 92.4 cd/m2 while
probe hexagons are smaller elements within pedestals with lumi-
nance modulation that was experimentally manipulated (see the
hexagonal elements in Fig. 1B). Across ten conditions, probe
elements were temporally modulated (in achromatic luminance)
according to a saw-tooth profile, the fast-phase of which was set to
bias evoked responses either towards the ON- or OFF-pathway
(Kremers et al., 1993). ON-pathway biasing stimuli were defined as
probes that rapidly increased in luminance and slowly decreased,
while OFF-pathway biasing stimuli were defined as probes that
rapidly decreased in luminance and slowly increased (see wave-
forms in Fig. 1B). All hexagons were presented against a low-
luminance background of 15.2 cd/m2. All elements were scaled
with eccentricity as detailed previously (Norcia et al., 2020).

In order to record Steady-State Visually Evoked Potentials
(SSVEPs) simultaneously from the UVF and LVF, probes in the
UVF flickered at 3.75 Hz, and probes in the LVF at 3 Hz (see right-
most ordinate of 1A). All probes in a given half-field were modu-
lated synchronously with an identical temporal waveform. We
chose 3 Hz and 3.75 Hz for several reasons: First, these frequencies
are close to each other, such that human temporal contrast sensi-
tivity is similar for the two stimuli. Second, they can be easily
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rendered on a 60 Hz display (3 Hz is exactly 20 frames, 3.75 Hz is
16 frames). Third, they have a high least commonmultiple (15Hz),
so harmonic frequencies can be independently interpreted up to
15 Hz. Finally, low frequencies (<5 Hz) allow the main temporal
components of the response to evolve andmostly return to baseline
over a single stimulation cycle. Offline spectral decomposition was
used to separate responses at these frequencies (and their har-
monics), effectively obtaining independent responses for the simul-
taneously presented UVF and LVF probes. SSVEPs were measured
at 5 geometrically spaced contrast levels (5%, 10%, 20%, 40%, and
80%), with contrast defined using the Weber definition:

C =
Lprobe�Lpedestal

Lpedestal
, where L is the luminance of the probe or the

pedestal. There were 10 stimulation conditions (2 pathways ×
5 contrasts), with 9 trials per condition (90 trials total). A single
trial consisted of 16 s of continuous stimulation for a given condi-
tion, with a 2.5 s–3.5 s background-only period in between trials.
Longer breaks, typically lasting approximately 2 min, were pro-
vided every 30 trials. Three participants only completed 6 trials per
condition (60 trials total). To control participant vigilance and
clamp attention at a more constant value, a letter task was pre-
sented concurrently during steady-state stimulation. Five letters
were presented within the central 2 degrees of the display, one
central letter flanked by 4 letters (see Fig. 1A and 1C). Each letter
element subtended approximately 30 min of arc. In a single trial of
the task (lasting up to 3.2 s) there were three phases (see Fig. 1C),
the pre-probe mask, the probe, and the post-probe mask. The pre-
and post-probe mask phases were identical arrays that contained
only “F”s, while the probe phase could be a “null” that contained
only “L”s, or a “target” that contained four “L”s and one “T”. The
participant was instructed to respond with a button press when
they saw the target. The position of the letter “T” was randomized
across trials. The duration of the target probe was titrated with a
two-down-one-up staircase, such that the task quickly converged
on a threshold (minimum presentation time was 100 ms, the max
was 1 s). The duration of the pre- and post-probe mask was
randomized on every trial. The pre-probe mask lasted between 0.7
and 1 ss, and the post-probe mask lasted between 0.7 and 1.2 s. The
orientation of the letters was randomized on every trial of the
attention task. Within a trial, the letter orientations were held
constant at each letter location. Trials were presented repeatedly

for the duration of the flickering stimulus, and the value of the
staircase was carried across the trials of the flickering stimulus.

EEG recording

The EEG was recorded using a 128-channel EGI HydroCel Sen-
sorNet andNetStation 5.2 software at a sample frequency of 500Hz
and resampled to 420 Hz (7 samples per video frame). Every effort
was made to reduce channel impedance below 100 kΩ at the point
of data collection, and impedance was checked in between trial
blocks, with electrodes rewetted if necessary.

Artifact rejection and EEG filtering

For each observer, the raw EEG was amplified (gain = 1000, 24-bit
resolution) and digitally filtered with a 0.3–50 Hz band-pass filter.
The data were then artifact rejected with in-house software written
in Objective C using the following criteria. First, consistently noisy
individual channels were detected, rejected, and substituted with
the average of the six nearest-neighbor channels. Channels were
classified as consistently noisy if over 15% of samples exceeded
30 μV (excluding breaks). After this, the data were re-referenced to
the common average. Second, the 16-second trials were broken
down into the maximum number of “sub-trials” that still possessed
an integer number of cycles at both stimulus frequencies. For each
trial, this yielded 12 sub-trials of 1=:3 seconds (4 cycles of 3 Hz and
5 cycles of 3.75 Hz). The first and last sub-trial of each trial were
always discarded. Third, to reject data containing coordinated
muscle movements and blinks, 1=:3 second-long sub-trials were
excluded for all channels if more than 5% of channels exceeded an
amplitude threshold of 60 μV. Fourth, 1=:3 second sub-trials of
individual channels were excluded if more than 10% of samples
exceeded 30 μV. These light-touch artefact rejection criteria were
derived empirically for adults over hundreds of previous record-
ings. They readily pick out muscle and blink artifacts as well as
electrode motion artifacts which are not of neural origin, leaving
relatively clean EEG. Finally, any subjects who had more than 30%
of their samples rejected (after channel substitution) were entirely
removed from the analysis. Six subjects failed this final criteria,
meaning 21 were used in the forthcoming analysis.

Figure 1. A single frame of the hexagonal stimulus array at 80% OFF contrast (A). The luminance of the central probes is varied to bias responses to the ON or OFF pathways at
different Weber contrasts. The temporal frequency of the saw-tooth stimulus was different for the UVF and LVF, which allows for the spectral decomposition of these signals (B). A
schematic overview of a single trial of the concurrent attention task (C).

Visual field asymmetries in responses to ON and OFF biasing stimuli 3

https://doi.org/10.1017/S095252382400004X Published online by Cambridge University Press

https://doi.org/10.1017/S095252382400004X


Spectral analysis

Spectral analysis was performed for each participant, for every
sensor, at the sub-trial level using a recursive least squares (RLS)
filter (Tang & Norcia, 1995). Briefly, RLS is equivalent to the
discrete Fourier transform (DFT) but is more effective when short
trial lengths are used. Conceptually, RLS directly fits sine and
cosine waves at selected stimulus-relevant frequencies to a time
series. This process yields complex-valued estimates of harmonic
amplitudes that can be used in the sameway as the amplitudes from
the DFT. In the present work, RLS was performed up to the 3rd
harmonic for each stimulus frequency. Assuming a participant had
no sub-trials rejected, this yielded 90 spectral estimates per condi-
tion, visual field location, harmonic, and participant (60 in the
participants who completed 6 trials of each condition). It should be
noted that the multi-frequency stimulation we have employed
makes the display of conventional VEPs more challenging, as the
resultant wave forms are a complex mixture of the two stimulation
frequencies. Spectral analysis can “un-mix” these signals, meaning
the frequency domain representation of the data is more conducive
to interpretation. See Fig. 2, where we have plotted both the
frequency and time domain representation of the cross-participant
average response to an 80% OFF-contrast flicker at channel 75.
Note, that we use an “xFy” nomenclature, such that “1F2” refers to
the 1st harmonic of the 2nd stimulus frequency (3 Hz). The LVF
and UVF VEP are not readily discernible from the time-domain
representation of the data (right-most panel), but the frequency
domain representation readily separates LVF and UVF spectral
peaks at 3 Hz and 3.75 Hz, respectfully (and their integer multiple
harmonics).

Normalization and dimension reduction

Despite the use of identical stimuli, the amplitude of the SSVEP
varies between individuals. This may be partially driven by differ-
ences in skull and scalp thickness/conductivity. These passive
electrical differences would not only scale the stimulus evoked
response but also the associated intracranial EEG noise. Therefore,
in an effort to at least partially account for cross-subject differences
in passive electrical properties, we normalized participants’ RLS
complex-valued spectral data by an estimate of their noise level. To
ensure we did not introduce any condition-wise bias, each subject’s
spectral data was scaled by a single unique value derived from the
entirety of their data. This value was calculated as follows: first, for
the real and imaginary part of every stimulus harmonic, we calcu-
lated the variance across all sub-trials. Then, we took the mean of

the real and imaginary variance (this is equivalent to Eq. 2 of Victor
&Mast (1991)), and took the mean of this value across harmonics.
See Equation 1, below:

Z =
1
H

XH
h= 1

1
2

x2hþy2h
� �

(1)

Where H is the number of harmonics, and x2h and y2h are the
variances of the real and imaginary parts for the hth harmonic.
This was done separately for each condition, such that Zc repre-
sents the total variance of condition c. As shown in Eq. 2, we
averaged this value across conditions and took the square root to
return to units of microvolts. This process was repeated for all
subjects, such thatMn represents the normalizing denominatorM
for the nth subject. Finally, for each subject, we divided the raw real
and imaginary components of all trials in all conditions by this
value. This process leaves us with normalized 128-channel spec-
tral data for each participant. Effectively, we have ‘z-scored’ the
RLS spectral estimates.

M =
1
c

Xc
c = 1

Zc

 !1
2

(2)

After normalization, Reliable components analysis (RCA) in the
frequency domain was used to reduce the dimensionality of the
128-channel data to a smaller number of more easily interpreted
components, as previously detailed (Dmochowski et al., 2015).
Briefly, each reliable component (RC) is a weighted sum of elec-
trical potentials across all channels. The weight vectors are derived
through an eigenvalue decomposition performed on a 128 × 128
matrix where each element represents the ratio of within-trial
covariance (Rxx) to cross-trial covariance (Rxy). Solving this
decomposition provides multiple ranked components (that is spa-
tial filters) that maximize Rxx=Rxy, with the 1st RC containing the
maximal contribution from channels with consistent cross-trial
activity. This reflects a fundamental quality of the SSVEP, where
repeated presentations of the same stimulus produce similar
stimulus-locked neural activation across multiple trials. For the
present analysis, RCA filters were trained at the group level on the
normalized RLS data for 80% contrast, but separately for the
frequencies related to the UVF and LVF (up to the 3rd harmonic).
This yielded a set of spatial filters for both the UVF and the LVF
through which the normalized RLS estimates of all conditions were
then projected. We only analyze the first three RCs for each visual
field location. After projection through a given RC filter, at the
individual subject level, we took the vector mean for all harmonics

Figure 2. Frequency domain (left panel) representation of the average (N = 21) response to an 80% OFF-contrast flicker at channel 75 (approx. occiptial pole) for 6.6 s of data. The
stimulus related frequencies are labelled up to the 3rd harmonic. The right panel is the time-domain representation of the same data, but the x-axis has been limited to 4 s to aid
visualisation. Each vertical reference line shows the time at which an integer number of stimulus cycles were completed for both stimulation frequencies (see the reference
saw-teeth at 3 Hz (LVF) and 3.75 Hz (UVF)).
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and all conditions across sub-trials, took the absolute value, and
calculated the root-mean-square (RMS) amplitude across har-
monics. This leaves us with a single unsigned amplitude value for
every condition and visual field location, for three RC topogra-
phies, for every participant. Importantly, these values are compat-
ible with univariate model fitting/statistics.

Model fitting and statistics

To provide a compact description of ON and OFF pathway
responses from the UVF and LVF, the group-level mean of
observers’ RMS contrast responses (post-RCA projection) was
fitted with a hyperbolic ratio function (Eq. 3), which is often used
to model nonlinear responses to contrast (Albrecht & Hamilton,
1982). This function has the useful quality of describing a range of
response profiles with only four parameters: rMax, c50, n, and
rMin. The rMax is a scaling coefficient that describes the theoret-
ical saturating response of the responsive neural population. All
else being equal, increasing rMax is akin to increasing “response
gain” - stretching the function along the output axis, such that the
same range of input values are encoded by a greater range of
outputs (increasing response granularity). Broadly, the c50
describes the contrast at which the neural population reaches half
of the value of rMax. Increasing the c50 reduces input gain,
stretching the response function to encode a wider range of con-
trasts with the same range of outputs (reducing response granu-
larity). The exponent n describes the form of the non-linearity
occurring proximal to the c50. Exponents greater than 1 describe
the classic accelerating-then-saturating non-linearity, while expo-
nents of 1 or less describe a purely saturating function. Finally, the
rMin is an additive constant that, in the case of EEG, simply
describes the noise floor.

R= rMax∗
cn

cnþ cn50
þ rMin (3)

To enable statistical comparisons of the fitted group-level
parameters between conditions, bootstrapped confidence inter-
vals were generated on the fits. For each condition, we did the
following using a participant (n) by contrast (c) matrix of RMS
amplitudes. In a single iteration, the rows of n were re-sampled
with replacement and the mean was taken along the n dimension.
We then fit the model (Equation. 3) to this 1 x c vector of
amplitudes and saved the parameters. This was repeated 20,000
times. For each condition, the re-sampling seed was reset to the
same value, such that the participants selected were the same in
the xth draw of any condition. To obtain 95% confidence intervals
(CIs) on the fit parameters, we took the 2.5th–97.5th percentiles
of the parameter distributions. To obtain 95% CIs on the differ-
ences between conditions, we took the same percentiles on the
differences between each of the 20,000 rows for two given condi-
tions. Where these CIs do not contain zero, a significant differ-
ence between the two conditions can be concluded. To draw
shaded confidence regions around the fit to the empirical mean,
for each bootstrap draw, we evaluated the hyperbolic ratio fit at
discrete values of contrast (1% increments). The 68% CI of these
pseudo curves were then refitted with Equation 3 and plotted as
1 standard-error bounds of the fit around the empirical mean.We
also performed an ANOVA as an additional description of effects.
A semi-parametric 3-way (contrast × pathway × VF) repeated
measures ANOVA was carried out on RMS amplitudes using the
RM() command of the MANOVA.RM package (Friedrich et al.,

2019) in the R programming language. For repeated measures
designs, this package provides a permutation approach for calcu-
lating “Wald-type statistic” (WTS) p-values. The permuted WTS
is robust to violations of normality and performs well at low-to-
moderate sample sizes (Friedrich et al., 2017). Post hoc ANOVA
tests were corrected for multiple comparisons using the
Bonferroni-Holm method (Holm, 1979). While this ANOVA
cannot speak directly to differences in nonlinear response prop-
erties, it can reveal gross level differences in the data (i.e., are
responses to OFF-biasing stimuli generally larger than responses
to ON-biasing stimuli).

Results

Response topographies are consistent with retinotopic
organization

The frequency tagging approach will produce separable responses
for the UVF and LVF in the retinotopic areas of the brain. In
Fig. 3, we show the grand-average RLS spectra of the channel
showing peak amplitude for the UVF (left-hand panel) and the
LVF (right-hand panel). These channels were selected by search-
ing for the maximum cross-subject vector mean RLS amplitude at
each fundamental frequency used in this experiment (1F1 and
1F2) at 80% contrast for OFF stimulation. There are two inlaid
axes in each panel. The left inlay shows a zoomed-in high-
resolution spectrum calculated using the fast Fourier transform
(FFT). The right inlay shows the topography of RLS responses at
the first harmonic of the relevant stimulation frequency (again, at
80% OFF). Clearly, for the LVF, there is a peak signal over more
posterior channels, while the UFV representation is shifted
towards more anterior/dorsal channels. This topography is con-
sistent with responses that originate from retinotopic brain
regions and broadly matches the topography predicted by the
forward modeling work of Ales et al. (2010). In the RLS Spectra of
Fig. 3 there are well-defined peaks at stimulus-relevant frequen-
cies (black and mid-grey bars), while the non-stimulus frequen-
cies (lighter bars) are relatively flat. The abutting non-stimulus
frequency bins in the inlaid high-resolution spectra also show no
evidence of signal leakage. These spectra and topographies indi-
cate that the timing of our stimulus was well-calibrated, and
assure us that we are obtaining separable and topographically
distinct responses from the UVF and LFV. That the UVF and LVF
responses are independent is also supported by the absence of
signal at inter-modulation frequencies. This also indicates that
contributions to the VEP from wide-field receptive fields that are
subtended by multiple probes are minimal.

To reduce these multi-channel data to analytically tractable
components, we used RCA to reduce the channel dimension to a
smaller set of reliable components (RCs). In Fig. 4 a scree plot
illustrating the proportion of cross-trial covariance accounted for
by the first 12 RCs recovered for the upper and lower visual fields is
presented. The first RC for both field locations captures more than
twice the covariance of the next reliable component. The forward
model topographies for the first three RCs are shown inlaid in this
figure. Note the similarity between the group-average topographies
presented in Fig. 3 and their RC1 counterparts presented in Fig. 4.

Absence of OFF/decrement saturation in the UVF

We first focus on the difference between ON- and OFF-pathway
biasing responses separately for each visual field location. In Fig. 5
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we show the contrast response functions derived from RC1 for the
upper (left panel) and lower (right panel) visual fields. In both
locations, the OFF pathway amplitudes trend higher than the ON
pathway amplitudes at all but the lowest contrast, especially in the
LVF. Additionally, the shape of the fitted response functions (solid
curves) indicates that the LVF responses – both ON and OFF –

show an accelerating and saturating non-linearity, but with OFF-
pathway responses growing at a greater rate with respect to con-
trast. In the UVF, the ON-pathway shows a similar sigmoidal non-
linearity, but the OFF pathway shows little evidence of saturation.

Indeed, the responses from both pathways in the UVF are quite
similar at low and intermediate contrasts.

To test the statistical significance of these response patterns,
we first conducted a semi-parametric 3-way repeated measures
ANOVA on the RMS values contributing to the means shown in
Fig. 5. This analysis reported significant main effects of contrast
(WTS(4) = 60.80, p < .001) and probe polarity (WTS(1) = 38.56,
p < .001), but a non-significant main effect of visual field (WTS
(1) = 3.35, p = .084). There was significant 3-way interaction
between contrast, polarity, and visual field (WTS(4) = 14.65,
p < .05). To elucidate this 3-way interaction, we conducted
additional 2-way repeated-measures ANOVAs, first for visual
field location. In the UVF, there was a significant effect of
contrast (WTS(4) = 42.43, p < .001) and polarity (WTS
(1) = 21.957, p < .001) on response amplitude. The same was
true in the LVF for contrast (WTS(4) = 51.772, p < .001) and
polarity (WTS(1) = 28.1, p < .001). There was a significant
interaction between contrast magnitude and contrast polarity
in the UVF (WTS(4) = 20.23, p < .05) and the LVF (WTS
(4) = 23.57,p < .05). This result supports our observation that
the OFF response is generally larger than the ON response, but
that the difference between the ON and OFF pathways depends
on the contrast being tested in both visual field locations. Next,
we marginalized contrast polarity. In both pathways, the main
effect of contrast magnitude was significant (ON: WTS
(4) = 54.94, p < .001; OFF: WTS(4) = 59.62, p < .001). In the
ON pathway, the effect of visual field was non-significant (WTS
(1) = 0.26, p = .615), but it was significant in the OFF pathway
(WTS(1) = 5.81, p < .05). In both pathways, the interaction
between visual field location and contrast magnitude was non-
significant after correction for multiple comparisons. This anal-
ysis suggests that OFF-pathway responses are generally larger in
the LVF than in the UVF, and that the ON-pathway response is
more similar between the UVF and LVF. However, this analysis
cannot easily describe differences in the shape of contrast
responses. For this purpose, we proceed to the analysis of fitted
contrast response functions.

Figure 3. Grand-average (N = 21) RLS spectra for two channels with maximum RLS-amplitude at fundamental stimulation frequencies. Data shown are responses to 80% contrast
OFF-biasing modulation. The spectrum in the left panel is for channel 55 (max. for 1F1/UVF), while the right panel is for channel 71 (max, for 1F2/LVF). Bars colored grey and black
highlight the frequencies related to the UVF and LVF, respectively. The lighter-gray bars are non-stimulus frequencies. The inlaid axes of each panel show higher-resolution FFT
spectra (left inlay) and RLS topographies of the fundamental frequencies used in the experiment with the peak sensor highlighted by an asterisk (as is the generative spectral peak)
(right inlay).

Figure 4. Scree plot showing the trial-to-trial covariance explained by the first 12 reli-
able components for the upper (diamonds) and lower (circles) visual fields. Inlaid
topographies show the forward model projections of the first 3 components, plotted
on the same color-scale (the units are arbitrary).
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To aid in the interpretation of parameter fits, the fit parameters
to the empirical mean responses and parameter histograms (from
the bootstrapping procedure) are presented in Fig. 6. As stated in
the methods section, a significant difference is concluded when the
bootstrapped confidence interval on the difference between two
conditions does not contain zero. These difference histograms are
shown in Supplementary Fig. 1. Visual assessment of Fig. 5 indi-
cates that the response functions of the ON and OFF pathways in
the LVF are similar, but the OFF response is stretched along the
output axis (elevated rMax) and shifted leftwards on the input axis
(reduced c50). That is, the curves differ in scale and location, but
both accelerate through lower contrasts and saturate at higher
contrasts. Analysis of the parameter fits supports this observation
- in the LVF, the OFF pathway shows a significantly lower c50
(p < .05) and a significantly higher rMax (p < .01), but the distri-
butions of exponents practically overlay between the ON and OFF-
pathways. This indicates that both pathways show a similar form
of non-linearity, but the range of contrasts over which the curves
are most sensitive (the c50) and the degree of sensitivity
(the rMax) differs.

In the UVF, the OFF-pathway fits shows little evidence of
saturation, while the ON-pathway fit saturates much like it does
in the LVF. Indeed, between the LVF and UVF, there are no
significant differences between any ON-pathway fit parameters.
In the UVF, the OFF pathway c50 distribution has a long tail
towards higher contrasts, with approximately 32% of c50s in excess
of 50% contrast, and 7% reporting c50s beyond 100% contrast. In
all other conditions, no more than 1% of c50s are beyond 50%
contrast. It should also be noted that the exponent value in the
UVF-OFF is significantly lower (p < .05) than that of both LVF
pathways. When coupled with its low exponent value, that the
OFF-UVF response does not reach half its maximum by 50%
contrast indicates that a significant proportion of the fitted curve’s
dynamic range is outside of the range of physically possible OFF
contrasts. That is, the probe elements being displayed could not
possibly get any darker in the limit of ambient light incident upon
the display. This suggests that theOFF pathway in theUVF encodes
contrast very differently than in the LVF: rather than having a
narrow dynamic range with high sensitivity, it has a broad dynamic
range of lower sensitivity. Importantly, with c50s so high, the

Figure 6. Half-violin plots showing parameter estimates produced by the group level fit bootstrapping procedure for RC1. Histograms have been color-coded by the pathway being
biased (White = ON, Black = OFF). The parameter displayed in each sub-plot is shown in the x-axis labels.

Figure 5. Group-level (N = 21) RC1 Topographies and contrast response functions. Shaded regions illustrate 68% confidence intervals on themodel fit to the empirical mean. Error
bars are 68% confidence intervals on the empirical mean response for a given contrast. The units on the color-bar are micro-volts.
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interpretability of the rMax and exponent parameters is dimin-
ished. This is because the model we have fit is saturating at a
minimum, and accelerating and saturating depending on the
model parameters. Here, the OFF-pathway in the UVF has a
significantly higher rMax than the ON-pathway (p < .05), but it
is clear that it is from a failure to saturate, rather than a re-scaling of
the same response curve (as in the LVF). Overall, the ON and OFF
pathways are clearly distinguishable in the Lower visual field: they
have a similar function shape but differ in range of contrasts over
which they are most sensitive. In the Upper visual field, our results
are more complex. Here, the ON and OFF pathways are almost
overlapping at low to moderate contrasts, but subtly diverge at
higher contrasts, seemingly failing to saturate in the OFF pathway.

It is possible that these results are specific to RC1. Reliable
components 2 and 3 have different topographies that may reflect
different neural generators with different tuning properties. To
examine this possibility, we analyzed the contrast responses
obtained when the data are instead projected through RC2
(Fig. 7), First, note the reduction in the overall amplitude of these
responses - approximately 50%. Because the noise floor remains the

same regardless of the visually evoked signal, these smaller
responses are more difficult to compare. Nevertheless, the coarse
pattern of the results present in RC1 are maintained. Responses
grow with increasing contrast, the LVF response appears larger
than the UVF response, and within each visual field location, the
OFF-biasing response appears to be larger than the ON-biasing
response. This is supported by another 3-way repeated measures
ANOVA, that shows a significant main effect of contrast ((WTS
(4) = 31.11, p < .001), visual field (WTS(1) = 10.02, p < .01), and a
significant main effect of contrast polarity (WTS(1) = 18.35,
p < .001). Unlike in RC1, however, there are no significant 2- or
3-way interactions between contrast, probe polarity, and visual
field location. Additionally, the confidence intervals on the model
fits entirely overlap in RC2, suggesting that the responses are quite
variable across participants. Indeed, the c50 and exponent fits show
more variability than those of RC1 (see Fig. 8 – note the changed
abscissa limit for the exponent). Only the difference in rMax
between the ON and OFF pathways in the LVF is significant (the
difference distributions are shown in supplementary Figure 2). It is
likely that RC2 represents some small contribution from a later

Figure 7. Group-level (N = 21) RC2 Topographies and contrast response functions. Shaded regions illustrate 68% confidence intervals on themodel fit to the empirical mean. Error
bars are 68% confidence intervals on the empirical mean response for a given contrast. The units on the color-bar are micro-volts.

Figure 8. Half-violin plots showing parameter estimates produced by the group level fit bootstrapping procedure for RC2. Histograms have been color-coded by the pathway being
biased (White = ON, Black = OFF). The parameter displayed in each sub-plot is shown in the x-axis labels.
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source in the visual processing stream, but we do not possess a
sample sufficient to fully characterize it. This issue is compounded
further in RC3, where the model fit distributions become bimodal
(data not shown). For this reason, we will focus on the discussion
RC1 for the remainder of this work, as it demonstrably describes
most of the stimulus-locked activity present in our data.

Discussion

In our previous work, we reported that the OFF pathway SSVEP is
higher in amplitude than the ON pathway SSVEP in response to
sawtooth stimuli in both the UVF and the LVF (Norcia et al., 2020).
Here, we replicate this result but demonstrate that the degree to
which this is true depends on the stimulus contrast in conjunction
with the visual field location being tested. In the LVF, we find that
both the ON and OFF pathway-biased responses show clear sig-
moidal non-linearities, with the OFF pathway response being
larger than the ON pathway response and saturating earlier. In
the UVF, only the ON pathway shows a reliable sigmoidal non-
linearity, while the OFF pathway encodes contrast quasi-linearly,
showing little saturation behavior. These results suggest that full-
field assessment of ON and OFF pathway function provides an
insufficient description of the sensitivity profiles of these pathways,
and encourages a further exploration of why these pathways may
have a visual field dependence.

Comparison with human ON/OFF contrast response
functions

Although several reports have measured VEPs in humans using
ON- & OFF-pathway biasing stimuli (Mutlukan et al., 1992;
Roveri et al., 1997; Zemon et al., 1988, 1995), very few have
measured contrast response functions (Kremkow et al., 2014;
Rahimi-Nasrabadi et al., 2021; Zemon & Gordon, 2006), and
none have investigated visual field asymmetry. Kremkow et al.
(2014) and Rahimi-Nasrabadi et al. (2021) both measured CRFs
using full-field chequerboards, biasing responses towards the ON
or OFF pathway by fixing the luminance of background checks
and varying the luminance of decremental/incremental target
checks. Kremkow and colleagues used stimuli with binary back-
grounds (black or white), while Rahimi-Nasrebadi et al. used
mean-luminance backgrounds. Despite differing stimulus
parameters, their results are in broad agreement: responses to
incremental stimuli showed the strongest saturating non-
linearity, while the decremental responses failed to saturate. To
first order, their results imply that the OFF pathway is optimized
to encode a broad range of contrasts with moderate accuracy,
while the ON pathway encodes a discrete range of contrasts with
high accuracy. While this is consistent with our UVF results, it is
not consistent with our findings in the LVF, nor the full-field
results of Zemon and Gordon (2006). Zemon and Gordon used a
frequency domain approach, sinusoidally modulating the lumi-
nance of isolated checks on a mean-luminance background.
Overall, the amplitude of the response at the fundamental fre-
quency was highest for the OFF biasing stimuli, and the decre-
ment responses saturated earlier than increment responses with
both showing sigmoidal non-linearities. Taken together, our
results from the LVF more closely match the pattern reported
by Zemon and Gordon, while our results in the UVF are closer to
the pattern reported by Kremkow et al. (2014) and Rahimi-
Nasrabadi et al. (2021). It is difficult to find an explanation for
the differences between these studies, as they used different

stimuli that may bias responses towards neural populations with
different tuning properties.

Another difference between ON and OFF pathways is their
spatial tuning. Two reports have measured incremental and dec-
remental contrast response functions for full-field stimuli, varying
element and stimulus size (Kremkow et al., 2014; Zemon & Gor-
don, 2006). Kremkow and colleagues found that the OFF responses
dominated in amplitude at lower grating spatial frequencies, and
that the ON pathway responses had a higher preferred spatial
frequency than OFF. This elevation of ON-pathway spatial fre-
quency tuning was attributed to “neural blur” caused by an early
transducer nonlinearity unique to the ON-pathway (we report a
nonlinearity in both pathways depending on visual field location).
Conversely, using isolated checks, Zemon and colleagues reported
a broader spatial tuning for the OFF/decremental stimuli, with
OFF-responses being higher for denser check grids. The results
of these reports may seem at odds, but Zemon and colleagues
findings may also be explained by ON-pathway neural blur, where
more densely packed checks would be less distinct. At the very least,
this demonstrates that the ON and OFF pathways are likely differ-
entially tuned to the spatial properties of the perceived world.
While possible interactions between size tuning and visual field
location have not been investigated using incremental and decre-
mental stimuli, the visual field dependence of contrast response
function shape has been investigated, but using unsigned contrast.
Laron et al. (2009) investigated the visual field asymmetry of
contrast response functions as a function of eccentricity using the
multi-focal VEP. They found that responses to foveal probes
saturated very late (c50 > 50% contrast), and that c50s reduced
substantially with increasing eccentricity. While their data cannot
speak to differences between the UVF and LVF (because they
pooled over polar angle), it demonstrates that contrast response
functions do vary by eccentricity, as we have shown for polar angle
using signed contrast stimuli.

The diversity of stimulus conditions may have contributed to
the discrepant results found in previous studies. The size of stim-
ulus elements used varied widely between reports: Zemon & Gor-
don (2006) reports using 9 arcmin isolated checks, Rahimi-
Nasrabadi et al. (2021) used 300 checks. Kremkow et al. (2014)
did not report the check size they used. Laron et al. (2009) used
dartboard stimuli scaled for cortical magnification that are
designed to equate the cortical representation of stimuli presented
at different eccentricities, but the other studies did not. This may
mean that the presented stimuli will have been optimal for different
eccentricities. Finally, it should also be noted that these studies all
suffer from a low sample size (N = 3–6), so some variation may
simply be driven by unrepresentative samples.

On the use of rectified stimuli

It is possible that our results are specific to the rectified stimulus
waveform we have chosen to use. Presently, the saw-tooth probe is
always modulating above or below the pedestal luminance, such
that the direction of the fast phase of the saw-tooth is always
consistent with spatial center-surround contrast of the probe with
respect to the pedestal. A side effect of this definition is that the
temporal mean luminance of the probe is different for ON- and
OFF-pathway biasing stimuli, and this difference increases with
contrast. Alternatively, one could modulate the probe symmetri-
cally around the luminance of the pedestal. This would equate the
temporal mean luminance across all polarities and contrasts, but
the centre-surround contrast would be ON-center for half of the
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time, and OFF-center for half of the time. Out of an abundance of
caution to not mix ON and OFF-pathway responses, we chose the
rectified definition for the present work.

To what extent could the different ON- and OFF-pathway
responses we have found be due to our choice of stimulus? There
is a small corpus of literature on this matter. Prior psychophysical
work has indicated that flicker detection thresholds are elevated
when using rectified wave-forms (with higher temporal-mean
luminance) instead of symmetric wave-forms (Zele & Vingrys,
2007; Anderson&Vingrys, 2000). This couldmean that the smaller
response of the ON-pathway we findmay be due to the ON-biasing
stimuli having higher temporal mean luminance than the OFF-
biasing stimuli. Indeed, at a single contrast, we have previously
shown that the use of a symmetric saw-tooth wave-form can reduce
the difference between the VEPs elicited by the ON and OFF
pathways, but we also demonstrated that this effect depends on
the overall luminance of the display (Norcia et al., 2020). At a
spatial mean luminance of 40 cd/m2, the OFF-pathway response
was larger and faster for both symmetric and rectified wave-forms,
challenging the notion that the difference is purely due to a differ-
ence in temporal mean luminance. However, at a higher mean
luminance of 90 cd/m2, the amplitude and speed advantage for
OFF-biasing stimuli was severely reduced for symmetric wave-
forms only. This result suggests that this is not simply a case of
rectified vs symmetric stimuli, but rather that some luminance
information is retained and used to alter ON- and OFF- pathway
symmetry. Modelling and empirically mapping this parameter
space is a worthwhile pursuit, but beyond the scope of the present
work. Presently, the degree to which our finding generalizes to
alternative saw-tooth definitions and spatial mean luminance
values is unknown.

Relating CRFs to natural scenes

Information theory suggests that differences in ON/OFF pathway
spatial tuning may be driven by the distribution of ON & OFF
information in natural scenes (Laughlin, 1981). Indeed, there is
evidence for differential ON/OFF distributions at the full-field
level. By convolving a center-surround receptive field model of
variable size with natural scenes, Ratliff et al. (2010) demonstrated
that OFF contrasts are significantly more common at all spatial
scales. Using a similar approach, but varying receptive field prop-
erties, Cooper & Norcia (2015) demonstrated that OFF contrasts
dominate particularly at low spatial frequencies and supra-
threshold contrasts. However, the present work suggests that it is
not sufficient to summarise ON and OFF pathway function using
full-field stimuli, as we find the relationship between these two
pathways interacts with polar angle.

The distribution of ON and OFF contrasts in the upper and
lower visual field is currently unknown from the human perspec-
tive on natural scenes, and it is not trivial to investigate, considering
that the upper and lower visual fields are defined by gaze location,
which varies with scene content and the passage of time. If the
efficient transmission of information is the primary goal of the
visual system, the difference in ON-OFF pathway tuning we have
found between the UVF and LVF should be accompanied by a
field-dependent ON-OFF contrast distribution. While this has not
been previously considered in humans, it has been in the mouse.
Using natural images taken from the Mouse perspective, Qiu et al.
(2021) investigated the differences in dark bias between the UVF
and LVF, finding that the dark bias was most prominent in the
upper visual field. It is possible that this UVF bias reflects an

adaptive specialization to the mouse’s ecological niche, and it
demonstrates that a polarity by visual field interaction can present
in a terrestrial vertebrate. Future work should investigate the same
question from the human perspective, where our data would
predict the inverse to the mouse: an OFF dominance that is
strongest in the LVF. Beyond the information theoretic approach,
it is is possible that some contrast information is more behaviorally
valuable, beyond an asymmetric scene distribution. That is, there is
an ethological drive to the adaptive qualities of the human visual
system, as has been suggested in mouse (Abballe & Asari, 2022).

Implications for the assessment of ocular pathology

Most of the contrasts humans encounter in day-to-day life are
supra-threshold (Balboa&Grzywacz, 2000; Cooper, 2016). Despite
this, supra-threshold contrast perception is rarely investigated in
pathological vision loss. For example, visual field perimetry focuses
on incremental detection thresholds. This means we have a near-
absent quantitative understanding of the supra-threshold visual
experience across the visual field of patients with ocular pathology.
We have previously used the SSVEP to demonstrate an OFF-
pathway vulnerability in Glaucoma (Norcia et al., 2022), but at a
single contrast. Recently, Bham et al. (2020) measured behavioral
contrast matching thresholds in patients with partial glaucomatous
field loss. At two contrast levels (2x and 4x patients’ absolute
contrast threshold), they found that contrast matching was accu-
rate, despite clear absolute threshold elevation. This means
patients’ perception of contrast is preserved (and veridical) supra-
threshold when the target and reference are identical in all spatial
respects. From this limited evidence, it seems that glaucoma
patients do not experience an overall reduction in image contrast,
which suggests the presence of a compensatory mechanism that
allows contrast responses to “catch-up” beyond the absolute
threshold for detection (but see (Lek et al., 2019)).

This “catch up” phenomenon is similar to loudness recruit-
ment, a long-recognized consequence of hearing loss (Shi et al.,
2022). It is possible that a similar phenomenon is at play in
glaucomatous vision loss, whereby a noise-limited detection
mechanism is effected by retinal insult, while a suprathreshold
mechanism remains relatively unaffected. This would manifest in
a steepened contrast response function, and increasingly binarise
percepts into clearly visible and entirely non-visible (as opposed
to all stimuli becoming lower contrast as the disease progresses).
The contrast response function is easily assessed using the SSVEP
and relatable to discriminability, and direct neural measures of
discriminability are possible (Nelson & Seiple, 1992). Further-
more, measuring the contrast response function using the SSVEP
is a convenient way to objectively assess suprathreshold response
slope at multiple visual field locations simultaneously. This could
not only verify existing behavioral accounts using unsigned con-
trast but can additionally bias responses towards particularly
vulnerable processing pathways. The human ON- and OFF-
pathways are thought to be differentially susceptible to glauco-
matous insult, with OFF retinal ganglion cells being particularly
vulnerable (Norcia et al., 2022).

Conclusion

Visual field asymmetries are present in the representation of incre-
mental and decremental stimuli at multiple suprathreshold con-
trasts. These asymmetries may have their origins in the distribution
of ON and OFF contrast in natural scenes and may be relevant for
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the assessment of suprthreshold vision in patients with visual-field
dependent vision loss.

Supplementary material. The supplementary material for this article can
be found at http://doi.org/10.1017/S095252382400004X.
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